1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3
4 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5
6 802.11 status code portion of this file from ethereal-0.10.6:
7 Copyright 2000, Axis Communications AB
8 Ethereal - Network traffic analyzer
9 By Gerald Combs <gerald@ethereal.com>
10 Copyright 1998 Gerald Combs
11
12
13 Contact Information:
14 Intel Linux Wireless <ilw@linux.intel.com>
15 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
16
17 ******************************************************************************/
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <net/cfg80211-wext.h>
22 #include "ipw2200.h"
23 #include "ipw.h"
24
25
26 #ifndef KBUILD_EXTMOD
27 #define VK "k"
28 #else
29 #define VK
30 #endif
31
32 #ifdef CONFIG_IPW2200_DEBUG
33 #define VD "d"
34 #else
35 #define VD
36 #endif
37
38 #ifdef CONFIG_IPW2200_MONITOR
39 #define VM "m"
40 #else
41 #define VM
42 #endif
43
44 #ifdef CONFIG_IPW2200_PROMISCUOUS
45 #define VP "p"
46 #else
47 #define VP
48 #endif
49
50 #ifdef CONFIG_IPW2200_RADIOTAP
51 #define VR "r"
52 #else
53 #define VR
54 #endif
55
56 #ifdef CONFIG_IPW2200_QOS
57 #define VQ "q"
58 #else
59 #define VQ
60 #endif
61
62 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
63 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
64 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
65 #define DRV_VERSION IPW2200_VERSION
66
67 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
68
69 MODULE_DESCRIPTION(DRV_DESCRIPTION);
70 MODULE_VERSION(DRV_VERSION);
71 MODULE_AUTHOR(DRV_COPYRIGHT);
72 MODULE_LICENSE("GPL");
73 MODULE_FIRMWARE("ipw2200-ibss.fw");
74 #ifdef CONFIG_IPW2200_MONITOR
75 MODULE_FIRMWARE("ipw2200-sniffer.fw");
76 #endif
77 MODULE_FIRMWARE("ipw2200-bss.fw");
78
79 static int cmdlog = 0;
80 static int debug = 0;
81 static int default_channel = 0;
82 static int network_mode = 0;
83
84 static u32 ipw_debug_level;
85 static int associate;
86 static int auto_create = 1;
87 static int led_support = 1;
88 static int disable = 0;
89 static int bt_coexist = 0;
90 static int hwcrypto = 0;
91 static int roaming = 1;
92 static const char ipw_modes[] = {
93 'a', 'b', 'g', '?'
94 };
95 static int antenna = CFG_SYS_ANTENNA_BOTH;
96
97 #ifdef CONFIG_IPW2200_PROMISCUOUS
98 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
99 #endif
100
101 static struct ieee80211_rate ipw2200_rates[] = {
102 { .bitrate = 10 },
103 { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
104 { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
105 { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
106 { .bitrate = 60 },
107 { .bitrate = 90 },
108 { .bitrate = 120 },
109 { .bitrate = 180 },
110 { .bitrate = 240 },
111 { .bitrate = 360 },
112 { .bitrate = 480 },
113 { .bitrate = 540 }
114 };
115
116 #define ipw2200_a_rates (ipw2200_rates + 4)
117 #define ipw2200_num_a_rates 8
118 #define ipw2200_bg_rates (ipw2200_rates + 0)
119 #define ipw2200_num_bg_rates 12
120
121 /* Ugly macro to convert literal channel numbers into their mhz equivalents
122 * There are certianly some conditions that will break this (like feeding it '30')
123 * but they shouldn't arise since nothing talks on channel 30. */
124 #define ieee80211chan2mhz(x) \
125 (((x) <= 14) ? \
126 (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
127 ((x) + 1000) * 5)
128
129 #ifdef CONFIG_IPW2200_QOS
130 static int qos_enable = 0;
131 static int qos_burst_enable = 0;
132 static int qos_no_ack_mask = 0;
133 static int burst_duration_CCK = 0;
134 static int burst_duration_OFDM = 0;
135
136 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
137 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
138 QOS_TX3_CW_MIN_OFDM},
139 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
140 QOS_TX3_CW_MAX_OFDM},
141 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
142 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
143 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
144 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
145 };
146
147 static struct libipw_qos_parameters def_qos_parameters_CCK = {
148 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
149 QOS_TX3_CW_MIN_CCK},
150 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
151 QOS_TX3_CW_MAX_CCK},
152 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
153 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
154 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
155 QOS_TX3_TXOP_LIMIT_CCK}
156 };
157
158 static struct libipw_qos_parameters def_parameters_OFDM = {
159 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
160 DEF_TX3_CW_MIN_OFDM},
161 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
162 DEF_TX3_CW_MAX_OFDM},
163 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
164 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
165 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
166 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
167 };
168
169 static struct libipw_qos_parameters def_parameters_CCK = {
170 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
171 DEF_TX3_CW_MIN_CCK},
172 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
173 DEF_TX3_CW_MAX_CCK},
174 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
175 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
176 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
177 DEF_TX3_TXOP_LIMIT_CCK}
178 };
179
180 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
181
182 static int from_priority_to_tx_queue[] = {
183 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
184 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
185 };
186
187 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
188
189 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
190 *qos_param);
191 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
192 *qos_param);
193 #endif /* CONFIG_IPW2200_QOS */
194
195 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
196 static void ipw_remove_current_network(struct ipw_priv *priv);
197 static void ipw_rx(struct ipw_priv *priv);
198 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
199 struct clx2_tx_queue *txq, int qindex);
200 static int ipw_queue_reset(struct ipw_priv *priv);
201
202 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
203 int len, int sync);
204
205 static void ipw_tx_queue_free(struct ipw_priv *);
206
207 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
208 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
209 static void ipw_rx_queue_replenish(void *);
210 static int ipw_up(struct ipw_priv *);
211 static void ipw_bg_up(struct work_struct *work);
212 static void ipw_down(struct ipw_priv *);
213 static void ipw_bg_down(struct work_struct *work);
214 static int ipw_config(struct ipw_priv *);
215 static int init_supported_rates(struct ipw_priv *priv,
216 struct ipw_supported_rates *prates);
217 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
218 static void ipw_send_wep_keys(struct ipw_priv *, int);
219
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)220 static int snprint_line(char *buf, size_t count,
221 const u8 * data, u32 len, u32 ofs)
222 {
223 int out, i, j, l;
224 char c;
225
226 out = scnprintf(buf, count, "%08X", ofs);
227
228 for (l = 0, i = 0; i < 2; i++) {
229 out += scnprintf(buf + out, count - out, " ");
230 for (j = 0; j < 8 && l < len; j++, l++)
231 out += scnprintf(buf + out, count - out, "%02X ",
232 data[(i * 8 + j)]);
233 for (; j < 8; j++)
234 out += scnprintf(buf + out, count - out, " ");
235 }
236
237 out += scnprintf(buf + out, count - out, " ");
238 for (l = 0, i = 0; i < 2; i++) {
239 out += scnprintf(buf + out, count - out, " ");
240 for (j = 0; j < 8 && l < len; j++, l++) {
241 c = data[(i * 8 + j)];
242 if (!isascii(c) || !isprint(c))
243 c = '.';
244
245 out += scnprintf(buf + out, count - out, "%c", c);
246 }
247
248 for (; j < 8; j++)
249 out += scnprintf(buf + out, count - out, " ");
250 }
251
252 return out;
253 }
254
printk_buf(int level,const u8 * data,u32 len)255 static void printk_buf(int level, const u8 * data, u32 len)
256 {
257 char line[81];
258 u32 ofs = 0;
259 if (!(ipw_debug_level & level))
260 return;
261
262 while (len) {
263 snprint_line(line, sizeof(line), &data[ofs],
264 min(len, 16U), ofs);
265 printk(KERN_DEBUG "%s\n", line);
266 ofs += 16;
267 len -= min(len, 16U);
268 }
269 }
270
snprintk_buf(u8 * output,size_t size,const u8 * data,size_t len)271 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
272 {
273 size_t out = size;
274 u32 ofs = 0;
275 int total = 0;
276
277 while (size && len) {
278 out = snprint_line(output, size, &data[ofs],
279 min_t(size_t, len, 16U), ofs);
280
281 ofs += 16;
282 output += out;
283 size -= out;
284 len -= min_t(size_t, len, 16U);
285 total += out;
286 }
287 return total;
288 }
289
290 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
291 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
292 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
293
294 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
295 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
296 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
297
298 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
299 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
ipw_write_reg8(struct ipw_priv * a,u32 b,u8 c)300 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
301 {
302 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
303 __LINE__, (u32) (b), (u32) (c));
304 _ipw_write_reg8(a, b, c);
305 }
306
307 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
308 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
ipw_write_reg16(struct ipw_priv * a,u32 b,u16 c)309 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
310 {
311 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
312 __LINE__, (u32) (b), (u32) (c));
313 _ipw_write_reg16(a, b, c);
314 }
315
316 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
317 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
ipw_write_reg32(struct ipw_priv * a,u32 b,u32 c)318 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
319 {
320 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
321 __LINE__, (u32) (b), (u32) (c));
322 _ipw_write_reg32(a, b, c);
323 }
324
325 /* 8-bit direct write (low 4K) */
_ipw_write8(struct ipw_priv * ipw,unsigned long ofs,u8 val)326 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
327 u8 val)
328 {
329 writeb(val, ipw->hw_base + ofs);
330 }
331
332 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
333 #define ipw_write8(ipw, ofs, val) do { \
334 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
335 __LINE__, (u32)(ofs), (u32)(val)); \
336 _ipw_write8(ipw, ofs, val); \
337 } while (0)
338
339 /* 16-bit direct write (low 4K) */
_ipw_write16(struct ipw_priv * ipw,unsigned long ofs,u16 val)340 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
341 u16 val)
342 {
343 writew(val, ipw->hw_base + ofs);
344 }
345
346 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write16(ipw, ofs, val) do { \
348 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
349 __LINE__, (u32)(ofs), (u32)(val)); \
350 _ipw_write16(ipw, ofs, val); \
351 } while (0)
352
353 /* 32-bit direct write (low 4K) */
_ipw_write32(struct ipw_priv * ipw,unsigned long ofs,u32 val)354 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
355 u32 val)
356 {
357 writel(val, ipw->hw_base + ofs);
358 }
359
360 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write32(ipw, ofs, val) do { \
362 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
363 __LINE__, (u32)(ofs), (u32)(val)); \
364 _ipw_write32(ipw, ofs, val); \
365 } while (0)
366
367 /* 8-bit direct read (low 4K) */
_ipw_read8(struct ipw_priv * ipw,unsigned long ofs)368 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
369 {
370 return readb(ipw->hw_base + ofs);
371 }
372
373 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
374 #define ipw_read8(ipw, ofs) ({ \
375 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
376 (u32)(ofs)); \
377 _ipw_read8(ipw, ofs); \
378 })
379
380 /* 32-bit direct read (low 4K) */
_ipw_read32(struct ipw_priv * ipw,unsigned long ofs)381 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
382 {
383 return readl(ipw->hw_base + ofs);
384 }
385
386 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
387 #define ipw_read32(ipw, ofs) ({ \
388 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
389 (u32)(ofs)); \
390 _ipw_read32(ipw, ofs); \
391 })
392
393 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
394 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
395 #define ipw_read_indirect(a, b, c, d) ({ \
396 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
397 __LINE__, (u32)(b), (u32)(d)); \
398 _ipw_read_indirect(a, b, c, d); \
399 })
400
401 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
402 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
403 int num);
404 #define ipw_write_indirect(a, b, c, d) do { \
405 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
406 __LINE__, (u32)(b), (u32)(d)); \
407 _ipw_write_indirect(a, b, c, d); \
408 } while (0)
409
410 /* 32-bit indirect write (above 4K) */
_ipw_write_reg32(struct ipw_priv * priv,u32 reg,u32 value)411 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
412 {
413 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
414 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
415 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
416 }
417
418 /* 8-bit indirect write (above 4K) */
_ipw_write_reg8(struct ipw_priv * priv,u32 reg,u8 value)419 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
420 {
421 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
422 u32 dif_len = reg - aligned_addr;
423
424 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
425 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
426 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
427 }
428
429 /* 16-bit indirect write (above 4K) */
_ipw_write_reg16(struct ipw_priv * priv,u32 reg,u16 value)430 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
431 {
432 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
433 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
434
435 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
436 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
437 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
438 }
439
440 /* 8-bit indirect read (above 4K) */
_ipw_read_reg8(struct ipw_priv * priv,u32 reg)441 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
442 {
443 u32 word;
444 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
445 IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
446 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
447 return (word >> ((reg & 0x3) * 8)) & 0xff;
448 }
449
450 /* 32-bit indirect read (above 4K) */
_ipw_read_reg32(struct ipw_priv * priv,u32 reg)451 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
452 {
453 u32 value;
454
455 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
456
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
458 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
459 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
460 return value;
461 }
462
463 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
464 /* for area above 1st 4K of SRAM/reg space */
_ipw_read_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)465 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
466 int num)
467 {
468 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
469 u32 dif_len = addr - aligned_addr;
470 u32 i;
471
472 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
473
474 if (num <= 0) {
475 return;
476 }
477
478 /* Read the first dword (or portion) byte by byte */
479 if (unlikely(dif_len)) {
480 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
481 /* Start reading at aligned_addr + dif_len */
482 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
483 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
484 aligned_addr += 4;
485 }
486
487 /* Read all of the middle dwords as dwords, with auto-increment */
488 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
489 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
490 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
491
492 /* Read the last dword (or portion) byte by byte */
493 if (unlikely(num)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 for (i = 0; num > 0; i++, num--)
496 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
497 }
498 }
499
500 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
501 /* for area above 1st 4K of SRAM/reg space */
_ipw_write_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)502 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
503 int num)
504 {
505 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
506 u32 dif_len = addr - aligned_addr;
507 u32 i;
508
509 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
510
511 if (num <= 0) {
512 return;
513 }
514
515 /* Write the first dword (or portion) byte by byte */
516 if (unlikely(dif_len)) {
517 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
518 /* Start writing at aligned_addr + dif_len */
519 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
520 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
521 aligned_addr += 4;
522 }
523
524 /* Write all of the middle dwords as dwords, with auto-increment */
525 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
526 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
527 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
528
529 /* Write the last dword (or portion) byte by byte */
530 if (unlikely(num)) {
531 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
532 for (i = 0; num > 0; i++, num--, buf++)
533 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
534 }
535 }
536
537 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
538 /* for 1st 4K of SRAM/regs space */
ipw_write_direct(struct ipw_priv * priv,u32 addr,void * buf,int num)539 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
540 int num)
541 {
542 memcpy_toio((priv->hw_base + addr), buf, num);
543 }
544
545 /* Set bit(s) in low 4K of SRAM/regs */
ipw_set_bit(struct ipw_priv * priv,u32 reg,u32 mask)546 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
547 {
548 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
549 }
550
551 /* Clear bit(s) in low 4K of SRAM/regs */
ipw_clear_bit(struct ipw_priv * priv,u32 reg,u32 mask)552 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
553 {
554 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
555 }
556
__ipw_enable_interrupts(struct ipw_priv * priv)557 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
558 {
559 if (priv->status & STATUS_INT_ENABLED)
560 return;
561 priv->status |= STATUS_INT_ENABLED;
562 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
563 }
564
__ipw_disable_interrupts(struct ipw_priv * priv)565 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
566 {
567 if (!(priv->status & STATUS_INT_ENABLED))
568 return;
569 priv->status &= ~STATUS_INT_ENABLED;
570 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
571 }
572
ipw_enable_interrupts(struct ipw_priv * priv)573 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
574 {
575 unsigned long flags;
576
577 spin_lock_irqsave(&priv->irq_lock, flags);
578 __ipw_enable_interrupts(priv);
579 spin_unlock_irqrestore(&priv->irq_lock, flags);
580 }
581
ipw_disable_interrupts(struct ipw_priv * priv)582 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
583 {
584 unsigned long flags;
585
586 spin_lock_irqsave(&priv->irq_lock, flags);
587 __ipw_disable_interrupts(priv);
588 spin_unlock_irqrestore(&priv->irq_lock, flags);
589 }
590
ipw_error_desc(u32 val)591 static char *ipw_error_desc(u32 val)
592 {
593 switch (val) {
594 case IPW_FW_ERROR_OK:
595 return "ERROR_OK";
596 case IPW_FW_ERROR_FAIL:
597 return "ERROR_FAIL";
598 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
599 return "MEMORY_UNDERFLOW";
600 case IPW_FW_ERROR_MEMORY_OVERFLOW:
601 return "MEMORY_OVERFLOW";
602 case IPW_FW_ERROR_BAD_PARAM:
603 return "BAD_PARAM";
604 case IPW_FW_ERROR_BAD_CHECKSUM:
605 return "BAD_CHECKSUM";
606 case IPW_FW_ERROR_NMI_INTERRUPT:
607 return "NMI_INTERRUPT";
608 case IPW_FW_ERROR_BAD_DATABASE:
609 return "BAD_DATABASE";
610 case IPW_FW_ERROR_ALLOC_FAIL:
611 return "ALLOC_FAIL";
612 case IPW_FW_ERROR_DMA_UNDERRUN:
613 return "DMA_UNDERRUN";
614 case IPW_FW_ERROR_DMA_STATUS:
615 return "DMA_STATUS";
616 case IPW_FW_ERROR_DINO_ERROR:
617 return "DINO_ERROR";
618 case IPW_FW_ERROR_EEPROM_ERROR:
619 return "EEPROM_ERROR";
620 case IPW_FW_ERROR_SYSASSERT:
621 return "SYSASSERT";
622 case IPW_FW_ERROR_FATAL_ERROR:
623 return "FATAL_ERROR";
624 default:
625 return "UNKNOWN_ERROR";
626 }
627 }
628
ipw_dump_error_log(struct ipw_priv * priv,struct ipw_fw_error * error)629 static void ipw_dump_error_log(struct ipw_priv *priv,
630 struct ipw_fw_error *error)
631 {
632 u32 i;
633
634 if (!error) {
635 IPW_ERROR("Error allocating and capturing error log. "
636 "Nothing to dump.\n");
637 return;
638 }
639
640 IPW_ERROR("Start IPW Error Log Dump:\n");
641 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
642 error->status, error->config);
643
644 for (i = 0; i < error->elem_len; i++)
645 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
646 ipw_error_desc(error->elem[i].desc),
647 error->elem[i].time,
648 error->elem[i].blink1,
649 error->elem[i].blink2,
650 error->elem[i].link1,
651 error->elem[i].link2, error->elem[i].data);
652 for (i = 0; i < error->log_len; i++)
653 IPW_ERROR("%i\t0x%08x\t%i\n",
654 error->log[i].time,
655 error->log[i].data, error->log[i].event);
656 }
657
ipw_is_init(struct ipw_priv * priv)658 static inline int ipw_is_init(struct ipw_priv *priv)
659 {
660 return (priv->status & STATUS_INIT) ? 1 : 0;
661 }
662
ipw_get_ordinal(struct ipw_priv * priv,u32 ord,void * val,u32 * len)663 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
664 {
665 u32 addr, field_info, field_len, field_count, total_len;
666
667 IPW_DEBUG_ORD("ordinal = %i\n", ord);
668
669 if (!priv || !val || !len) {
670 IPW_DEBUG_ORD("Invalid argument\n");
671 return -EINVAL;
672 }
673
674 /* verify device ordinal tables have been initialized */
675 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
676 IPW_DEBUG_ORD("Access ordinals before initialization\n");
677 return -EINVAL;
678 }
679
680 switch (IPW_ORD_TABLE_ID_MASK & ord) {
681 case IPW_ORD_TABLE_0_MASK:
682 /*
683 * TABLE 0: Direct access to a table of 32 bit values
684 *
685 * This is a very simple table with the data directly
686 * read from the table
687 */
688
689 /* remove the table id from the ordinal */
690 ord &= IPW_ORD_TABLE_VALUE_MASK;
691
692 /* boundary check */
693 if (ord > priv->table0_len) {
694 IPW_DEBUG_ORD("ordinal value (%i) longer then "
695 "max (%i)\n", ord, priv->table0_len);
696 return -EINVAL;
697 }
698
699 /* verify we have enough room to store the value */
700 if (*len < sizeof(u32)) {
701 IPW_DEBUG_ORD("ordinal buffer length too small, "
702 "need %zd\n", sizeof(u32));
703 return -EINVAL;
704 }
705
706 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
707 ord, priv->table0_addr + (ord << 2));
708
709 *len = sizeof(u32);
710 ord <<= 2;
711 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
712 break;
713
714 case IPW_ORD_TABLE_1_MASK:
715 /*
716 * TABLE 1: Indirect access to a table of 32 bit values
717 *
718 * This is a fairly large table of u32 values each
719 * representing starting addr for the data (which is
720 * also a u32)
721 */
722
723 /* remove the table id from the ordinal */
724 ord &= IPW_ORD_TABLE_VALUE_MASK;
725
726 /* boundary check */
727 if (ord > priv->table1_len) {
728 IPW_DEBUG_ORD("ordinal value too long\n");
729 return -EINVAL;
730 }
731
732 /* verify we have enough room to store the value */
733 if (*len < sizeof(u32)) {
734 IPW_DEBUG_ORD("ordinal buffer length too small, "
735 "need %zd\n", sizeof(u32));
736 return -EINVAL;
737 }
738
739 *((u32 *) val) =
740 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
741 *len = sizeof(u32);
742 break;
743
744 case IPW_ORD_TABLE_2_MASK:
745 /*
746 * TABLE 2: Indirect access to a table of variable sized values
747 *
748 * This table consist of six values, each containing
749 * - dword containing the starting offset of the data
750 * - dword containing the lengh in the first 16bits
751 * and the count in the second 16bits
752 */
753
754 /* remove the table id from the ordinal */
755 ord &= IPW_ORD_TABLE_VALUE_MASK;
756
757 /* boundary check */
758 if (ord > priv->table2_len) {
759 IPW_DEBUG_ORD("ordinal value too long\n");
760 return -EINVAL;
761 }
762
763 /* get the address of statistic */
764 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
765
766 /* get the second DW of statistics ;
767 * two 16-bit words - first is length, second is count */
768 field_info =
769 ipw_read_reg32(priv,
770 priv->table2_addr + (ord << 3) +
771 sizeof(u32));
772
773 /* get each entry length */
774 field_len = *((u16 *) & field_info);
775
776 /* get number of entries */
777 field_count = *(((u16 *) & field_info) + 1);
778
779 /* abort if not enough memory */
780 total_len = field_len * field_count;
781 if (total_len > *len) {
782 *len = total_len;
783 return -EINVAL;
784 }
785
786 *len = total_len;
787 if (!total_len)
788 return 0;
789
790 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
791 "field_info = 0x%08x\n",
792 addr, total_len, field_info);
793 ipw_read_indirect(priv, addr, val, total_len);
794 break;
795
796 default:
797 IPW_DEBUG_ORD("Invalid ordinal!\n");
798 return -EINVAL;
799
800 }
801
802 return 0;
803 }
804
ipw_init_ordinals(struct ipw_priv * priv)805 static void ipw_init_ordinals(struct ipw_priv *priv)
806 {
807 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
808 priv->table0_len = ipw_read32(priv, priv->table0_addr);
809
810 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
811 priv->table0_addr, priv->table0_len);
812
813 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
814 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
815
816 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
817 priv->table1_addr, priv->table1_len);
818
819 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
820 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
821 priv->table2_len &= 0x0000ffff; /* use first two bytes */
822
823 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
824 priv->table2_addr, priv->table2_len);
825
826 }
827
ipw_register_toggle(u32 reg)828 static u32 ipw_register_toggle(u32 reg)
829 {
830 reg &= ~IPW_START_STANDBY;
831 if (reg & IPW_GATE_ODMA)
832 reg &= ~IPW_GATE_ODMA;
833 if (reg & IPW_GATE_IDMA)
834 reg &= ~IPW_GATE_IDMA;
835 if (reg & IPW_GATE_ADMA)
836 reg &= ~IPW_GATE_ADMA;
837 return reg;
838 }
839
840 /*
841 * LED behavior:
842 * - On radio ON, turn on any LEDs that require to be on during start
843 * - On initialization, start unassociated blink
844 * - On association, disable unassociated blink
845 * - On disassociation, start unassociated blink
846 * - On radio OFF, turn off any LEDs started during radio on
847 *
848 */
849 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
850 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
851 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
852
ipw_led_link_on(struct ipw_priv * priv)853 static void ipw_led_link_on(struct ipw_priv *priv)
854 {
855 unsigned long flags;
856 u32 led;
857
858 /* If configured to not use LEDs, or nic_type is 1,
859 * then we don't toggle a LINK led */
860 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
861 return;
862
863 spin_lock_irqsave(&priv->lock, flags);
864
865 if (!(priv->status & STATUS_RF_KILL_MASK) &&
866 !(priv->status & STATUS_LED_LINK_ON)) {
867 IPW_DEBUG_LED("Link LED On\n");
868 led = ipw_read_reg32(priv, IPW_EVENT_REG);
869 led |= priv->led_association_on;
870
871 led = ipw_register_toggle(led);
872
873 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
874 ipw_write_reg32(priv, IPW_EVENT_REG, led);
875
876 priv->status |= STATUS_LED_LINK_ON;
877
878 /* If we aren't associated, schedule turning the LED off */
879 if (!(priv->status & STATUS_ASSOCIATED))
880 schedule_delayed_work(&priv->led_link_off,
881 LD_TIME_LINK_ON);
882 }
883
884 spin_unlock_irqrestore(&priv->lock, flags);
885 }
886
ipw_bg_led_link_on(struct work_struct * work)887 static void ipw_bg_led_link_on(struct work_struct *work)
888 {
889 struct ipw_priv *priv =
890 container_of(work, struct ipw_priv, led_link_on.work);
891 mutex_lock(&priv->mutex);
892 ipw_led_link_on(priv);
893 mutex_unlock(&priv->mutex);
894 }
895
ipw_led_link_off(struct ipw_priv * priv)896 static void ipw_led_link_off(struct ipw_priv *priv)
897 {
898 unsigned long flags;
899 u32 led;
900
901 /* If configured not to use LEDs, or nic type is 1,
902 * then we don't goggle the LINK led. */
903 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
904 return;
905
906 spin_lock_irqsave(&priv->lock, flags);
907
908 if (priv->status & STATUS_LED_LINK_ON) {
909 led = ipw_read_reg32(priv, IPW_EVENT_REG);
910 led &= priv->led_association_off;
911 led = ipw_register_toggle(led);
912
913 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
914 ipw_write_reg32(priv, IPW_EVENT_REG, led);
915
916 IPW_DEBUG_LED("Link LED Off\n");
917
918 priv->status &= ~STATUS_LED_LINK_ON;
919
920 /* If we aren't associated and the radio is on, schedule
921 * turning the LED on (blink while unassociated) */
922 if (!(priv->status & STATUS_RF_KILL_MASK) &&
923 !(priv->status & STATUS_ASSOCIATED))
924 schedule_delayed_work(&priv->led_link_on,
925 LD_TIME_LINK_OFF);
926
927 }
928
929 spin_unlock_irqrestore(&priv->lock, flags);
930 }
931
ipw_bg_led_link_off(struct work_struct * work)932 static void ipw_bg_led_link_off(struct work_struct *work)
933 {
934 struct ipw_priv *priv =
935 container_of(work, struct ipw_priv, led_link_off.work);
936 mutex_lock(&priv->mutex);
937 ipw_led_link_off(priv);
938 mutex_unlock(&priv->mutex);
939 }
940
__ipw_led_activity_on(struct ipw_priv * priv)941 static void __ipw_led_activity_on(struct ipw_priv *priv)
942 {
943 u32 led;
944
945 if (priv->config & CFG_NO_LED)
946 return;
947
948 if (priv->status & STATUS_RF_KILL_MASK)
949 return;
950
951 if (!(priv->status & STATUS_LED_ACT_ON)) {
952 led = ipw_read_reg32(priv, IPW_EVENT_REG);
953 led |= priv->led_activity_on;
954
955 led = ipw_register_toggle(led);
956
957 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
958 ipw_write_reg32(priv, IPW_EVENT_REG, led);
959
960 IPW_DEBUG_LED("Activity LED On\n");
961
962 priv->status |= STATUS_LED_ACT_ON;
963
964 cancel_delayed_work(&priv->led_act_off);
965 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
966 } else {
967 /* Reschedule LED off for full time period */
968 cancel_delayed_work(&priv->led_act_off);
969 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
970 }
971 }
972
973 #if 0
974 void ipw_led_activity_on(struct ipw_priv *priv)
975 {
976 unsigned long flags;
977 spin_lock_irqsave(&priv->lock, flags);
978 __ipw_led_activity_on(priv);
979 spin_unlock_irqrestore(&priv->lock, flags);
980 }
981 #endif /* 0 */
982
ipw_led_activity_off(struct ipw_priv * priv)983 static void ipw_led_activity_off(struct ipw_priv *priv)
984 {
985 unsigned long flags;
986 u32 led;
987
988 if (priv->config & CFG_NO_LED)
989 return;
990
991 spin_lock_irqsave(&priv->lock, flags);
992
993 if (priv->status & STATUS_LED_ACT_ON) {
994 led = ipw_read_reg32(priv, IPW_EVENT_REG);
995 led &= priv->led_activity_off;
996
997 led = ipw_register_toggle(led);
998
999 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1000 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1001
1002 IPW_DEBUG_LED("Activity LED Off\n");
1003
1004 priv->status &= ~STATUS_LED_ACT_ON;
1005 }
1006
1007 spin_unlock_irqrestore(&priv->lock, flags);
1008 }
1009
ipw_bg_led_activity_off(struct work_struct * work)1010 static void ipw_bg_led_activity_off(struct work_struct *work)
1011 {
1012 struct ipw_priv *priv =
1013 container_of(work, struct ipw_priv, led_act_off.work);
1014 mutex_lock(&priv->mutex);
1015 ipw_led_activity_off(priv);
1016 mutex_unlock(&priv->mutex);
1017 }
1018
ipw_led_band_on(struct ipw_priv * priv)1019 static void ipw_led_band_on(struct ipw_priv *priv)
1020 {
1021 unsigned long flags;
1022 u32 led;
1023
1024 /* Only nic type 1 supports mode LEDs */
1025 if (priv->config & CFG_NO_LED ||
1026 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1027 return;
1028
1029 spin_lock_irqsave(&priv->lock, flags);
1030
1031 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1032 if (priv->assoc_network->mode == IEEE_A) {
1033 led |= priv->led_ofdm_on;
1034 led &= priv->led_association_off;
1035 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1036 } else if (priv->assoc_network->mode == IEEE_G) {
1037 led |= priv->led_ofdm_on;
1038 led |= priv->led_association_on;
1039 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1040 } else {
1041 led &= priv->led_ofdm_off;
1042 led |= priv->led_association_on;
1043 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1044 }
1045
1046 led = ipw_register_toggle(led);
1047
1048 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1049 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1050
1051 spin_unlock_irqrestore(&priv->lock, flags);
1052 }
1053
ipw_led_band_off(struct ipw_priv * priv)1054 static void ipw_led_band_off(struct ipw_priv *priv)
1055 {
1056 unsigned long flags;
1057 u32 led;
1058
1059 /* Only nic type 1 supports mode LEDs */
1060 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1061 return;
1062
1063 spin_lock_irqsave(&priv->lock, flags);
1064
1065 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1066 led &= priv->led_ofdm_off;
1067 led &= priv->led_association_off;
1068
1069 led = ipw_register_toggle(led);
1070
1071 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1072 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1073
1074 spin_unlock_irqrestore(&priv->lock, flags);
1075 }
1076
ipw_led_radio_on(struct ipw_priv * priv)1077 static void ipw_led_radio_on(struct ipw_priv *priv)
1078 {
1079 ipw_led_link_on(priv);
1080 }
1081
ipw_led_radio_off(struct ipw_priv * priv)1082 static void ipw_led_radio_off(struct ipw_priv *priv)
1083 {
1084 ipw_led_activity_off(priv);
1085 ipw_led_link_off(priv);
1086 }
1087
ipw_led_link_up(struct ipw_priv * priv)1088 static void ipw_led_link_up(struct ipw_priv *priv)
1089 {
1090 /* Set the Link Led on for all nic types */
1091 ipw_led_link_on(priv);
1092 }
1093
ipw_led_link_down(struct ipw_priv * priv)1094 static void ipw_led_link_down(struct ipw_priv *priv)
1095 {
1096 ipw_led_activity_off(priv);
1097 ipw_led_link_off(priv);
1098
1099 if (priv->status & STATUS_RF_KILL_MASK)
1100 ipw_led_radio_off(priv);
1101 }
1102
ipw_led_init(struct ipw_priv * priv)1103 static void ipw_led_init(struct ipw_priv *priv)
1104 {
1105 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1106
1107 /* Set the default PINs for the link and activity leds */
1108 priv->led_activity_on = IPW_ACTIVITY_LED;
1109 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1110
1111 priv->led_association_on = IPW_ASSOCIATED_LED;
1112 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1113
1114 /* Set the default PINs for the OFDM leds */
1115 priv->led_ofdm_on = IPW_OFDM_LED;
1116 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1117
1118 switch (priv->nic_type) {
1119 case EEPROM_NIC_TYPE_1:
1120 /* In this NIC type, the LEDs are reversed.... */
1121 priv->led_activity_on = IPW_ASSOCIATED_LED;
1122 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1123 priv->led_association_on = IPW_ACTIVITY_LED;
1124 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1125
1126 if (!(priv->config & CFG_NO_LED))
1127 ipw_led_band_on(priv);
1128
1129 /* And we don't blink link LEDs for this nic, so
1130 * just return here */
1131 return;
1132
1133 case EEPROM_NIC_TYPE_3:
1134 case EEPROM_NIC_TYPE_2:
1135 case EEPROM_NIC_TYPE_4:
1136 case EEPROM_NIC_TYPE_0:
1137 break;
1138
1139 default:
1140 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1141 priv->nic_type);
1142 priv->nic_type = EEPROM_NIC_TYPE_0;
1143 break;
1144 }
1145
1146 if (!(priv->config & CFG_NO_LED)) {
1147 if (priv->status & STATUS_ASSOCIATED)
1148 ipw_led_link_on(priv);
1149 else
1150 ipw_led_link_off(priv);
1151 }
1152 }
1153
ipw_led_shutdown(struct ipw_priv * priv)1154 static void ipw_led_shutdown(struct ipw_priv *priv)
1155 {
1156 ipw_led_activity_off(priv);
1157 ipw_led_link_off(priv);
1158 ipw_led_band_off(priv);
1159 cancel_delayed_work(&priv->led_link_on);
1160 cancel_delayed_work(&priv->led_link_off);
1161 cancel_delayed_work(&priv->led_act_off);
1162 }
1163
1164 /*
1165 * The following adds a new attribute to the sysfs representation
1166 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1167 * used for controlling the debug level.
1168 *
1169 * See the level definitions in ipw for details.
1170 */
debug_level_show(struct device_driver * d,char * buf)1171 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1172 {
1173 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1174 }
1175
debug_level_store(struct device_driver * d,const char * buf,size_t count)1176 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1177 size_t count)
1178 {
1179 unsigned long val;
1180
1181 int result = kstrtoul(buf, 0, &val);
1182
1183 if (result == -EINVAL)
1184 printk(KERN_INFO DRV_NAME
1185 ": %s is not in hex or decimal form.\n", buf);
1186 else if (result == -ERANGE)
1187 printk(KERN_INFO DRV_NAME
1188 ": %s has overflowed.\n", buf);
1189 else
1190 ipw_debug_level = val;
1191
1192 return count;
1193 }
1194 static DRIVER_ATTR_RW(debug_level);
1195
ipw_get_event_log_len(struct ipw_priv * priv)1196 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1197 {
1198 /* length = 1st dword in log */
1199 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1200 }
1201
ipw_capture_event_log(struct ipw_priv * priv,u32 log_len,struct ipw_event * log)1202 static void ipw_capture_event_log(struct ipw_priv *priv,
1203 u32 log_len, struct ipw_event *log)
1204 {
1205 u32 base;
1206
1207 if (log_len) {
1208 base = ipw_read32(priv, IPW_EVENT_LOG);
1209 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1210 (u8 *) log, sizeof(*log) * log_len);
1211 }
1212 }
1213
ipw_alloc_error_log(struct ipw_priv * priv)1214 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1215 {
1216 struct ipw_fw_error *error;
1217 u32 log_len = ipw_get_event_log_len(priv);
1218 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1219 u32 elem_len = ipw_read_reg32(priv, base);
1220
1221 error = kmalloc(size_add(struct_size(error, elem, elem_len),
1222 array_size(sizeof(*error->log), log_len)),
1223 GFP_ATOMIC);
1224 if (!error) {
1225 IPW_ERROR("Memory allocation for firmware error log "
1226 "failed.\n");
1227 return NULL;
1228 }
1229 error->jiffies = jiffies;
1230 error->status = priv->status;
1231 error->config = priv->config;
1232 error->elem_len = elem_len;
1233 error->log_len = log_len;
1234 error->log = (struct ipw_event *)(error->elem + elem_len);
1235
1236 ipw_capture_event_log(priv, log_len, error->log);
1237
1238 if (elem_len)
1239 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1240 sizeof(*error->elem) * elem_len);
1241
1242 return error;
1243 }
1244
event_log_show(struct device * d,struct device_attribute * attr,char * buf)1245 static ssize_t event_log_show(struct device *d,
1246 struct device_attribute *attr, char *buf)
1247 {
1248 struct ipw_priv *priv = dev_get_drvdata(d);
1249 u32 log_len = ipw_get_event_log_len(priv);
1250 u32 log_size;
1251 struct ipw_event *log;
1252 u32 len = 0, i;
1253
1254 /* not using min() because of its strict type checking */
1255 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1256 sizeof(*log) * log_len : PAGE_SIZE;
1257 log = kzalloc(log_size, GFP_KERNEL);
1258 if (!log) {
1259 IPW_ERROR("Unable to allocate memory for log\n");
1260 return 0;
1261 }
1262 log_len = log_size / sizeof(*log);
1263 ipw_capture_event_log(priv, log_len, log);
1264
1265 len += scnprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1266 for (i = 0; i < log_len; i++)
1267 len += scnprintf(buf + len, PAGE_SIZE - len,
1268 "\n%08X%08X%08X",
1269 log[i].time, log[i].event, log[i].data);
1270 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1271 kfree(log);
1272 return len;
1273 }
1274
1275 static DEVICE_ATTR_RO(event_log);
1276
error_show(struct device * d,struct device_attribute * attr,char * buf)1277 static ssize_t error_show(struct device *d,
1278 struct device_attribute *attr, char *buf)
1279 {
1280 struct ipw_priv *priv = dev_get_drvdata(d);
1281 u32 len = 0, i;
1282 if (!priv->error)
1283 return 0;
1284 len += scnprintf(buf + len, PAGE_SIZE - len,
1285 "%08lX%08X%08X%08X",
1286 priv->error->jiffies,
1287 priv->error->status,
1288 priv->error->config, priv->error->elem_len);
1289 for (i = 0; i < priv->error->elem_len; i++)
1290 len += scnprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X%08X%08X%08X%08X",
1292 priv->error->elem[i].time,
1293 priv->error->elem[i].desc,
1294 priv->error->elem[i].blink1,
1295 priv->error->elem[i].blink2,
1296 priv->error->elem[i].link1,
1297 priv->error->elem[i].link2,
1298 priv->error->elem[i].data);
1299
1300 len += scnprintf(buf + len, PAGE_SIZE - len,
1301 "\n%08X", priv->error->log_len);
1302 for (i = 0; i < priv->error->log_len; i++)
1303 len += scnprintf(buf + len, PAGE_SIZE - len,
1304 "\n%08X%08X%08X",
1305 priv->error->log[i].time,
1306 priv->error->log[i].event,
1307 priv->error->log[i].data);
1308 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1309 return len;
1310 }
1311
error_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1312 static ssize_t error_store(struct device *d,
1313 struct device_attribute *attr,
1314 const char *buf, size_t count)
1315 {
1316 struct ipw_priv *priv = dev_get_drvdata(d);
1317
1318 kfree(priv->error);
1319 priv->error = NULL;
1320 return count;
1321 }
1322
1323 static DEVICE_ATTR_RW(error);
1324
cmd_log_show(struct device * d,struct device_attribute * attr,char * buf)1325 static ssize_t cmd_log_show(struct device *d,
1326 struct device_attribute *attr, char *buf)
1327 {
1328 struct ipw_priv *priv = dev_get_drvdata(d);
1329 u32 len = 0, i;
1330 if (!priv->cmdlog)
1331 return 0;
1332 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1333 (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1334 i = (i + 1) % priv->cmdlog_len) {
1335 len +=
1336 scnprintf(buf + len, PAGE_SIZE - len,
1337 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1338 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1339 priv->cmdlog[i].cmd.len);
1340 len +=
1341 snprintk_buf(buf + len, PAGE_SIZE - len,
1342 (u8 *) priv->cmdlog[i].cmd.param,
1343 priv->cmdlog[i].cmd.len);
1344 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1345 }
1346 len += scnprintf(buf + len, PAGE_SIZE - len, "\n");
1347 return len;
1348 }
1349
1350 static DEVICE_ATTR_RO(cmd_log);
1351
1352 #ifdef CONFIG_IPW2200_PROMISCUOUS
1353 static void ipw_prom_free(struct ipw_priv *priv);
1354 static int ipw_prom_alloc(struct ipw_priv *priv);
rtap_iface_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1355 static ssize_t rtap_iface_store(struct device *d,
1356 struct device_attribute *attr,
1357 const char *buf, size_t count)
1358 {
1359 struct ipw_priv *priv = dev_get_drvdata(d);
1360 int rc = 0;
1361
1362 if (count < 1)
1363 return -EINVAL;
1364
1365 switch (buf[0]) {
1366 case '0':
1367 if (!rtap_iface)
1368 return count;
1369
1370 if (netif_running(priv->prom_net_dev)) {
1371 IPW_WARNING("Interface is up. Cannot unregister.\n");
1372 return count;
1373 }
1374
1375 ipw_prom_free(priv);
1376 rtap_iface = 0;
1377 break;
1378
1379 case '1':
1380 if (rtap_iface)
1381 return count;
1382
1383 rc = ipw_prom_alloc(priv);
1384 if (!rc)
1385 rtap_iface = 1;
1386 break;
1387
1388 default:
1389 return -EINVAL;
1390 }
1391
1392 if (rc) {
1393 IPW_ERROR("Failed to register promiscuous network "
1394 "device (error %d).\n", rc);
1395 }
1396
1397 return count;
1398 }
1399
rtap_iface_show(struct device * d,struct device_attribute * attr,char * buf)1400 static ssize_t rtap_iface_show(struct device *d,
1401 struct device_attribute *attr,
1402 char *buf)
1403 {
1404 struct ipw_priv *priv = dev_get_drvdata(d);
1405 if (rtap_iface)
1406 return sprintf(buf, "%s", priv->prom_net_dev->name);
1407 else {
1408 buf[0] = '-';
1409 buf[1] = '1';
1410 buf[2] = '\0';
1411 return 3;
1412 }
1413 }
1414
1415 static DEVICE_ATTR_ADMIN_RW(rtap_iface);
1416
rtap_filter_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1417 static ssize_t rtap_filter_store(struct device *d,
1418 struct device_attribute *attr,
1419 const char *buf, size_t count)
1420 {
1421 struct ipw_priv *priv = dev_get_drvdata(d);
1422
1423 if (!priv->prom_priv) {
1424 IPW_ERROR("Attempting to set filter without "
1425 "rtap_iface enabled.\n");
1426 return -EPERM;
1427 }
1428
1429 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1430
1431 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1432 BIT_ARG16(priv->prom_priv->filter));
1433
1434 return count;
1435 }
1436
rtap_filter_show(struct device * d,struct device_attribute * attr,char * buf)1437 static ssize_t rtap_filter_show(struct device *d,
1438 struct device_attribute *attr,
1439 char *buf)
1440 {
1441 struct ipw_priv *priv = dev_get_drvdata(d);
1442 return sprintf(buf, "0x%04X",
1443 priv->prom_priv ? priv->prom_priv->filter : 0);
1444 }
1445
1446 static DEVICE_ATTR_ADMIN_RW(rtap_filter);
1447 #endif
1448
scan_age_show(struct device * d,struct device_attribute * attr,char * buf)1449 static ssize_t scan_age_show(struct device *d, struct device_attribute *attr,
1450 char *buf)
1451 {
1452 struct ipw_priv *priv = dev_get_drvdata(d);
1453 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1454 }
1455
scan_age_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1456 static ssize_t scan_age_store(struct device *d, struct device_attribute *attr,
1457 const char *buf, size_t count)
1458 {
1459 struct ipw_priv *priv = dev_get_drvdata(d);
1460 struct net_device *dev = priv->net_dev;
1461
1462 IPW_DEBUG_INFO("enter\n");
1463
1464 unsigned long val;
1465 int result = kstrtoul(buf, 0, &val);
1466
1467 if (result == -EINVAL || result == -ERANGE) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1472 }
1473
1474 IPW_DEBUG_INFO("exit\n");
1475 return count;
1476 }
1477
1478 static DEVICE_ATTR_RW(scan_age);
1479
led_show(struct device * d,struct device_attribute * attr,char * buf)1480 static ssize_t led_show(struct device *d, struct device_attribute *attr,
1481 char *buf)
1482 {
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1485 }
1486
led_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1487 static ssize_t led_store(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1489 {
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1491
1492 IPW_DEBUG_INFO("enter\n");
1493
1494 if (count == 0)
1495 return 0;
1496
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1505 }
1506
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1509 }
1510
1511 static DEVICE_ATTR_RW(led);
1512
status_show(struct device * d,struct device_attribute * attr,char * buf)1513 static ssize_t status_show(struct device *d,
1514 struct device_attribute *attr, char *buf)
1515 {
1516 struct ipw_priv *p = dev_get_drvdata(d);
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1518 }
1519
1520 static DEVICE_ATTR_RO(status);
1521
cfg_show(struct device * d,struct device_attribute * attr,char * buf)1522 static ssize_t cfg_show(struct device *d, struct device_attribute *attr,
1523 char *buf)
1524 {
1525 struct ipw_priv *p = dev_get_drvdata(d);
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1527 }
1528
1529 static DEVICE_ATTR_RO(cfg);
1530
nic_type_show(struct device * d,struct device_attribute * attr,char * buf)1531 static ssize_t nic_type_show(struct device *d,
1532 struct device_attribute *attr, char *buf)
1533 {
1534 struct ipw_priv *priv = dev_get_drvdata(d);
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1536 }
1537
1538 static DEVICE_ATTR_RO(nic_type);
1539
ucode_version_show(struct device * d,struct device_attribute * attr,char * buf)1540 static ssize_t ucode_version_show(struct device *d,
1541 struct device_attribute *attr, char *buf)
1542 {
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = dev_get_drvdata(d);
1545
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1548
1549 return sprintf(buf, "0x%08x\n", tmp);
1550 }
1551
1552 static DEVICE_ATTR_RO(ucode_version);
1553
rtc_show(struct device * d,struct device_attribute * attr,char * buf)1554 static ssize_t rtc_show(struct device *d, struct device_attribute *attr,
1555 char *buf)
1556 {
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = dev_get_drvdata(d);
1559
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1562
1563 return sprintf(buf, "0x%08x\n", tmp);
1564 }
1565
1566 static DEVICE_ATTR_RO(rtc);
1567
1568 /*
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1571 */
eeprom_delay_show(struct device * d,struct device_attribute * attr,char * buf)1572 static ssize_t eeprom_delay_show(struct device *d,
1573 struct device_attribute *attr, char *buf)
1574 {
1575 struct ipw_priv *p = dev_get_drvdata(d);
1576 int n = p->eeprom_delay;
1577 return sprintf(buf, "%i\n", n);
1578 }
eeprom_delay_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1579 static ssize_t eeprom_delay_store(struct device *d,
1580 struct device_attribute *attr,
1581 const char *buf, size_t count)
1582 {
1583 struct ipw_priv *p = dev_get_drvdata(d);
1584 sscanf(buf, "%i", &p->eeprom_delay);
1585 return strnlen(buf, count);
1586 }
1587
1588 static DEVICE_ATTR_RW(eeprom_delay);
1589
command_event_reg_show(struct device * d,struct device_attribute * attr,char * buf)1590 static ssize_t command_event_reg_show(struct device *d,
1591 struct device_attribute *attr, char *buf)
1592 {
1593 u32 reg = 0;
1594 struct ipw_priv *p = dev_get_drvdata(d);
1595
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1598 }
command_event_reg_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1599 static ssize_t command_event_reg_store(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1602 {
1603 u32 reg;
1604 struct ipw_priv *p = dev_get_drvdata(d);
1605
1606 sscanf(buf, "%x", ®);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1609 }
1610
1611 static DEVICE_ATTR_RW(command_event_reg);
1612
mem_gpio_reg_show(struct device * d,struct device_attribute * attr,char * buf)1613 static ssize_t mem_gpio_reg_show(struct device *d,
1614 struct device_attribute *attr, char *buf)
1615 {
1616 u32 reg = 0;
1617 struct ipw_priv *p = dev_get_drvdata(d);
1618
1619 reg = ipw_read_reg32(p, 0x301100);
1620 return sprintf(buf, "0x%08x\n", reg);
1621 }
mem_gpio_reg_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1622 static ssize_t mem_gpio_reg_store(struct device *d,
1623 struct device_attribute *attr,
1624 const char *buf, size_t count)
1625 {
1626 u32 reg;
1627 struct ipw_priv *p = dev_get_drvdata(d);
1628
1629 sscanf(buf, "%x", ®);
1630 ipw_write_reg32(p, 0x301100, reg);
1631 return strnlen(buf, count);
1632 }
1633
1634 static DEVICE_ATTR_RW(mem_gpio_reg);
1635
indirect_dword_show(struct device * d,struct device_attribute * attr,char * buf)1636 static ssize_t indirect_dword_show(struct device *d,
1637 struct device_attribute *attr, char *buf)
1638 {
1639 u32 reg = 0;
1640 struct ipw_priv *priv = dev_get_drvdata(d);
1641
1642 if (priv->status & STATUS_INDIRECT_DWORD)
1643 reg = ipw_read_reg32(priv, priv->indirect_dword);
1644 else
1645 reg = 0;
1646
1647 return sprintf(buf, "0x%08x\n", reg);
1648 }
indirect_dword_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1649 static ssize_t indirect_dword_store(struct device *d,
1650 struct device_attribute *attr,
1651 const char *buf, size_t count)
1652 {
1653 struct ipw_priv *priv = dev_get_drvdata(d);
1654
1655 sscanf(buf, "%x", &priv->indirect_dword);
1656 priv->status |= STATUS_INDIRECT_DWORD;
1657 return strnlen(buf, count);
1658 }
1659
1660 static DEVICE_ATTR_RW(indirect_dword);
1661
indirect_byte_show(struct device * d,struct device_attribute * attr,char * buf)1662 static ssize_t indirect_byte_show(struct device *d,
1663 struct device_attribute *attr, char *buf)
1664 {
1665 u8 reg = 0;
1666 struct ipw_priv *priv = dev_get_drvdata(d);
1667
1668 if (priv->status & STATUS_INDIRECT_BYTE)
1669 reg = ipw_read_reg8(priv, priv->indirect_byte);
1670 else
1671 reg = 0;
1672
1673 return sprintf(buf, "0x%02x\n", reg);
1674 }
indirect_byte_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1675 static ssize_t indirect_byte_store(struct device *d,
1676 struct device_attribute *attr,
1677 const char *buf, size_t count)
1678 {
1679 struct ipw_priv *priv = dev_get_drvdata(d);
1680
1681 sscanf(buf, "%x", &priv->indirect_byte);
1682 priv->status |= STATUS_INDIRECT_BYTE;
1683 return strnlen(buf, count);
1684 }
1685
1686 static DEVICE_ATTR_RW(indirect_byte);
1687
direct_dword_show(struct device * d,struct device_attribute * attr,char * buf)1688 static ssize_t direct_dword_show(struct device *d,
1689 struct device_attribute *attr, char *buf)
1690 {
1691 u32 reg = 0;
1692 struct ipw_priv *priv = dev_get_drvdata(d);
1693
1694 if (priv->status & STATUS_DIRECT_DWORD)
1695 reg = ipw_read32(priv, priv->direct_dword);
1696 else
1697 reg = 0;
1698
1699 return sprintf(buf, "0x%08x\n", reg);
1700 }
direct_dword_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1701 static ssize_t direct_dword_store(struct device *d,
1702 struct device_attribute *attr,
1703 const char *buf, size_t count)
1704 {
1705 struct ipw_priv *priv = dev_get_drvdata(d);
1706
1707 sscanf(buf, "%x", &priv->direct_dword);
1708 priv->status |= STATUS_DIRECT_DWORD;
1709 return strnlen(buf, count);
1710 }
1711
1712 static DEVICE_ATTR_RW(direct_dword);
1713
rf_kill_active(struct ipw_priv * priv)1714 static int rf_kill_active(struct ipw_priv *priv)
1715 {
1716 if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1717 priv->status |= STATUS_RF_KILL_HW;
1718 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1719 } else {
1720 priv->status &= ~STATUS_RF_KILL_HW;
1721 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1722 }
1723
1724 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1725 }
1726
rf_kill_show(struct device * d,struct device_attribute * attr,char * buf)1727 static ssize_t rf_kill_show(struct device *d, struct device_attribute *attr,
1728 char *buf)
1729 {
1730 /* 0 - RF kill not enabled
1731 1 - SW based RF kill active (sysfs)
1732 2 - HW based RF kill active
1733 3 - Both HW and SW baed RF kill active */
1734 struct ipw_priv *priv = dev_get_drvdata(d);
1735 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1736 (rf_kill_active(priv) ? 0x2 : 0x0);
1737 return sprintf(buf, "%i\n", val);
1738 }
1739
ipw_radio_kill_sw(struct ipw_priv * priv,int disable_radio)1740 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1741 {
1742 if ((disable_radio ? 1 : 0) ==
1743 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1744 return 0;
1745
1746 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1747 disable_radio ? "OFF" : "ON");
1748
1749 if (disable_radio) {
1750 priv->status |= STATUS_RF_KILL_SW;
1751
1752 cancel_delayed_work(&priv->request_scan);
1753 cancel_delayed_work(&priv->request_direct_scan);
1754 cancel_delayed_work(&priv->request_passive_scan);
1755 cancel_delayed_work(&priv->scan_event);
1756 schedule_work(&priv->down);
1757 } else {
1758 priv->status &= ~STATUS_RF_KILL_SW;
1759 if (rf_kill_active(priv)) {
1760 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1761 "disabled by HW switch\n");
1762 /* Make sure the RF_KILL check timer is running */
1763 cancel_delayed_work(&priv->rf_kill);
1764 schedule_delayed_work(&priv->rf_kill,
1765 round_jiffies_relative(2 * HZ));
1766 } else
1767 schedule_work(&priv->up);
1768 }
1769
1770 return 1;
1771 }
1772
rf_kill_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1773 static ssize_t rf_kill_store(struct device *d, struct device_attribute *attr,
1774 const char *buf, size_t count)
1775 {
1776 struct ipw_priv *priv = dev_get_drvdata(d);
1777
1778 ipw_radio_kill_sw(priv, buf[0] == '1');
1779
1780 return count;
1781 }
1782
1783 static DEVICE_ATTR_RW(rf_kill);
1784
speed_scan_show(struct device * d,struct device_attribute * attr,char * buf)1785 static ssize_t speed_scan_show(struct device *d, struct device_attribute *attr,
1786 char *buf)
1787 {
1788 struct ipw_priv *priv = dev_get_drvdata(d);
1789 int pos = 0, len = 0;
1790 if (priv->config & CFG_SPEED_SCAN) {
1791 while (priv->speed_scan[pos] != 0)
1792 len += sprintf(&buf[len], "%d ",
1793 priv->speed_scan[pos++]);
1794 return len + sprintf(&buf[len], "\n");
1795 }
1796
1797 return sprintf(buf, "0\n");
1798 }
1799
speed_scan_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1800 static ssize_t speed_scan_store(struct device *d, struct device_attribute *attr,
1801 const char *buf, size_t count)
1802 {
1803 struct ipw_priv *priv = dev_get_drvdata(d);
1804 int channel, pos = 0;
1805 const char *p = buf;
1806
1807 /* list of space separated channels to scan, optionally ending with 0 */
1808 while ((channel = simple_strtol(p, NULL, 0))) {
1809 if (pos == MAX_SPEED_SCAN - 1) {
1810 priv->speed_scan[pos] = 0;
1811 break;
1812 }
1813
1814 if (libipw_is_valid_channel(priv->ieee, channel))
1815 priv->speed_scan[pos++] = channel;
1816 else
1817 IPW_WARNING("Skipping invalid channel request: %d\n",
1818 channel);
1819 p = strchr(p, ' ');
1820 if (!p)
1821 break;
1822 while (*p == ' ' || *p == '\t')
1823 p++;
1824 }
1825
1826 if (pos == 0)
1827 priv->config &= ~CFG_SPEED_SCAN;
1828 else {
1829 priv->speed_scan_pos = 0;
1830 priv->config |= CFG_SPEED_SCAN;
1831 }
1832
1833 return count;
1834 }
1835
1836 static DEVICE_ATTR_RW(speed_scan);
1837
net_stats_show(struct device * d,struct device_attribute * attr,char * buf)1838 static ssize_t net_stats_show(struct device *d, struct device_attribute *attr,
1839 char *buf)
1840 {
1841 struct ipw_priv *priv = dev_get_drvdata(d);
1842 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1843 }
1844
net_stats_store(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1845 static ssize_t net_stats_store(struct device *d, struct device_attribute *attr,
1846 const char *buf, size_t count)
1847 {
1848 struct ipw_priv *priv = dev_get_drvdata(d);
1849 if (buf[0] == '1')
1850 priv->config |= CFG_NET_STATS;
1851 else
1852 priv->config &= ~CFG_NET_STATS;
1853
1854 return count;
1855 }
1856
1857 static DEVICE_ATTR_RW(net_stats);
1858
channels_show(struct device * d,struct device_attribute * attr,char * buf)1859 static ssize_t channels_show(struct device *d,
1860 struct device_attribute *attr,
1861 char *buf)
1862 {
1863 struct ipw_priv *priv = dev_get_drvdata(d);
1864 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1865 int len = 0, i;
1866
1867 len = sprintf(&buf[len],
1868 "Displaying %d channels in 2.4Ghz band "
1869 "(802.11bg):\n", geo->bg_channels);
1870
1871 for (i = 0; i < geo->bg_channels; i++) {
1872 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1873 geo->bg[i].channel,
1874 geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1875 " (radar spectrum)" : "",
1876 ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1877 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1878 ? "" : ", IBSS",
1879 geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1880 "passive only" : "active/passive",
1881 geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1882 "B" : "B/G");
1883 }
1884
1885 len += sprintf(&buf[len],
1886 "Displaying %d channels in 5.2Ghz band "
1887 "(802.11a):\n", geo->a_channels);
1888 for (i = 0; i < geo->a_channels; i++) {
1889 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1890 geo->a[i].channel,
1891 geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1892 " (radar spectrum)" : "",
1893 ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1894 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1895 ? "" : ", IBSS",
1896 geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1897 "passive only" : "active/passive");
1898 }
1899
1900 return len;
1901 }
1902
1903 static DEVICE_ATTR_ADMIN_RO(channels);
1904
notify_wx_assoc_event(struct ipw_priv * priv)1905 static void notify_wx_assoc_event(struct ipw_priv *priv)
1906 {
1907 union iwreq_data wrqu;
1908 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1909 if (priv->status & STATUS_ASSOCIATED)
1910 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1911 else
1912 eth_zero_addr(wrqu.ap_addr.sa_data);
1913 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1914 }
1915
ipw_irq_tasklet(struct tasklet_struct * t)1916 static void ipw_irq_tasklet(struct tasklet_struct *t)
1917 {
1918 struct ipw_priv *priv = from_tasklet(priv, t, irq_tasklet);
1919 u32 inta, inta_mask, handled = 0;
1920 unsigned long flags;
1921
1922 spin_lock_irqsave(&priv->irq_lock, flags);
1923
1924 inta = ipw_read32(priv, IPW_INTA_RW);
1925 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1926
1927 if (inta == 0xFFFFFFFF) {
1928 /* Hardware disappeared */
1929 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1930 /* Only handle the cached INTA values */
1931 inta = 0;
1932 }
1933 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934
1935 /* Add any cached INTA values that need to be handled */
1936 inta |= priv->isr_inta;
1937
1938 spin_unlock_irqrestore(&priv->irq_lock, flags);
1939
1940 spin_lock_irqsave(&priv->lock, flags);
1941
1942 /* handle all the justifications for the interrupt */
1943 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1944 ipw_rx(priv);
1945 handled |= IPW_INTA_BIT_RX_TRANSFER;
1946 }
1947
1948 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1949 IPW_DEBUG_HC("Command completed.\n");
1950 ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1951 priv->status &= ~STATUS_HCMD_ACTIVE;
1952 wake_up_interruptible(&priv->wait_command_queue);
1953 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1954 }
1955
1956 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1957 IPW_DEBUG_TX("TX_QUEUE_1\n");
1958 ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1959 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1960 }
1961
1962 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1963 IPW_DEBUG_TX("TX_QUEUE_2\n");
1964 ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1965 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1966 }
1967
1968 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1969 IPW_DEBUG_TX("TX_QUEUE_3\n");
1970 ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1971 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1972 }
1973
1974 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1975 IPW_DEBUG_TX("TX_QUEUE_4\n");
1976 ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1977 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1978 }
1979
1980 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1981 IPW_WARNING("STATUS_CHANGE\n");
1982 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1983 }
1984
1985 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1986 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1987 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1988 }
1989
1990 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1991 IPW_WARNING("HOST_CMD_DONE\n");
1992 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1993 }
1994
1995 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1996 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1997 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1998 }
1999
2000 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2001 IPW_WARNING("PHY_OFF_DONE\n");
2002 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2003 }
2004
2005 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2006 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2007 priv->status |= STATUS_RF_KILL_HW;
2008 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2009 wake_up_interruptible(&priv->wait_command_queue);
2010 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2011 cancel_delayed_work(&priv->request_scan);
2012 cancel_delayed_work(&priv->request_direct_scan);
2013 cancel_delayed_work(&priv->request_passive_scan);
2014 cancel_delayed_work(&priv->scan_event);
2015 schedule_work(&priv->link_down);
2016 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2017 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2018 }
2019
2020 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2021 IPW_WARNING("Firmware error detected. Restarting.\n");
2022 if (priv->error) {
2023 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2024 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2025 struct ipw_fw_error *error =
2026 ipw_alloc_error_log(priv);
2027 ipw_dump_error_log(priv, error);
2028 kfree(error);
2029 }
2030 } else {
2031 priv->error = ipw_alloc_error_log(priv);
2032 if (priv->error)
2033 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2034 else
2035 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2036 "log.\n");
2037 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2038 ipw_dump_error_log(priv, priv->error);
2039 }
2040
2041 /* XXX: If hardware encryption is for WPA/WPA2,
2042 * we have to notify the supplicant. */
2043 if (priv->ieee->sec.encrypt) {
2044 priv->status &= ~STATUS_ASSOCIATED;
2045 notify_wx_assoc_event(priv);
2046 }
2047
2048 /* Keep the restart process from trying to send host
2049 * commands by clearing the INIT status bit */
2050 priv->status &= ~STATUS_INIT;
2051
2052 /* Cancel currently queued command. */
2053 priv->status &= ~STATUS_HCMD_ACTIVE;
2054 wake_up_interruptible(&priv->wait_command_queue);
2055
2056 schedule_work(&priv->adapter_restart);
2057 handled |= IPW_INTA_BIT_FATAL_ERROR;
2058 }
2059
2060 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2061 IPW_ERROR("Parity error\n");
2062 handled |= IPW_INTA_BIT_PARITY_ERROR;
2063 }
2064
2065 if (handled != inta) {
2066 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2067 }
2068
2069 spin_unlock_irqrestore(&priv->lock, flags);
2070
2071 /* enable all interrupts */
2072 ipw_enable_interrupts(priv);
2073 }
2074
2075 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
get_cmd_string(u8 cmd)2076 static char *get_cmd_string(u8 cmd)
2077 {
2078 switch (cmd) {
2079 IPW_CMD(HOST_COMPLETE);
2080 IPW_CMD(POWER_DOWN);
2081 IPW_CMD(SYSTEM_CONFIG);
2082 IPW_CMD(MULTICAST_ADDRESS);
2083 IPW_CMD(SSID);
2084 IPW_CMD(ADAPTER_ADDRESS);
2085 IPW_CMD(PORT_TYPE);
2086 IPW_CMD(RTS_THRESHOLD);
2087 IPW_CMD(FRAG_THRESHOLD);
2088 IPW_CMD(POWER_MODE);
2089 IPW_CMD(WEP_KEY);
2090 IPW_CMD(TGI_TX_KEY);
2091 IPW_CMD(SCAN_REQUEST);
2092 IPW_CMD(SCAN_REQUEST_EXT);
2093 IPW_CMD(ASSOCIATE);
2094 IPW_CMD(SUPPORTED_RATES);
2095 IPW_CMD(SCAN_ABORT);
2096 IPW_CMD(TX_FLUSH);
2097 IPW_CMD(QOS_PARAMETERS);
2098 IPW_CMD(DINO_CONFIG);
2099 IPW_CMD(RSN_CAPABILITIES);
2100 IPW_CMD(RX_KEY);
2101 IPW_CMD(CARD_DISABLE);
2102 IPW_CMD(SEED_NUMBER);
2103 IPW_CMD(TX_POWER);
2104 IPW_CMD(COUNTRY_INFO);
2105 IPW_CMD(AIRONET_INFO);
2106 IPW_CMD(AP_TX_POWER);
2107 IPW_CMD(CCKM_INFO);
2108 IPW_CMD(CCX_VER_INFO);
2109 IPW_CMD(SET_CALIBRATION);
2110 IPW_CMD(SENSITIVITY_CALIB);
2111 IPW_CMD(RETRY_LIMIT);
2112 IPW_CMD(IPW_PRE_POWER_DOWN);
2113 IPW_CMD(VAP_BEACON_TEMPLATE);
2114 IPW_CMD(VAP_DTIM_PERIOD);
2115 IPW_CMD(EXT_SUPPORTED_RATES);
2116 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2117 IPW_CMD(VAP_QUIET_INTERVALS);
2118 IPW_CMD(VAP_CHANNEL_SWITCH);
2119 IPW_CMD(VAP_MANDATORY_CHANNELS);
2120 IPW_CMD(VAP_CELL_PWR_LIMIT);
2121 IPW_CMD(VAP_CF_PARAM_SET);
2122 IPW_CMD(VAP_SET_BEACONING_STATE);
2123 IPW_CMD(MEASUREMENT);
2124 IPW_CMD(POWER_CAPABILITY);
2125 IPW_CMD(SUPPORTED_CHANNELS);
2126 IPW_CMD(TPC_REPORT);
2127 IPW_CMD(WME_INFO);
2128 IPW_CMD(PRODUCTION_COMMAND);
2129 default:
2130 return "UNKNOWN";
2131 }
2132 }
2133
2134 #define HOST_COMPLETE_TIMEOUT HZ
2135
__ipw_send_cmd(struct ipw_priv * priv,struct host_cmd * cmd)2136 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2137 {
2138 int rc = 0;
2139 unsigned long flags;
2140 unsigned long now, end;
2141
2142 spin_lock_irqsave(&priv->lock, flags);
2143 if (priv->status & STATUS_HCMD_ACTIVE) {
2144 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2145 get_cmd_string(cmd->cmd));
2146 spin_unlock_irqrestore(&priv->lock, flags);
2147 return -EAGAIN;
2148 }
2149
2150 priv->status |= STATUS_HCMD_ACTIVE;
2151
2152 if (priv->cmdlog) {
2153 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2154 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2155 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2156 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2157 cmd->len);
2158 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2159 }
2160
2161 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2162 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2163 priv->status);
2164
2165 #ifndef DEBUG_CMD_WEP_KEY
2166 if (cmd->cmd == IPW_CMD_WEP_KEY)
2167 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2168 else
2169 #endif
2170 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2171
2172 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2173 if (rc) {
2174 priv->status &= ~STATUS_HCMD_ACTIVE;
2175 IPW_ERROR("Failed to send %s: Reason %d\n",
2176 get_cmd_string(cmd->cmd), rc);
2177 spin_unlock_irqrestore(&priv->lock, flags);
2178 goto exit;
2179 }
2180 spin_unlock_irqrestore(&priv->lock, flags);
2181
2182 now = jiffies;
2183 end = now + HOST_COMPLETE_TIMEOUT;
2184 again:
2185 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2186 !(priv->
2187 status & STATUS_HCMD_ACTIVE),
2188 end - now);
2189 if (rc < 0) {
2190 now = jiffies;
2191 if (time_before(now, end))
2192 goto again;
2193 rc = 0;
2194 }
2195
2196 if (rc == 0) {
2197 spin_lock_irqsave(&priv->lock, flags);
2198 if (priv->status & STATUS_HCMD_ACTIVE) {
2199 IPW_ERROR("Failed to send %s: Command timed out.\n",
2200 get_cmd_string(cmd->cmd));
2201 priv->status &= ~STATUS_HCMD_ACTIVE;
2202 spin_unlock_irqrestore(&priv->lock, flags);
2203 rc = -EIO;
2204 goto exit;
2205 }
2206 spin_unlock_irqrestore(&priv->lock, flags);
2207 } else
2208 rc = 0;
2209
2210 if (priv->status & STATUS_RF_KILL_HW) {
2211 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2212 get_cmd_string(cmd->cmd));
2213 rc = -EIO;
2214 goto exit;
2215 }
2216
2217 exit:
2218 if (priv->cmdlog) {
2219 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2220 priv->cmdlog_pos %= priv->cmdlog_len;
2221 }
2222 return rc;
2223 }
2224
ipw_send_cmd_simple(struct ipw_priv * priv,u8 command)2225 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2226 {
2227 struct host_cmd cmd = {
2228 .cmd = command,
2229 };
2230
2231 return __ipw_send_cmd(priv, &cmd);
2232 }
2233
ipw_send_cmd_pdu(struct ipw_priv * priv,u8 command,u8 len,const void * data)2234 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2235 const void *data)
2236 {
2237 struct host_cmd cmd = {
2238 .cmd = command,
2239 .len = len,
2240 .param = data,
2241 };
2242
2243 return __ipw_send_cmd(priv, &cmd);
2244 }
2245
ipw_send_host_complete(struct ipw_priv * priv)2246 static int ipw_send_host_complete(struct ipw_priv *priv)
2247 {
2248 if (!priv) {
2249 IPW_ERROR("Invalid args\n");
2250 return -1;
2251 }
2252
2253 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2254 }
2255
ipw_send_system_config(struct ipw_priv * priv)2256 static int ipw_send_system_config(struct ipw_priv *priv)
2257 {
2258 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2259 sizeof(priv->sys_config),
2260 &priv->sys_config);
2261 }
2262
ipw_send_ssid(struct ipw_priv * priv,u8 * ssid,int len)2263 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2264 {
2265 if (!priv || !ssid) {
2266 IPW_ERROR("Invalid args\n");
2267 return -1;
2268 }
2269
2270 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2271 ssid);
2272 }
2273
ipw_send_adapter_address(struct ipw_priv * priv,const u8 * mac)2274 static int ipw_send_adapter_address(struct ipw_priv *priv, const u8 * mac)
2275 {
2276 if (!priv || !mac) {
2277 IPW_ERROR("Invalid args\n");
2278 return -1;
2279 }
2280
2281 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2282 priv->net_dev->name, mac);
2283
2284 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2285 }
2286
ipw_adapter_restart(void * adapter)2287 static void ipw_adapter_restart(void *adapter)
2288 {
2289 struct ipw_priv *priv = adapter;
2290
2291 if (priv->status & STATUS_RF_KILL_MASK)
2292 return;
2293
2294 ipw_down(priv);
2295
2296 if (priv->assoc_network &&
2297 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2298 ipw_remove_current_network(priv);
2299
2300 if (ipw_up(priv)) {
2301 IPW_ERROR("Failed to up device\n");
2302 return;
2303 }
2304 }
2305
ipw_bg_adapter_restart(struct work_struct * work)2306 static void ipw_bg_adapter_restart(struct work_struct *work)
2307 {
2308 struct ipw_priv *priv =
2309 container_of(work, struct ipw_priv, adapter_restart);
2310 mutex_lock(&priv->mutex);
2311 ipw_adapter_restart(priv);
2312 mutex_unlock(&priv->mutex);
2313 }
2314
2315 static void ipw_abort_scan(struct ipw_priv *priv);
2316
2317 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2318
ipw_scan_check(void * data)2319 static void ipw_scan_check(void *data)
2320 {
2321 struct ipw_priv *priv = data;
2322
2323 if (priv->status & STATUS_SCAN_ABORTING) {
2324 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2325 "adapter after (%dms).\n",
2326 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2327 schedule_work(&priv->adapter_restart);
2328 } else if (priv->status & STATUS_SCANNING) {
2329 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2330 "after (%dms).\n",
2331 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2332 ipw_abort_scan(priv);
2333 schedule_delayed_work(&priv->scan_check, HZ);
2334 }
2335 }
2336
ipw_bg_scan_check(struct work_struct * work)2337 static void ipw_bg_scan_check(struct work_struct *work)
2338 {
2339 struct ipw_priv *priv =
2340 container_of(work, struct ipw_priv, scan_check.work);
2341 mutex_lock(&priv->mutex);
2342 ipw_scan_check(priv);
2343 mutex_unlock(&priv->mutex);
2344 }
2345
ipw_send_scan_request_ext(struct ipw_priv * priv,struct ipw_scan_request_ext * request)2346 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2347 struct ipw_scan_request_ext *request)
2348 {
2349 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2350 sizeof(*request), request);
2351 }
2352
ipw_send_scan_abort(struct ipw_priv * priv)2353 static int ipw_send_scan_abort(struct ipw_priv *priv)
2354 {
2355 if (!priv) {
2356 IPW_ERROR("Invalid args\n");
2357 return -1;
2358 }
2359
2360 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2361 }
2362
ipw_set_sensitivity(struct ipw_priv * priv,u16 sens)2363 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2364 {
2365 struct ipw_sensitivity_calib calib = {
2366 .beacon_rssi_raw = cpu_to_le16(sens),
2367 };
2368
2369 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2370 &calib);
2371 }
2372
ipw_send_associate(struct ipw_priv * priv,struct ipw_associate * associate)2373 static int ipw_send_associate(struct ipw_priv *priv,
2374 struct ipw_associate *associate)
2375 {
2376 if (!priv || !associate) {
2377 IPW_ERROR("Invalid args\n");
2378 return -1;
2379 }
2380
2381 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2382 associate);
2383 }
2384
ipw_send_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)2385 static int ipw_send_supported_rates(struct ipw_priv *priv,
2386 struct ipw_supported_rates *rates)
2387 {
2388 if (!priv || !rates) {
2389 IPW_ERROR("Invalid args\n");
2390 return -1;
2391 }
2392
2393 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2394 rates);
2395 }
2396
ipw_set_random_seed(struct ipw_priv * priv)2397 static int ipw_set_random_seed(struct ipw_priv *priv)
2398 {
2399 u32 val;
2400
2401 if (!priv) {
2402 IPW_ERROR("Invalid args\n");
2403 return -1;
2404 }
2405
2406 get_random_bytes(&val, sizeof(val));
2407
2408 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2409 }
2410
ipw_send_card_disable(struct ipw_priv * priv,u32 phy_off)2411 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2412 {
2413 __le32 v = cpu_to_le32(phy_off);
2414 if (!priv) {
2415 IPW_ERROR("Invalid args\n");
2416 return -1;
2417 }
2418
2419 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2420 }
2421
ipw_send_tx_power(struct ipw_priv * priv,struct ipw_tx_power * power)2422 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2423 {
2424 if (!priv || !power) {
2425 IPW_ERROR("Invalid args\n");
2426 return -1;
2427 }
2428
2429 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2430 }
2431
ipw_set_tx_power(struct ipw_priv * priv)2432 static int ipw_set_tx_power(struct ipw_priv *priv)
2433 {
2434 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2435 struct ipw_tx_power tx_power;
2436 s8 max_power;
2437 int i;
2438
2439 memset(&tx_power, 0, sizeof(tx_power));
2440
2441 /* configure device for 'G' band */
2442 tx_power.ieee_mode = IPW_G_MODE;
2443 tx_power.num_channels = geo->bg_channels;
2444 for (i = 0; i < geo->bg_channels; i++) {
2445 max_power = geo->bg[i].max_power;
2446 tx_power.channels_tx_power[i].channel_number =
2447 geo->bg[i].channel;
2448 tx_power.channels_tx_power[i].tx_power = max_power ?
2449 min(max_power, priv->tx_power) : priv->tx_power;
2450 }
2451 if (ipw_send_tx_power(priv, &tx_power))
2452 return -EIO;
2453
2454 /* configure device to also handle 'B' band */
2455 tx_power.ieee_mode = IPW_B_MODE;
2456 if (ipw_send_tx_power(priv, &tx_power))
2457 return -EIO;
2458
2459 /* configure device to also handle 'A' band */
2460 if (priv->ieee->abg_true) {
2461 tx_power.ieee_mode = IPW_A_MODE;
2462 tx_power.num_channels = geo->a_channels;
2463 for (i = 0; i < tx_power.num_channels; i++) {
2464 max_power = geo->a[i].max_power;
2465 tx_power.channels_tx_power[i].channel_number =
2466 geo->a[i].channel;
2467 tx_power.channels_tx_power[i].tx_power = max_power ?
2468 min(max_power, priv->tx_power) : priv->tx_power;
2469 }
2470 if (ipw_send_tx_power(priv, &tx_power))
2471 return -EIO;
2472 }
2473 return 0;
2474 }
2475
ipw_send_rts_threshold(struct ipw_priv * priv,u16 rts)2476 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2477 {
2478 struct ipw_rts_threshold rts_threshold = {
2479 .rts_threshold = cpu_to_le16(rts),
2480 };
2481
2482 if (!priv) {
2483 IPW_ERROR("Invalid args\n");
2484 return -1;
2485 }
2486
2487 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2488 sizeof(rts_threshold), &rts_threshold);
2489 }
2490
ipw_send_frag_threshold(struct ipw_priv * priv,u16 frag)2491 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2492 {
2493 struct ipw_frag_threshold frag_threshold = {
2494 .frag_threshold = cpu_to_le16(frag),
2495 };
2496
2497 if (!priv) {
2498 IPW_ERROR("Invalid args\n");
2499 return -1;
2500 }
2501
2502 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2503 sizeof(frag_threshold), &frag_threshold);
2504 }
2505
ipw_send_power_mode(struct ipw_priv * priv,u32 mode)2506 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2507 {
2508 __le32 param;
2509
2510 if (!priv) {
2511 IPW_ERROR("Invalid args\n");
2512 return -1;
2513 }
2514
2515 /* If on battery, set to 3, if AC set to CAM, else user
2516 * level */
2517 switch (mode) {
2518 case IPW_POWER_BATTERY:
2519 param = cpu_to_le32(IPW_POWER_INDEX_3);
2520 break;
2521 case IPW_POWER_AC:
2522 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2523 break;
2524 default:
2525 param = cpu_to_le32(mode);
2526 break;
2527 }
2528
2529 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2530 ¶m);
2531 }
2532
ipw_send_retry_limit(struct ipw_priv * priv,u8 slimit,u8 llimit)2533 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2534 {
2535 struct ipw_retry_limit retry_limit = {
2536 .short_retry_limit = slimit,
2537 .long_retry_limit = llimit
2538 };
2539
2540 if (!priv) {
2541 IPW_ERROR("Invalid args\n");
2542 return -1;
2543 }
2544
2545 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2546 &retry_limit);
2547 }
2548
2549 /*
2550 * The IPW device contains a Microwire compatible EEPROM that stores
2551 * various data like the MAC address. Usually the firmware has exclusive
2552 * access to the eeprom, but during device initialization (before the
2553 * device driver has sent the HostComplete command to the firmware) the
2554 * device driver has read access to the EEPROM by way of indirect addressing
2555 * through a couple of memory mapped registers.
2556 *
2557 * The following is a simplified implementation for pulling data out of the
2558 * eeprom, along with some helper functions to find information in
2559 * the per device private data's copy of the eeprom.
2560 *
2561 * NOTE: To better understand how these functions work (i.e what is a chip
2562 * select and why do have to keep driving the eeprom clock?), read
2563 * just about any data sheet for a Microwire compatible EEPROM.
2564 */
2565
2566 /* write a 32 bit value into the indirect accessor register */
eeprom_write_reg(struct ipw_priv * p,u32 data)2567 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2568 {
2569 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2570
2571 /* the eeprom requires some time to complete the operation */
2572 udelay(p->eeprom_delay);
2573 }
2574
2575 /* perform a chip select operation */
eeprom_cs(struct ipw_priv * priv)2576 static void eeprom_cs(struct ipw_priv *priv)
2577 {
2578 eeprom_write_reg(priv, 0);
2579 eeprom_write_reg(priv, EEPROM_BIT_CS);
2580 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2581 eeprom_write_reg(priv, EEPROM_BIT_CS);
2582 }
2583
2584 /* perform a chip select operation */
eeprom_disable_cs(struct ipw_priv * priv)2585 static void eeprom_disable_cs(struct ipw_priv *priv)
2586 {
2587 eeprom_write_reg(priv, EEPROM_BIT_CS);
2588 eeprom_write_reg(priv, 0);
2589 eeprom_write_reg(priv, EEPROM_BIT_SK);
2590 }
2591
2592 /* push a single bit down to the eeprom */
eeprom_write_bit(struct ipw_priv * p,u8 bit)2593 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2594 {
2595 int d = (bit ? EEPROM_BIT_DI : 0);
2596 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2597 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2598 }
2599
2600 /* push an opcode followed by an address down to the eeprom */
eeprom_op(struct ipw_priv * priv,u8 op,u8 addr)2601 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2602 {
2603 int i;
2604
2605 eeprom_cs(priv);
2606 eeprom_write_bit(priv, 1);
2607 eeprom_write_bit(priv, op & 2);
2608 eeprom_write_bit(priv, op & 1);
2609 for (i = 7; i >= 0; i--) {
2610 eeprom_write_bit(priv, addr & (1 << i));
2611 }
2612 }
2613
2614 /* pull 16 bits off the eeprom, one bit at a time */
eeprom_read_u16(struct ipw_priv * priv,u8 addr)2615 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2616 {
2617 int i;
2618 u16 r = 0;
2619
2620 /* Send READ Opcode */
2621 eeprom_op(priv, EEPROM_CMD_READ, addr);
2622
2623 /* Send dummy bit */
2624 eeprom_write_reg(priv, EEPROM_BIT_CS);
2625
2626 /* Read the byte off the eeprom one bit at a time */
2627 for (i = 0; i < 16; i++) {
2628 u32 data = 0;
2629 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2630 eeprom_write_reg(priv, EEPROM_BIT_CS);
2631 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2632 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2633 }
2634
2635 /* Send another dummy bit */
2636 eeprom_write_reg(priv, 0);
2637 eeprom_disable_cs(priv);
2638
2639 return r;
2640 }
2641
2642 /* helper function for pulling the mac address out of the private */
2643 /* data's copy of the eeprom data */
eeprom_parse_mac(struct ipw_priv * priv,u8 * mac)2644 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2645 {
2646 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2647 }
2648
ipw_read_eeprom(struct ipw_priv * priv)2649 static void ipw_read_eeprom(struct ipw_priv *priv)
2650 {
2651 int i;
2652 __le16 *eeprom = (__le16 *) priv->eeprom;
2653
2654 IPW_DEBUG_TRACE(">>\n");
2655
2656 /* read entire contents of eeprom into private buffer */
2657 for (i = 0; i < 128; i++)
2658 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2659
2660 IPW_DEBUG_TRACE("<<\n");
2661 }
2662
2663 /*
2664 * Either the device driver (i.e. the host) or the firmware can
2665 * load eeprom data into the designated region in SRAM. If neither
2666 * happens then the FW will shutdown with a fatal error.
2667 *
2668 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2669 * bit needs region of shared SRAM needs to be non-zero.
2670 */
ipw_eeprom_init_sram(struct ipw_priv * priv)2671 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2672 {
2673 int i;
2674
2675 IPW_DEBUG_TRACE(">>\n");
2676
2677 /*
2678 If the data looks correct, then copy it to our private
2679 copy. Otherwise let the firmware know to perform the operation
2680 on its own.
2681 */
2682 if (priv->eeprom[EEPROM_VERSION] != 0) {
2683 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2684
2685 /* write the eeprom data to sram */
2686 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2687 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2688
2689 /* Do not load eeprom data on fatal error or suspend */
2690 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2691 } else {
2692 IPW_DEBUG_INFO("Enabling FW initialization of SRAM\n");
2693
2694 /* Load eeprom data on fatal error or suspend */
2695 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2696 }
2697
2698 IPW_DEBUG_TRACE("<<\n");
2699 }
2700
ipw_zero_memory(struct ipw_priv * priv,u32 start,u32 count)2701 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2702 {
2703 count >>= 2;
2704 if (!count)
2705 return;
2706 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2707 while (count--)
2708 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2709 }
2710
ipw_fw_dma_reset_command_blocks(struct ipw_priv * priv)2711 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2712 {
2713 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2714 CB_NUMBER_OF_ELEMENTS_SMALL *
2715 sizeof(struct command_block));
2716 }
2717
ipw_fw_dma_enable(struct ipw_priv * priv)2718 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2719 { /* start dma engine but no transfers yet */
2720
2721 IPW_DEBUG_FW(">> :\n");
2722
2723 /* Start the dma */
2724 ipw_fw_dma_reset_command_blocks(priv);
2725
2726 /* Write CB base address */
2727 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2728
2729 IPW_DEBUG_FW("<< :\n");
2730 return 0;
2731 }
2732
ipw_fw_dma_abort(struct ipw_priv * priv)2733 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2734 {
2735 u32 control = 0;
2736
2737 IPW_DEBUG_FW(">> :\n");
2738
2739 /* set the Stop and Abort bit */
2740 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2741 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2742 priv->sram_desc.last_cb_index = 0;
2743
2744 IPW_DEBUG_FW("<<\n");
2745 }
2746
ipw_fw_dma_write_command_block(struct ipw_priv * priv,int index,struct command_block * cb)2747 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2748 struct command_block *cb)
2749 {
2750 u32 address =
2751 IPW_SHARED_SRAM_DMA_CONTROL +
2752 (sizeof(struct command_block) * index);
2753 IPW_DEBUG_FW(">> :\n");
2754
2755 ipw_write_indirect(priv, address, (u8 *) cb,
2756 (int)sizeof(struct command_block));
2757
2758 IPW_DEBUG_FW("<< :\n");
2759 return 0;
2760
2761 }
2762
ipw_fw_dma_kick(struct ipw_priv * priv)2763 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2764 {
2765 u32 control = 0;
2766 u32 index = 0;
2767
2768 IPW_DEBUG_FW(">> :\n");
2769
2770 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2771 ipw_fw_dma_write_command_block(priv, index,
2772 &priv->sram_desc.cb_list[index]);
2773
2774 /* Enable the DMA in the CSR register */
2775 ipw_clear_bit(priv, IPW_RESET_REG,
2776 IPW_RESET_REG_MASTER_DISABLED |
2777 IPW_RESET_REG_STOP_MASTER);
2778
2779 /* Set the Start bit. */
2780 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2781 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2782
2783 IPW_DEBUG_FW("<< :\n");
2784 return 0;
2785 }
2786
ipw_fw_dma_dump_command_block(struct ipw_priv * priv)2787 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2788 {
2789 u32 address;
2790 u32 register_value = 0;
2791 u32 cb_fields_address = 0;
2792
2793 IPW_DEBUG_FW(">> :\n");
2794 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2795 IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2796
2797 /* Read the DMA Controlor register */
2798 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2799 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2800
2801 /* Print the CB values */
2802 cb_fields_address = address;
2803 register_value = ipw_read_reg32(priv, cb_fields_address);
2804 IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2805
2806 cb_fields_address += sizeof(u32);
2807 register_value = ipw_read_reg32(priv, cb_fields_address);
2808 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2809
2810 cb_fields_address += sizeof(u32);
2811 register_value = ipw_read_reg32(priv, cb_fields_address);
2812 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2813 register_value);
2814
2815 cb_fields_address += sizeof(u32);
2816 register_value = ipw_read_reg32(priv, cb_fields_address);
2817 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2818
2819 IPW_DEBUG_FW(">> :\n");
2820 }
2821
ipw_fw_dma_command_block_index(struct ipw_priv * priv)2822 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2823 {
2824 u32 current_cb_address = 0;
2825 u32 current_cb_index = 0;
2826
2827 IPW_DEBUG_FW("<< :\n");
2828 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2829
2830 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2831 sizeof(struct command_block);
2832
2833 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2834 current_cb_index, current_cb_address);
2835
2836 IPW_DEBUG_FW(">> :\n");
2837 return current_cb_index;
2838
2839 }
2840
ipw_fw_dma_add_command_block(struct ipw_priv * priv,u32 src_address,u32 dest_address,u32 length,int interrupt_enabled,int is_last)2841 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2842 u32 src_address,
2843 u32 dest_address,
2844 u32 length,
2845 int interrupt_enabled, int is_last)
2846 {
2847
2848 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2849 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2850 CB_DEST_SIZE_LONG;
2851 struct command_block *cb;
2852 u32 last_cb_element = 0;
2853
2854 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2855 src_address, dest_address, length);
2856
2857 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2858 return -1;
2859
2860 last_cb_element = priv->sram_desc.last_cb_index;
2861 cb = &priv->sram_desc.cb_list[last_cb_element];
2862 priv->sram_desc.last_cb_index++;
2863
2864 /* Calculate the new CB control word */
2865 if (interrupt_enabled)
2866 control |= CB_INT_ENABLED;
2867
2868 if (is_last)
2869 control |= CB_LAST_VALID;
2870
2871 control |= length;
2872
2873 /* Calculate the CB Element's checksum value */
2874 cb->status = control ^ src_address ^ dest_address;
2875
2876 /* Copy the Source and Destination addresses */
2877 cb->dest_addr = dest_address;
2878 cb->source_addr = src_address;
2879
2880 /* Copy the Control Word last */
2881 cb->control = control;
2882
2883 return 0;
2884 }
2885
ipw_fw_dma_add_buffer(struct ipw_priv * priv,dma_addr_t * src_address,int nr,u32 dest_address,u32 len)2886 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2887 int nr, u32 dest_address, u32 len)
2888 {
2889 int ret, i;
2890 u32 size;
2891
2892 IPW_DEBUG_FW(">>\n");
2893 IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2894 nr, dest_address, len);
2895
2896 for (i = 0; i < nr; i++) {
2897 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2898 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2899 dest_address +
2900 i * CB_MAX_LENGTH, size,
2901 0, 0);
2902 if (ret) {
2903 IPW_DEBUG_FW_INFO(": Failed\n");
2904 return -1;
2905 } else
2906 IPW_DEBUG_FW_INFO(": Added new cb\n");
2907 }
2908
2909 IPW_DEBUG_FW("<<\n");
2910 return 0;
2911 }
2912
ipw_fw_dma_wait(struct ipw_priv * priv)2913 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2914 {
2915 u32 current_index = 0, previous_index;
2916 u32 watchdog = 0;
2917
2918 IPW_DEBUG_FW(">> :\n");
2919
2920 current_index = ipw_fw_dma_command_block_index(priv);
2921 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2922 (int)priv->sram_desc.last_cb_index);
2923
2924 while (current_index < priv->sram_desc.last_cb_index) {
2925 udelay(50);
2926 previous_index = current_index;
2927 current_index = ipw_fw_dma_command_block_index(priv);
2928
2929 if (previous_index < current_index) {
2930 watchdog = 0;
2931 continue;
2932 }
2933 if (++watchdog > 400) {
2934 IPW_DEBUG_FW_INFO("Timeout\n");
2935 ipw_fw_dma_dump_command_block(priv);
2936 ipw_fw_dma_abort(priv);
2937 return -1;
2938 }
2939 }
2940
2941 ipw_fw_dma_abort(priv);
2942
2943 /*Disable the DMA in the CSR register */
2944 ipw_set_bit(priv, IPW_RESET_REG,
2945 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2946
2947 IPW_DEBUG_FW("<< dmaWaitSync\n");
2948 return 0;
2949 }
2950
ipw_remove_current_network(struct ipw_priv * priv)2951 static void ipw_remove_current_network(struct ipw_priv *priv)
2952 {
2953 struct list_head *element, *safe;
2954 struct libipw_network *network = NULL;
2955 unsigned long flags;
2956
2957 spin_lock_irqsave(&priv->ieee->lock, flags);
2958 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2959 network = list_entry(element, struct libipw_network, list);
2960 if (ether_addr_equal(network->bssid, priv->bssid)) {
2961 list_del(element);
2962 list_add_tail(&network->list,
2963 &priv->ieee->network_free_list);
2964 }
2965 }
2966 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2967 }
2968
2969 /* timeout in msec, attempted in 10-msec quanta */
ipw_poll_bit(struct ipw_priv * priv,u32 addr,u32 mask,int timeout)2970 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2971 int timeout)
2972 {
2973 int i = 0;
2974
2975 do {
2976 if ((ipw_read32(priv, addr) & mask) == mask)
2977 return i;
2978 mdelay(10);
2979 i += 10;
2980 } while (i < timeout);
2981
2982 return -ETIME;
2983 }
2984
2985 /* These functions load the firmware and micro code for the operation of
2986 * the ipw hardware. It assumes the buffer has all the bits for the
2987 * image and the caller is handling the memory allocation and clean up.
2988 */
2989
ipw_stop_master(struct ipw_priv * priv)2990 static int ipw_stop_master(struct ipw_priv *priv)
2991 {
2992 int rc;
2993
2994 IPW_DEBUG_TRACE(">>\n");
2995 /* stop master. typical delay - 0 */
2996 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2997
2998 /* timeout is in msec, polled in 10-msec quanta */
2999 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3000 IPW_RESET_REG_MASTER_DISABLED, 100);
3001 if (rc < 0) {
3002 IPW_ERROR("wait for stop master failed after 100ms\n");
3003 return -1;
3004 }
3005
3006 IPW_DEBUG_INFO("stop master %dms\n", rc);
3007
3008 return rc;
3009 }
3010
ipw_arc_release(struct ipw_priv * priv)3011 static void ipw_arc_release(struct ipw_priv *priv)
3012 {
3013 IPW_DEBUG_TRACE(">>\n");
3014 mdelay(5);
3015
3016 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3017
3018 /* no one knows timing, for safety add some delay */
3019 mdelay(5);
3020 }
3021
3022 struct fw_chunk {
3023 __le32 address;
3024 __le32 length;
3025 };
3026
ipw_load_ucode(struct ipw_priv * priv,u8 * data,size_t len)3027 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3028 {
3029 int rc = 0, i, addr;
3030 u8 cr = 0;
3031 __le16 *image;
3032
3033 image = (__le16 *) data;
3034
3035 IPW_DEBUG_TRACE(">>\n");
3036
3037 rc = ipw_stop_master(priv);
3038
3039 if (rc < 0)
3040 return rc;
3041
3042 for (addr = IPW_SHARED_LOWER_BOUND;
3043 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3044 ipw_write32(priv, addr, 0);
3045 }
3046
3047 /* no ucode (yet) */
3048 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3049 /* destroy DMA queues */
3050 /* reset sequence */
3051
3052 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3053 ipw_arc_release(priv);
3054 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3055 mdelay(1);
3056
3057 /* reset PHY */
3058 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3059 mdelay(1);
3060
3061 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3062 mdelay(1);
3063
3064 /* enable ucode store */
3065 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3066 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3067 mdelay(1);
3068
3069 /* write ucode */
3070 /*
3071 * @bug
3072 * Do NOT set indirect address register once and then
3073 * store data to indirect data register in the loop.
3074 * It seems very reasonable, but in this case DINO do not
3075 * accept ucode. It is essential to set address each time.
3076 */
3077 /* load new ipw uCode */
3078 for (i = 0; i < len / 2; i++)
3079 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3080 le16_to_cpu(image[i]));
3081
3082 /* enable DINO */
3083 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3084 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3085
3086 /* this is where the igx / win driver deveates from the VAP driver. */
3087
3088 /* wait for alive response */
3089 for (i = 0; i < 100; i++) {
3090 /* poll for incoming data */
3091 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3092 if (cr & DINO_RXFIFO_DATA)
3093 break;
3094 mdelay(1);
3095 }
3096
3097 if (cr & DINO_RXFIFO_DATA) {
3098 /* alive_command_responce size is NOT multiple of 4 */
3099 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3100
3101 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3102 response_buffer[i] =
3103 cpu_to_le32(ipw_read_reg32(priv,
3104 IPW_BASEBAND_RX_FIFO_READ));
3105 memcpy(&priv->dino_alive, response_buffer,
3106 sizeof(priv->dino_alive));
3107 if (priv->dino_alive.alive_command == 1
3108 && priv->dino_alive.ucode_valid == 1) {
3109 rc = 0;
3110 IPW_DEBUG_INFO
3111 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3112 "of %02d/%02d/%02d %02d:%02d\n",
3113 priv->dino_alive.software_revision,
3114 priv->dino_alive.software_revision,
3115 priv->dino_alive.device_identifier,
3116 priv->dino_alive.device_identifier,
3117 priv->dino_alive.time_stamp[0],
3118 priv->dino_alive.time_stamp[1],
3119 priv->dino_alive.time_stamp[2],
3120 priv->dino_alive.time_stamp[3],
3121 priv->dino_alive.time_stamp[4]);
3122 } else {
3123 IPW_DEBUG_INFO("Microcode is not alive\n");
3124 rc = -EINVAL;
3125 }
3126 } else {
3127 IPW_DEBUG_INFO("No alive response from DINO\n");
3128 rc = -ETIME;
3129 }
3130
3131 /* disable DINO, otherwise for some reason
3132 firmware have problem getting alive resp. */
3133 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3134
3135 return rc;
3136 }
3137
ipw_load_firmware(struct ipw_priv * priv,u8 * data,size_t len)3138 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3139 {
3140 int ret = -1;
3141 int offset = 0;
3142 struct fw_chunk *chunk;
3143 int total_nr = 0;
3144 int i;
3145 struct dma_pool *pool;
3146 void **virts;
3147 dma_addr_t *phys;
3148
3149 IPW_DEBUG_TRACE("<< :\n");
3150
3151 virts = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(void *),
3152 GFP_KERNEL);
3153 if (!virts)
3154 return -ENOMEM;
3155
3156 phys = kmalloc_array(CB_NUMBER_OF_ELEMENTS_SMALL, sizeof(dma_addr_t),
3157 GFP_KERNEL);
3158 if (!phys) {
3159 kfree(virts);
3160 return -ENOMEM;
3161 }
3162 pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3163 0);
3164 if (!pool) {
3165 IPW_ERROR("dma_pool_create failed\n");
3166 kfree(phys);
3167 kfree(virts);
3168 return -ENOMEM;
3169 }
3170
3171 /* Start the Dma */
3172 ret = ipw_fw_dma_enable(priv);
3173
3174 /* the DMA is already ready this would be a bug. */
3175 BUG_ON(priv->sram_desc.last_cb_index > 0);
3176
3177 do {
3178 u32 chunk_len;
3179 u8 *start;
3180 int size;
3181 int nr = 0;
3182
3183 chunk = (struct fw_chunk *)(data + offset);
3184 offset += sizeof(struct fw_chunk);
3185 chunk_len = le32_to_cpu(chunk->length);
3186 start = data + offset;
3187
3188 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3189 for (i = 0; i < nr; i++) {
3190 virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3191 &phys[total_nr]);
3192 if (!virts[total_nr]) {
3193 ret = -ENOMEM;
3194 goto out;
3195 }
3196 size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3197 CB_MAX_LENGTH);
3198 memcpy(virts[total_nr], start, size);
3199 start += size;
3200 total_nr++;
3201 /* We don't support fw chunk larger than 64*8K */
3202 BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3203 }
3204
3205 /* build DMA packet and queue up for sending */
3206 /* dma to chunk->address, the chunk->length bytes from data +
3207 * offeset*/
3208 /* Dma loading */
3209 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3210 nr, le32_to_cpu(chunk->address),
3211 chunk_len);
3212 if (ret) {
3213 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3214 goto out;
3215 }
3216
3217 offset += chunk_len;
3218 } while (offset < len);
3219
3220 /* Run the DMA and wait for the answer */
3221 ret = ipw_fw_dma_kick(priv);
3222 if (ret) {
3223 IPW_ERROR("dmaKick Failed\n");
3224 goto out;
3225 }
3226
3227 ret = ipw_fw_dma_wait(priv);
3228 if (ret) {
3229 IPW_ERROR("dmaWaitSync Failed\n");
3230 goto out;
3231 }
3232 out:
3233 for (i = 0; i < total_nr; i++)
3234 dma_pool_free(pool, virts[i], phys[i]);
3235
3236 dma_pool_destroy(pool);
3237 kfree(phys);
3238 kfree(virts);
3239
3240 return ret;
3241 }
3242
3243 /* stop nic */
ipw_stop_nic(struct ipw_priv * priv)3244 static int ipw_stop_nic(struct ipw_priv *priv)
3245 {
3246 int rc = 0;
3247
3248 /* stop */
3249 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3250
3251 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3252 IPW_RESET_REG_MASTER_DISABLED, 500);
3253 if (rc < 0) {
3254 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3255 return rc;
3256 }
3257
3258 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3259
3260 return rc;
3261 }
3262
ipw_start_nic(struct ipw_priv * priv)3263 static void ipw_start_nic(struct ipw_priv *priv)
3264 {
3265 IPW_DEBUG_TRACE(">>\n");
3266
3267 /* prvHwStartNic release ARC */
3268 ipw_clear_bit(priv, IPW_RESET_REG,
3269 IPW_RESET_REG_MASTER_DISABLED |
3270 IPW_RESET_REG_STOP_MASTER |
3271 CBD_RESET_REG_PRINCETON_RESET);
3272
3273 /* enable power management */
3274 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3275 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3276
3277 IPW_DEBUG_TRACE("<<\n");
3278 }
3279
ipw_init_nic(struct ipw_priv * priv)3280 static int ipw_init_nic(struct ipw_priv *priv)
3281 {
3282 int rc;
3283
3284 IPW_DEBUG_TRACE(">>\n");
3285 /* reset */
3286 /*prvHwInitNic */
3287 /* set "initialization complete" bit to move adapter to D0 state */
3288 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3289
3290 /* low-level PLL activation */
3291 ipw_write32(priv, IPW_READ_INT_REGISTER,
3292 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3293
3294 /* wait for clock stabilization */
3295 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3296 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3297 if (rc < 0)
3298 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3299
3300 /* assert SW reset */
3301 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3302
3303 udelay(10);
3304
3305 /* set "initialization complete" bit to move adapter to D0 state */
3306 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3307
3308 IPW_DEBUG_TRACE(">>\n");
3309 return 0;
3310 }
3311
3312 /* Call this function from process context, it will sleep in request_firmware.
3313 * Probe is an ok place to call this from.
3314 */
ipw_reset_nic(struct ipw_priv * priv)3315 static int ipw_reset_nic(struct ipw_priv *priv)
3316 {
3317 int rc = 0;
3318 unsigned long flags;
3319
3320 IPW_DEBUG_TRACE(">>\n");
3321
3322 rc = ipw_init_nic(priv);
3323
3324 spin_lock_irqsave(&priv->lock, flags);
3325 /* Clear the 'host command active' bit... */
3326 priv->status &= ~STATUS_HCMD_ACTIVE;
3327 wake_up_interruptible(&priv->wait_command_queue);
3328 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3329 wake_up_interruptible(&priv->wait_state);
3330 spin_unlock_irqrestore(&priv->lock, flags);
3331
3332 IPW_DEBUG_TRACE("<<\n");
3333 return rc;
3334 }
3335
3336
3337 struct ipw_fw {
3338 __le32 ver;
3339 __le32 boot_size;
3340 __le32 ucode_size;
3341 __le32 fw_size;
3342 u8 data[];
3343 };
3344
ipw_get_fw(struct ipw_priv * priv,const struct firmware ** raw,const char * name)3345 static int ipw_get_fw(struct ipw_priv *priv,
3346 const struct firmware **raw, const char *name)
3347 {
3348 struct ipw_fw *fw;
3349 int rc;
3350
3351 /* ask firmware_class module to get the boot firmware off disk */
3352 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3353 if (rc < 0) {
3354 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3355 return rc;
3356 }
3357
3358 if ((*raw)->size < sizeof(*fw)) {
3359 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3360 return -EINVAL;
3361 }
3362
3363 fw = (void *)(*raw)->data;
3364
3365 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3366 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3367 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3368 name, (*raw)->size);
3369 return -EINVAL;
3370 }
3371
3372 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3373 name,
3374 le32_to_cpu(fw->ver) >> 16,
3375 le32_to_cpu(fw->ver) & 0xff,
3376 (*raw)->size - sizeof(*fw));
3377 return 0;
3378 }
3379
3380 #define IPW_RX_BUF_SIZE (3000)
3381
ipw_rx_queue_reset(struct ipw_priv * priv,struct ipw_rx_queue * rxq)3382 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3383 struct ipw_rx_queue *rxq)
3384 {
3385 unsigned long flags;
3386 int i;
3387
3388 spin_lock_irqsave(&rxq->lock, flags);
3389
3390 INIT_LIST_HEAD(&rxq->rx_free);
3391 INIT_LIST_HEAD(&rxq->rx_used);
3392
3393 /* Fill the rx_used queue with _all_ of the Rx buffers */
3394 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3395 /* In the reset function, these buffers may have been allocated
3396 * to an SKB, so we need to unmap and free potential storage */
3397 if (rxq->pool[i].skb != NULL) {
3398 dma_unmap_single(&priv->pci_dev->dev,
3399 rxq->pool[i].dma_addr,
3400 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
3401 dev_kfree_skb_irq(rxq->pool[i].skb);
3402 rxq->pool[i].skb = NULL;
3403 }
3404 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3405 }
3406
3407 /* Set us so that we have processed and used all buffers, but have
3408 * not restocked the Rx queue with fresh buffers */
3409 rxq->read = rxq->write = 0;
3410 rxq->free_count = 0;
3411 spin_unlock_irqrestore(&rxq->lock, flags);
3412 }
3413
3414 #ifdef CONFIG_PM
3415 static int fw_loaded = 0;
3416 static const struct firmware *raw = NULL;
3417
free_firmware(void)3418 static void free_firmware(void)
3419 {
3420 if (fw_loaded) {
3421 release_firmware(raw);
3422 raw = NULL;
3423 fw_loaded = 0;
3424 }
3425 }
3426 #else
3427 #define free_firmware() do {} while (0)
3428 #endif
3429
ipw_load(struct ipw_priv * priv)3430 static int ipw_load(struct ipw_priv *priv)
3431 {
3432 #ifndef CONFIG_PM
3433 const struct firmware *raw = NULL;
3434 #endif
3435 struct ipw_fw *fw;
3436 u8 *boot_img, *ucode_img, *fw_img;
3437 u8 *name = NULL;
3438 int rc = 0, retries = 3;
3439
3440 switch (priv->ieee->iw_mode) {
3441 case IW_MODE_ADHOC:
3442 name = "ipw2200-ibss.fw";
3443 break;
3444 #ifdef CONFIG_IPW2200_MONITOR
3445 case IW_MODE_MONITOR:
3446 name = "ipw2200-sniffer.fw";
3447 break;
3448 #endif
3449 case IW_MODE_INFRA:
3450 name = "ipw2200-bss.fw";
3451 break;
3452 }
3453
3454 if (!name) {
3455 rc = -EINVAL;
3456 goto error;
3457 }
3458
3459 #ifdef CONFIG_PM
3460 if (!fw_loaded) {
3461 #endif
3462 rc = ipw_get_fw(priv, &raw, name);
3463 if (rc < 0)
3464 goto error;
3465 #ifdef CONFIG_PM
3466 }
3467 #endif
3468
3469 fw = (void *)raw->data;
3470 boot_img = &fw->data[0];
3471 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3472 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3473 le32_to_cpu(fw->ucode_size)];
3474
3475 if (!priv->rxq)
3476 priv->rxq = ipw_rx_queue_alloc(priv);
3477 else
3478 ipw_rx_queue_reset(priv, priv->rxq);
3479 if (!priv->rxq) {
3480 IPW_ERROR("Unable to initialize Rx queue\n");
3481 rc = -ENOMEM;
3482 goto error;
3483 }
3484
3485 retry:
3486 /* Ensure interrupts are disabled */
3487 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3488 priv->status &= ~STATUS_INT_ENABLED;
3489
3490 /* ack pending interrupts */
3491 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3492
3493 ipw_stop_nic(priv);
3494
3495 rc = ipw_reset_nic(priv);
3496 if (rc < 0) {
3497 IPW_ERROR("Unable to reset NIC\n");
3498 goto error;
3499 }
3500
3501 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3502 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3503
3504 /* DMA the initial boot firmware into the device */
3505 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3506 if (rc < 0) {
3507 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3508 goto error;
3509 }
3510
3511 /* kick start the device */
3512 ipw_start_nic(priv);
3513
3514 /* wait for the device to finish its initial startup sequence */
3515 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3516 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3517 if (rc < 0) {
3518 IPW_ERROR("device failed to boot initial fw image\n");
3519 goto error;
3520 }
3521 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3522
3523 /* ack fw init done interrupt */
3524 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3525
3526 /* DMA the ucode into the device */
3527 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3528 if (rc < 0) {
3529 IPW_ERROR("Unable to load ucode: %d\n", rc);
3530 goto error;
3531 }
3532
3533 /* stop nic */
3534 ipw_stop_nic(priv);
3535
3536 /* DMA bss firmware into the device */
3537 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3538 if (rc < 0) {
3539 IPW_ERROR("Unable to load firmware: %d\n", rc);
3540 goto error;
3541 }
3542 #ifdef CONFIG_PM
3543 fw_loaded = 1;
3544 #endif
3545
3546 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3547
3548 rc = ipw_queue_reset(priv);
3549 if (rc < 0) {
3550 IPW_ERROR("Unable to initialize queues\n");
3551 goto error;
3552 }
3553
3554 /* Ensure interrupts are disabled */
3555 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3556 /* ack pending interrupts */
3557 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3558
3559 /* kick start the device */
3560 ipw_start_nic(priv);
3561
3562 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3563 if (retries > 0) {
3564 IPW_WARNING("Parity error. Retrying init.\n");
3565 retries--;
3566 goto retry;
3567 }
3568
3569 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3570 rc = -EIO;
3571 goto error;
3572 }
3573
3574 /* wait for the device */
3575 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577 if (rc < 0) {
3578 IPW_ERROR("device failed to start within 500ms\n");
3579 goto error;
3580 }
3581 IPW_DEBUG_INFO("device response after %dms\n", rc);
3582
3583 /* ack fw init done interrupt */
3584 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585
3586 /* read eeprom data */
3587 priv->eeprom_delay = 1;
3588 ipw_read_eeprom(priv);
3589 /* initialize the eeprom region of sram */
3590 ipw_eeprom_init_sram(priv);
3591
3592 /* enable interrupts */
3593 ipw_enable_interrupts(priv);
3594
3595 /* Ensure our queue has valid packets */
3596 ipw_rx_queue_replenish(priv);
3597
3598 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3599
3600 /* ack pending interrupts */
3601 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3602
3603 #ifndef CONFIG_PM
3604 release_firmware(raw);
3605 #endif
3606 return 0;
3607
3608 error:
3609 if (priv->rxq) {
3610 ipw_rx_queue_free(priv, priv->rxq);
3611 priv->rxq = NULL;
3612 }
3613 ipw_tx_queue_free(priv);
3614 release_firmware(raw);
3615 #ifdef CONFIG_PM
3616 fw_loaded = 0;
3617 raw = NULL;
3618 #endif
3619
3620 return rc;
3621 }
3622
3623 /*
3624 * DMA services
3625 *
3626 * Theory of operation
3627 *
3628 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3629 * 2 empty entries always kept in the buffer to protect from overflow.
3630 *
3631 * For Tx queue, there are low mark and high mark limits. If, after queuing
3632 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3633 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3634 * Tx queue resumed.
3635 *
3636 * The IPW operates with six queues, one receive queue in the device's
3637 * sram, one transmit queue for sending commands to the device firmware,
3638 * and four transmit queues for data.
3639 *
3640 * The four transmit queues allow for performing quality of service (qos)
3641 * transmissions as per the 802.11 protocol. Currently Linux does not
3642 * provide a mechanism to the user for utilizing prioritized queues, so
3643 * we only utilize the first data transmit queue (queue1).
3644 */
3645
3646 /*
3647 * Driver allocates buffers of this size for Rx
3648 */
3649
3650 /*
3651 * ipw_rx_queue_space - Return number of free slots available in queue.
3652 */
ipw_rx_queue_space(const struct ipw_rx_queue * q)3653 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3654 {
3655 int s = q->read - q->write;
3656 if (s <= 0)
3657 s += RX_QUEUE_SIZE;
3658 /* keep some buffer to not confuse full and empty queue */
3659 s -= 2;
3660 if (s < 0)
3661 s = 0;
3662 return s;
3663 }
3664
ipw_tx_queue_space(const struct clx2_queue * q)3665 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3666 {
3667 int s = q->last_used - q->first_empty;
3668 if (s <= 0)
3669 s += q->n_bd;
3670 s -= 2; /* keep some reserve to not confuse empty and full situations */
3671 if (s < 0)
3672 s = 0;
3673 return s;
3674 }
3675
ipw_queue_inc_wrap(int index,int n_bd)3676 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3677 {
3678 return (++index == n_bd) ? 0 : index;
3679 }
3680
3681 /*
3682 * Initialize common DMA queue structure
3683 *
3684 * @param q queue to init
3685 * @param count Number of BD's to allocate. Should be power of 2
3686 * @param read_register Address for 'read' register
3687 * (not offset within BAR, full address)
3688 * @param write_register Address for 'write' register
3689 * (not offset within BAR, full address)
3690 * @param base_register Address for 'base' register
3691 * (not offset within BAR, full address)
3692 * @param size Address for 'size' register
3693 * (not offset within BAR, full address)
3694 */
ipw_queue_init(struct ipw_priv * priv,struct clx2_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3695 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3696 int count, u32 read, u32 write, u32 base, u32 size)
3697 {
3698 q->n_bd = count;
3699
3700 q->low_mark = q->n_bd / 4;
3701 if (q->low_mark < 4)
3702 q->low_mark = 4;
3703
3704 q->high_mark = q->n_bd / 8;
3705 if (q->high_mark < 2)
3706 q->high_mark = 2;
3707
3708 q->first_empty = q->last_used = 0;
3709 q->reg_r = read;
3710 q->reg_w = write;
3711
3712 ipw_write32(priv, base, q->dma_addr);
3713 ipw_write32(priv, size, count);
3714 ipw_write32(priv, read, 0);
3715 ipw_write32(priv, write, 0);
3716
3717 _ipw_read32(priv, 0x90);
3718 }
3719
ipw_queue_tx_init(struct ipw_priv * priv,struct clx2_tx_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3720 static int ipw_queue_tx_init(struct ipw_priv *priv,
3721 struct clx2_tx_queue *q,
3722 int count, u32 read, u32 write, u32 base, u32 size)
3723 {
3724 struct pci_dev *dev = priv->pci_dev;
3725
3726 q->txb = kmalloc_array(count, sizeof(q->txb[0]), GFP_KERNEL);
3727 if (!q->txb)
3728 return -ENOMEM;
3729
3730 q->bd =
3731 dma_alloc_coherent(&dev->dev, sizeof(q->bd[0]) * count,
3732 &q->q.dma_addr, GFP_KERNEL);
3733 if (!q->bd) {
3734 IPW_ERROR("dma_alloc_coherent(%zd) failed\n",
3735 sizeof(q->bd[0]) * count);
3736 kfree(q->txb);
3737 q->txb = NULL;
3738 return -ENOMEM;
3739 }
3740
3741 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3742 return 0;
3743 }
3744
3745 /*
3746 * Free one TFD, those at index [txq->q.last_used].
3747 * Do NOT advance any indexes
3748 *
3749 * @param dev
3750 * @param txq
3751 */
ipw_queue_tx_free_tfd(struct ipw_priv * priv,struct clx2_tx_queue * txq)3752 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3753 struct clx2_tx_queue *txq)
3754 {
3755 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3756 struct pci_dev *dev = priv->pci_dev;
3757 int i;
3758
3759 /* classify bd */
3760 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3761 /* nothing to cleanup after for host commands */
3762 return;
3763
3764 /* sanity check */
3765 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3766 IPW_ERROR("Too many chunks: %i\n",
3767 le32_to_cpu(bd->u.data.num_chunks));
3768 /* @todo issue fatal error, it is quite serious situation */
3769 return;
3770 }
3771
3772 /* unmap chunks if any */
3773 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3774 dma_unmap_single(&dev->dev,
3775 le32_to_cpu(bd->u.data.chunk_ptr[i]),
3776 le16_to_cpu(bd->u.data.chunk_len[i]),
3777 DMA_TO_DEVICE);
3778 if (txq->txb[txq->q.last_used]) {
3779 libipw_txb_free(txq->txb[txq->q.last_used]);
3780 txq->txb[txq->q.last_used] = NULL;
3781 }
3782 }
3783 }
3784
3785 /*
3786 * Deallocate DMA queue.
3787 *
3788 * Empty queue by removing and destroying all BD's.
3789 * Free all buffers.
3790 *
3791 * @param dev
3792 * @param q
3793 */
ipw_queue_tx_free(struct ipw_priv * priv,struct clx2_tx_queue * txq)3794 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3795 {
3796 struct clx2_queue *q = &txq->q;
3797 struct pci_dev *dev = priv->pci_dev;
3798
3799 if (q->n_bd == 0)
3800 return;
3801
3802 /* first, empty all BD's */
3803 for (; q->first_empty != q->last_used;
3804 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3805 ipw_queue_tx_free_tfd(priv, txq);
3806 }
3807
3808 /* free buffers belonging to queue itself */
3809 dma_free_coherent(&dev->dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3810 q->dma_addr);
3811 kfree(txq->txb);
3812
3813 /* 0 fill whole structure */
3814 memset(txq, 0, sizeof(*txq));
3815 }
3816
3817 /*
3818 * Destroy all DMA queues and structures
3819 *
3820 * @param priv
3821 */
ipw_tx_queue_free(struct ipw_priv * priv)3822 static void ipw_tx_queue_free(struct ipw_priv *priv)
3823 {
3824 /* Tx CMD queue */
3825 ipw_queue_tx_free(priv, &priv->txq_cmd);
3826
3827 /* Tx queues */
3828 ipw_queue_tx_free(priv, &priv->txq[0]);
3829 ipw_queue_tx_free(priv, &priv->txq[1]);
3830 ipw_queue_tx_free(priv, &priv->txq[2]);
3831 ipw_queue_tx_free(priv, &priv->txq[3]);
3832 }
3833
ipw_create_bssid(struct ipw_priv * priv,u8 * bssid)3834 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3835 {
3836 /* First 3 bytes are manufacturer */
3837 bssid[0] = priv->mac_addr[0];
3838 bssid[1] = priv->mac_addr[1];
3839 bssid[2] = priv->mac_addr[2];
3840
3841 /* Last bytes are random */
3842 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3843
3844 bssid[0] &= 0xfe; /* clear multicast bit */
3845 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3846 }
3847
ipw_add_station(struct ipw_priv * priv,u8 * bssid)3848 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3849 {
3850 struct ipw_station_entry entry;
3851 int i;
3852
3853 for (i = 0; i < priv->num_stations; i++) {
3854 if (ether_addr_equal(priv->stations[i], bssid)) {
3855 /* Another node is active in network */
3856 priv->missed_adhoc_beacons = 0;
3857 if (!(priv->config & CFG_STATIC_CHANNEL))
3858 /* when other nodes drop out, we drop out */
3859 priv->config &= ~CFG_ADHOC_PERSIST;
3860
3861 return i;
3862 }
3863 }
3864
3865 if (i == MAX_STATIONS)
3866 return IPW_INVALID_STATION;
3867
3868 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3869
3870 entry.reserved = 0;
3871 entry.support_mode = 0;
3872 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3873 memcpy(priv->stations[i], bssid, ETH_ALEN);
3874 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3875 &entry, sizeof(entry));
3876 priv->num_stations++;
3877
3878 return i;
3879 }
3880
ipw_find_station(struct ipw_priv * priv,u8 * bssid)3881 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3882 {
3883 int i;
3884
3885 for (i = 0; i < priv->num_stations; i++)
3886 if (ether_addr_equal(priv->stations[i], bssid))
3887 return i;
3888
3889 return IPW_INVALID_STATION;
3890 }
3891
ipw_send_disassociate(struct ipw_priv * priv,int quiet)3892 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3893 {
3894 int err;
3895
3896 if (priv->status & STATUS_ASSOCIATING) {
3897 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3898 schedule_work(&priv->disassociate);
3899 return;
3900 }
3901
3902 if (!(priv->status & STATUS_ASSOCIATED)) {
3903 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3904 return;
3905 }
3906
3907 IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3908 "on channel %d.\n",
3909 priv->assoc_request.bssid,
3910 priv->assoc_request.channel);
3911
3912 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3913 priv->status |= STATUS_DISASSOCIATING;
3914
3915 if (quiet)
3916 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3917 else
3918 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3919
3920 err = ipw_send_associate(priv, &priv->assoc_request);
3921 if (err) {
3922 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3923 "failed.\n");
3924 return;
3925 }
3926
3927 }
3928
ipw_disassociate(void * data)3929 static int ipw_disassociate(void *data)
3930 {
3931 struct ipw_priv *priv = data;
3932 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3933 return 0;
3934 ipw_send_disassociate(data, 0);
3935 netif_carrier_off(priv->net_dev);
3936 return 1;
3937 }
3938
ipw_bg_disassociate(struct work_struct * work)3939 static void ipw_bg_disassociate(struct work_struct *work)
3940 {
3941 struct ipw_priv *priv =
3942 container_of(work, struct ipw_priv, disassociate);
3943 mutex_lock(&priv->mutex);
3944 ipw_disassociate(priv);
3945 mutex_unlock(&priv->mutex);
3946 }
3947
ipw_system_config(struct work_struct * work)3948 static void ipw_system_config(struct work_struct *work)
3949 {
3950 struct ipw_priv *priv =
3951 container_of(work, struct ipw_priv, system_config);
3952
3953 #ifdef CONFIG_IPW2200_PROMISCUOUS
3954 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3955 priv->sys_config.accept_all_data_frames = 1;
3956 priv->sys_config.accept_non_directed_frames = 1;
3957 priv->sys_config.accept_all_mgmt_bcpr = 1;
3958 priv->sys_config.accept_all_mgmt_frames = 1;
3959 }
3960 #endif
3961
3962 ipw_send_system_config(priv);
3963 }
3964
3965 struct ipw_status_code {
3966 u16 status;
3967 const char *reason;
3968 };
3969
3970 static const struct ipw_status_code ipw_status_codes[] = {
3971 {0x00, "Successful"},
3972 {0x01, "Unspecified failure"},
3973 {0x0A, "Cannot support all requested capabilities in the "
3974 "Capability information field"},
3975 {0x0B, "Reassociation denied due to inability to confirm that "
3976 "association exists"},
3977 {0x0C, "Association denied due to reason outside the scope of this "
3978 "standard"},
3979 {0x0D,
3980 "Responding station does not support the specified authentication "
3981 "algorithm"},
3982 {0x0E,
3983 "Received an Authentication frame with authentication sequence "
3984 "transaction sequence number out of expected sequence"},
3985 {0x0F, "Authentication rejected because of challenge failure"},
3986 {0x10, "Authentication rejected due to timeout waiting for next "
3987 "frame in sequence"},
3988 {0x11, "Association denied because AP is unable to handle additional "
3989 "associated stations"},
3990 {0x12,
3991 "Association denied due to requesting station not supporting all "
3992 "of the datarates in the BSSBasicServiceSet Parameter"},
3993 {0x13,
3994 "Association denied due to requesting station not supporting "
3995 "short preamble operation"},
3996 {0x14,
3997 "Association denied due to requesting station not supporting "
3998 "PBCC encoding"},
3999 {0x15,
4000 "Association denied due to requesting station not supporting "
4001 "channel agility"},
4002 {0x19,
4003 "Association denied due to requesting station not supporting "
4004 "short slot operation"},
4005 {0x1A,
4006 "Association denied due to requesting station not supporting "
4007 "DSSS-OFDM operation"},
4008 {0x28, "Invalid Information Element"},
4009 {0x29, "Group Cipher is not valid"},
4010 {0x2A, "Pairwise Cipher is not valid"},
4011 {0x2B, "AKMP is not valid"},
4012 {0x2C, "Unsupported RSN IE version"},
4013 {0x2D, "Invalid RSN IE Capabilities"},
4014 {0x2E, "Cipher suite is rejected per security policy"},
4015 };
4016
ipw_get_status_code(u16 status)4017 static const char *ipw_get_status_code(u16 status)
4018 {
4019 int i;
4020 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4021 if (ipw_status_codes[i].status == (status & 0xff))
4022 return ipw_status_codes[i].reason;
4023 return "Unknown status value.";
4024 }
4025
average_init(struct average * avg)4026 static inline void average_init(struct average *avg)
4027 {
4028 memset(avg, 0, sizeof(*avg));
4029 }
4030
4031 #define DEPTH_RSSI 8
4032 #define DEPTH_NOISE 16
exponential_average(s16 prev_avg,s16 val,u8 depth)4033 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4034 {
4035 return ((depth-1)*prev_avg + val)/depth;
4036 }
4037
average_add(struct average * avg,s16 val)4038 static void average_add(struct average *avg, s16 val)
4039 {
4040 avg->sum -= avg->entries[avg->pos];
4041 avg->sum += val;
4042 avg->entries[avg->pos++] = val;
4043 if (unlikely(avg->pos == AVG_ENTRIES)) {
4044 avg->init = 1;
4045 avg->pos = 0;
4046 }
4047 }
4048
average_value(struct average * avg)4049 static s16 average_value(struct average *avg)
4050 {
4051 if (!unlikely(avg->init)) {
4052 if (avg->pos)
4053 return avg->sum / avg->pos;
4054 return 0;
4055 }
4056
4057 return avg->sum / AVG_ENTRIES;
4058 }
4059
ipw_reset_stats(struct ipw_priv * priv)4060 static void ipw_reset_stats(struct ipw_priv *priv)
4061 {
4062 u32 len = sizeof(u32);
4063
4064 priv->quality = 0;
4065
4066 average_init(&priv->average_missed_beacons);
4067 priv->exp_avg_rssi = -60;
4068 priv->exp_avg_noise = -85 + 0x100;
4069
4070 priv->last_rate = 0;
4071 priv->last_missed_beacons = 0;
4072 priv->last_rx_packets = 0;
4073 priv->last_tx_packets = 0;
4074 priv->last_tx_failures = 0;
4075
4076 /* Firmware managed, reset only when NIC is restarted, so we have to
4077 * normalize on the current value */
4078 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4079 &priv->last_rx_err, &len);
4080 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4081 &priv->last_tx_failures, &len);
4082
4083 /* Driver managed, reset with each association */
4084 priv->missed_adhoc_beacons = 0;
4085 priv->missed_beacons = 0;
4086 priv->tx_packets = 0;
4087 priv->rx_packets = 0;
4088
4089 }
4090
ipw_get_max_rate(struct ipw_priv * priv)4091 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4092 {
4093 u32 i = 0x80000000;
4094 u32 mask = priv->rates_mask;
4095 /* If currently associated in B mode, restrict the maximum
4096 * rate match to B rates */
4097 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4098 mask &= LIBIPW_CCK_RATES_MASK;
4099
4100 /* TODO: Verify that the rate is supported by the current rates
4101 * list. */
4102
4103 while (i && !(mask & i))
4104 i >>= 1;
4105 switch (i) {
4106 case LIBIPW_CCK_RATE_1MB_MASK:
4107 return 1000000;
4108 case LIBIPW_CCK_RATE_2MB_MASK:
4109 return 2000000;
4110 case LIBIPW_CCK_RATE_5MB_MASK:
4111 return 5500000;
4112 case LIBIPW_OFDM_RATE_6MB_MASK:
4113 return 6000000;
4114 case LIBIPW_OFDM_RATE_9MB_MASK:
4115 return 9000000;
4116 case LIBIPW_CCK_RATE_11MB_MASK:
4117 return 11000000;
4118 case LIBIPW_OFDM_RATE_12MB_MASK:
4119 return 12000000;
4120 case LIBIPW_OFDM_RATE_18MB_MASK:
4121 return 18000000;
4122 case LIBIPW_OFDM_RATE_24MB_MASK:
4123 return 24000000;
4124 case LIBIPW_OFDM_RATE_36MB_MASK:
4125 return 36000000;
4126 case LIBIPW_OFDM_RATE_48MB_MASK:
4127 return 48000000;
4128 case LIBIPW_OFDM_RATE_54MB_MASK:
4129 return 54000000;
4130 }
4131
4132 if (priv->ieee->mode == IEEE_B)
4133 return 11000000;
4134 else
4135 return 54000000;
4136 }
4137
ipw_get_current_rate(struct ipw_priv * priv)4138 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4139 {
4140 u32 rate, len = sizeof(rate);
4141 int err;
4142
4143 if (!(priv->status & STATUS_ASSOCIATED))
4144 return 0;
4145
4146 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4147 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4148 &len);
4149 if (err) {
4150 IPW_DEBUG_INFO("failed querying ordinals.\n");
4151 return 0;
4152 }
4153 } else
4154 return ipw_get_max_rate(priv);
4155
4156 switch (rate) {
4157 case IPW_TX_RATE_1MB:
4158 return 1000000;
4159 case IPW_TX_RATE_2MB:
4160 return 2000000;
4161 case IPW_TX_RATE_5MB:
4162 return 5500000;
4163 case IPW_TX_RATE_6MB:
4164 return 6000000;
4165 case IPW_TX_RATE_9MB:
4166 return 9000000;
4167 case IPW_TX_RATE_11MB:
4168 return 11000000;
4169 case IPW_TX_RATE_12MB:
4170 return 12000000;
4171 case IPW_TX_RATE_18MB:
4172 return 18000000;
4173 case IPW_TX_RATE_24MB:
4174 return 24000000;
4175 case IPW_TX_RATE_36MB:
4176 return 36000000;
4177 case IPW_TX_RATE_48MB:
4178 return 48000000;
4179 case IPW_TX_RATE_54MB:
4180 return 54000000;
4181 }
4182
4183 return 0;
4184 }
4185
4186 #define IPW_STATS_INTERVAL (2 * HZ)
ipw_gather_stats(struct ipw_priv * priv)4187 static void ipw_gather_stats(struct ipw_priv *priv)
4188 {
4189 u32 rx_err, rx_err_delta, rx_packets_delta;
4190 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4191 u32 missed_beacons_percent, missed_beacons_delta;
4192 u32 quality = 0;
4193 u32 len = sizeof(u32);
4194 s16 rssi;
4195 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4196 rate_quality;
4197 u32 max_rate;
4198
4199 if (!(priv->status & STATUS_ASSOCIATED)) {
4200 priv->quality = 0;
4201 return;
4202 }
4203
4204 /* Update the statistics */
4205 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4206 &priv->missed_beacons, &len);
4207 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4208 priv->last_missed_beacons = priv->missed_beacons;
4209 if (priv->assoc_request.beacon_interval) {
4210 missed_beacons_percent = missed_beacons_delta *
4211 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4212 (IPW_STATS_INTERVAL * 10);
4213 } else {
4214 missed_beacons_percent = 0;
4215 }
4216 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4217
4218 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4219 rx_err_delta = rx_err - priv->last_rx_err;
4220 priv->last_rx_err = rx_err;
4221
4222 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4223 tx_failures_delta = tx_failures - priv->last_tx_failures;
4224 priv->last_tx_failures = tx_failures;
4225
4226 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4227 priv->last_rx_packets = priv->rx_packets;
4228
4229 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4230 priv->last_tx_packets = priv->tx_packets;
4231
4232 /* Calculate quality based on the following:
4233 *
4234 * Missed beacon: 100% = 0, 0% = 70% missed
4235 * Rate: 60% = 1Mbs, 100% = Max
4236 * Rx and Tx errors represent a straight % of total Rx/Tx
4237 * RSSI: 100% = > -50, 0% = < -80
4238 * Rx errors: 100% = 0, 0% = 50% missed
4239 *
4240 * The lowest computed quality is used.
4241 *
4242 */
4243 #define BEACON_THRESHOLD 5
4244 beacon_quality = 100 - missed_beacons_percent;
4245 if (beacon_quality < BEACON_THRESHOLD)
4246 beacon_quality = 0;
4247 else
4248 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4249 (100 - BEACON_THRESHOLD);
4250 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4251 beacon_quality, missed_beacons_percent);
4252
4253 priv->last_rate = ipw_get_current_rate(priv);
4254 max_rate = ipw_get_max_rate(priv);
4255 rate_quality = priv->last_rate * 40 / max_rate + 60;
4256 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4257 rate_quality, priv->last_rate / 1000000);
4258
4259 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4260 rx_quality = 100 - (rx_err_delta * 100) /
4261 (rx_packets_delta + rx_err_delta);
4262 else
4263 rx_quality = 100;
4264 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4265 rx_quality, rx_err_delta, rx_packets_delta);
4266
4267 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4268 tx_quality = 100 - (tx_failures_delta * 100) /
4269 (tx_packets_delta + tx_failures_delta);
4270 else
4271 tx_quality = 100;
4272 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4273 tx_quality, tx_failures_delta, tx_packets_delta);
4274
4275 rssi = priv->exp_avg_rssi;
4276 signal_quality =
4277 (100 *
4278 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4279 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4280 (priv->ieee->perfect_rssi - rssi) *
4281 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4282 62 * (priv->ieee->perfect_rssi - rssi))) /
4283 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4284 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4285 if (signal_quality > 100)
4286 signal_quality = 100;
4287 else if (signal_quality < 1)
4288 signal_quality = 0;
4289
4290 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4291 signal_quality, rssi);
4292
4293 quality = min(rx_quality, signal_quality);
4294 quality = min(tx_quality, quality);
4295 quality = min(rate_quality, quality);
4296 quality = min(beacon_quality, quality);
4297 if (quality == beacon_quality)
4298 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4299 quality);
4300 if (quality == rate_quality)
4301 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4302 quality);
4303 if (quality == tx_quality)
4304 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4305 quality);
4306 if (quality == rx_quality)
4307 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4308 quality);
4309 if (quality == signal_quality)
4310 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4311 quality);
4312
4313 priv->quality = quality;
4314
4315 schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4316 }
4317
ipw_bg_gather_stats(struct work_struct * work)4318 static void ipw_bg_gather_stats(struct work_struct *work)
4319 {
4320 struct ipw_priv *priv =
4321 container_of(work, struct ipw_priv, gather_stats.work);
4322 mutex_lock(&priv->mutex);
4323 ipw_gather_stats(priv);
4324 mutex_unlock(&priv->mutex);
4325 }
4326
4327 /* Missed beacon behavior:
4328 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4329 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4330 * Above disassociate threshold, give up and stop scanning.
4331 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
ipw_handle_missed_beacon(struct ipw_priv * priv,int missed_count)4332 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4333 int missed_count)
4334 {
4335 priv->notif_missed_beacons = missed_count;
4336
4337 if (missed_count > priv->disassociate_threshold &&
4338 priv->status & STATUS_ASSOCIATED) {
4339 /* If associated and we've hit the missed
4340 * beacon threshold, disassociate, turn
4341 * off roaming, and abort any active scans */
4342 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4343 IPW_DL_STATE | IPW_DL_ASSOC,
4344 "Missed beacon: %d - disassociate\n", missed_count);
4345 priv->status &= ~STATUS_ROAMING;
4346 if (priv->status & STATUS_SCANNING) {
4347 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4348 IPW_DL_STATE,
4349 "Aborting scan with missed beacon.\n");
4350 schedule_work(&priv->abort_scan);
4351 }
4352
4353 schedule_work(&priv->disassociate);
4354 return;
4355 }
4356
4357 if (priv->status & STATUS_ROAMING) {
4358 /* If we are currently roaming, then just
4359 * print a debug statement... */
4360 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4361 "Missed beacon: %d - roam in progress\n",
4362 missed_count);
4363 return;
4364 }
4365
4366 if (roaming &&
4367 (missed_count > priv->roaming_threshold &&
4368 missed_count <= priv->disassociate_threshold)) {
4369 /* If we are not already roaming, set the ROAM
4370 * bit in the status and kick off a scan.
4371 * This can happen several times before we reach
4372 * disassociate_threshold. */
4373 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4374 "Missed beacon: %d - initiate "
4375 "roaming\n", missed_count);
4376 if (!(priv->status & STATUS_ROAMING)) {
4377 priv->status |= STATUS_ROAMING;
4378 if (!(priv->status & STATUS_SCANNING))
4379 schedule_delayed_work(&priv->request_scan, 0);
4380 }
4381 return;
4382 }
4383
4384 if (priv->status & STATUS_SCANNING &&
4385 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4386 /* Stop scan to keep fw from getting
4387 * stuck (only if we aren't roaming --
4388 * otherwise we'll never scan more than 2 or 3
4389 * channels..) */
4390 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4391 "Aborting scan with missed beacon.\n");
4392 schedule_work(&priv->abort_scan);
4393 }
4394
4395 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4396 }
4397
ipw_scan_event(struct work_struct * work)4398 static void ipw_scan_event(struct work_struct *work)
4399 {
4400 union iwreq_data wrqu;
4401
4402 struct ipw_priv *priv =
4403 container_of(work, struct ipw_priv, scan_event.work);
4404
4405 wrqu.data.length = 0;
4406 wrqu.data.flags = 0;
4407 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4408 }
4409
handle_scan_event(struct ipw_priv * priv)4410 static void handle_scan_event(struct ipw_priv *priv)
4411 {
4412 /* Only userspace-requested scan completion events go out immediately */
4413 if (!priv->user_requested_scan) {
4414 schedule_delayed_work(&priv->scan_event,
4415 round_jiffies_relative(msecs_to_jiffies(4000)));
4416 } else {
4417 priv->user_requested_scan = 0;
4418 mod_delayed_work(system_wq, &priv->scan_event, 0);
4419 }
4420 }
4421
4422 /*
4423 * Handle host notification packet.
4424 * Called from interrupt routine
4425 */
ipw_rx_notification(struct ipw_priv * priv,struct ipw_rx_notification * notif)4426 static void ipw_rx_notification(struct ipw_priv *priv,
4427 struct ipw_rx_notification *notif)
4428 {
4429 u16 size = le16_to_cpu(notif->size);
4430
4431 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4432
4433 switch (notif->subtype) {
4434 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4435 struct notif_association *assoc = ¬if->u.assoc;
4436
4437 switch (assoc->state) {
4438 case CMAS_ASSOCIATED:{
4439 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4440 IPW_DL_ASSOC,
4441 "associated: '%*pE' %pM\n",
4442 priv->essid_len, priv->essid,
4443 priv->bssid);
4444
4445 switch (priv->ieee->iw_mode) {
4446 case IW_MODE_INFRA:
4447 memcpy(priv->ieee->bssid,
4448 priv->bssid, ETH_ALEN);
4449 break;
4450
4451 case IW_MODE_ADHOC:
4452 memcpy(priv->ieee->bssid,
4453 priv->bssid, ETH_ALEN);
4454
4455 /* clear out the station table */
4456 priv->num_stations = 0;
4457
4458 IPW_DEBUG_ASSOC
4459 ("queueing adhoc check\n");
4460 schedule_delayed_work(
4461 &priv->adhoc_check,
4462 le16_to_cpu(priv->
4463 assoc_request.
4464 beacon_interval));
4465 break;
4466 }
4467
4468 priv->status &= ~STATUS_ASSOCIATING;
4469 priv->status |= STATUS_ASSOCIATED;
4470 schedule_work(&priv->system_config);
4471
4472 #ifdef CONFIG_IPW2200_QOS
4473 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4474 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4475 if ((priv->status & STATUS_AUTH) &&
4476 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4477 == IEEE80211_STYPE_ASSOC_RESP)) {
4478 if ((sizeof
4479 (struct
4480 libipw_assoc_response)
4481 <= size)
4482 && (size <= 2314)) {
4483 struct
4484 libipw_rx_stats
4485 stats = {
4486 .len = size - 1,
4487 };
4488
4489 IPW_DEBUG_QOS
4490 ("QoS Associate "
4491 "size %d\n", size);
4492 libipw_rx_mgt(priv->
4493 ieee,
4494 (struct
4495 libipw_hdr_4addr
4496 *)
4497 ¬if->u.raw, &stats);
4498 }
4499 }
4500 #endif
4501
4502 schedule_work(&priv->link_up);
4503
4504 break;
4505 }
4506
4507 case CMAS_AUTHENTICATED:{
4508 if (priv->
4509 status & (STATUS_ASSOCIATED |
4510 STATUS_AUTH)) {
4511 struct notif_authenticate *auth
4512 = ¬if->u.auth;
4513 IPW_DEBUG(IPW_DL_NOTIF |
4514 IPW_DL_STATE |
4515 IPW_DL_ASSOC,
4516 "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4517 priv->essid_len,
4518 priv->essid,
4519 priv->bssid,
4520 le16_to_cpu(auth->status),
4521 ipw_get_status_code
4522 (le16_to_cpu
4523 (auth->status)));
4524
4525 priv->status &=
4526 ~(STATUS_ASSOCIATING |
4527 STATUS_AUTH |
4528 STATUS_ASSOCIATED);
4529
4530 schedule_work(&priv->link_down);
4531 break;
4532 }
4533
4534 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535 IPW_DL_ASSOC,
4536 "authenticated: '%*pE' %pM\n",
4537 priv->essid_len, priv->essid,
4538 priv->bssid);
4539 break;
4540 }
4541
4542 case CMAS_INIT:{
4543 if (priv->status & STATUS_AUTH) {
4544 struct
4545 libipw_assoc_response
4546 *resp;
4547 resp =
4548 (struct
4549 libipw_assoc_response
4550 *)¬if->u.raw;
4551 IPW_DEBUG(IPW_DL_NOTIF |
4552 IPW_DL_STATE |
4553 IPW_DL_ASSOC,
4554 "association failed (0x%04X): %s\n",
4555 le16_to_cpu(resp->status),
4556 ipw_get_status_code
4557 (le16_to_cpu
4558 (resp->status)));
4559 }
4560
4561 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4562 IPW_DL_ASSOC,
4563 "disassociated: '%*pE' %pM\n",
4564 priv->essid_len, priv->essid,
4565 priv->bssid);
4566
4567 priv->status &=
4568 ~(STATUS_DISASSOCIATING |
4569 STATUS_ASSOCIATING |
4570 STATUS_ASSOCIATED | STATUS_AUTH);
4571 if (priv->assoc_network
4572 && (priv->assoc_network->
4573 capability &
4574 WLAN_CAPABILITY_IBSS))
4575 ipw_remove_current_network
4576 (priv);
4577
4578 schedule_work(&priv->link_down);
4579
4580 break;
4581 }
4582
4583 case CMAS_RX_ASSOC_RESP:
4584 break;
4585
4586 default:
4587 IPW_ERROR("assoc: unknown (%d)\n",
4588 assoc->state);
4589 break;
4590 }
4591
4592 break;
4593 }
4594
4595 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4596 struct notif_authenticate *auth = ¬if->u.auth;
4597 switch (auth->state) {
4598 case CMAS_AUTHENTICATED:
4599 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4600 "authenticated: '%*pE' %pM\n",
4601 priv->essid_len, priv->essid,
4602 priv->bssid);
4603 priv->status |= STATUS_AUTH;
4604 break;
4605
4606 case CMAS_INIT:
4607 if (priv->status & STATUS_AUTH) {
4608 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4609 IPW_DL_ASSOC,
4610 "authentication failed (0x%04X): %s\n",
4611 le16_to_cpu(auth->status),
4612 ipw_get_status_code(le16_to_cpu
4613 (auth->
4614 status)));
4615 }
4616 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4617 IPW_DL_ASSOC,
4618 "deauthenticated: '%*pE' %pM\n",
4619 priv->essid_len, priv->essid,
4620 priv->bssid);
4621
4622 priv->status &= ~(STATUS_ASSOCIATING |
4623 STATUS_AUTH |
4624 STATUS_ASSOCIATED);
4625
4626 schedule_work(&priv->link_down);
4627 break;
4628
4629 case CMAS_TX_AUTH_SEQ_1:
4630 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4631 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4632 break;
4633 case CMAS_RX_AUTH_SEQ_2:
4634 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4635 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4636 break;
4637 case CMAS_AUTH_SEQ_1_PASS:
4638 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4640 break;
4641 case CMAS_AUTH_SEQ_1_FAIL:
4642 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4643 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4644 break;
4645 case CMAS_TX_AUTH_SEQ_3:
4646 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4647 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4648 break;
4649 case CMAS_RX_AUTH_SEQ_4:
4650 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4651 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4652 break;
4653 case CMAS_AUTH_SEQ_2_PASS:
4654 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4655 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4656 break;
4657 case CMAS_AUTH_SEQ_2_FAIL:
4658 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4659 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4660 break;
4661 case CMAS_TX_ASSOC:
4662 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4663 IPW_DL_ASSOC, "TX_ASSOC\n");
4664 break;
4665 case CMAS_RX_ASSOC_RESP:
4666 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4667 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4668
4669 break;
4670 case CMAS_ASSOCIATED:
4671 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4672 IPW_DL_ASSOC, "ASSOCIATED\n");
4673 break;
4674 default:
4675 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4676 auth->state);
4677 break;
4678 }
4679 break;
4680 }
4681
4682 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4683 struct notif_channel_result *x =
4684 ¬if->u.channel_result;
4685
4686 if (size == sizeof(*x)) {
4687 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4688 x->channel_num);
4689 } else {
4690 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4691 "(should be %zd)\n",
4692 size, sizeof(*x));
4693 }
4694 break;
4695 }
4696
4697 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4698 struct notif_scan_complete *x = ¬if->u.scan_complete;
4699 if (size == sizeof(*x)) {
4700 IPW_DEBUG_SCAN
4701 ("Scan completed: type %d, %d channels, "
4702 "%d status\n", x->scan_type,
4703 x->num_channels, x->status);
4704 } else {
4705 IPW_ERROR("Scan completed of wrong size %d "
4706 "(should be %zd)\n",
4707 size, sizeof(*x));
4708 }
4709
4710 priv->status &=
4711 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4712
4713 wake_up_interruptible(&priv->wait_state);
4714 cancel_delayed_work(&priv->scan_check);
4715
4716 if (priv->status & STATUS_EXIT_PENDING)
4717 break;
4718
4719 priv->ieee->scans++;
4720
4721 #ifdef CONFIG_IPW2200_MONITOR
4722 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4723 priv->status |= STATUS_SCAN_FORCED;
4724 schedule_delayed_work(&priv->request_scan, 0);
4725 break;
4726 }
4727 priv->status &= ~STATUS_SCAN_FORCED;
4728 #endif /* CONFIG_IPW2200_MONITOR */
4729
4730 /* Do queued direct scans first */
4731 if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4732 schedule_delayed_work(&priv->request_direct_scan, 0);
4733
4734 if (!(priv->status & (STATUS_ASSOCIATED |
4735 STATUS_ASSOCIATING |
4736 STATUS_ROAMING |
4737 STATUS_DISASSOCIATING)))
4738 schedule_work(&priv->associate);
4739 else if (priv->status & STATUS_ROAMING) {
4740 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4741 /* If a scan completed and we are in roam mode, then
4742 * the scan that completed was the one requested as a
4743 * result of entering roam... so, schedule the
4744 * roam work */
4745 schedule_work(&priv->roam);
4746 else
4747 /* Don't schedule if we aborted the scan */
4748 priv->status &= ~STATUS_ROAMING;
4749 } else if (priv->status & STATUS_SCAN_PENDING)
4750 schedule_delayed_work(&priv->request_scan, 0);
4751 else if (priv->config & CFG_BACKGROUND_SCAN
4752 && priv->status & STATUS_ASSOCIATED)
4753 schedule_delayed_work(&priv->request_scan,
4754 round_jiffies_relative(HZ));
4755
4756 /* Send an empty event to user space.
4757 * We don't send the received data on the event because
4758 * it would require us to do complex transcoding, and
4759 * we want to minimise the work done in the irq handler
4760 * Use a request to extract the data.
4761 * Also, we generate this even for any scan, regardless
4762 * on how the scan was initiated. User space can just
4763 * sync on periodic scan to get fresh data...
4764 * Jean II */
4765 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4766 handle_scan_event(priv);
4767 break;
4768 }
4769
4770 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4771 struct notif_frag_length *x = ¬if->u.frag_len;
4772
4773 if (size == sizeof(*x))
4774 IPW_ERROR("Frag length: %d\n",
4775 le16_to_cpu(x->frag_length));
4776 else
4777 IPW_ERROR("Frag length of wrong size %d "
4778 "(should be %zd)\n",
4779 size, sizeof(*x));
4780 break;
4781 }
4782
4783 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4784 struct notif_link_deterioration *x =
4785 ¬if->u.link_deterioration;
4786
4787 if (size == sizeof(*x)) {
4788 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4789 "link deterioration: type %d, cnt %d\n",
4790 x->silence_notification_type,
4791 x->silence_count);
4792 memcpy(&priv->last_link_deterioration, x,
4793 sizeof(*x));
4794 } else {
4795 IPW_ERROR("Link Deterioration of wrong size %d "
4796 "(should be %zd)\n",
4797 size, sizeof(*x));
4798 }
4799 break;
4800 }
4801
4802 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4803 IPW_ERROR("Dino config\n");
4804 if (priv->hcmd
4805 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4806 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4807
4808 break;
4809 }
4810
4811 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4812 struct notif_beacon_state *x = ¬if->u.beacon_state;
4813 if (size != sizeof(*x)) {
4814 IPW_ERROR
4815 ("Beacon state of wrong size %d (should "
4816 "be %zd)\n", size, sizeof(*x));
4817 break;
4818 }
4819
4820 if (le32_to_cpu(x->state) ==
4821 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4822 ipw_handle_missed_beacon(priv,
4823 le32_to_cpu(x->
4824 number));
4825
4826 break;
4827 }
4828
4829 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4830 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4831 if (size == sizeof(*x)) {
4832 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4833 "0x%02x station %d\n",
4834 x->key_state, x->security_type,
4835 x->station_index);
4836 break;
4837 }
4838
4839 IPW_ERROR
4840 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4841 size, sizeof(*x));
4842 break;
4843 }
4844
4845 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4846 struct notif_calibration *x = ¬if->u.calibration;
4847
4848 if (size == sizeof(*x)) {
4849 memcpy(&priv->calib, x, sizeof(*x));
4850 IPW_DEBUG_INFO("TODO: Calibration\n");
4851 break;
4852 }
4853
4854 IPW_ERROR
4855 ("Calibration of wrong size %d (should be %zd)\n",
4856 size, sizeof(*x));
4857 break;
4858 }
4859
4860 case HOST_NOTIFICATION_NOISE_STATS:{
4861 if (size == sizeof(u32)) {
4862 priv->exp_avg_noise =
4863 exponential_average(priv->exp_avg_noise,
4864 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4865 DEPTH_NOISE);
4866 break;
4867 }
4868
4869 IPW_ERROR
4870 ("Noise stat is wrong size %d (should be %zd)\n",
4871 size, sizeof(u32));
4872 break;
4873 }
4874
4875 default:
4876 IPW_DEBUG_NOTIF("Unknown notification: "
4877 "subtype=%d,flags=0x%2x,size=%d\n",
4878 notif->subtype, notif->flags, size);
4879 }
4880 }
4881
4882 /*
4883 * Destroys all DMA structures and initialise them again
4884 *
4885 * @param priv
4886 * @return error code
4887 */
ipw_queue_reset(struct ipw_priv * priv)4888 static int ipw_queue_reset(struct ipw_priv *priv)
4889 {
4890 int rc = 0;
4891 /* @todo customize queue sizes */
4892 int nTx = 64, nTxCmd = 8;
4893 ipw_tx_queue_free(priv);
4894 /* Tx CMD queue */
4895 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4896 IPW_TX_CMD_QUEUE_READ_INDEX,
4897 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4898 IPW_TX_CMD_QUEUE_BD_BASE,
4899 IPW_TX_CMD_QUEUE_BD_SIZE);
4900 if (rc) {
4901 IPW_ERROR("Tx Cmd queue init failed\n");
4902 goto error;
4903 }
4904 /* Tx queue(s) */
4905 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4906 IPW_TX_QUEUE_0_READ_INDEX,
4907 IPW_TX_QUEUE_0_WRITE_INDEX,
4908 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4909 if (rc) {
4910 IPW_ERROR("Tx 0 queue init failed\n");
4911 goto error;
4912 }
4913 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4914 IPW_TX_QUEUE_1_READ_INDEX,
4915 IPW_TX_QUEUE_1_WRITE_INDEX,
4916 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4917 if (rc) {
4918 IPW_ERROR("Tx 1 queue init failed\n");
4919 goto error;
4920 }
4921 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4922 IPW_TX_QUEUE_2_READ_INDEX,
4923 IPW_TX_QUEUE_2_WRITE_INDEX,
4924 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4925 if (rc) {
4926 IPW_ERROR("Tx 2 queue init failed\n");
4927 goto error;
4928 }
4929 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4930 IPW_TX_QUEUE_3_READ_INDEX,
4931 IPW_TX_QUEUE_3_WRITE_INDEX,
4932 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4933 if (rc) {
4934 IPW_ERROR("Tx 3 queue init failed\n");
4935 goto error;
4936 }
4937 /* statistics */
4938 priv->rx_bufs_min = 0;
4939 priv->rx_pend_max = 0;
4940 return rc;
4941
4942 error:
4943 ipw_tx_queue_free(priv);
4944 return rc;
4945 }
4946
4947 /*
4948 * Reclaim Tx queue entries no more used by NIC.
4949 *
4950 * When FW advances 'R' index, all entries between old and
4951 * new 'R' index need to be reclaimed. As result, some free space
4952 * forms. If there is enough free space (> low mark), wake Tx queue.
4953 *
4954 * @note Need to protect against garbage in 'R' index
4955 * @param priv
4956 * @param txq
4957 * @param qindex
4958 * @return Number of used entries remains in the queue
4959 */
ipw_queue_tx_reclaim(struct ipw_priv * priv,struct clx2_tx_queue * txq,int qindex)4960 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4961 struct clx2_tx_queue *txq, int qindex)
4962 {
4963 u32 hw_tail;
4964 int used;
4965 struct clx2_queue *q = &txq->q;
4966
4967 hw_tail = ipw_read32(priv, q->reg_r);
4968 if (hw_tail >= q->n_bd) {
4969 IPW_ERROR
4970 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4971 hw_tail, q->n_bd);
4972 goto done;
4973 }
4974 for (; q->last_used != hw_tail;
4975 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4976 ipw_queue_tx_free_tfd(priv, txq);
4977 priv->tx_packets++;
4978 }
4979 done:
4980 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4981 (qindex >= 0))
4982 netif_wake_queue(priv->net_dev);
4983 used = q->first_empty - q->last_used;
4984 if (used < 0)
4985 used += q->n_bd;
4986
4987 return used;
4988 }
4989
ipw_queue_tx_hcmd(struct ipw_priv * priv,int hcmd,const void * buf,int len,int sync)4990 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, const void *buf,
4991 int len, int sync)
4992 {
4993 struct clx2_tx_queue *txq = &priv->txq_cmd;
4994 struct clx2_queue *q = &txq->q;
4995 struct tfd_frame *tfd;
4996
4997 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4998 IPW_ERROR("No space for Tx\n");
4999 return -EBUSY;
5000 }
5001
5002 tfd = &txq->bd[q->first_empty];
5003 txq->txb[q->first_empty] = NULL;
5004
5005 memset(tfd, 0, sizeof(*tfd));
5006 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5007 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5008 priv->hcmd_seq++;
5009 tfd->u.cmd.index = hcmd;
5010 tfd->u.cmd.length = len;
5011 memcpy(tfd->u.cmd.payload, buf, len);
5012 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5013 ipw_write32(priv, q->reg_w, q->first_empty);
5014 _ipw_read32(priv, 0x90);
5015
5016 return 0;
5017 }
5018
5019 /*
5020 * Rx theory of operation
5021 *
5022 * The host allocates 32 DMA target addresses and passes the host address
5023 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5024 * 0 to 31
5025 *
5026 * Rx Queue Indexes
5027 * The host/firmware share two index registers for managing the Rx buffers.
5028 *
5029 * The READ index maps to the first position that the firmware may be writing
5030 * to -- the driver can read up to (but not including) this position and get
5031 * good data.
5032 * The READ index is managed by the firmware once the card is enabled.
5033 *
5034 * The WRITE index maps to the last position the driver has read from -- the
5035 * position preceding WRITE is the last slot the firmware can place a packet.
5036 *
5037 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5038 * WRITE = READ.
5039 *
5040 * During initialization the host sets up the READ queue position to the first
5041 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5042 *
5043 * When the firmware places a packet in a buffer it will advance the READ index
5044 * and fire the RX interrupt. The driver can then query the READ index and
5045 * process as many packets as possible, moving the WRITE index forward as it
5046 * resets the Rx queue buffers with new memory.
5047 *
5048 * The management in the driver is as follows:
5049 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5050 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5051 * to replensish the ipw->rxq->rx_free.
5052 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5053 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5054 * 'processed' and 'read' driver indexes as well)
5055 * + A received packet is processed and handed to the kernel network stack,
5056 * detached from the ipw->rxq. The driver 'processed' index is updated.
5057 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5058 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5059 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5060 * were enough free buffers and RX_STALLED is set it is cleared.
5061 *
5062 *
5063 * Driver sequence:
5064 *
5065 * ipw_rx_queue_alloc() Allocates rx_free
5066 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5067 * ipw_rx_queue_restock
5068 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5069 * queue, updates firmware pointers, and updates
5070 * the WRITE index. If insufficient rx_free buffers
5071 * are available, schedules ipw_rx_queue_replenish
5072 *
5073 * -- enable interrupts --
5074 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5075 * READ INDEX, detaching the SKB from the pool.
5076 * Moves the packet buffer from queue to rx_used.
5077 * Calls ipw_rx_queue_restock to refill any empty
5078 * slots.
5079 * ...
5080 *
5081 */
5082
5083 /*
5084 * If there are slots in the RX queue that need to be restocked,
5085 * and we have free pre-allocated buffers, fill the ranks as much
5086 * as we can pulling from rx_free.
5087 *
5088 * This moves the 'write' index forward to catch up with 'processed', and
5089 * also updates the memory address in the firmware to reference the new
5090 * target buffer.
5091 */
ipw_rx_queue_restock(struct ipw_priv * priv)5092 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5093 {
5094 struct ipw_rx_queue *rxq = priv->rxq;
5095 struct list_head *element;
5096 struct ipw_rx_mem_buffer *rxb;
5097 unsigned long flags;
5098 int write;
5099
5100 spin_lock_irqsave(&rxq->lock, flags);
5101 write = rxq->write;
5102 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5103 element = rxq->rx_free.next;
5104 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5105 list_del(element);
5106
5107 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5108 rxb->dma_addr);
5109 rxq->queue[rxq->write] = rxb;
5110 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5111 rxq->free_count--;
5112 }
5113 spin_unlock_irqrestore(&rxq->lock, flags);
5114
5115 /* If the pre-allocated buffer pool is dropping low, schedule to
5116 * refill it */
5117 if (rxq->free_count <= RX_LOW_WATERMARK)
5118 schedule_work(&priv->rx_replenish);
5119
5120 /* If we've added more space for the firmware to place data, tell it */
5121 if (write != rxq->write)
5122 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5123 }
5124
5125 /*
5126 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5127 * Also restock the Rx queue via ipw_rx_queue_restock.
5128 *
5129 * This is called as a scheduled work item (except for during initialization)
5130 */
ipw_rx_queue_replenish(void * data)5131 static void ipw_rx_queue_replenish(void *data)
5132 {
5133 struct ipw_priv *priv = data;
5134 struct ipw_rx_queue *rxq = priv->rxq;
5135 struct list_head *element;
5136 struct ipw_rx_mem_buffer *rxb;
5137 unsigned long flags;
5138
5139 spin_lock_irqsave(&rxq->lock, flags);
5140 while (!list_empty(&rxq->rx_used)) {
5141 element = rxq->rx_used.next;
5142 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5143 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5144 if (!rxb->skb) {
5145 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5146 priv->net_dev->name);
5147 /* We don't reschedule replenish work here -- we will
5148 * call the restock method and if it still needs
5149 * more buffers it will schedule replenish */
5150 break;
5151 }
5152 list_del(element);
5153
5154 rxb->dma_addr =
5155 dma_map_single(&priv->pci_dev->dev, rxb->skb->data,
5156 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5157
5158 list_add_tail(&rxb->list, &rxq->rx_free);
5159 rxq->free_count++;
5160 }
5161 spin_unlock_irqrestore(&rxq->lock, flags);
5162
5163 ipw_rx_queue_restock(priv);
5164 }
5165
ipw_bg_rx_queue_replenish(struct work_struct * work)5166 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5167 {
5168 struct ipw_priv *priv =
5169 container_of(work, struct ipw_priv, rx_replenish);
5170 mutex_lock(&priv->mutex);
5171 ipw_rx_queue_replenish(priv);
5172 mutex_unlock(&priv->mutex);
5173 }
5174
5175 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5176 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5177 * This free routine walks the list of POOL entries and if SKB is set to
5178 * non NULL it is unmapped and freed
5179 */
ipw_rx_queue_free(struct ipw_priv * priv,struct ipw_rx_queue * rxq)5180 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5181 {
5182 int i;
5183
5184 if (!rxq)
5185 return;
5186
5187 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5188 if (rxq->pool[i].skb != NULL) {
5189 dma_unmap_single(&priv->pci_dev->dev,
5190 rxq->pool[i].dma_addr,
5191 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
5192 dev_kfree_skb(rxq->pool[i].skb);
5193 }
5194 }
5195
5196 kfree(rxq);
5197 }
5198
ipw_rx_queue_alloc(struct ipw_priv * priv)5199 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5200 {
5201 struct ipw_rx_queue *rxq;
5202 int i;
5203
5204 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5205 if (unlikely(!rxq)) {
5206 IPW_ERROR("memory allocation failed\n");
5207 return NULL;
5208 }
5209 spin_lock_init(&rxq->lock);
5210 INIT_LIST_HEAD(&rxq->rx_free);
5211 INIT_LIST_HEAD(&rxq->rx_used);
5212
5213 /* Fill the rx_used queue with _all_ of the Rx buffers */
5214 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5215 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5216
5217 /* Set us so that we have processed and used all buffers, but have
5218 * not restocked the Rx queue with fresh buffers */
5219 rxq->read = rxq->write = 0;
5220 rxq->free_count = 0;
5221
5222 return rxq;
5223 }
5224
ipw_is_rate_in_mask(struct ipw_priv * priv,int ieee_mode,u8 rate)5225 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5226 {
5227 rate &= ~LIBIPW_BASIC_RATE_MASK;
5228 if (ieee_mode == IEEE_A) {
5229 switch (rate) {
5230 case LIBIPW_OFDM_RATE_6MB:
5231 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5232 1 : 0;
5233 case LIBIPW_OFDM_RATE_9MB:
5234 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5235 1 : 0;
5236 case LIBIPW_OFDM_RATE_12MB:
5237 return priv->
5238 rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5239 case LIBIPW_OFDM_RATE_18MB:
5240 return priv->
5241 rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5242 case LIBIPW_OFDM_RATE_24MB:
5243 return priv->
5244 rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5245 case LIBIPW_OFDM_RATE_36MB:
5246 return priv->
5247 rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5248 case LIBIPW_OFDM_RATE_48MB:
5249 return priv->
5250 rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5251 case LIBIPW_OFDM_RATE_54MB:
5252 return priv->
5253 rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5254 default:
5255 return 0;
5256 }
5257 }
5258
5259 /* B and G mixed */
5260 switch (rate) {
5261 case LIBIPW_CCK_RATE_1MB:
5262 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5263 case LIBIPW_CCK_RATE_2MB:
5264 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5265 case LIBIPW_CCK_RATE_5MB:
5266 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5267 case LIBIPW_CCK_RATE_11MB:
5268 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5269 }
5270
5271 /* If we are limited to B modulations, bail at this point */
5272 if (ieee_mode == IEEE_B)
5273 return 0;
5274
5275 /* G */
5276 switch (rate) {
5277 case LIBIPW_OFDM_RATE_6MB:
5278 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5279 case LIBIPW_OFDM_RATE_9MB:
5280 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5281 case LIBIPW_OFDM_RATE_12MB:
5282 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5283 case LIBIPW_OFDM_RATE_18MB:
5284 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5285 case LIBIPW_OFDM_RATE_24MB:
5286 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5287 case LIBIPW_OFDM_RATE_36MB:
5288 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5289 case LIBIPW_OFDM_RATE_48MB:
5290 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5291 case LIBIPW_OFDM_RATE_54MB:
5292 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5293 }
5294
5295 return 0;
5296 }
5297
ipw_compatible_rates(struct ipw_priv * priv,const struct libipw_network * network,struct ipw_supported_rates * rates)5298 static int ipw_compatible_rates(struct ipw_priv *priv,
5299 const struct libipw_network *network,
5300 struct ipw_supported_rates *rates)
5301 {
5302 int num_rates, i;
5303
5304 memset(rates, 0, sizeof(*rates));
5305 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5306 rates->num_rates = 0;
5307 for (i = 0; i < num_rates; i++) {
5308 if (!ipw_is_rate_in_mask(priv, network->mode,
5309 network->rates[i])) {
5310
5311 if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5312 IPW_DEBUG_SCAN("Adding masked mandatory "
5313 "rate %02X\n",
5314 network->rates[i]);
5315 rates->supported_rates[rates->num_rates++] =
5316 network->rates[i];
5317 continue;
5318 }
5319
5320 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5321 network->rates[i], priv->rates_mask);
5322 continue;
5323 }
5324
5325 rates->supported_rates[rates->num_rates++] = network->rates[i];
5326 }
5327
5328 num_rates = min(network->rates_ex_len,
5329 (u8) (IPW_MAX_RATES - num_rates));
5330 for (i = 0; i < num_rates; i++) {
5331 if (!ipw_is_rate_in_mask(priv, network->mode,
5332 network->rates_ex[i])) {
5333 if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5334 IPW_DEBUG_SCAN("Adding masked mandatory "
5335 "rate %02X\n",
5336 network->rates_ex[i]);
5337 rates->supported_rates[rates->num_rates++] =
5338 network->rates[i];
5339 continue;
5340 }
5341
5342 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5343 network->rates_ex[i], priv->rates_mask);
5344 continue;
5345 }
5346
5347 rates->supported_rates[rates->num_rates++] =
5348 network->rates_ex[i];
5349 }
5350
5351 return 1;
5352 }
5353
ipw_copy_rates(struct ipw_supported_rates * dest,const struct ipw_supported_rates * src)5354 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5355 const struct ipw_supported_rates *src)
5356 {
5357 u8 i;
5358 for (i = 0; i < src->num_rates; i++)
5359 dest->supported_rates[i] = src->supported_rates[i];
5360 dest->num_rates = src->num_rates;
5361 }
5362
5363 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5364 * mask should ever be used -- right now all callers to add the scan rates are
5365 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
ipw_add_cck_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5366 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5367 u8 modulation, u32 rate_mask)
5368 {
5369 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5370 LIBIPW_BASIC_RATE_MASK : 0;
5371
5372 if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5373 rates->supported_rates[rates->num_rates++] =
5374 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5375
5376 if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5377 rates->supported_rates[rates->num_rates++] =
5378 LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5379
5380 if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5381 rates->supported_rates[rates->num_rates++] = basic_mask |
5382 LIBIPW_CCK_RATE_5MB;
5383
5384 if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5385 rates->supported_rates[rates->num_rates++] = basic_mask |
5386 LIBIPW_CCK_RATE_11MB;
5387 }
5388
ipw_add_ofdm_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5389 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5390 u8 modulation, u32 rate_mask)
5391 {
5392 u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5393 LIBIPW_BASIC_RATE_MASK : 0;
5394
5395 if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5396 rates->supported_rates[rates->num_rates++] = basic_mask |
5397 LIBIPW_OFDM_RATE_6MB;
5398
5399 if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5400 rates->supported_rates[rates->num_rates++] =
5401 LIBIPW_OFDM_RATE_9MB;
5402
5403 if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5404 rates->supported_rates[rates->num_rates++] = basic_mask |
5405 LIBIPW_OFDM_RATE_12MB;
5406
5407 if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5408 rates->supported_rates[rates->num_rates++] =
5409 LIBIPW_OFDM_RATE_18MB;
5410
5411 if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5412 rates->supported_rates[rates->num_rates++] = basic_mask |
5413 LIBIPW_OFDM_RATE_24MB;
5414
5415 if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5416 rates->supported_rates[rates->num_rates++] =
5417 LIBIPW_OFDM_RATE_36MB;
5418
5419 if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5420 rates->supported_rates[rates->num_rates++] =
5421 LIBIPW_OFDM_RATE_48MB;
5422
5423 if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5424 rates->supported_rates[rates->num_rates++] =
5425 LIBIPW_OFDM_RATE_54MB;
5426 }
5427
5428 struct ipw_network_match {
5429 struct libipw_network *network;
5430 struct ipw_supported_rates rates;
5431 };
5432
ipw_find_adhoc_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5433 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5434 struct ipw_network_match *match,
5435 struct libipw_network *network,
5436 int roaming)
5437 {
5438 struct ipw_supported_rates rates;
5439
5440 /* Verify that this network's capability is compatible with the
5441 * current mode (AdHoc or Infrastructure) */
5442 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5443 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5444 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5445 network->ssid_len, network->ssid,
5446 network->bssid);
5447 return 0;
5448 }
5449
5450 if (unlikely(roaming)) {
5451 /* If we are roaming, then ensure check if this is a valid
5452 * network to try and roam to */
5453 if ((network->ssid_len != match->network->ssid_len) ||
5454 memcmp(network->ssid, match->network->ssid,
5455 network->ssid_len)) {
5456 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5457 network->ssid_len, network->ssid,
5458 network->bssid);
5459 return 0;
5460 }
5461 } else {
5462 /* If an ESSID has been configured then compare the broadcast
5463 * ESSID to ours */
5464 if ((priv->config & CFG_STATIC_ESSID) &&
5465 ((network->ssid_len != priv->essid_len) ||
5466 memcmp(network->ssid, priv->essid,
5467 min(network->ssid_len, priv->essid_len)))) {
5468 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5469 network->ssid_len, network->ssid,
5470 network->bssid, priv->essid_len,
5471 priv->essid);
5472 return 0;
5473 }
5474 }
5475
5476 /* If the old network rate is better than this one, don't bother
5477 * testing everything else. */
5478
5479 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5480 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5481 match->network->ssid_len, match->network->ssid);
5482 return 0;
5483 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5484 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5485 match->network->ssid_len, match->network->ssid);
5486 return 0;
5487 }
5488
5489 /* Now go through and see if the requested network is valid... */
5490 if (priv->ieee->scan_age != 0 &&
5491 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5492 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5493 network->ssid_len, network->ssid,
5494 network->bssid,
5495 jiffies_to_msecs(jiffies -
5496 network->last_scanned));
5497 return 0;
5498 }
5499
5500 if ((priv->config & CFG_STATIC_CHANNEL) &&
5501 (network->channel != priv->channel)) {
5502 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5503 network->ssid_len, network->ssid,
5504 network->bssid,
5505 network->channel, priv->channel);
5506 return 0;
5507 }
5508
5509 /* Verify privacy compatibility */
5510 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5511 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5512 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5513 network->ssid_len, network->ssid,
5514 network->bssid,
5515 priv->
5516 capability & CAP_PRIVACY_ON ? "on" : "off",
5517 network->
5518 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5519 "off");
5520 return 0;
5521 }
5522
5523 if (ether_addr_equal(network->bssid, priv->bssid)) {
5524 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5525 network->ssid_len, network->ssid,
5526 network->bssid, priv->bssid);
5527 return 0;
5528 }
5529
5530 /* Filter out any incompatible freq / mode combinations */
5531 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5532 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5533 network->ssid_len, network->ssid,
5534 network->bssid);
5535 return 0;
5536 }
5537
5538 /* Ensure that the rates supported by the driver are compatible with
5539 * this AP, including verification of basic rates (mandatory) */
5540 if (!ipw_compatible_rates(priv, network, &rates)) {
5541 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5542 network->ssid_len, network->ssid,
5543 network->bssid);
5544 return 0;
5545 }
5546
5547 if (rates.num_rates == 0) {
5548 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5549 network->ssid_len, network->ssid,
5550 network->bssid);
5551 return 0;
5552 }
5553
5554 /* TODO: Perform any further minimal comparititive tests. We do not
5555 * want to put too much policy logic here; intelligent scan selection
5556 * should occur within a generic IEEE 802.11 user space tool. */
5557
5558 /* Set up 'new' AP to this network */
5559 ipw_copy_rates(&match->rates, &rates);
5560 match->network = network;
5561 IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5562 network->ssid_len, network->ssid, network->bssid);
5563
5564 return 1;
5565 }
5566
ipw_merge_adhoc_network(struct work_struct * work)5567 static void ipw_merge_adhoc_network(struct work_struct *work)
5568 {
5569 struct ipw_priv *priv =
5570 container_of(work, struct ipw_priv, merge_networks);
5571 struct libipw_network *network = NULL;
5572 struct ipw_network_match match = {
5573 .network = priv->assoc_network
5574 };
5575
5576 if ((priv->status & STATUS_ASSOCIATED) &&
5577 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5578 /* First pass through ROAM process -- look for a better
5579 * network */
5580 unsigned long flags;
5581
5582 spin_lock_irqsave(&priv->ieee->lock, flags);
5583 list_for_each_entry(network, &priv->ieee->network_list, list) {
5584 if (network != priv->assoc_network)
5585 ipw_find_adhoc_network(priv, &match, network,
5586 1);
5587 }
5588 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5589
5590 if (match.network == priv->assoc_network) {
5591 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5592 "merge to.\n");
5593 return;
5594 }
5595
5596 mutex_lock(&priv->mutex);
5597 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5598 IPW_DEBUG_MERGE("remove network %*pE\n",
5599 priv->essid_len, priv->essid);
5600 ipw_remove_current_network(priv);
5601 }
5602
5603 ipw_disassociate(priv);
5604 priv->assoc_network = match.network;
5605 mutex_unlock(&priv->mutex);
5606 return;
5607 }
5608 }
5609
ipw_best_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5610 static int ipw_best_network(struct ipw_priv *priv,
5611 struct ipw_network_match *match,
5612 struct libipw_network *network, int roaming)
5613 {
5614 struct ipw_supported_rates rates;
5615
5616 /* Verify that this network's capability is compatible with the
5617 * current mode (AdHoc or Infrastructure) */
5618 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5619 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5620 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5621 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5622 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5623 network->ssid_len, network->ssid,
5624 network->bssid);
5625 return 0;
5626 }
5627
5628 if (unlikely(roaming)) {
5629 /* If we are roaming, then ensure check if this is a valid
5630 * network to try and roam to */
5631 if ((network->ssid_len != match->network->ssid_len) ||
5632 memcmp(network->ssid, match->network->ssid,
5633 network->ssid_len)) {
5634 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5635 network->ssid_len, network->ssid,
5636 network->bssid);
5637 return 0;
5638 }
5639 } else {
5640 /* If an ESSID has been configured then compare the broadcast
5641 * ESSID to ours */
5642 if ((priv->config & CFG_STATIC_ESSID) &&
5643 ((network->ssid_len != priv->essid_len) ||
5644 memcmp(network->ssid, priv->essid,
5645 min(network->ssid_len, priv->essid_len)))) {
5646 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5647 network->ssid_len, network->ssid,
5648 network->bssid, priv->essid_len,
5649 priv->essid);
5650 return 0;
5651 }
5652 }
5653
5654 /* If the old network rate is better than this one, don't bother
5655 * testing everything else. */
5656 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5657 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5658 network->ssid_len, network->ssid,
5659 network->bssid, match->network->ssid_len,
5660 match->network->ssid, match->network->bssid);
5661 return 0;
5662 }
5663
5664 /* If this network has already had an association attempt within the
5665 * last 3 seconds, do not try and associate again... */
5666 if (network->last_associate &&
5667 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5668 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5669 network->ssid_len, network->ssid,
5670 network->bssid,
5671 jiffies_to_msecs(jiffies -
5672 network->last_associate));
5673 return 0;
5674 }
5675
5676 /* Now go through and see if the requested network is valid... */
5677 if (priv->ieee->scan_age != 0 &&
5678 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5679 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5680 network->ssid_len, network->ssid,
5681 network->bssid,
5682 jiffies_to_msecs(jiffies -
5683 network->last_scanned));
5684 return 0;
5685 }
5686
5687 if ((priv->config & CFG_STATIC_CHANNEL) &&
5688 (network->channel != priv->channel)) {
5689 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5690 network->ssid_len, network->ssid,
5691 network->bssid,
5692 network->channel, priv->channel);
5693 return 0;
5694 }
5695
5696 /* Verify privacy compatibility */
5697 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5698 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5699 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5700 network->ssid_len, network->ssid,
5701 network->bssid,
5702 priv->capability & CAP_PRIVACY_ON ? "on" :
5703 "off",
5704 network->capability &
5705 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5706 return 0;
5707 }
5708
5709 if ((priv->config & CFG_STATIC_BSSID) &&
5710 !ether_addr_equal(network->bssid, priv->bssid)) {
5711 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5712 network->ssid_len, network->ssid,
5713 network->bssid, priv->bssid);
5714 return 0;
5715 }
5716
5717 /* Filter out any incompatible freq / mode combinations */
5718 if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5719 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5720 network->ssid_len, network->ssid,
5721 network->bssid);
5722 return 0;
5723 }
5724
5725 /* Filter out invalid channel in current GEO */
5726 if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5727 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5728 network->ssid_len, network->ssid,
5729 network->bssid);
5730 return 0;
5731 }
5732
5733 /* Ensure that the rates supported by the driver are compatible with
5734 * this AP, including verification of basic rates (mandatory) */
5735 if (!ipw_compatible_rates(priv, network, &rates)) {
5736 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5737 network->ssid_len, network->ssid,
5738 network->bssid);
5739 return 0;
5740 }
5741
5742 if (rates.num_rates == 0) {
5743 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5744 network->ssid_len, network->ssid,
5745 network->bssid);
5746 return 0;
5747 }
5748
5749 /* TODO: Perform any further minimal comparititive tests. We do not
5750 * want to put too much policy logic here; intelligent scan selection
5751 * should occur within a generic IEEE 802.11 user space tool. */
5752
5753 /* Set up 'new' AP to this network */
5754 ipw_copy_rates(&match->rates, &rates);
5755 match->network = network;
5756
5757 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5758 network->ssid_len, network->ssid, network->bssid);
5759
5760 return 1;
5761 }
5762
ipw_adhoc_create(struct ipw_priv * priv,struct libipw_network * network)5763 static void ipw_adhoc_create(struct ipw_priv *priv,
5764 struct libipw_network *network)
5765 {
5766 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5767 int i;
5768
5769 /*
5770 * For the purposes of scanning, we can set our wireless mode
5771 * to trigger scans across combinations of bands, but when it
5772 * comes to creating a new ad-hoc network, we have tell the FW
5773 * exactly which band to use.
5774 *
5775 * We also have the possibility of an invalid channel for the
5776 * chossen band. Attempting to create a new ad-hoc network
5777 * with an invalid channel for wireless mode will trigger a
5778 * FW fatal error.
5779 *
5780 */
5781 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5782 case LIBIPW_52GHZ_BAND:
5783 network->mode = IEEE_A;
5784 i = libipw_channel_to_index(priv->ieee, priv->channel);
5785 BUG_ON(i == -1);
5786 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5787 IPW_WARNING("Overriding invalid channel\n");
5788 priv->channel = geo->a[0].channel;
5789 }
5790 break;
5791
5792 case LIBIPW_24GHZ_BAND:
5793 if (priv->ieee->mode & IEEE_G)
5794 network->mode = IEEE_G;
5795 else
5796 network->mode = IEEE_B;
5797 i = libipw_channel_to_index(priv->ieee, priv->channel);
5798 BUG_ON(i == -1);
5799 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5800 IPW_WARNING("Overriding invalid channel\n");
5801 priv->channel = geo->bg[0].channel;
5802 }
5803 break;
5804
5805 default:
5806 IPW_WARNING("Overriding invalid channel\n");
5807 if (priv->ieee->mode & IEEE_A) {
5808 network->mode = IEEE_A;
5809 priv->channel = geo->a[0].channel;
5810 } else if (priv->ieee->mode & IEEE_G) {
5811 network->mode = IEEE_G;
5812 priv->channel = geo->bg[0].channel;
5813 } else {
5814 network->mode = IEEE_B;
5815 priv->channel = geo->bg[0].channel;
5816 }
5817 break;
5818 }
5819
5820 network->channel = priv->channel;
5821 priv->config |= CFG_ADHOC_PERSIST;
5822 ipw_create_bssid(priv, network->bssid);
5823 network->ssid_len = priv->essid_len;
5824 memcpy(network->ssid, priv->essid, priv->essid_len);
5825 memset(&network->stats, 0, sizeof(network->stats));
5826 network->capability = WLAN_CAPABILITY_IBSS;
5827 if (!(priv->config & CFG_PREAMBLE_LONG))
5828 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5829 if (priv->capability & CAP_PRIVACY_ON)
5830 network->capability |= WLAN_CAPABILITY_PRIVACY;
5831 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5832 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5833 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5834 memcpy(network->rates_ex,
5835 &priv->rates.supported_rates[network->rates_len],
5836 network->rates_ex_len);
5837 network->last_scanned = 0;
5838 network->flags = 0;
5839 network->last_associate = 0;
5840 network->time_stamp[0] = 0;
5841 network->time_stamp[1] = 0;
5842 network->beacon_interval = 100; /* Default */
5843 network->listen_interval = 10; /* Default */
5844 network->atim_window = 0; /* Default */
5845 network->wpa_ie_len = 0;
5846 network->rsn_ie_len = 0;
5847 }
5848
ipw_send_tgi_tx_key(struct ipw_priv * priv,int type,int index)5849 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5850 {
5851 struct ipw_tgi_tx_key key;
5852
5853 if (!(priv->ieee->sec.flags & (1 << index)))
5854 return;
5855
5856 key.key_id = index;
5857 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5858 key.security_type = type;
5859 key.station_index = 0; /* always 0 for BSS */
5860 key.flags = 0;
5861 /* 0 for new key; previous value of counter (after fatal error) */
5862 key.tx_counter[0] = cpu_to_le32(0);
5863 key.tx_counter[1] = cpu_to_le32(0);
5864
5865 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5866 }
5867
ipw_send_wep_keys(struct ipw_priv * priv,int type)5868 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5869 {
5870 struct ipw_wep_key key;
5871 int i;
5872
5873 key.cmd_id = DINO_CMD_WEP_KEY;
5874 key.seq_num = 0;
5875
5876 /* Note: AES keys cannot be set for multiple times.
5877 * Only set it at the first time. */
5878 for (i = 0; i < 4; i++) {
5879 key.key_index = i | type;
5880 if (!(priv->ieee->sec.flags & (1 << i))) {
5881 key.key_size = 0;
5882 continue;
5883 }
5884
5885 key.key_size = priv->ieee->sec.key_sizes[i];
5886 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5887
5888 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5889 }
5890 }
5891
ipw_set_hw_decrypt_unicast(struct ipw_priv * priv,int level)5892 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5893 {
5894 if (priv->ieee->host_encrypt)
5895 return;
5896
5897 switch (level) {
5898 case SEC_LEVEL_3:
5899 priv->sys_config.disable_unicast_decryption = 0;
5900 priv->ieee->host_decrypt = 0;
5901 break;
5902 case SEC_LEVEL_2:
5903 priv->sys_config.disable_unicast_decryption = 1;
5904 priv->ieee->host_decrypt = 1;
5905 break;
5906 case SEC_LEVEL_1:
5907 priv->sys_config.disable_unicast_decryption = 0;
5908 priv->ieee->host_decrypt = 0;
5909 break;
5910 case SEC_LEVEL_0:
5911 priv->sys_config.disable_unicast_decryption = 1;
5912 break;
5913 default:
5914 break;
5915 }
5916 }
5917
ipw_set_hw_decrypt_multicast(struct ipw_priv * priv,int level)5918 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5919 {
5920 if (priv->ieee->host_encrypt)
5921 return;
5922
5923 switch (level) {
5924 case SEC_LEVEL_3:
5925 priv->sys_config.disable_multicast_decryption = 0;
5926 break;
5927 case SEC_LEVEL_2:
5928 priv->sys_config.disable_multicast_decryption = 1;
5929 break;
5930 case SEC_LEVEL_1:
5931 priv->sys_config.disable_multicast_decryption = 0;
5932 break;
5933 case SEC_LEVEL_0:
5934 priv->sys_config.disable_multicast_decryption = 1;
5935 break;
5936 default:
5937 break;
5938 }
5939 }
5940
ipw_set_hwcrypto_keys(struct ipw_priv * priv)5941 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5942 {
5943 switch (priv->ieee->sec.level) {
5944 case SEC_LEVEL_3:
5945 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5946 ipw_send_tgi_tx_key(priv,
5947 DCT_FLAG_EXT_SECURITY_CCM,
5948 priv->ieee->sec.active_key);
5949
5950 if (!priv->ieee->host_mc_decrypt)
5951 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5952 break;
5953 case SEC_LEVEL_2:
5954 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5955 ipw_send_tgi_tx_key(priv,
5956 DCT_FLAG_EXT_SECURITY_TKIP,
5957 priv->ieee->sec.active_key);
5958 break;
5959 case SEC_LEVEL_1:
5960 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5961 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5962 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5963 break;
5964 case SEC_LEVEL_0:
5965 default:
5966 break;
5967 }
5968 }
5969
ipw_adhoc_check(void * data)5970 static void ipw_adhoc_check(void *data)
5971 {
5972 struct ipw_priv *priv = data;
5973
5974 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5975 !(priv->config & CFG_ADHOC_PERSIST)) {
5976 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5977 IPW_DL_STATE | IPW_DL_ASSOC,
5978 "Missed beacon: %d - disassociate\n",
5979 priv->missed_adhoc_beacons);
5980 ipw_remove_current_network(priv);
5981 ipw_disassociate(priv);
5982 return;
5983 }
5984
5985 schedule_delayed_work(&priv->adhoc_check,
5986 le16_to_cpu(priv->assoc_request.beacon_interval));
5987 }
5988
ipw_bg_adhoc_check(struct work_struct * work)5989 static void ipw_bg_adhoc_check(struct work_struct *work)
5990 {
5991 struct ipw_priv *priv =
5992 container_of(work, struct ipw_priv, adhoc_check.work);
5993 mutex_lock(&priv->mutex);
5994 ipw_adhoc_check(priv);
5995 mutex_unlock(&priv->mutex);
5996 }
5997
ipw_debug_config(struct ipw_priv * priv)5998 static void ipw_debug_config(struct ipw_priv *priv)
5999 {
6000 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6001 "[CFG 0x%08X]\n", priv->config);
6002 if (priv->config & CFG_STATIC_CHANNEL)
6003 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6004 else
6005 IPW_DEBUG_INFO("Channel unlocked.\n");
6006 if (priv->config & CFG_STATIC_ESSID)
6007 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6008 priv->essid_len, priv->essid);
6009 else
6010 IPW_DEBUG_INFO("ESSID unlocked.\n");
6011 if (priv->config & CFG_STATIC_BSSID)
6012 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6013 else
6014 IPW_DEBUG_INFO("BSSID unlocked.\n");
6015 if (priv->capability & CAP_PRIVACY_ON)
6016 IPW_DEBUG_INFO("PRIVACY on\n");
6017 else
6018 IPW_DEBUG_INFO("PRIVACY off\n");
6019 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6020 }
6021
ipw_set_fixed_rate(struct ipw_priv * priv,int mode)6022 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6023 {
6024 /* TODO: Verify that this works... */
6025 struct ipw_fixed_rate fr;
6026 u32 reg;
6027 u16 mask = 0;
6028 u16 new_tx_rates = priv->rates_mask;
6029
6030 /* Identify 'current FW band' and match it with the fixed
6031 * Tx rates */
6032
6033 switch (priv->ieee->freq_band) {
6034 case LIBIPW_52GHZ_BAND: /* A only */
6035 /* IEEE_A */
6036 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6037 /* Invalid fixed rate mask */
6038 IPW_DEBUG_WX
6039 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6040 new_tx_rates = 0;
6041 break;
6042 }
6043
6044 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6045 break;
6046
6047 default: /* 2.4Ghz or Mixed */
6048 /* IEEE_B */
6049 if (mode == IEEE_B) {
6050 if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6051 /* Invalid fixed rate mask */
6052 IPW_DEBUG_WX
6053 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6054 new_tx_rates = 0;
6055 }
6056 break;
6057 }
6058
6059 /* IEEE_G */
6060 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6061 LIBIPW_OFDM_RATES_MASK)) {
6062 /* Invalid fixed rate mask */
6063 IPW_DEBUG_WX
6064 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6065 new_tx_rates = 0;
6066 break;
6067 }
6068
6069 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6070 mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6071 new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6072 }
6073
6074 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6075 mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6076 new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6077 }
6078
6079 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6080 mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6081 new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6082 }
6083
6084 new_tx_rates |= mask;
6085 break;
6086 }
6087
6088 fr.tx_rates = cpu_to_le16(new_tx_rates);
6089
6090 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6091 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6092 }
6093
ipw_abort_scan(struct ipw_priv * priv)6094 static void ipw_abort_scan(struct ipw_priv *priv)
6095 {
6096 int err;
6097
6098 if (priv->status & STATUS_SCAN_ABORTING) {
6099 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6100 return;
6101 }
6102 priv->status |= STATUS_SCAN_ABORTING;
6103
6104 err = ipw_send_scan_abort(priv);
6105 if (err)
6106 IPW_DEBUG_HC("Request to abort scan failed.\n");
6107 }
6108
ipw_add_scan_channels(struct ipw_priv * priv,struct ipw_scan_request_ext * scan,int scan_type)6109 static void ipw_add_scan_channels(struct ipw_priv *priv,
6110 struct ipw_scan_request_ext *scan,
6111 int scan_type)
6112 {
6113 int channel_index = 0;
6114 const struct libipw_geo *geo;
6115 int i;
6116
6117 geo = libipw_get_geo(priv->ieee);
6118
6119 if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6120 int start = channel_index;
6121 for (i = 0; i < geo->a_channels; i++) {
6122 if ((priv->status & STATUS_ASSOCIATED) &&
6123 geo->a[i].channel == priv->channel)
6124 continue;
6125 channel_index++;
6126 scan->channels_list[channel_index] = geo->a[i].channel;
6127 ipw_set_scan_type(scan, channel_index,
6128 geo->a[i].
6129 flags & LIBIPW_CH_PASSIVE_ONLY ?
6130 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6131 scan_type);
6132 }
6133
6134 if (start != channel_index) {
6135 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6136 (channel_index - start);
6137 channel_index++;
6138 }
6139 }
6140
6141 if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6142 int start = channel_index;
6143 if (priv->config & CFG_SPEED_SCAN) {
6144 int index;
6145 u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6146 /* nop out the list */
6147 [0] = 0
6148 };
6149
6150 u8 channel;
6151 while (channel_index < IPW_SCAN_CHANNELS - 1) {
6152 channel =
6153 priv->speed_scan[priv->speed_scan_pos];
6154 if (channel == 0) {
6155 priv->speed_scan_pos = 0;
6156 channel = priv->speed_scan[0];
6157 }
6158 if ((priv->status & STATUS_ASSOCIATED) &&
6159 channel == priv->channel) {
6160 priv->speed_scan_pos++;
6161 continue;
6162 }
6163
6164 /* If this channel has already been
6165 * added in scan, break from loop
6166 * and this will be the first channel
6167 * in the next scan.
6168 */
6169 if (channels[channel - 1] != 0)
6170 break;
6171
6172 channels[channel - 1] = 1;
6173 priv->speed_scan_pos++;
6174 channel_index++;
6175 scan->channels_list[channel_index] = channel;
6176 index =
6177 libipw_channel_to_index(priv->ieee, channel);
6178 ipw_set_scan_type(scan, channel_index,
6179 geo->bg[index].
6180 flags &
6181 LIBIPW_CH_PASSIVE_ONLY ?
6182 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6183 : scan_type);
6184 }
6185 } else {
6186 for (i = 0; i < geo->bg_channels; i++) {
6187 if ((priv->status & STATUS_ASSOCIATED) &&
6188 geo->bg[i].channel == priv->channel)
6189 continue;
6190 channel_index++;
6191 scan->channels_list[channel_index] =
6192 geo->bg[i].channel;
6193 ipw_set_scan_type(scan, channel_index,
6194 geo->bg[i].
6195 flags &
6196 LIBIPW_CH_PASSIVE_ONLY ?
6197 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6198 : scan_type);
6199 }
6200 }
6201
6202 if (start != channel_index) {
6203 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6204 (channel_index - start);
6205 }
6206 }
6207 }
6208
ipw_passive_dwell_time(struct ipw_priv * priv)6209 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6210 {
6211 /* staying on passive channels longer than the DTIM interval during a
6212 * scan, while associated, causes the firmware to cancel the scan
6213 * without notification. Hence, don't stay on passive channels longer
6214 * than the beacon interval.
6215 */
6216 if (priv->status & STATUS_ASSOCIATED
6217 && priv->assoc_network->beacon_interval > 10)
6218 return priv->assoc_network->beacon_interval - 10;
6219 else
6220 return 120;
6221 }
6222
ipw_request_scan_helper(struct ipw_priv * priv,int type,int direct)6223 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6224 {
6225 struct ipw_scan_request_ext scan;
6226 int err = 0, scan_type;
6227
6228 if (!(priv->status & STATUS_INIT) ||
6229 (priv->status & STATUS_EXIT_PENDING))
6230 return 0;
6231
6232 mutex_lock(&priv->mutex);
6233
6234 if (direct && (priv->direct_scan_ssid_len == 0)) {
6235 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6236 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6237 goto done;
6238 }
6239
6240 if (priv->status & STATUS_SCANNING) {
6241 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6242 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6243 STATUS_SCAN_PENDING;
6244 goto done;
6245 }
6246
6247 if (!(priv->status & STATUS_SCAN_FORCED) &&
6248 priv->status & STATUS_SCAN_ABORTING) {
6249 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6250 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6251 STATUS_SCAN_PENDING;
6252 goto done;
6253 }
6254
6255 if (priv->status & STATUS_RF_KILL_MASK) {
6256 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6257 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6258 STATUS_SCAN_PENDING;
6259 goto done;
6260 }
6261
6262 memset(&scan, 0, sizeof(scan));
6263 scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6264
6265 if (type == IW_SCAN_TYPE_PASSIVE) {
6266 IPW_DEBUG_WX("use passive scanning\n");
6267 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6268 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6269 cpu_to_le16(ipw_passive_dwell_time(priv));
6270 ipw_add_scan_channels(priv, &scan, scan_type);
6271 goto send_request;
6272 }
6273
6274 /* Use active scan by default. */
6275 if (priv->config & CFG_SPEED_SCAN)
6276 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6277 cpu_to_le16(30);
6278 else
6279 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6280 cpu_to_le16(20);
6281
6282 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6283 cpu_to_le16(20);
6284
6285 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6286 cpu_to_le16(ipw_passive_dwell_time(priv));
6287 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6288
6289 #ifdef CONFIG_IPW2200_MONITOR
6290 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6291 u8 channel;
6292 u8 band = 0;
6293
6294 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6295 case LIBIPW_52GHZ_BAND:
6296 band = (u8) (IPW_A_MODE << 6) | 1;
6297 channel = priv->channel;
6298 break;
6299
6300 case LIBIPW_24GHZ_BAND:
6301 band = (u8) (IPW_B_MODE << 6) | 1;
6302 channel = priv->channel;
6303 break;
6304
6305 default:
6306 band = (u8) (IPW_B_MODE << 6) | 1;
6307 channel = 9;
6308 break;
6309 }
6310
6311 scan.channels_list[0] = band;
6312 scan.channels_list[1] = channel;
6313 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6314
6315 /* NOTE: The card will sit on this channel for this time
6316 * period. Scan aborts are timing sensitive and frequently
6317 * result in firmware restarts. As such, it is best to
6318 * set a small dwell_time here and just keep re-issuing
6319 * scans. Otherwise fast channel hopping will not actually
6320 * hop channels.
6321 *
6322 * TODO: Move SPEED SCAN support to all modes and bands */
6323 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6324 cpu_to_le16(2000);
6325 } else {
6326 #endif /* CONFIG_IPW2200_MONITOR */
6327 /* Honor direct scans first, otherwise if we are roaming make
6328 * this a direct scan for the current network. Finally,
6329 * ensure that every other scan is a fast channel hop scan */
6330 if (direct) {
6331 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6332 priv->direct_scan_ssid_len);
6333 if (err) {
6334 IPW_DEBUG_HC("Attempt to send SSID command "
6335 "failed\n");
6336 goto done;
6337 }
6338
6339 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6340 } else if ((priv->status & STATUS_ROAMING)
6341 || (!(priv->status & STATUS_ASSOCIATED)
6342 && (priv->config & CFG_STATIC_ESSID)
6343 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6344 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6345 if (err) {
6346 IPW_DEBUG_HC("Attempt to send SSID command "
6347 "failed.\n");
6348 goto done;
6349 }
6350
6351 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6352 } else
6353 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6354
6355 ipw_add_scan_channels(priv, &scan, scan_type);
6356 #ifdef CONFIG_IPW2200_MONITOR
6357 }
6358 #endif
6359
6360 send_request:
6361 err = ipw_send_scan_request_ext(priv, &scan);
6362 if (err) {
6363 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6364 goto done;
6365 }
6366
6367 priv->status |= STATUS_SCANNING;
6368 if (direct) {
6369 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6370 priv->direct_scan_ssid_len = 0;
6371 } else
6372 priv->status &= ~STATUS_SCAN_PENDING;
6373
6374 schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6375 done:
6376 mutex_unlock(&priv->mutex);
6377 return err;
6378 }
6379
ipw_request_passive_scan(struct work_struct * work)6380 static void ipw_request_passive_scan(struct work_struct *work)
6381 {
6382 struct ipw_priv *priv =
6383 container_of(work, struct ipw_priv, request_passive_scan.work);
6384 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6385 }
6386
ipw_request_scan(struct work_struct * work)6387 static void ipw_request_scan(struct work_struct *work)
6388 {
6389 struct ipw_priv *priv =
6390 container_of(work, struct ipw_priv, request_scan.work);
6391 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6392 }
6393
ipw_request_direct_scan(struct work_struct * work)6394 static void ipw_request_direct_scan(struct work_struct *work)
6395 {
6396 struct ipw_priv *priv =
6397 container_of(work, struct ipw_priv, request_direct_scan.work);
6398 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6399 }
6400
ipw_bg_abort_scan(struct work_struct * work)6401 static void ipw_bg_abort_scan(struct work_struct *work)
6402 {
6403 struct ipw_priv *priv =
6404 container_of(work, struct ipw_priv, abort_scan);
6405 mutex_lock(&priv->mutex);
6406 ipw_abort_scan(priv);
6407 mutex_unlock(&priv->mutex);
6408 }
6409
ipw_wpa_enable(struct ipw_priv * priv,int value)6410 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6411 {
6412 /* This is called when wpa_supplicant loads and closes the driver
6413 * interface. */
6414 priv->ieee->wpa_enabled = value;
6415 return 0;
6416 }
6417
ipw_wpa_set_auth_algs(struct ipw_priv * priv,int value)6418 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6419 {
6420 struct libipw_device *ieee = priv->ieee;
6421 struct libipw_security sec = {
6422 .flags = SEC_AUTH_MODE,
6423 };
6424 int ret = 0;
6425
6426 if (value & IW_AUTH_ALG_SHARED_KEY) {
6427 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6428 ieee->open_wep = 0;
6429 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6430 sec.auth_mode = WLAN_AUTH_OPEN;
6431 ieee->open_wep = 1;
6432 } else if (value & IW_AUTH_ALG_LEAP) {
6433 sec.auth_mode = WLAN_AUTH_LEAP;
6434 ieee->open_wep = 1;
6435 } else
6436 return -EINVAL;
6437
6438 if (ieee->set_security)
6439 ieee->set_security(ieee->dev, &sec);
6440 else
6441 ret = -EOPNOTSUPP;
6442
6443 return ret;
6444 }
6445
ipw_wpa_assoc_frame(struct ipw_priv * priv,char * wpa_ie,int wpa_ie_len)6446 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6447 int wpa_ie_len)
6448 {
6449 /* make sure WPA is enabled */
6450 ipw_wpa_enable(priv, 1);
6451 }
6452
ipw_set_rsn_capa(struct ipw_priv * priv,char * capabilities,int length)6453 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6454 char *capabilities, int length)
6455 {
6456 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6457
6458 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6459 capabilities);
6460 }
6461
6462 /*
6463 * WE-18 support
6464 */
6465
6466 /* SIOCSIWGENIE */
ipw_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6467 static int ipw_wx_set_genie(struct net_device *dev,
6468 struct iw_request_info *info,
6469 union iwreq_data *wrqu, char *extra)
6470 {
6471 struct ipw_priv *priv = libipw_priv(dev);
6472 struct libipw_device *ieee = priv->ieee;
6473 u8 *buf;
6474 int err = 0;
6475
6476 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6477 (wrqu->data.length && extra == NULL))
6478 return -EINVAL;
6479
6480 if (wrqu->data.length) {
6481 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6482 if (buf == NULL) {
6483 err = -ENOMEM;
6484 goto out;
6485 }
6486
6487 kfree(ieee->wpa_ie);
6488 ieee->wpa_ie = buf;
6489 ieee->wpa_ie_len = wrqu->data.length;
6490 } else {
6491 kfree(ieee->wpa_ie);
6492 ieee->wpa_ie = NULL;
6493 ieee->wpa_ie_len = 0;
6494 }
6495
6496 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6497 out:
6498 return err;
6499 }
6500
6501 /* SIOCGIWGENIE */
ipw_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6502 static int ipw_wx_get_genie(struct net_device *dev,
6503 struct iw_request_info *info,
6504 union iwreq_data *wrqu, char *extra)
6505 {
6506 struct ipw_priv *priv = libipw_priv(dev);
6507 struct libipw_device *ieee = priv->ieee;
6508 int err = 0;
6509
6510 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6511 wrqu->data.length = 0;
6512 goto out;
6513 }
6514
6515 if (wrqu->data.length < ieee->wpa_ie_len) {
6516 err = -E2BIG;
6517 goto out;
6518 }
6519
6520 wrqu->data.length = ieee->wpa_ie_len;
6521 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6522
6523 out:
6524 return err;
6525 }
6526
wext_cipher2level(int cipher)6527 static int wext_cipher2level(int cipher)
6528 {
6529 switch (cipher) {
6530 case IW_AUTH_CIPHER_NONE:
6531 return SEC_LEVEL_0;
6532 case IW_AUTH_CIPHER_WEP40:
6533 case IW_AUTH_CIPHER_WEP104:
6534 return SEC_LEVEL_1;
6535 case IW_AUTH_CIPHER_TKIP:
6536 return SEC_LEVEL_2;
6537 case IW_AUTH_CIPHER_CCMP:
6538 return SEC_LEVEL_3;
6539 default:
6540 return -1;
6541 }
6542 }
6543
6544 /* SIOCSIWAUTH */
ipw_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6545 static int ipw_wx_set_auth(struct net_device *dev,
6546 struct iw_request_info *info,
6547 union iwreq_data *wrqu, char *extra)
6548 {
6549 struct ipw_priv *priv = libipw_priv(dev);
6550 struct libipw_device *ieee = priv->ieee;
6551 struct iw_param *param = &wrqu->param;
6552 struct lib80211_crypt_data *crypt;
6553 unsigned long flags;
6554 int ret = 0;
6555
6556 switch (param->flags & IW_AUTH_INDEX) {
6557 case IW_AUTH_WPA_VERSION:
6558 break;
6559 case IW_AUTH_CIPHER_PAIRWISE:
6560 ipw_set_hw_decrypt_unicast(priv,
6561 wext_cipher2level(param->value));
6562 break;
6563 case IW_AUTH_CIPHER_GROUP:
6564 ipw_set_hw_decrypt_multicast(priv,
6565 wext_cipher2level(param->value));
6566 break;
6567 case IW_AUTH_KEY_MGMT:
6568 /*
6569 * ipw2200 does not use these parameters
6570 */
6571 break;
6572
6573 case IW_AUTH_TKIP_COUNTERMEASURES:
6574 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6575 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6576 break;
6577
6578 flags = crypt->ops->get_flags(crypt->priv);
6579
6580 if (param->value)
6581 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6582 else
6583 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6584
6585 crypt->ops->set_flags(flags, crypt->priv);
6586
6587 break;
6588
6589 case IW_AUTH_DROP_UNENCRYPTED:{
6590 /* HACK:
6591 *
6592 * wpa_supplicant calls set_wpa_enabled when the driver
6593 * is loaded and unloaded, regardless of if WPA is being
6594 * used. No other calls are made which can be used to
6595 * determine if encryption will be used or not prior to
6596 * association being expected. If encryption is not being
6597 * used, drop_unencrypted is set to false, else true -- we
6598 * can use this to determine if the CAP_PRIVACY_ON bit should
6599 * be set.
6600 */
6601 struct libipw_security sec = {
6602 .flags = SEC_ENABLED,
6603 .enabled = param->value,
6604 };
6605 priv->ieee->drop_unencrypted = param->value;
6606 /* We only change SEC_LEVEL for open mode. Others
6607 * are set by ipw_wpa_set_encryption.
6608 */
6609 if (!param->value) {
6610 sec.flags |= SEC_LEVEL;
6611 sec.level = SEC_LEVEL_0;
6612 } else {
6613 sec.flags |= SEC_LEVEL;
6614 sec.level = SEC_LEVEL_1;
6615 }
6616 if (priv->ieee->set_security)
6617 priv->ieee->set_security(priv->ieee->dev, &sec);
6618 break;
6619 }
6620
6621 case IW_AUTH_80211_AUTH_ALG:
6622 ret = ipw_wpa_set_auth_algs(priv, param->value);
6623 break;
6624
6625 case IW_AUTH_WPA_ENABLED:
6626 ret = ipw_wpa_enable(priv, param->value);
6627 ipw_disassociate(priv);
6628 break;
6629
6630 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6631 ieee->ieee802_1x = param->value;
6632 break;
6633
6634 case IW_AUTH_PRIVACY_INVOKED:
6635 ieee->privacy_invoked = param->value;
6636 break;
6637
6638 default:
6639 return -EOPNOTSUPP;
6640 }
6641 return ret;
6642 }
6643
6644 /* SIOCGIWAUTH */
ipw_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6645 static int ipw_wx_get_auth(struct net_device *dev,
6646 struct iw_request_info *info,
6647 union iwreq_data *wrqu, char *extra)
6648 {
6649 struct ipw_priv *priv = libipw_priv(dev);
6650 struct libipw_device *ieee = priv->ieee;
6651 struct lib80211_crypt_data *crypt;
6652 struct iw_param *param = &wrqu->param;
6653
6654 switch (param->flags & IW_AUTH_INDEX) {
6655 case IW_AUTH_WPA_VERSION:
6656 case IW_AUTH_CIPHER_PAIRWISE:
6657 case IW_AUTH_CIPHER_GROUP:
6658 case IW_AUTH_KEY_MGMT:
6659 /*
6660 * wpa_supplicant will control these internally
6661 */
6662 return -EOPNOTSUPP;
6663
6664 case IW_AUTH_TKIP_COUNTERMEASURES:
6665 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6666 if (!crypt || !crypt->ops->get_flags)
6667 break;
6668
6669 param->value = (crypt->ops->get_flags(crypt->priv) &
6670 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6671
6672 break;
6673
6674 case IW_AUTH_DROP_UNENCRYPTED:
6675 param->value = ieee->drop_unencrypted;
6676 break;
6677
6678 case IW_AUTH_80211_AUTH_ALG:
6679 param->value = ieee->sec.auth_mode;
6680 break;
6681
6682 case IW_AUTH_WPA_ENABLED:
6683 param->value = ieee->wpa_enabled;
6684 break;
6685
6686 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6687 param->value = ieee->ieee802_1x;
6688 break;
6689
6690 case IW_AUTH_ROAMING_CONTROL:
6691 case IW_AUTH_PRIVACY_INVOKED:
6692 param->value = ieee->privacy_invoked;
6693 break;
6694
6695 default:
6696 return -EOPNOTSUPP;
6697 }
6698 return 0;
6699 }
6700
6701 /* SIOCSIWENCODEEXT */
ipw_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6702 static int ipw_wx_set_encodeext(struct net_device *dev,
6703 struct iw_request_info *info,
6704 union iwreq_data *wrqu, char *extra)
6705 {
6706 struct ipw_priv *priv = libipw_priv(dev);
6707 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6708
6709 if (hwcrypto) {
6710 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6711 /* IPW HW can't build TKIP MIC,
6712 host decryption still needed */
6713 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6714 priv->ieee->host_mc_decrypt = 1;
6715 else {
6716 priv->ieee->host_encrypt = 0;
6717 priv->ieee->host_encrypt_msdu = 1;
6718 priv->ieee->host_decrypt = 1;
6719 }
6720 } else {
6721 priv->ieee->host_encrypt = 0;
6722 priv->ieee->host_encrypt_msdu = 0;
6723 priv->ieee->host_decrypt = 0;
6724 priv->ieee->host_mc_decrypt = 0;
6725 }
6726 }
6727
6728 return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6729 }
6730
6731 /* SIOCGIWENCODEEXT */
ipw_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6732 static int ipw_wx_get_encodeext(struct net_device *dev,
6733 struct iw_request_info *info,
6734 union iwreq_data *wrqu, char *extra)
6735 {
6736 struct ipw_priv *priv = libipw_priv(dev);
6737 return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6738 }
6739
6740 /* SIOCSIWMLME */
ipw_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6741 static int ipw_wx_set_mlme(struct net_device *dev,
6742 struct iw_request_info *info,
6743 union iwreq_data *wrqu, char *extra)
6744 {
6745 struct ipw_priv *priv = libipw_priv(dev);
6746 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6747
6748 switch (mlme->cmd) {
6749 case IW_MLME_DEAUTH:
6750 /* silently ignore */
6751 break;
6752
6753 case IW_MLME_DISASSOC:
6754 ipw_disassociate(priv);
6755 break;
6756
6757 default:
6758 return -EOPNOTSUPP;
6759 }
6760 return 0;
6761 }
6762
6763 #ifdef CONFIG_IPW2200_QOS
6764
6765 /* QoS */
6766 /*
6767 * get the modulation type of the current network or
6768 * the card current mode
6769 */
ipw_qos_current_mode(struct ipw_priv * priv)6770 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6771 {
6772 u8 mode = 0;
6773
6774 if (priv->status & STATUS_ASSOCIATED) {
6775 unsigned long flags;
6776
6777 spin_lock_irqsave(&priv->ieee->lock, flags);
6778 mode = priv->assoc_network->mode;
6779 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6780 } else {
6781 mode = priv->ieee->mode;
6782 }
6783 IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6784 return mode;
6785 }
6786
6787 /*
6788 * Handle management frame beacon and probe response
6789 */
ipw_qos_handle_probe_response(struct ipw_priv * priv,int active_network,struct libipw_network * network)6790 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6791 int active_network,
6792 struct libipw_network *network)
6793 {
6794 u32 size = sizeof(struct libipw_qos_parameters);
6795
6796 if (network->capability & WLAN_CAPABILITY_IBSS)
6797 network->qos_data.active = network->qos_data.supported;
6798
6799 if (network->flags & NETWORK_HAS_QOS_MASK) {
6800 if (active_network &&
6801 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6802 network->qos_data.active = network->qos_data.supported;
6803
6804 if ((network->qos_data.active == 1) && (active_network == 1) &&
6805 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6806 (network->qos_data.old_param_count !=
6807 network->qos_data.param_count)) {
6808 network->qos_data.old_param_count =
6809 network->qos_data.param_count;
6810 schedule_work(&priv->qos_activate);
6811 IPW_DEBUG_QOS("QoS parameters change call "
6812 "qos_activate\n");
6813 }
6814 } else {
6815 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6816 memcpy(&network->qos_data.parameters,
6817 &def_parameters_CCK, size);
6818 else
6819 memcpy(&network->qos_data.parameters,
6820 &def_parameters_OFDM, size);
6821
6822 if ((network->qos_data.active == 1) && (active_network == 1)) {
6823 IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6824 schedule_work(&priv->qos_activate);
6825 }
6826
6827 network->qos_data.active = 0;
6828 network->qos_data.supported = 0;
6829 }
6830 if ((priv->status & STATUS_ASSOCIATED) &&
6831 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6832 if (!ether_addr_equal(network->bssid, priv->bssid))
6833 if (network->capability & WLAN_CAPABILITY_IBSS)
6834 if ((network->ssid_len ==
6835 priv->assoc_network->ssid_len) &&
6836 !memcmp(network->ssid,
6837 priv->assoc_network->ssid,
6838 network->ssid_len)) {
6839 schedule_work(&priv->merge_networks);
6840 }
6841 }
6842
6843 return 0;
6844 }
6845
6846 /*
6847 * This function set up the firmware to support QoS. It sends
6848 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6849 */
ipw_qos_activate(struct ipw_priv * priv,struct libipw_qos_data * qos_network_data)6850 static int ipw_qos_activate(struct ipw_priv *priv,
6851 struct libipw_qos_data *qos_network_data)
6852 {
6853 int err;
6854 struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6855 struct libipw_qos_parameters *active_one = NULL;
6856 u32 size = sizeof(struct libipw_qos_parameters);
6857 u32 burst_duration;
6858 int i;
6859 u8 type;
6860
6861 type = ipw_qos_current_mode(priv);
6862
6863 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6864 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6865 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6866 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6867
6868 if (qos_network_data == NULL) {
6869 if (type == IEEE_B) {
6870 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6871 active_one = &def_parameters_CCK;
6872 } else
6873 active_one = &def_parameters_OFDM;
6874
6875 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6876 burst_duration = ipw_qos_get_burst_duration(priv);
6877 for (i = 0; i < QOS_QUEUE_NUM; i++)
6878 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6879 cpu_to_le16(burst_duration);
6880 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6881 if (type == IEEE_B) {
6882 IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6883 type);
6884 if (priv->qos_data.qos_enable == 0)
6885 active_one = &def_parameters_CCK;
6886 else
6887 active_one = priv->qos_data.def_qos_parm_CCK;
6888 } else {
6889 if (priv->qos_data.qos_enable == 0)
6890 active_one = &def_parameters_OFDM;
6891 else
6892 active_one = priv->qos_data.def_qos_parm_OFDM;
6893 }
6894 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6895 } else {
6896 unsigned long flags;
6897 int active;
6898
6899 spin_lock_irqsave(&priv->ieee->lock, flags);
6900 active_one = &(qos_network_data->parameters);
6901 qos_network_data->old_param_count =
6902 qos_network_data->param_count;
6903 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6904 active = qos_network_data->supported;
6905 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6906
6907 if (active == 0) {
6908 burst_duration = ipw_qos_get_burst_duration(priv);
6909 for (i = 0; i < QOS_QUEUE_NUM; i++)
6910 qos_parameters[QOS_PARAM_SET_ACTIVE].
6911 tx_op_limit[i] = cpu_to_le16(burst_duration);
6912 }
6913 }
6914
6915 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6916 err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6917 if (err)
6918 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6919
6920 return err;
6921 }
6922
6923 /*
6924 * send IPW_CMD_WME_INFO to the firmware
6925 */
ipw_qos_set_info_element(struct ipw_priv * priv)6926 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6927 {
6928 int ret = 0;
6929 struct libipw_qos_information_element qos_info;
6930
6931 if (priv == NULL)
6932 return -1;
6933
6934 qos_info.elementID = QOS_ELEMENT_ID;
6935 qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6936
6937 qos_info.version = QOS_VERSION_1;
6938 qos_info.ac_info = 0;
6939
6940 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6941 qos_info.qui_type = QOS_OUI_TYPE;
6942 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6943
6944 ret = ipw_send_qos_info_command(priv, &qos_info);
6945 if (ret != 0) {
6946 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6947 }
6948 return ret;
6949 }
6950
6951 /*
6952 * Set the QoS parameter with the association request structure
6953 */
ipw_qos_association(struct ipw_priv * priv,struct libipw_network * network)6954 static int ipw_qos_association(struct ipw_priv *priv,
6955 struct libipw_network *network)
6956 {
6957 int err = 0;
6958 struct libipw_qos_data *qos_data = NULL;
6959 struct libipw_qos_data ibss_data = {
6960 .supported = 1,
6961 .active = 1,
6962 };
6963
6964 switch (priv->ieee->iw_mode) {
6965 case IW_MODE_ADHOC:
6966 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6967
6968 qos_data = &ibss_data;
6969 break;
6970
6971 case IW_MODE_INFRA:
6972 qos_data = &network->qos_data;
6973 break;
6974
6975 default:
6976 BUG();
6977 break;
6978 }
6979
6980 err = ipw_qos_activate(priv, qos_data);
6981 if (err) {
6982 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6983 return err;
6984 }
6985
6986 if (priv->qos_data.qos_enable && qos_data->supported) {
6987 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6988 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6989 return ipw_qos_set_info_element(priv);
6990 }
6991
6992 return 0;
6993 }
6994
6995 /*
6996 * handling the beaconing responses. if we get different QoS setting
6997 * off the network from the associated setting, adjust the QoS
6998 * setting
6999 */
ipw_qos_association_resp(struct ipw_priv * priv,struct libipw_network * network)7000 static void ipw_qos_association_resp(struct ipw_priv *priv,
7001 struct libipw_network *network)
7002 {
7003 unsigned long flags;
7004 u32 size = sizeof(struct libipw_qos_parameters);
7005 int set_qos_param = 0;
7006
7007 if ((priv == NULL) || (network == NULL) ||
7008 (priv->assoc_network == NULL))
7009 return;
7010
7011 if (!(priv->status & STATUS_ASSOCIATED))
7012 return;
7013
7014 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7015 return;
7016
7017 spin_lock_irqsave(&priv->ieee->lock, flags);
7018 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7019 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7020 sizeof(struct libipw_qos_data));
7021 priv->assoc_network->qos_data.active = 1;
7022 if ((network->qos_data.old_param_count !=
7023 network->qos_data.param_count)) {
7024 set_qos_param = 1;
7025 network->qos_data.old_param_count =
7026 network->qos_data.param_count;
7027 }
7028
7029 } else {
7030 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7031 memcpy(&priv->assoc_network->qos_data.parameters,
7032 &def_parameters_CCK, size);
7033 else
7034 memcpy(&priv->assoc_network->qos_data.parameters,
7035 &def_parameters_OFDM, size);
7036 priv->assoc_network->qos_data.active = 0;
7037 priv->assoc_network->qos_data.supported = 0;
7038 set_qos_param = 1;
7039 }
7040
7041 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7042
7043 if (set_qos_param == 1)
7044 schedule_work(&priv->qos_activate);
7045 }
7046
ipw_qos_get_burst_duration(struct ipw_priv * priv)7047 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7048 {
7049 u32 ret = 0;
7050
7051 if (!priv)
7052 return 0;
7053
7054 if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7055 ret = priv->qos_data.burst_duration_CCK;
7056 else
7057 ret = priv->qos_data.burst_duration_OFDM;
7058
7059 return ret;
7060 }
7061
7062 /*
7063 * Initialize the setting of QoS global
7064 */
ipw_qos_init(struct ipw_priv * priv,int enable,int burst_enable,u32 burst_duration_CCK,u32 burst_duration_OFDM)7065 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7066 int burst_enable, u32 burst_duration_CCK,
7067 u32 burst_duration_OFDM)
7068 {
7069 priv->qos_data.qos_enable = enable;
7070
7071 if (priv->qos_data.qos_enable) {
7072 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7073 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7074 IPW_DEBUG_QOS("QoS is enabled\n");
7075 } else {
7076 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7077 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7078 IPW_DEBUG_QOS("QoS is not enabled\n");
7079 }
7080
7081 priv->qos_data.burst_enable = burst_enable;
7082
7083 if (burst_enable) {
7084 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7085 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7086 } else {
7087 priv->qos_data.burst_duration_CCK = 0;
7088 priv->qos_data.burst_duration_OFDM = 0;
7089 }
7090 }
7091
7092 /*
7093 * map the packet priority to the right TX Queue
7094 */
ipw_get_tx_queue_number(struct ipw_priv * priv,u16 priority)7095 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7096 {
7097 if (priority > 7 || !priv->qos_data.qos_enable)
7098 priority = 0;
7099
7100 return from_priority_to_tx_queue[priority] - 1;
7101 }
7102
ipw_is_qos_active(struct net_device * dev,struct sk_buff * skb)7103 static int ipw_is_qos_active(struct net_device *dev,
7104 struct sk_buff *skb)
7105 {
7106 struct ipw_priv *priv = libipw_priv(dev);
7107 struct libipw_qos_data *qos_data = NULL;
7108 int active, supported;
7109 u8 *daddr = skb->data + ETH_ALEN;
7110 int unicast = !is_multicast_ether_addr(daddr);
7111
7112 if (!(priv->status & STATUS_ASSOCIATED))
7113 return 0;
7114
7115 qos_data = &priv->assoc_network->qos_data;
7116
7117 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7118 if (unicast == 0)
7119 qos_data->active = 0;
7120 else
7121 qos_data->active = qos_data->supported;
7122 }
7123 active = qos_data->active;
7124 supported = qos_data->supported;
7125 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7126 "unicast %d\n",
7127 priv->qos_data.qos_enable, active, supported, unicast);
7128 if (active && priv->qos_data.qos_enable)
7129 return 1;
7130
7131 return 0;
7132
7133 }
7134 /*
7135 * add QoS parameter to the TX command
7136 */
ipw_qos_set_tx_queue_command(struct ipw_priv * priv,u16 priority,struct tfd_data * tfd)7137 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7138 u16 priority,
7139 struct tfd_data *tfd)
7140 {
7141 int tx_queue_id = 0;
7142
7143
7144 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7145 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7146
7147 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7148 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7149 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7150 }
7151 return 0;
7152 }
7153
7154 /*
7155 * background support to run QoS activate functionality
7156 */
ipw_bg_qos_activate(struct work_struct * work)7157 static void ipw_bg_qos_activate(struct work_struct *work)
7158 {
7159 struct ipw_priv *priv =
7160 container_of(work, struct ipw_priv, qos_activate);
7161
7162 mutex_lock(&priv->mutex);
7163
7164 if (priv->status & STATUS_ASSOCIATED)
7165 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7166
7167 mutex_unlock(&priv->mutex);
7168 }
7169
ipw_handle_probe_response(struct net_device * dev,struct libipw_probe_response * resp,struct libipw_network * network)7170 static int ipw_handle_probe_response(struct net_device *dev,
7171 struct libipw_probe_response *resp,
7172 struct libipw_network *network)
7173 {
7174 struct ipw_priv *priv = libipw_priv(dev);
7175 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7176 (network == priv->assoc_network));
7177
7178 ipw_qos_handle_probe_response(priv, active_network, network);
7179
7180 return 0;
7181 }
7182
ipw_handle_beacon(struct net_device * dev,struct libipw_beacon * resp,struct libipw_network * network)7183 static int ipw_handle_beacon(struct net_device *dev,
7184 struct libipw_beacon *resp,
7185 struct libipw_network *network)
7186 {
7187 struct ipw_priv *priv = libipw_priv(dev);
7188 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7189 (network == priv->assoc_network));
7190
7191 ipw_qos_handle_probe_response(priv, active_network, network);
7192
7193 return 0;
7194 }
7195
ipw_handle_assoc_response(struct net_device * dev,struct libipw_assoc_response * resp,struct libipw_network * network)7196 static int ipw_handle_assoc_response(struct net_device *dev,
7197 struct libipw_assoc_response *resp,
7198 struct libipw_network *network)
7199 {
7200 struct ipw_priv *priv = libipw_priv(dev);
7201 ipw_qos_association_resp(priv, network);
7202 return 0;
7203 }
7204
ipw_send_qos_params_command(struct ipw_priv * priv,struct libipw_qos_parameters * qos_param)7205 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7206 *qos_param)
7207 {
7208 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7209 sizeof(*qos_param) * 3, qos_param);
7210 }
7211
ipw_send_qos_info_command(struct ipw_priv * priv,struct libipw_qos_information_element * qos_param)7212 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7213 *qos_param)
7214 {
7215 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7216 qos_param);
7217 }
7218
7219 #endif /* CONFIG_IPW2200_QOS */
7220
ipw_associate_network(struct ipw_priv * priv,struct libipw_network * network,struct ipw_supported_rates * rates,int roaming)7221 static int ipw_associate_network(struct ipw_priv *priv,
7222 struct libipw_network *network,
7223 struct ipw_supported_rates *rates, int roaming)
7224 {
7225 int err;
7226
7227 if (priv->config & CFG_FIXED_RATE)
7228 ipw_set_fixed_rate(priv, network->mode);
7229
7230 if (!(priv->config & CFG_STATIC_ESSID)) {
7231 priv->essid_len = min(network->ssid_len,
7232 (u8) IW_ESSID_MAX_SIZE);
7233 memcpy(priv->essid, network->ssid, priv->essid_len);
7234 }
7235
7236 network->last_associate = jiffies;
7237
7238 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7239 priv->assoc_request.channel = network->channel;
7240 priv->assoc_request.auth_key = 0;
7241
7242 if ((priv->capability & CAP_PRIVACY_ON) &&
7243 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7244 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7245 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7246
7247 if (priv->ieee->sec.level == SEC_LEVEL_1)
7248 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7249
7250 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7251 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7252 priv->assoc_request.auth_type = AUTH_LEAP;
7253 else
7254 priv->assoc_request.auth_type = AUTH_OPEN;
7255
7256 if (priv->ieee->wpa_ie_len) {
7257 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7258 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7259 priv->ieee->wpa_ie_len);
7260 }
7261
7262 /*
7263 * It is valid for our ieee device to support multiple modes, but
7264 * when it comes to associating to a given network we have to choose
7265 * just one mode.
7266 */
7267 if (network->mode & priv->ieee->mode & IEEE_A)
7268 priv->assoc_request.ieee_mode = IPW_A_MODE;
7269 else if (network->mode & priv->ieee->mode & IEEE_G)
7270 priv->assoc_request.ieee_mode = IPW_G_MODE;
7271 else if (network->mode & priv->ieee->mode & IEEE_B)
7272 priv->assoc_request.ieee_mode = IPW_B_MODE;
7273
7274 priv->assoc_request.capability = cpu_to_le16(network->capability);
7275 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7276 && !(priv->config & CFG_PREAMBLE_LONG)) {
7277 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7278 } else {
7279 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7280
7281 /* Clear the short preamble if we won't be supporting it */
7282 priv->assoc_request.capability &=
7283 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7284 }
7285
7286 /* Clear capability bits that aren't used in Ad Hoc */
7287 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7288 priv->assoc_request.capability &=
7289 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7290
7291 IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7292 roaming ? "Rea" : "A",
7293 priv->essid_len, priv->essid,
7294 network->channel,
7295 ipw_modes[priv->assoc_request.ieee_mode],
7296 rates->num_rates,
7297 (priv->assoc_request.preamble_length ==
7298 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7299 network->capability &
7300 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7301 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7302 priv->capability & CAP_PRIVACY_ON ?
7303 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7304 "(open)") : "",
7305 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7306 priv->capability & CAP_PRIVACY_ON ?
7307 '1' + priv->ieee->sec.active_key : '.',
7308 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7309
7310 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7311 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7312 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7313 priv->assoc_request.assoc_type = HC_IBSS_START;
7314 priv->assoc_request.assoc_tsf_msw = 0;
7315 priv->assoc_request.assoc_tsf_lsw = 0;
7316 } else {
7317 if (unlikely(roaming))
7318 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7319 else
7320 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7321 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7322 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7323 }
7324
7325 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7326
7327 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7328 eth_broadcast_addr(priv->assoc_request.dest);
7329 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7330 } else {
7331 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7332 priv->assoc_request.atim_window = 0;
7333 }
7334
7335 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7336
7337 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7338 if (err) {
7339 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7340 return err;
7341 }
7342
7343 rates->ieee_mode = priv->assoc_request.ieee_mode;
7344 rates->purpose = IPW_RATE_CONNECT;
7345 ipw_send_supported_rates(priv, rates);
7346
7347 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7348 priv->sys_config.dot11g_auto_detection = 1;
7349 else
7350 priv->sys_config.dot11g_auto_detection = 0;
7351
7352 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7353 priv->sys_config.answer_broadcast_ssid_probe = 1;
7354 else
7355 priv->sys_config.answer_broadcast_ssid_probe = 0;
7356
7357 err = ipw_send_system_config(priv);
7358 if (err) {
7359 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7360 return err;
7361 }
7362
7363 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7364 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7365 if (err) {
7366 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7367 return err;
7368 }
7369
7370 /*
7371 * If preemption is enabled, it is possible for the association
7372 * to complete before we return from ipw_send_associate. Therefore
7373 * we have to be sure and update our priviate data first.
7374 */
7375 priv->channel = network->channel;
7376 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7377 priv->status |= STATUS_ASSOCIATING;
7378 priv->status &= ~STATUS_SECURITY_UPDATED;
7379
7380 priv->assoc_network = network;
7381
7382 #ifdef CONFIG_IPW2200_QOS
7383 ipw_qos_association(priv, network);
7384 #endif
7385
7386 err = ipw_send_associate(priv, &priv->assoc_request);
7387 if (err) {
7388 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7389 return err;
7390 }
7391
7392 IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7393 priv->essid_len, priv->essid, priv->bssid);
7394
7395 return 0;
7396 }
7397
ipw_roam(void * data)7398 static void ipw_roam(void *data)
7399 {
7400 struct ipw_priv *priv = data;
7401 struct libipw_network *network = NULL;
7402 struct ipw_network_match match = {
7403 .network = priv->assoc_network
7404 };
7405
7406 /* The roaming process is as follows:
7407 *
7408 * 1. Missed beacon threshold triggers the roaming process by
7409 * setting the status ROAM bit and requesting a scan.
7410 * 2. When the scan completes, it schedules the ROAM work
7411 * 3. The ROAM work looks at all of the known networks for one that
7412 * is a better network than the currently associated. If none
7413 * found, the ROAM process is over (ROAM bit cleared)
7414 * 4. If a better network is found, a disassociation request is
7415 * sent.
7416 * 5. When the disassociation completes, the roam work is again
7417 * scheduled. The second time through, the driver is no longer
7418 * associated, and the newly selected network is sent an
7419 * association request.
7420 * 6. At this point ,the roaming process is complete and the ROAM
7421 * status bit is cleared.
7422 */
7423
7424 /* If we are no longer associated, and the roaming bit is no longer
7425 * set, then we are not actively roaming, so just return */
7426 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7427 return;
7428
7429 if (priv->status & STATUS_ASSOCIATED) {
7430 /* First pass through ROAM process -- look for a better
7431 * network */
7432 unsigned long flags;
7433 u8 rssi = priv->assoc_network->stats.rssi;
7434 priv->assoc_network->stats.rssi = -128;
7435 spin_lock_irqsave(&priv->ieee->lock, flags);
7436 list_for_each_entry(network, &priv->ieee->network_list, list) {
7437 if (network != priv->assoc_network)
7438 ipw_best_network(priv, &match, network, 1);
7439 }
7440 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7441 priv->assoc_network->stats.rssi = rssi;
7442
7443 if (match.network == priv->assoc_network) {
7444 IPW_DEBUG_ASSOC("No better APs in this network to "
7445 "roam to.\n");
7446 priv->status &= ~STATUS_ROAMING;
7447 ipw_debug_config(priv);
7448 return;
7449 }
7450
7451 ipw_send_disassociate(priv, 1);
7452 priv->assoc_network = match.network;
7453
7454 return;
7455 }
7456
7457 /* Second pass through ROAM process -- request association */
7458 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7459 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7460 priv->status &= ~STATUS_ROAMING;
7461 }
7462
ipw_bg_roam(struct work_struct * work)7463 static void ipw_bg_roam(struct work_struct *work)
7464 {
7465 struct ipw_priv *priv =
7466 container_of(work, struct ipw_priv, roam);
7467 mutex_lock(&priv->mutex);
7468 ipw_roam(priv);
7469 mutex_unlock(&priv->mutex);
7470 }
7471
ipw_associate(void * data)7472 static int ipw_associate(void *data)
7473 {
7474 struct ipw_priv *priv = data;
7475
7476 struct libipw_network *network = NULL;
7477 struct ipw_network_match match = {
7478 .network = NULL
7479 };
7480 struct ipw_supported_rates *rates;
7481 struct list_head *element;
7482 unsigned long flags;
7483
7484 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7485 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7486 return 0;
7487 }
7488
7489 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7490 IPW_DEBUG_ASSOC("Not attempting association (already in "
7491 "progress)\n");
7492 return 0;
7493 }
7494
7495 if (priv->status & STATUS_DISASSOCIATING) {
7496 IPW_DEBUG_ASSOC("Not attempting association (in disassociating)\n");
7497 schedule_work(&priv->associate);
7498 return 0;
7499 }
7500
7501 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7502 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7503 "initialized)\n");
7504 return 0;
7505 }
7506
7507 if (!(priv->config & CFG_ASSOCIATE) &&
7508 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7509 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7510 return 0;
7511 }
7512
7513 /* Protect our use of the network_list */
7514 spin_lock_irqsave(&priv->ieee->lock, flags);
7515 list_for_each_entry(network, &priv->ieee->network_list, list)
7516 ipw_best_network(priv, &match, network, 0);
7517
7518 network = match.network;
7519 rates = &match.rates;
7520
7521 if (network == NULL &&
7522 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7523 priv->config & CFG_ADHOC_CREATE &&
7524 priv->config & CFG_STATIC_ESSID &&
7525 priv->config & CFG_STATIC_CHANNEL) {
7526 /* Use oldest network if the free list is empty */
7527 if (list_empty(&priv->ieee->network_free_list)) {
7528 struct libipw_network *oldest = NULL;
7529 struct libipw_network *target;
7530
7531 list_for_each_entry(target, &priv->ieee->network_list, list) {
7532 if ((oldest == NULL) ||
7533 (target->last_scanned < oldest->last_scanned))
7534 oldest = target;
7535 }
7536
7537 /* If there are no more slots, expire the oldest */
7538 list_del(&oldest->list);
7539 target = oldest;
7540 IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7541 target->ssid_len, target->ssid,
7542 target->bssid);
7543 list_add_tail(&target->list,
7544 &priv->ieee->network_free_list);
7545 }
7546
7547 element = priv->ieee->network_free_list.next;
7548 network = list_entry(element, struct libipw_network, list);
7549 ipw_adhoc_create(priv, network);
7550 rates = &priv->rates;
7551 list_del(element);
7552 list_add_tail(&network->list, &priv->ieee->network_list);
7553 }
7554 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7555
7556 /* If we reached the end of the list, then we don't have any valid
7557 * matching APs */
7558 if (!network) {
7559 ipw_debug_config(priv);
7560
7561 if (!(priv->status & STATUS_SCANNING)) {
7562 if (!(priv->config & CFG_SPEED_SCAN))
7563 schedule_delayed_work(&priv->request_scan,
7564 SCAN_INTERVAL);
7565 else
7566 schedule_delayed_work(&priv->request_scan, 0);
7567 }
7568
7569 return 0;
7570 }
7571
7572 ipw_associate_network(priv, network, rates, 0);
7573
7574 return 1;
7575 }
7576
ipw_bg_associate(struct work_struct * work)7577 static void ipw_bg_associate(struct work_struct *work)
7578 {
7579 struct ipw_priv *priv =
7580 container_of(work, struct ipw_priv, associate);
7581 mutex_lock(&priv->mutex);
7582 ipw_associate(priv);
7583 mutex_unlock(&priv->mutex);
7584 }
7585
ipw_rebuild_decrypted_skb(struct ipw_priv * priv,struct sk_buff * skb)7586 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7587 struct sk_buff *skb)
7588 {
7589 struct ieee80211_hdr *hdr;
7590 u16 fc;
7591
7592 hdr = (struct ieee80211_hdr *)skb->data;
7593 fc = le16_to_cpu(hdr->frame_control);
7594 if (!(fc & IEEE80211_FCTL_PROTECTED))
7595 return;
7596
7597 fc &= ~IEEE80211_FCTL_PROTECTED;
7598 hdr->frame_control = cpu_to_le16(fc);
7599 switch (priv->ieee->sec.level) {
7600 case SEC_LEVEL_3:
7601 /* Remove CCMP HDR */
7602 memmove(skb->data + LIBIPW_3ADDR_LEN,
7603 skb->data + LIBIPW_3ADDR_LEN + 8,
7604 skb->len - LIBIPW_3ADDR_LEN - 8);
7605 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7606 break;
7607 case SEC_LEVEL_2:
7608 break;
7609 case SEC_LEVEL_1:
7610 /* Remove IV */
7611 memmove(skb->data + LIBIPW_3ADDR_LEN,
7612 skb->data + LIBIPW_3ADDR_LEN + 4,
7613 skb->len - LIBIPW_3ADDR_LEN - 4);
7614 skb_trim(skb, skb->len - 8); /* IV + ICV */
7615 break;
7616 case SEC_LEVEL_0:
7617 break;
7618 default:
7619 printk(KERN_ERR "Unknown security level %d\n",
7620 priv->ieee->sec.level);
7621 break;
7622 }
7623 }
7624
ipw_handle_data_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7625 static void ipw_handle_data_packet(struct ipw_priv *priv,
7626 struct ipw_rx_mem_buffer *rxb,
7627 struct libipw_rx_stats *stats)
7628 {
7629 struct net_device *dev = priv->net_dev;
7630 struct libipw_hdr_4addr *hdr;
7631 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7632
7633 /* We received data from the HW, so stop the watchdog */
7634 netif_trans_update(dev);
7635
7636 /* We only process data packets if the
7637 * interface is open */
7638 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7639 skb_tailroom(rxb->skb))) {
7640 dev->stats.rx_errors++;
7641 priv->wstats.discard.misc++;
7642 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7643 return;
7644 } else if (unlikely(!netif_running(priv->net_dev))) {
7645 dev->stats.rx_dropped++;
7646 priv->wstats.discard.misc++;
7647 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7648 return;
7649 }
7650
7651 /* Advance skb->data to the start of the actual payload */
7652 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7653
7654 /* Set the size of the skb to the size of the frame */
7655 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7656
7657 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7658
7659 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7660 hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7661 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7662 (is_multicast_ether_addr(hdr->addr1) ?
7663 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7664 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7665
7666 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7667 dev->stats.rx_errors++;
7668 else { /* libipw_rx succeeded, so it now owns the SKB */
7669 rxb->skb = NULL;
7670 __ipw_led_activity_on(priv);
7671 }
7672 }
7673
7674 #ifdef CONFIG_IPW2200_RADIOTAP
ipw_handle_data_packet_monitor(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7675 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7676 struct ipw_rx_mem_buffer *rxb,
7677 struct libipw_rx_stats *stats)
7678 {
7679 struct net_device *dev = priv->net_dev;
7680 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7681 struct ipw_rx_frame *frame = &pkt->u.frame;
7682
7683 /* initial pull of some data */
7684 u16 received_channel = frame->received_channel;
7685 u8 antennaAndPhy = frame->antennaAndPhy;
7686 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7687 u16 pktrate = frame->rate;
7688
7689 /* Magic struct that slots into the radiotap header -- no reason
7690 * to build this manually element by element, we can write it much
7691 * more efficiently than we can parse it. ORDER MATTERS HERE */
7692 struct ipw_rt_hdr *ipw_rt;
7693
7694 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7695
7696 /* We received data from the HW, so stop the watchdog */
7697 netif_trans_update(dev);
7698
7699 /* We only process data packets if the
7700 * interface is open */
7701 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7702 skb_tailroom(rxb->skb))) {
7703 dev->stats.rx_errors++;
7704 priv->wstats.discard.misc++;
7705 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7706 return;
7707 } else if (unlikely(!netif_running(priv->net_dev))) {
7708 dev->stats.rx_dropped++;
7709 priv->wstats.discard.misc++;
7710 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7711 return;
7712 }
7713
7714 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7715 * that now */
7716 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7717 /* FIXME: Should alloc bigger skb instead */
7718 dev->stats.rx_dropped++;
7719 priv->wstats.discard.misc++;
7720 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7721 return;
7722 }
7723
7724 /* copy the frame itself */
7725 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7726 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7727
7728 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7729
7730 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7731 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7732 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7733
7734 /* Big bitfield of all the fields we provide in radiotap */
7735 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7736 (1 << IEEE80211_RADIOTAP_TSFT) |
7737 (1 << IEEE80211_RADIOTAP_FLAGS) |
7738 (1 << IEEE80211_RADIOTAP_RATE) |
7739 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7740 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7741 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7742 (1 << IEEE80211_RADIOTAP_ANTENNA));
7743
7744 /* Zero the flags, we'll add to them as we go */
7745 ipw_rt->rt_flags = 0;
7746 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7747 frame->parent_tsf[2] << 16 |
7748 frame->parent_tsf[1] << 8 |
7749 frame->parent_tsf[0]);
7750
7751 /* Convert signal to DBM */
7752 ipw_rt->rt_dbmsignal = antsignal;
7753 ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7754
7755 /* Convert the channel data and set the flags */
7756 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7757 if (received_channel > 14) { /* 802.11a */
7758 ipw_rt->rt_chbitmask =
7759 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7760 } else if (antennaAndPhy & 32) { /* 802.11b */
7761 ipw_rt->rt_chbitmask =
7762 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7763 } else { /* 802.11g */
7764 ipw_rt->rt_chbitmask =
7765 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7766 }
7767
7768 /* set the rate in multiples of 500k/s */
7769 switch (pktrate) {
7770 case IPW_TX_RATE_1MB:
7771 ipw_rt->rt_rate = 2;
7772 break;
7773 case IPW_TX_RATE_2MB:
7774 ipw_rt->rt_rate = 4;
7775 break;
7776 case IPW_TX_RATE_5MB:
7777 ipw_rt->rt_rate = 10;
7778 break;
7779 case IPW_TX_RATE_6MB:
7780 ipw_rt->rt_rate = 12;
7781 break;
7782 case IPW_TX_RATE_9MB:
7783 ipw_rt->rt_rate = 18;
7784 break;
7785 case IPW_TX_RATE_11MB:
7786 ipw_rt->rt_rate = 22;
7787 break;
7788 case IPW_TX_RATE_12MB:
7789 ipw_rt->rt_rate = 24;
7790 break;
7791 case IPW_TX_RATE_18MB:
7792 ipw_rt->rt_rate = 36;
7793 break;
7794 case IPW_TX_RATE_24MB:
7795 ipw_rt->rt_rate = 48;
7796 break;
7797 case IPW_TX_RATE_36MB:
7798 ipw_rt->rt_rate = 72;
7799 break;
7800 case IPW_TX_RATE_48MB:
7801 ipw_rt->rt_rate = 96;
7802 break;
7803 case IPW_TX_RATE_54MB:
7804 ipw_rt->rt_rate = 108;
7805 break;
7806 default:
7807 ipw_rt->rt_rate = 0;
7808 break;
7809 }
7810
7811 /* antenna number */
7812 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7813
7814 /* set the preamble flag if we have it */
7815 if ((antennaAndPhy & 64))
7816 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7817
7818 /* Set the size of the skb to the size of the frame */
7819 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7820
7821 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7822
7823 if (!libipw_rx(priv->ieee, rxb->skb, stats))
7824 dev->stats.rx_errors++;
7825 else { /* libipw_rx succeeded, so it now owns the SKB */
7826 rxb->skb = NULL;
7827 /* no LED during capture */
7828 }
7829 }
7830 #endif
7831
7832 #ifdef CONFIG_IPW2200_PROMISCUOUS
7833 #define libipw_is_probe_response(fc) \
7834 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7835 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7836
7837 #define libipw_is_management(fc) \
7838 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7839
7840 #define libipw_is_control(fc) \
7841 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7842
7843 #define libipw_is_data(fc) \
7844 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7845
7846 #define libipw_is_assoc_request(fc) \
7847 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7848
7849 #define libipw_is_reassoc_request(fc) \
7850 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7851
ipw_handle_promiscuous_rx(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7852 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7853 struct ipw_rx_mem_buffer *rxb,
7854 struct libipw_rx_stats *stats)
7855 {
7856 struct net_device *dev = priv->prom_net_dev;
7857 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7858 struct ipw_rx_frame *frame = &pkt->u.frame;
7859 struct ipw_rt_hdr *ipw_rt;
7860
7861 /* First cache any information we need before we overwrite
7862 * the information provided in the skb from the hardware */
7863 struct ieee80211_hdr *hdr;
7864 u16 channel = frame->received_channel;
7865 u8 phy_flags = frame->antennaAndPhy;
7866 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7867 s8 noise = (s8) le16_to_cpu(frame->noise);
7868 u8 rate = frame->rate;
7869 unsigned short len = le16_to_cpu(pkt->u.frame.length);
7870 struct sk_buff *skb;
7871 int hdr_only = 0;
7872 u16 filter = priv->prom_priv->filter;
7873
7874 /* If the filter is set to not include Rx frames then return */
7875 if (filter & IPW_PROM_NO_RX)
7876 return;
7877
7878 /* We received data from the HW, so stop the watchdog */
7879 netif_trans_update(dev);
7880
7881 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7882 dev->stats.rx_errors++;
7883 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7884 return;
7885 }
7886
7887 /* We only process data packets if the interface is open */
7888 if (unlikely(!netif_running(dev))) {
7889 dev->stats.rx_dropped++;
7890 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7891 return;
7892 }
7893
7894 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7895 * that now */
7896 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7897 /* FIXME: Should alloc bigger skb instead */
7898 dev->stats.rx_dropped++;
7899 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7900 return;
7901 }
7902
7903 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7904 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7905 if (filter & IPW_PROM_NO_MGMT)
7906 return;
7907 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7908 hdr_only = 1;
7909 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7910 if (filter & IPW_PROM_NO_CTL)
7911 return;
7912 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7913 hdr_only = 1;
7914 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7915 if (filter & IPW_PROM_NO_DATA)
7916 return;
7917 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7918 hdr_only = 1;
7919 }
7920
7921 /* Copy the SKB since this is for the promiscuous side */
7922 skb = skb_copy(rxb->skb, GFP_ATOMIC);
7923 if (skb == NULL) {
7924 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7925 return;
7926 }
7927
7928 /* copy the frame data to write after where the radiotap header goes */
7929 ipw_rt = (void *)skb->data;
7930
7931 if (hdr_only)
7932 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7933
7934 memcpy(ipw_rt->payload, hdr, len);
7935
7936 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7937 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7938 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
7939
7940 /* Set the size of the skb to the size of the frame */
7941 skb_put(skb, sizeof(*ipw_rt) + len);
7942
7943 /* Big bitfield of all the fields we provide in radiotap */
7944 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7945 (1 << IEEE80211_RADIOTAP_TSFT) |
7946 (1 << IEEE80211_RADIOTAP_FLAGS) |
7947 (1 << IEEE80211_RADIOTAP_RATE) |
7948 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7949 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7950 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7951 (1 << IEEE80211_RADIOTAP_ANTENNA));
7952
7953 /* Zero the flags, we'll add to them as we go */
7954 ipw_rt->rt_flags = 0;
7955 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7956 frame->parent_tsf[2] << 16 |
7957 frame->parent_tsf[1] << 8 |
7958 frame->parent_tsf[0]);
7959
7960 /* Convert to DBM */
7961 ipw_rt->rt_dbmsignal = signal;
7962 ipw_rt->rt_dbmnoise = noise;
7963
7964 /* Convert the channel data and set the flags */
7965 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7966 if (channel > 14) { /* 802.11a */
7967 ipw_rt->rt_chbitmask =
7968 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7969 } else if (phy_flags & (1 << 5)) { /* 802.11b */
7970 ipw_rt->rt_chbitmask =
7971 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7972 } else { /* 802.11g */
7973 ipw_rt->rt_chbitmask =
7974 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7975 }
7976
7977 /* set the rate in multiples of 500k/s */
7978 switch (rate) {
7979 case IPW_TX_RATE_1MB:
7980 ipw_rt->rt_rate = 2;
7981 break;
7982 case IPW_TX_RATE_2MB:
7983 ipw_rt->rt_rate = 4;
7984 break;
7985 case IPW_TX_RATE_5MB:
7986 ipw_rt->rt_rate = 10;
7987 break;
7988 case IPW_TX_RATE_6MB:
7989 ipw_rt->rt_rate = 12;
7990 break;
7991 case IPW_TX_RATE_9MB:
7992 ipw_rt->rt_rate = 18;
7993 break;
7994 case IPW_TX_RATE_11MB:
7995 ipw_rt->rt_rate = 22;
7996 break;
7997 case IPW_TX_RATE_12MB:
7998 ipw_rt->rt_rate = 24;
7999 break;
8000 case IPW_TX_RATE_18MB:
8001 ipw_rt->rt_rate = 36;
8002 break;
8003 case IPW_TX_RATE_24MB:
8004 ipw_rt->rt_rate = 48;
8005 break;
8006 case IPW_TX_RATE_36MB:
8007 ipw_rt->rt_rate = 72;
8008 break;
8009 case IPW_TX_RATE_48MB:
8010 ipw_rt->rt_rate = 96;
8011 break;
8012 case IPW_TX_RATE_54MB:
8013 ipw_rt->rt_rate = 108;
8014 break;
8015 default:
8016 ipw_rt->rt_rate = 0;
8017 break;
8018 }
8019
8020 /* antenna number */
8021 ipw_rt->rt_antenna = (phy_flags & 3);
8022
8023 /* set the preamble flag if we have it */
8024 if (phy_flags & (1 << 6))
8025 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8026
8027 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8028
8029 if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8030 dev->stats.rx_errors++;
8031 dev_kfree_skb_any(skb);
8032 }
8033 }
8034 #endif
8035
is_network_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8036 static int is_network_packet(struct ipw_priv *priv,
8037 struct libipw_hdr_4addr *header)
8038 {
8039 /* Filter incoming packets to determine if they are targeted toward
8040 * this network, discarding packets coming from ourselves */
8041 switch (priv->ieee->iw_mode) {
8042 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8043 /* packets from our adapter are dropped (echo) */
8044 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8045 return 0;
8046
8047 /* {broad,multi}cast packets to our BSSID go through */
8048 if (is_multicast_ether_addr(header->addr1))
8049 return ether_addr_equal(header->addr3, priv->bssid);
8050
8051 /* packets to our adapter go through */
8052 return ether_addr_equal(header->addr1,
8053 priv->net_dev->dev_addr);
8054
8055 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8056 /* packets from our adapter are dropped (echo) */
8057 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8058 return 0;
8059
8060 /* {broad,multi}cast packets to our BSS go through */
8061 if (is_multicast_ether_addr(header->addr1))
8062 return ether_addr_equal(header->addr2, priv->bssid);
8063
8064 /* packets to our adapter go through */
8065 return ether_addr_equal(header->addr1,
8066 priv->net_dev->dev_addr);
8067 }
8068
8069 return 1;
8070 }
8071
8072 #define IPW_PACKET_RETRY_TIME HZ
8073
is_duplicate_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8074 static int is_duplicate_packet(struct ipw_priv *priv,
8075 struct libipw_hdr_4addr *header)
8076 {
8077 u16 sc = le16_to_cpu(header->seq_ctl);
8078 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8079 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8080 u16 *last_seq, *last_frag;
8081 unsigned long *last_time;
8082
8083 switch (priv->ieee->iw_mode) {
8084 case IW_MODE_ADHOC:
8085 {
8086 struct list_head *p;
8087 struct ipw_ibss_seq *entry = NULL;
8088 u8 *mac = header->addr2;
8089 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8090
8091 list_for_each(p, &priv->ibss_mac_hash[index]) {
8092 entry =
8093 list_entry(p, struct ipw_ibss_seq, list);
8094 if (ether_addr_equal(entry->mac, mac))
8095 break;
8096 }
8097 if (p == &priv->ibss_mac_hash[index]) {
8098 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8099 if (!entry) {
8100 IPW_ERROR
8101 ("Cannot malloc new mac entry\n");
8102 return 0;
8103 }
8104 memcpy(entry->mac, mac, ETH_ALEN);
8105 entry->seq_num = seq;
8106 entry->frag_num = frag;
8107 entry->packet_time = jiffies;
8108 list_add(&entry->list,
8109 &priv->ibss_mac_hash[index]);
8110 return 0;
8111 }
8112 last_seq = &entry->seq_num;
8113 last_frag = &entry->frag_num;
8114 last_time = &entry->packet_time;
8115 break;
8116 }
8117 case IW_MODE_INFRA:
8118 last_seq = &priv->last_seq_num;
8119 last_frag = &priv->last_frag_num;
8120 last_time = &priv->last_packet_time;
8121 break;
8122 default:
8123 return 0;
8124 }
8125 if ((*last_seq == seq) &&
8126 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8127 if (*last_frag == frag)
8128 goto drop;
8129 if (*last_frag + 1 != frag)
8130 /* out-of-order fragment */
8131 goto drop;
8132 } else
8133 *last_seq = seq;
8134
8135 *last_frag = frag;
8136 *last_time = jiffies;
8137 return 0;
8138
8139 drop:
8140 /* Comment this line now since we observed the card receives
8141 * duplicate packets but the FCTL_RETRY bit is not set in the
8142 * IBSS mode with fragmentation enabled.
8143 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8144 return 1;
8145 }
8146
ipw_handle_mgmt_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)8147 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8148 struct ipw_rx_mem_buffer *rxb,
8149 struct libipw_rx_stats *stats)
8150 {
8151 struct sk_buff *skb = rxb->skb;
8152 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8153 struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8154 (skb->data + IPW_RX_FRAME_SIZE);
8155
8156 libipw_rx_mgt(priv->ieee, header, stats);
8157
8158 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8159 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8160 IEEE80211_STYPE_PROBE_RESP) ||
8161 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8162 IEEE80211_STYPE_BEACON))) {
8163 if (ether_addr_equal(header->addr3, priv->bssid))
8164 ipw_add_station(priv, header->addr2);
8165 }
8166
8167 if (priv->config & CFG_NET_STATS) {
8168 IPW_DEBUG_HC("sending stat packet\n");
8169
8170 /* Set the size of the skb to the size of the full
8171 * ipw header and 802.11 frame */
8172 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8173 IPW_RX_FRAME_SIZE);
8174
8175 /* Advance past the ipw packet header to the 802.11 frame */
8176 skb_pull(skb, IPW_RX_FRAME_SIZE);
8177
8178 /* Push the libipw_rx_stats before the 802.11 frame */
8179 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8180
8181 skb->dev = priv->ieee->dev;
8182
8183 /* Point raw at the libipw_stats */
8184 skb_reset_mac_header(skb);
8185
8186 skb->pkt_type = PACKET_OTHERHOST;
8187 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8188 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8189 netif_rx(skb);
8190 rxb->skb = NULL;
8191 }
8192 }
8193
8194 /*
8195 * Main entry function for receiving a packet with 80211 headers. This
8196 * should be called when ever the FW has notified us that there is a new
8197 * skb in the receive queue.
8198 */
ipw_rx(struct ipw_priv * priv)8199 static void ipw_rx(struct ipw_priv *priv)
8200 {
8201 struct ipw_rx_mem_buffer *rxb;
8202 struct ipw_rx_packet *pkt;
8203 struct libipw_hdr_4addr *header;
8204 u32 r, i;
8205 u8 network_packet;
8206 u8 fill_rx = 0;
8207
8208 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8209 ipw_read32(priv, IPW_RX_WRITE_INDEX);
8210 i = priv->rxq->read;
8211
8212 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8213 fill_rx = 1;
8214
8215 while (i != r) {
8216 rxb = priv->rxq->queue[i];
8217 if (unlikely(rxb == NULL)) {
8218 printk(KERN_CRIT "Queue not allocated!\n");
8219 break;
8220 }
8221 priv->rxq->queue[i] = NULL;
8222
8223 dma_sync_single_for_cpu(&priv->pci_dev->dev, rxb->dma_addr,
8224 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8225
8226 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8227 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8228 pkt->header.message_type,
8229 pkt->header.rx_seq_num, pkt->header.control_bits);
8230
8231 switch (pkt->header.message_type) {
8232 case RX_FRAME_TYPE: /* 802.11 frame */ {
8233 struct libipw_rx_stats stats = {
8234 .rssi = pkt->u.frame.rssi_dbm -
8235 IPW_RSSI_TO_DBM,
8236 .signal =
8237 pkt->u.frame.rssi_dbm -
8238 IPW_RSSI_TO_DBM + 0x100,
8239 .noise =
8240 le16_to_cpu(pkt->u.frame.noise),
8241 .rate = pkt->u.frame.rate,
8242 .mac_time = jiffies,
8243 .received_channel =
8244 pkt->u.frame.received_channel,
8245 .freq =
8246 (pkt->u.frame.
8247 control & (1 << 0)) ?
8248 LIBIPW_24GHZ_BAND :
8249 LIBIPW_52GHZ_BAND,
8250 .len = le16_to_cpu(pkt->u.frame.length),
8251 };
8252
8253 if (stats.rssi != 0)
8254 stats.mask |= LIBIPW_STATMASK_RSSI;
8255 if (stats.signal != 0)
8256 stats.mask |= LIBIPW_STATMASK_SIGNAL;
8257 if (stats.noise != 0)
8258 stats.mask |= LIBIPW_STATMASK_NOISE;
8259 if (stats.rate != 0)
8260 stats.mask |= LIBIPW_STATMASK_RATE;
8261
8262 priv->rx_packets++;
8263
8264 #ifdef CONFIG_IPW2200_PROMISCUOUS
8265 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8266 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8267 #endif
8268
8269 #ifdef CONFIG_IPW2200_MONITOR
8270 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8271 #ifdef CONFIG_IPW2200_RADIOTAP
8272
8273 ipw_handle_data_packet_monitor(priv,
8274 rxb,
8275 &stats);
8276 #else
8277 ipw_handle_data_packet(priv, rxb,
8278 &stats);
8279 #endif
8280 break;
8281 }
8282 #endif
8283
8284 header =
8285 (struct libipw_hdr_4addr *)(rxb->skb->
8286 data +
8287 IPW_RX_FRAME_SIZE);
8288 /* TODO: Check Ad-Hoc dest/source and make sure
8289 * that we are actually parsing these packets
8290 * correctly -- we should probably use the
8291 * frame control of the packet and disregard
8292 * the current iw_mode */
8293
8294 network_packet =
8295 is_network_packet(priv, header);
8296 if (network_packet && priv->assoc_network) {
8297 priv->assoc_network->stats.rssi =
8298 stats.rssi;
8299 priv->exp_avg_rssi =
8300 exponential_average(priv->exp_avg_rssi,
8301 stats.rssi, DEPTH_RSSI);
8302 }
8303
8304 IPW_DEBUG_RX("Frame: len=%u\n",
8305 le16_to_cpu(pkt->u.frame.length));
8306
8307 if (le16_to_cpu(pkt->u.frame.length) <
8308 libipw_get_hdrlen(le16_to_cpu(
8309 header->frame_ctl))) {
8310 IPW_DEBUG_DROP
8311 ("Received packet is too small. "
8312 "Dropping.\n");
8313 priv->net_dev->stats.rx_errors++;
8314 priv->wstats.discard.misc++;
8315 break;
8316 }
8317
8318 switch (WLAN_FC_GET_TYPE
8319 (le16_to_cpu(header->frame_ctl))) {
8320
8321 case IEEE80211_FTYPE_MGMT:
8322 ipw_handle_mgmt_packet(priv, rxb,
8323 &stats);
8324 break;
8325
8326 case IEEE80211_FTYPE_CTL:
8327 break;
8328
8329 case IEEE80211_FTYPE_DATA:
8330 if (unlikely(!network_packet ||
8331 is_duplicate_packet(priv,
8332 header)))
8333 {
8334 IPW_DEBUG_DROP("Dropping: "
8335 "%pM, "
8336 "%pM, "
8337 "%pM\n",
8338 header->addr1,
8339 header->addr2,
8340 header->addr3);
8341 break;
8342 }
8343
8344 ipw_handle_data_packet(priv, rxb,
8345 &stats);
8346
8347 break;
8348 }
8349 break;
8350 }
8351
8352 case RX_HOST_NOTIFICATION_TYPE:{
8353 IPW_DEBUG_RX
8354 ("Notification: subtype=%02X flags=%02X size=%d\n",
8355 pkt->u.notification.subtype,
8356 pkt->u.notification.flags,
8357 le16_to_cpu(pkt->u.notification.size));
8358 ipw_rx_notification(priv, &pkt->u.notification);
8359 break;
8360 }
8361
8362 default:
8363 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8364 pkt->header.message_type);
8365 break;
8366 }
8367
8368 /* For now we just don't re-use anything. We can tweak this
8369 * later to try and re-use notification packets and SKBs that
8370 * fail to Rx correctly */
8371 if (rxb->skb != NULL) {
8372 dev_kfree_skb_any(rxb->skb);
8373 rxb->skb = NULL;
8374 }
8375
8376 dma_unmap_single(&priv->pci_dev->dev, rxb->dma_addr,
8377 IPW_RX_BUF_SIZE, DMA_FROM_DEVICE);
8378 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8379
8380 i = (i + 1) % RX_QUEUE_SIZE;
8381
8382 /* If there are a lot of unsued frames, restock the Rx queue
8383 * so the ucode won't assert */
8384 if (fill_rx) {
8385 priv->rxq->read = i;
8386 ipw_rx_queue_replenish(priv);
8387 }
8388 }
8389
8390 /* Backtrack one entry */
8391 priv->rxq->read = i;
8392 ipw_rx_queue_restock(priv);
8393 }
8394
8395 #define DEFAULT_RTS_THRESHOLD 2304U
8396 #define MIN_RTS_THRESHOLD 1U
8397 #define MAX_RTS_THRESHOLD 2304U
8398 #define DEFAULT_BEACON_INTERVAL 100U
8399 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8400 #define DEFAULT_LONG_RETRY_LIMIT 4U
8401
8402 /*
8403 * ipw_sw_reset
8404 * @option: options to control different reset behaviour
8405 * 0 = reset everything except the 'disable' module_param
8406 * 1 = reset everything and print out driver info (for probe only)
8407 * 2 = reset everything
8408 */
ipw_sw_reset(struct ipw_priv * priv,int option)8409 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8410 {
8411 int band, modulation;
8412 int old_mode = priv->ieee->iw_mode;
8413
8414 /* Initialize module parameter values here */
8415 priv->config = 0;
8416
8417 /* We default to disabling the LED code as right now it causes
8418 * too many systems to lock up... */
8419 if (!led_support)
8420 priv->config |= CFG_NO_LED;
8421
8422 if (associate)
8423 priv->config |= CFG_ASSOCIATE;
8424 else
8425 IPW_DEBUG_INFO("Auto associate disabled.\n");
8426
8427 if (auto_create)
8428 priv->config |= CFG_ADHOC_CREATE;
8429 else
8430 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8431
8432 priv->config &= ~CFG_STATIC_ESSID;
8433 priv->essid_len = 0;
8434 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8435
8436 if (disable && option) {
8437 priv->status |= STATUS_RF_KILL_SW;
8438 IPW_DEBUG_INFO("Radio disabled.\n");
8439 }
8440
8441 if (default_channel != 0) {
8442 priv->config |= CFG_STATIC_CHANNEL;
8443 priv->channel = default_channel;
8444 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8445 /* TODO: Validate that provided channel is in range */
8446 }
8447 #ifdef CONFIG_IPW2200_QOS
8448 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8449 burst_duration_CCK, burst_duration_OFDM);
8450 #endif /* CONFIG_IPW2200_QOS */
8451
8452 switch (network_mode) {
8453 case 1:
8454 priv->ieee->iw_mode = IW_MODE_ADHOC;
8455 priv->net_dev->type = ARPHRD_ETHER;
8456
8457 break;
8458 #ifdef CONFIG_IPW2200_MONITOR
8459 case 2:
8460 priv->ieee->iw_mode = IW_MODE_MONITOR;
8461 #ifdef CONFIG_IPW2200_RADIOTAP
8462 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8463 #else
8464 priv->net_dev->type = ARPHRD_IEEE80211;
8465 #endif
8466 break;
8467 #endif
8468 default:
8469 case 0:
8470 priv->net_dev->type = ARPHRD_ETHER;
8471 priv->ieee->iw_mode = IW_MODE_INFRA;
8472 break;
8473 }
8474
8475 if (hwcrypto) {
8476 priv->ieee->host_encrypt = 0;
8477 priv->ieee->host_encrypt_msdu = 0;
8478 priv->ieee->host_decrypt = 0;
8479 priv->ieee->host_mc_decrypt = 0;
8480 }
8481 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8482
8483 /* IPW2200/2915 is abled to do hardware fragmentation. */
8484 priv->ieee->host_open_frag = 0;
8485
8486 if ((priv->pci_dev->device == 0x4223) ||
8487 (priv->pci_dev->device == 0x4224)) {
8488 if (option == 1)
8489 printk(KERN_INFO DRV_NAME
8490 ": Detected Intel PRO/Wireless 2915ABG Network "
8491 "Connection\n");
8492 priv->ieee->abg_true = 1;
8493 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8494 modulation = LIBIPW_OFDM_MODULATION |
8495 LIBIPW_CCK_MODULATION;
8496 priv->adapter = IPW_2915ABG;
8497 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8498 } else {
8499 if (option == 1)
8500 printk(KERN_INFO DRV_NAME
8501 ": Detected Intel PRO/Wireless 2200BG Network "
8502 "Connection\n");
8503
8504 priv->ieee->abg_true = 0;
8505 band = LIBIPW_24GHZ_BAND;
8506 modulation = LIBIPW_OFDM_MODULATION |
8507 LIBIPW_CCK_MODULATION;
8508 priv->adapter = IPW_2200BG;
8509 priv->ieee->mode = IEEE_G | IEEE_B;
8510 }
8511
8512 priv->ieee->freq_band = band;
8513 priv->ieee->modulation = modulation;
8514
8515 priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8516
8517 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8518 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8519
8520 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8521 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8522 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8523
8524 /* If power management is turned on, default to AC mode */
8525 priv->power_mode = IPW_POWER_AC;
8526 priv->tx_power = IPW_TX_POWER_DEFAULT;
8527
8528 return old_mode == priv->ieee->iw_mode;
8529 }
8530
8531 /*
8532 * This file defines the Wireless Extension handlers. It does not
8533 * define any methods of hardware manipulation and relies on the
8534 * functions defined in ipw_main to provide the HW interaction.
8535 *
8536 * The exception to this is the use of the ipw_get_ordinal()
8537 * function used to poll the hardware vs. making unnecessary calls.
8538 *
8539 */
8540
ipw_set_channel(struct ipw_priv * priv,u8 channel)8541 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8542 {
8543 if (channel == 0) {
8544 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8545 priv->config &= ~CFG_STATIC_CHANNEL;
8546 IPW_DEBUG_ASSOC("Attempting to associate with new "
8547 "parameters.\n");
8548 ipw_associate(priv);
8549 return 0;
8550 }
8551
8552 priv->config |= CFG_STATIC_CHANNEL;
8553
8554 if (priv->channel == channel) {
8555 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8556 channel);
8557 return 0;
8558 }
8559
8560 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8561 priv->channel = channel;
8562
8563 #ifdef CONFIG_IPW2200_MONITOR
8564 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8565 int i;
8566 if (priv->status & STATUS_SCANNING) {
8567 IPW_DEBUG_SCAN("Scan abort triggered due to "
8568 "channel change.\n");
8569 ipw_abort_scan(priv);
8570 }
8571
8572 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8573 udelay(10);
8574
8575 if (priv->status & STATUS_SCANNING)
8576 IPW_DEBUG_SCAN("Still scanning...\n");
8577 else
8578 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8579 1000 - i);
8580
8581 return 0;
8582 }
8583 #endif /* CONFIG_IPW2200_MONITOR */
8584
8585 /* Network configuration changed -- force [re]association */
8586 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8587 if (!ipw_disassociate(priv))
8588 ipw_associate(priv);
8589
8590 return 0;
8591 }
8592
ipw_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8593 static int ipw_wx_set_freq(struct net_device *dev,
8594 struct iw_request_info *info,
8595 union iwreq_data *wrqu, char *extra)
8596 {
8597 struct ipw_priv *priv = libipw_priv(dev);
8598 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8599 struct iw_freq *fwrq = &wrqu->freq;
8600 int ret = 0, i;
8601 u8 channel, flags;
8602 int band;
8603
8604 if (fwrq->m == 0) {
8605 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8606 mutex_lock(&priv->mutex);
8607 ret = ipw_set_channel(priv, 0);
8608 mutex_unlock(&priv->mutex);
8609 return ret;
8610 }
8611 /* if setting by freq convert to channel */
8612 if (fwrq->e == 1) {
8613 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8614 if (channel == 0)
8615 return -EINVAL;
8616 } else
8617 channel = fwrq->m;
8618
8619 if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8620 return -EINVAL;
8621
8622 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8623 i = libipw_channel_to_index(priv->ieee, channel);
8624 if (i == -1)
8625 return -EINVAL;
8626
8627 flags = (band == LIBIPW_24GHZ_BAND) ?
8628 geo->bg[i].flags : geo->a[i].flags;
8629 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8630 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8631 return -EINVAL;
8632 }
8633 }
8634
8635 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8636 mutex_lock(&priv->mutex);
8637 ret = ipw_set_channel(priv, channel);
8638 mutex_unlock(&priv->mutex);
8639 return ret;
8640 }
8641
ipw_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8642 static int ipw_wx_get_freq(struct net_device *dev,
8643 struct iw_request_info *info,
8644 union iwreq_data *wrqu, char *extra)
8645 {
8646 struct ipw_priv *priv = libipw_priv(dev);
8647
8648 wrqu->freq.e = 0;
8649
8650 /* If we are associated, trying to associate, or have a statically
8651 * configured CHANNEL then return that; otherwise return ANY */
8652 mutex_lock(&priv->mutex);
8653 if (priv->config & CFG_STATIC_CHANNEL ||
8654 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8655 int i;
8656
8657 i = libipw_channel_to_index(priv->ieee, priv->channel);
8658 BUG_ON(i == -1);
8659 wrqu->freq.e = 1;
8660
8661 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8662 case LIBIPW_52GHZ_BAND:
8663 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8664 break;
8665
8666 case LIBIPW_24GHZ_BAND:
8667 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8668 break;
8669
8670 default:
8671 BUG();
8672 }
8673 } else
8674 wrqu->freq.m = 0;
8675
8676 mutex_unlock(&priv->mutex);
8677 IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8678 return 0;
8679 }
8680
ipw_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8681 static int ipw_wx_set_mode(struct net_device *dev,
8682 struct iw_request_info *info,
8683 union iwreq_data *wrqu, char *extra)
8684 {
8685 struct ipw_priv *priv = libipw_priv(dev);
8686 int err = 0;
8687
8688 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8689
8690 switch (wrqu->mode) {
8691 #ifdef CONFIG_IPW2200_MONITOR
8692 case IW_MODE_MONITOR:
8693 #endif
8694 case IW_MODE_ADHOC:
8695 case IW_MODE_INFRA:
8696 break;
8697 case IW_MODE_AUTO:
8698 wrqu->mode = IW_MODE_INFRA;
8699 break;
8700 default:
8701 return -EINVAL;
8702 }
8703 if (wrqu->mode == priv->ieee->iw_mode)
8704 return 0;
8705
8706 mutex_lock(&priv->mutex);
8707
8708 ipw_sw_reset(priv, 0);
8709
8710 #ifdef CONFIG_IPW2200_MONITOR
8711 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8712 priv->net_dev->type = ARPHRD_ETHER;
8713
8714 if (wrqu->mode == IW_MODE_MONITOR)
8715 #ifdef CONFIG_IPW2200_RADIOTAP
8716 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8717 #else
8718 priv->net_dev->type = ARPHRD_IEEE80211;
8719 #endif
8720 #endif /* CONFIG_IPW2200_MONITOR */
8721
8722 /* Free the existing firmware and reset the fw_loaded
8723 * flag so ipw_load() will bring in the new firmware */
8724 free_firmware();
8725
8726 priv->ieee->iw_mode = wrqu->mode;
8727
8728 schedule_work(&priv->adapter_restart);
8729 mutex_unlock(&priv->mutex);
8730 return err;
8731 }
8732
ipw_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8733 static int ipw_wx_get_mode(struct net_device *dev,
8734 struct iw_request_info *info,
8735 union iwreq_data *wrqu, char *extra)
8736 {
8737 struct ipw_priv *priv = libipw_priv(dev);
8738 mutex_lock(&priv->mutex);
8739 wrqu->mode = priv->ieee->iw_mode;
8740 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8741 mutex_unlock(&priv->mutex);
8742 return 0;
8743 }
8744
8745 /* Values are in microsecond */
8746 static const s32 timeout_duration[] = {
8747 350000,
8748 250000,
8749 75000,
8750 37000,
8751 25000,
8752 };
8753
8754 static const s32 period_duration[] = {
8755 400000,
8756 700000,
8757 1000000,
8758 1000000,
8759 1000000
8760 };
8761
ipw_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8762 static int ipw_wx_get_range(struct net_device *dev,
8763 struct iw_request_info *info,
8764 union iwreq_data *wrqu, char *extra)
8765 {
8766 struct ipw_priv *priv = libipw_priv(dev);
8767 struct iw_range *range = (struct iw_range *)extra;
8768 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8769 int i = 0, j;
8770
8771 wrqu->data.length = sizeof(*range);
8772 memset(range, 0, sizeof(*range));
8773
8774 /* 54Mbs == ~27 Mb/s real (802.11g) */
8775 range->throughput = 27 * 1000 * 1000;
8776
8777 range->max_qual.qual = 100;
8778 /* TODO: Find real max RSSI and stick here */
8779 range->max_qual.level = 0;
8780 range->max_qual.noise = 0;
8781 range->max_qual.updated = 7; /* Updated all three */
8782
8783 range->avg_qual.qual = 70;
8784 /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8785 range->avg_qual.level = 0; /* FIXME to real average level */
8786 range->avg_qual.noise = 0;
8787 range->avg_qual.updated = 7; /* Updated all three */
8788 mutex_lock(&priv->mutex);
8789 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8790
8791 for (i = 0; i < range->num_bitrates; i++)
8792 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8793 500000;
8794
8795 range->max_rts = DEFAULT_RTS_THRESHOLD;
8796 range->min_frag = MIN_FRAG_THRESHOLD;
8797 range->max_frag = MAX_FRAG_THRESHOLD;
8798
8799 range->encoding_size[0] = 5;
8800 range->encoding_size[1] = 13;
8801 range->num_encoding_sizes = 2;
8802 range->max_encoding_tokens = WEP_KEYS;
8803
8804 /* Set the Wireless Extension versions */
8805 range->we_version_compiled = WIRELESS_EXT;
8806 range->we_version_source = 18;
8807
8808 i = 0;
8809 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8810 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8811 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8812 (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8813 continue;
8814
8815 range->freq[i].i = geo->bg[j].channel;
8816 range->freq[i].m = geo->bg[j].freq * 100000;
8817 range->freq[i].e = 1;
8818 i++;
8819 }
8820 }
8821
8822 if (priv->ieee->mode & IEEE_A) {
8823 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8824 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8825 (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8826 continue;
8827
8828 range->freq[i].i = geo->a[j].channel;
8829 range->freq[i].m = geo->a[j].freq * 100000;
8830 range->freq[i].e = 1;
8831 i++;
8832 }
8833 }
8834
8835 range->num_channels = i;
8836 range->num_frequency = i;
8837
8838 mutex_unlock(&priv->mutex);
8839
8840 /* Event capability (kernel + driver) */
8841 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8842 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8843 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8844 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8845 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8846
8847 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8848 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8849
8850 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8851
8852 IPW_DEBUG_WX("GET Range\n");
8853 return 0;
8854 }
8855
ipw_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8856 static int ipw_wx_set_wap(struct net_device *dev,
8857 struct iw_request_info *info,
8858 union iwreq_data *wrqu, char *extra)
8859 {
8860 struct ipw_priv *priv = libipw_priv(dev);
8861
8862 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8863 return -EINVAL;
8864 mutex_lock(&priv->mutex);
8865 if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8866 is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8867 /* we disable mandatory BSSID association */
8868 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8869 priv->config &= ~CFG_STATIC_BSSID;
8870 IPW_DEBUG_ASSOC("Attempting to associate with new "
8871 "parameters.\n");
8872 ipw_associate(priv);
8873 mutex_unlock(&priv->mutex);
8874 return 0;
8875 }
8876
8877 priv->config |= CFG_STATIC_BSSID;
8878 if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8879 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8880 mutex_unlock(&priv->mutex);
8881 return 0;
8882 }
8883
8884 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8885 wrqu->ap_addr.sa_data);
8886
8887 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8888
8889 /* Network configuration changed -- force [re]association */
8890 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8891 if (!ipw_disassociate(priv))
8892 ipw_associate(priv);
8893
8894 mutex_unlock(&priv->mutex);
8895 return 0;
8896 }
8897
ipw_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8898 static int ipw_wx_get_wap(struct net_device *dev,
8899 struct iw_request_info *info,
8900 union iwreq_data *wrqu, char *extra)
8901 {
8902 struct ipw_priv *priv = libipw_priv(dev);
8903
8904 /* If we are associated, trying to associate, or have a statically
8905 * configured BSSID then return that; otherwise return ANY */
8906 mutex_lock(&priv->mutex);
8907 if (priv->config & CFG_STATIC_BSSID ||
8908 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8909 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8910 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8911 } else
8912 eth_zero_addr(wrqu->ap_addr.sa_data);
8913
8914 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8915 wrqu->ap_addr.sa_data);
8916 mutex_unlock(&priv->mutex);
8917 return 0;
8918 }
8919
ipw_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8920 static int ipw_wx_set_essid(struct net_device *dev,
8921 struct iw_request_info *info,
8922 union iwreq_data *wrqu, char *extra)
8923 {
8924 struct ipw_priv *priv = libipw_priv(dev);
8925 int length;
8926
8927 mutex_lock(&priv->mutex);
8928
8929 if (!wrqu->essid.flags)
8930 {
8931 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8932 ipw_disassociate(priv);
8933 priv->config &= ~CFG_STATIC_ESSID;
8934 ipw_associate(priv);
8935 mutex_unlock(&priv->mutex);
8936 return 0;
8937 }
8938
8939 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8940
8941 priv->config |= CFG_STATIC_ESSID;
8942
8943 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8944 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8945 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8946 mutex_unlock(&priv->mutex);
8947 return 0;
8948 }
8949
8950 IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
8951
8952 priv->essid_len = length;
8953 memcpy(priv->essid, extra, priv->essid_len);
8954
8955 /* Network configuration changed -- force [re]association */
8956 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8957 if (!ipw_disassociate(priv))
8958 ipw_associate(priv);
8959
8960 mutex_unlock(&priv->mutex);
8961 return 0;
8962 }
8963
ipw_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8964 static int ipw_wx_get_essid(struct net_device *dev,
8965 struct iw_request_info *info,
8966 union iwreq_data *wrqu, char *extra)
8967 {
8968 struct ipw_priv *priv = libipw_priv(dev);
8969
8970 /* If we are associated, trying to associate, or have a statically
8971 * configured ESSID then return that; otherwise return ANY */
8972 mutex_lock(&priv->mutex);
8973 if (priv->config & CFG_STATIC_ESSID ||
8974 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8975 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
8976 priv->essid_len, priv->essid);
8977 memcpy(extra, priv->essid, priv->essid_len);
8978 wrqu->essid.length = priv->essid_len;
8979 wrqu->essid.flags = 1; /* active */
8980 } else {
8981 IPW_DEBUG_WX("Getting essid: ANY\n");
8982 wrqu->essid.length = 0;
8983 wrqu->essid.flags = 0; /* active */
8984 }
8985 mutex_unlock(&priv->mutex);
8986 return 0;
8987 }
8988
ipw_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8989 static int ipw_wx_set_nick(struct net_device *dev,
8990 struct iw_request_info *info,
8991 union iwreq_data *wrqu, char *extra)
8992 {
8993 struct ipw_priv *priv = libipw_priv(dev);
8994
8995 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8996 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8997 return -E2BIG;
8998 mutex_lock(&priv->mutex);
8999 wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9000 memset(priv->nick, 0, sizeof(priv->nick));
9001 memcpy(priv->nick, extra, wrqu->data.length);
9002 IPW_DEBUG_TRACE("<<\n");
9003 mutex_unlock(&priv->mutex);
9004 return 0;
9005
9006 }
9007
ipw_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9008 static int ipw_wx_get_nick(struct net_device *dev,
9009 struct iw_request_info *info,
9010 union iwreq_data *wrqu, char *extra)
9011 {
9012 struct ipw_priv *priv = libipw_priv(dev);
9013 IPW_DEBUG_WX("Getting nick\n");
9014 mutex_lock(&priv->mutex);
9015 wrqu->data.length = strlen(priv->nick);
9016 memcpy(extra, priv->nick, wrqu->data.length);
9017 wrqu->data.flags = 1; /* active */
9018 mutex_unlock(&priv->mutex);
9019 return 0;
9020 }
9021
ipw_wx_set_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9022 static int ipw_wx_set_sens(struct net_device *dev,
9023 struct iw_request_info *info,
9024 union iwreq_data *wrqu, char *extra)
9025 {
9026 struct ipw_priv *priv = libipw_priv(dev);
9027 int err = 0;
9028
9029 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9030 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9031 mutex_lock(&priv->mutex);
9032
9033 if (wrqu->sens.fixed == 0)
9034 {
9035 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9036 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9037 goto out;
9038 }
9039 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9040 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9041 err = -EINVAL;
9042 goto out;
9043 }
9044
9045 priv->roaming_threshold = wrqu->sens.value;
9046 priv->disassociate_threshold = 3*wrqu->sens.value;
9047 out:
9048 mutex_unlock(&priv->mutex);
9049 return err;
9050 }
9051
ipw_wx_get_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9052 static int ipw_wx_get_sens(struct net_device *dev,
9053 struct iw_request_info *info,
9054 union iwreq_data *wrqu, char *extra)
9055 {
9056 struct ipw_priv *priv = libipw_priv(dev);
9057 mutex_lock(&priv->mutex);
9058 wrqu->sens.fixed = 1;
9059 wrqu->sens.value = priv->roaming_threshold;
9060 mutex_unlock(&priv->mutex);
9061
9062 IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9063 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9064
9065 return 0;
9066 }
9067
ipw_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9068 static int ipw_wx_set_rate(struct net_device *dev,
9069 struct iw_request_info *info,
9070 union iwreq_data *wrqu, char *extra)
9071 {
9072 /* TODO: We should use semaphores or locks for access to priv */
9073 struct ipw_priv *priv = libipw_priv(dev);
9074 u32 target_rate = wrqu->bitrate.value;
9075 u32 fixed, mask;
9076
9077 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9078 /* value = X, fixed = 1 means only rate X */
9079 /* value = X, fixed = 0 means all rates lower equal X */
9080
9081 if (target_rate == -1) {
9082 fixed = 0;
9083 mask = LIBIPW_DEFAULT_RATES_MASK;
9084 /* Now we should reassociate */
9085 goto apply;
9086 }
9087
9088 mask = 0;
9089 fixed = wrqu->bitrate.fixed;
9090
9091 if (target_rate == 1000000 || !fixed)
9092 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9093 if (target_rate == 1000000)
9094 goto apply;
9095
9096 if (target_rate == 2000000 || !fixed)
9097 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9098 if (target_rate == 2000000)
9099 goto apply;
9100
9101 if (target_rate == 5500000 || !fixed)
9102 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9103 if (target_rate == 5500000)
9104 goto apply;
9105
9106 if (target_rate == 6000000 || !fixed)
9107 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9108 if (target_rate == 6000000)
9109 goto apply;
9110
9111 if (target_rate == 9000000 || !fixed)
9112 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9113 if (target_rate == 9000000)
9114 goto apply;
9115
9116 if (target_rate == 11000000 || !fixed)
9117 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9118 if (target_rate == 11000000)
9119 goto apply;
9120
9121 if (target_rate == 12000000 || !fixed)
9122 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9123 if (target_rate == 12000000)
9124 goto apply;
9125
9126 if (target_rate == 18000000 || !fixed)
9127 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9128 if (target_rate == 18000000)
9129 goto apply;
9130
9131 if (target_rate == 24000000 || !fixed)
9132 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9133 if (target_rate == 24000000)
9134 goto apply;
9135
9136 if (target_rate == 36000000 || !fixed)
9137 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9138 if (target_rate == 36000000)
9139 goto apply;
9140
9141 if (target_rate == 48000000 || !fixed)
9142 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9143 if (target_rate == 48000000)
9144 goto apply;
9145
9146 if (target_rate == 54000000 || !fixed)
9147 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9148 if (target_rate == 54000000)
9149 goto apply;
9150
9151 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9152 return -EINVAL;
9153
9154 apply:
9155 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9156 mask, fixed ? "fixed" : "sub-rates");
9157 mutex_lock(&priv->mutex);
9158 if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9159 priv->config &= ~CFG_FIXED_RATE;
9160 ipw_set_fixed_rate(priv, priv->ieee->mode);
9161 } else
9162 priv->config |= CFG_FIXED_RATE;
9163
9164 if (priv->rates_mask == mask) {
9165 IPW_DEBUG_WX("Mask set to current mask.\n");
9166 mutex_unlock(&priv->mutex);
9167 return 0;
9168 }
9169
9170 priv->rates_mask = mask;
9171
9172 /* Network configuration changed -- force [re]association */
9173 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9174 if (!ipw_disassociate(priv))
9175 ipw_associate(priv);
9176
9177 mutex_unlock(&priv->mutex);
9178 return 0;
9179 }
9180
ipw_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9181 static int ipw_wx_get_rate(struct net_device *dev,
9182 struct iw_request_info *info,
9183 union iwreq_data *wrqu, char *extra)
9184 {
9185 struct ipw_priv *priv = libipw_priv(dev);
9186 mutex_lock(&priv->mutex);
9187 wrqu->bitrate.value = priv->last_rate;
9188 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9189 mutex_unlock(&priv->mutex);
9190 IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9191 return 0;
9192 }
9193
ipw_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9194 static int ipw_wx_set_rts(struct net_device *dev,
9195 struct iw_request_info *info,
9196 union iwreq_data *wrqu, char *extra)
9197 {
9198 struct ipw_priv *priv = libipw_priv(dev);
9199 mutex_lock(&priv->mutex);
9200 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9201 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9202 else {
9203 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9204 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9205 mutex_unlock(&priv->mutex);
9206 return -EINVAL;
9207 }
9208 priv->rts_threshold = wrqu->rts.value;
9209 }
9210
9211 ipw_send_rts_threshold(priv, priv->rts_threshold);
9212 mutex_unlock(&priv->mutex);
9213 IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9214 return 0;
9215 }
9216
ipw_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9217 static int ipw_wx_get_rts(struct net_device *dev,
9218 struct iw_request_info *info,
9219 union iwreq_data *wrqu, char *extra)
9220 {
9221 struct ipw_priv *priv = libipw_priv(dev);
9222 mutex_lock(&priv->mutex);
9223 wrqu->rts.value = priv->rts_threshold;
9224 wrqu->rts.fixed = 0; /* no auto select */
9225 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9226 mutex_unlock(&priv->mutex);
9227 IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9228 return 0;
9229 }
9230
ipw_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9231 static int ipw_wx_set_txpow(struct net_device *dev,
9232 struct iw_request_info *info,
9233 union iwreq_data *wrqu, char *extra)
9234 {
9235 struct ipw_priv *priv = libipw_priv(dev);
9236 int err = 0;
9237
9238 mutex_lock(&priv->mutex);
9239 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9240 err = -EINPROGRESS;
9241 goto out;
9242 }
9243
9244 if (!wrqu->power.fixed)
9245 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9246
9247 if (wrqu->power.flags != IW_TXPOW_DBM) {
9248 err = -EINVAL;
9249 goto out;
9250 }
9251
9252 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9253 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9254 err = -EINVAL;
9255 goto out;
9256 }
9257
9258 priv->tx_power = wrqu->power.value;
9259 err = ipw_set_tx_power(priv);
9260 out:
9261 mutex_unlock(&priv->mutex);
9262 return err;
9263 }
9264
ipw_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9265 static int ipw_wx_get_txpow(struct net_device *dev,
9266 struct iw_request_info *info,
9267 union iwreq_data *wrqu, char *extra)
9268 {
9269 struct ipw_priv *priv = libipw_priv(dev);
9270 mutex_lock(&priv->mutex);
9271 wrqu->power.value = priv->tx_power;
9272 wrqu->power.fixed = 1;
9273 wrqu->power.flags = IW_TXPOW_DBM;
9274 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9275 mutex_unlock(&priv->mutex);
9276
9277 IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9278 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9279
9280 return 0;
9281 }
9282
ipw_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9283 static int ipw_wx_set_frag(struct net_device *dev,
9284 struct iw_request_info *info,
9285 union iwreq_data *wrqu, char *extra)
9286 {
9287 struct ipw_priv *priv = libipw_priv(dev);
9288 mutex_lock(&priv->mutex);
9289 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9290 priv->ieee->fts = DEFAULT_FTS;
9291 else {
9292 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9293 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9294 mutex_unlock(&priv->mutex);
9295 return -EINVAL;
9296 }
9297
9298 priv->ieee->fts = wrqu->frag.value & ~0x1;
9299 }
9300
9301 ipw_send_frag_threshold(priv, wrqu->frag.value);
9302 mutex_unlock(&priv->mutex);
9303 IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9304 return 0;
9305 }
9306
ipw_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9307 static int ipw_wx_get_frag(struct net_device *dev,
9308 struct iw_request_info *info,
9309 union iwreq_data *wrqu, char *extra)
9310 {
9311 struct ipw_priv *priv = libipw_priv(dev);
9312 mutex_lock(&priv->mutex);
9313 wrqu->frag.value = priv->ieee->fts;
9314 wrqu->frag.fixed = 0; /* no auto select */
9315 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9316 mutex_unlock(&priv->mutex);
9317 IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9318
9319 return 0;
9320 }
9321
ipw_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9322 static int ipw_wx_set_retry(struct net_device *dev,
9323 struct iw_request_info *info,
9324 union iwreq_data *wrqu, char *extra)
9325 {
9326 struct ipw_priv *priv = libipw_priv(dev);
9327
9328 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9329 return -EINVAL;
9330
9331 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9332 return 0;
9333
9334 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9335 return -EINVAL;
9336
9337 mutex_lock(&priv->mutex);
9338 if (wrqu->retry.flags & IW_RETRY_SHORT)
9339 priv->short_retry_limit = (u8) wrqu->retry.value;
9340 else if (wrqu->retry.flags & IW_RETRY_LONG)
9341 priv->long_retry_limit = (u8) wrqu->retry.value;
9342 else {
9343 priv->short_retry_limit = (u8) wrqu->retry.value;
9344 priv->long_retry_limit = (u8) wrqu->retry.value;
9345 }
9346
9347 ipw_send_retry_limit(priv, priv->short_retry_limit,
9348 priv->long_retry_limit);
9349 mutex_unlock(&priv->mutex);
9350 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9351 priv->short_retry_limit, priv->long_retry_limit);
9352 return 0;
9353 }
9354
ipw_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9355 static int ipw_wx_get_retry(struct net_device *dev,
9356 struct iw_request_info *info,
9357 union iwreq_data *wrqu, char *extra)
9358 {
9359 struct ipw_priv *priv = libipw_priv(dev);
9360
9361 mutex_lock(&priv->mutex);
9362 wrqu->retry.disabled = 0;
9363
9364 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9365 mutex_unlock(&priv->mutex);
9366 return -EINVAL;
9367 }
9368
9369 if (wrqu->retry.flags & IW_RETRY_LONG) {
9370 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9371 wrqu->retry.value = priv->long_retry_limit;
9372 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9373 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9374 wrqu->retry.value = priv->short_retry_limit;
9375 } else {
9376 wrqu->retry.flags = IW_RETRY_LIMIT;
9377 wrqu->retry.value = priv->short_retry_limit;
9378 }
9379 mutex_unlock(&priv->mutex);
9380
9381 IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9382
9383 return 0;
9384 }
9385
ipw_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9386 static int ipw_wx_set_scan(struct net_device *dev,
9387 struct iw_request_info *info,
9388 union iwreq_data *wrqu, char *extra)
9389 {
9390 struct ipw_priv *priv = libipw_priv(dev);
9391 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9392 struct delayed_work *work = NULL;
9393
9394 mutex_lock(&priv->mutex);
9395
9396 priv->user_requested_scan = 1;
9397
9398 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9399 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9400 int len = min((int)req->essid_len,
9401 (int)sizeof(priv->direct_scan_ssid));
9402 memcpy(priv->direct_scan_ssid, req->essid, len);
9403 priv->direct_scan_ssid_len = len;
9404 work = &priv->request_direct_scan;
9405 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9406 work = &priv->request_passive_scan;
9407 }
9408 } else {
9409 /* Normal active broadcast scan */
9410 work = &priv->request_scan;
9411 }
9412
9413 mutex_unlock(&priv->mutex);
9414
9415 IPW_DEBUG_WX("Start scan\n");
9416
9417 schedule_delayed_work(work, 0);
9418
9419 return 0;
9420 }
9421
ipw_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9422 static int ipw_wx_get_scan(struct net_device *dev,
9423 struct iw_request_info *info,
9424 union iwreq_data *wrqu, char *extra)
9425 {
9426 struct ipw_priv *priv = libipw_priv(dev);
9427 return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9428 }
9429
ipw_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9430 static int ipw_wx_set_encode(struct net_device *dev,
9431 struct iw_request_info *info,
9432 union iwreq_data *wrqu, char *key)
9433 {
9434 struct ipw_priv *priv = libipw_priv(dev);
9435 int ret;
9436 u32 cap = priv->capability;
9437
9438 mutex_lock(&priv->mutex);
9439 ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9440
9441 /* In IBSS mode, we need to notify the firmware to update
9442 * the beacon info after we changed the capability. */
9443 if (cap != priv->capability &&
9444 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9445 priv->status & STATUS_ASSOCIATED)
9446 ipw_disassociate(priv);
9447
9448 mutex_unlock(&priv->mutex);
9449 return ret;
9450 }
9451
ipw_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9452 static int ipw_wx_get_encode(struct net_device *dev,
9453 struct iw_request_info *info,
9454 union iwreq_data *wrqu, char *key)
9455 {
9456 struct ipw_priv *priv = libipw_priv(dev);
9457 return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9458 }
9459
ipw_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9460 static int ipw_wx_set_power(struct net_device *dev,
9461 struct iw_request_info *info,
9462 union iwreq_data *wrqu, char *extra)
9463 {
9464 struct ipw_priv *priv = libipw_priv(dev);
9465 int err;
9466 mutex_lock(&priv->mutex);
9467 if (wrqu->power.disabled) {
9468 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9469 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9470 if (err) {
9471 IPW_DEBUG_WX("failed setting power mode.\n");
9472 mutex_unlock(&priv->mutex);
9473 return err;
9474 }
9475 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9476 mutex_unlock(&priv->mutex);
9477 return 0;
9478 }
9479
9480 switch (wrqu->power.flags & IW_POWER_MODE) {
9481 case IW_POWER_ON: /* If not specified */
9482 case IW_POWER_MODE: /* If set all mask */
9483 case IW_POWER_ALL_R: /* If explicitly state all */
9484 break;
9485 default: /* Otherwise we don't support it */
9486 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9487 wrqu->power.flags);
9488 mutex_unlock(&priv->mutex);
9489 return -EOPNOTSUPP;
9490 }
9491
9492 /* If the user hasn't specified a power management mode yet, default
9493 * to BATTERY */
9494 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9495 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9496 else
9497 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9498
9499 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9500 if (err) {
9501 IPW_DEBUG_WX("failed setting power mode.\n");
9502 mutex_unlock(&priv->mutex);
9503 return err;
9504 }
9505
9506 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9507 mutex_unlock(&priv->mutex);
9508 return 0;
9509 }
9510
ipw_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9511 static int ipw_wx_get_power(struct net_device *dev,
9512 struct iw_request_info *info,
9513 union iwreq_data *wrqu, char *extra)
9514 {
9515 struct ipw_priv *priv = libipw_priv(dev);
9516 mutex_lock(&priv->mutex);
9517 if (!(priv->power_mode & IPW_POWER_ENABLED))
9518 wrqu->power.disabled = 1;
9519 else
9520 wrqu->power.disabled = 0;
9521
9522 mutex_unlock(&priv->mutex);
9523 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9524
9525 return 0;
9526 }
9527
ipw_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9528 static int ipw_wx_set_powermode(struct net_device *dev,
9529 struct iw_request_info *info,
9530 union iwreq_data *wrqu, char *extra)
9531 {
9532 struct ipw_priv *priv = libipw_priv(dev);
9533 int mode = *(int *)extra;
9534 int err;
9535
9536 mutex_lock(&priv->mutex);
9537 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9538 mode = IPW_POWER_AC;
9539
9540 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9541 err = ipw_send_power_mode(priv, mode);
9542 if (err) {
9543 IPW_DEBUG_WX("failed setting power mode.\n");
9544 mutex_unlock(&priv->mutex);
9545 return err;
9546 }
9547 priv->power_mode = IPW_POWER_ENABLED | mode;
9548 }
9549 mutex_unlock(&priv->mutex);
9550 return 0;
9551 }
9552
9553 #define MAX_WX_STRING 80
ipw_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9554 static int ipw_wx_get_powermode(struct net_device *dev,
9555 struct iw_request_info *info,
9556 union iwreq_data *wrqu, char *extra)
9557 {
9558 struct ipw_priv *priv = libipw_priv(dev);
9559 int level = IPW_POWER_LEVEL(priv->power_mode);
9560 char *p = extra;
9561
9562 p += scnprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9563
9564 switch (level) {
9565 case IPW_POWER_AC:
9566 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9567 break;
9568 case IPW_POWER_BATTERY:
9569 p += scnprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9570 break;
9571 default:
9572 p += scnprintf(p, MAX_WX_STRING - (p - extra),
9573 "(Timeout %dms, Period %dms)",
9574 timeout_duration[level - 1] / 1000,
9575 period_duration[level - 1] / 1000);
9576 }
9577
9578 if (!(priv->power_mode & IPW_POWER_ENABLED))
9579 p += scnprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9580
9581 wrqu->data.length = p - extra + 1;
9582
9583 return 0;
9584 }
9585
ipw_wx_set_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9586 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9587 struct iw_request_info *info,
9588 union iwreq_data *wrqu, char *extra)
9589 {
9590 struct ipw_priv *priv = libipw_priv(dev);
9591 int mode = *(int *)extra;
9592 u8 band = 0, modulation = 0;
9593
9594 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9595 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9596 return -EINVAL;
9597 }
9598 mutex_lock(&priv->mutex);
9599 if (priv->adapter == IPW_2915ABG) {
9600 priv->ieee->abg_true = 1;
9601 if (mode & IEEE_A) {
9602 band |= LIBIPW_52GHZ_BAND;
9603 modulation |= LIBIPW_OFDM_MODULATION;
9604 } else
9605 priv->ieee->abg_true = 0;
9606 } else {
9607 if (mode & IEEE_A) {
9608 IPW_WARNING("Attempt to set 2200BG into "
9609 "802.11a mode\n");
9610 mutex_unlock(&priv->mutex);
9611 return -EINVAL;
9612 }
9613
9614 priv->ieee->abg_true = 0;
9615 }
9616
9617 if (mode & IEEE_B) {
9618 band |= LIBIPW_24GHZ_BAND;
9619 modulation |= LIBIPW_CCK_MODULATION;
9620 } else
9621 priv->ieee->abg_true = 0;
9622
9623 if (mode & IEEE_G) {
9624 band |= LIBIPW_24GHZ_BAND;
9625 modulation |= LIBIPW_OFDM_MODULATION;
9626 } else
9627 priv->ieee->abg_true = 0;
9628
9629 priv->ieee->mode = mode;
9630 priv->ieee->freq_band = band;
9631 priv->ieee->modulation = modulation;
9632 init_supported_rates(priv, &priv->rates);
9633
9634 /* Network configuration changed -- force [re]association */
9635 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9636 if (!ipw_disassociate(priv)) {
9637 ipw_send_supported_rates(priv, &priv->rates);
9638 ipw_associate(priv);
9639 }
9640
9641 /* Update the band LEDs */
9642 ipw_led_band_on(priv);
9643
9644 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9645 mode & IEEE_A ? 'a' : '.',
9646 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9647 mutex_unlock(&priv->mutex);
9648 return 0;
9649 }
9650
ipw_wx_get_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9651 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9652 struct iw_request_info *info,
9653 union iwreq_data *wrqu, char *extra)
9654 {
9655 struct ipw_priv *priv = libipw_priv(dev);
9656 mutex_lock(&priv->mutex);
9657 switch (priv->ieee->mode) {
9658 case IEEE_A:
9659 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9660 break;
9661 case IEEE_B:
9662 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9663 break;
9664 case IEEE_A | IEEE_B:
9665 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9666 break;
9667 case IEEE_G:
9668 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9669 break;
9670 case IEEE_A | IEEE_G:
9671 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9672 break;
9673 case IEEE_B | IEEE_G:
9674 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9675 break;
9676 case IEEE_A | IEEE_B | IEEE_G:
9677 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9678 break;
9679 default:
9680 strncpy(extra, "unknown", MAX_WX_STRING);
9681 break;
9682 }
9683 extra[MAX_WX_STRING - 1] = '\0';
9684
9685 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9686
9687 wrqu->data.length = strlen(extra) + 1;
9688 mutex_unlock(&priv->mutex);
9689
9690 return 0;
9691 }
9692
ipw_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9693 static int ipw_wx_set_preamble(struct net_device *dev,
9694 struct iw_request_info *info,
9695 union iwreq_data *wrqu, char *extra)
9696 {
9697 struct ipw_priv *priv = libipw_priv(dev);
9698 int mode = *(int *)extra;
9699 mutex_lock(&priv->mutex);
9700 /* Switching from SHORT -> LONG requires a disassociation */
9701 if (mode == 1) {
9702 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9703 priv->config |= CFG_PREAMBLE_LONG;
9704
9705 /* Network configuration changed -- force [re]association */
9706 IPW_DEBUG_ASSOC
9707 ("[re]association triggered due to preamble change.\n");
9708 if (!ipw_disassociate(priv))
9709 ipw_associate(priv);
9710 }
9711 goto done;
9712 }
9713
9714 if (mode == 0) {
9715 priv->config &= ~CFG_PREAMBLE_LONG;
9716 goto done;
9717 }
9718 mutex_unlock(&priv->mutex);
9719 return -EINVAL;
9720
9721 done:
9722 mutex_unlock(&priv->mutex);
9723 return 0;
9724 }
9725
ipw_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9726 static int ipw_wx_get_preamble(struct net_device *dev,
9727 struct iw_request_info *info,
9728 union iwreq_data *wrqu, char *extra)
9729 {
9730 struct ipw_priv *priv = libipw_priv(dev);
9731 mutex_lock(&priv->mutex);
9732 if (priv->config & CFG_PREAMBLE_LONG)
9733 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9734 else
9735 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9736 mutex_unlock(&priv->mutex);
9737 return 0;
9738 }
9739
9740 #ifdef CONFIG_IPW2200_MONITOR
ipw_wx_set_monitor(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9741 static int ipw_wx_set_monitor(struct net_device *dev,
9742 struct iw_request_info *info,
9743 union iwreq_data *wrqu, char *extra)
9744 {
9745 struct ipw_priv *priv = libipw_priv(dev);
9746 int *parms = (int *)extra;
9747 int enable = (parms[0] > 0);
9748 mutex_lock(&priv->mutex);
9749 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9750 if (enable) {
9751 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9752 #ifdef CONFIG_IPW2200_RADIOTAP
9753 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9754 #else
9755 priv->net_dev->type = ARPHRD_IEEE80211;
9756 #endif
9757 schedule_work(&priv->adapter_restart);
9758 }
9759
9760 ipw_set_channel(priv, parms[1]);
9761 } else {
9762 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9763 mutex_unlock(&priv->mutex);
9764 return 0;
9765 }
9766 priv->net_dev->type = ARPHRD_ETHER;
9767 schedule_work(&priv->adapter_restart);
9768 }
9769 mutex_unlock(&priv->mutex);
9770 return 0;
9771 }
9772
9773 #endif /* CONFIG_IPW2200_MONITOR */
9774
ipw_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9775 static int ipw_wx_reset(struct net_device *dev,
9776 struct iw_request_info *info,
9777 union iwreq_data *wrqu, char *extra)
9778 {
9779 struct ipw_priv *priv = libipw_priv(dev);
9780 IPW_DEBUG_WX("RESET\n");
9781 schedule_work(&priv->adapter_restart);
9782 return 0;
9783 }
9784
ipw_wx_sw_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9785 static int ipw_wx_sw_reset(struct net_device *dev,
9786 struct iw_request_info *info,
9787 union iwreq_data *wrqu, char *extra)
9788 {
9789 struct ipw_priv *priv = libipw_priv(dev);
9790 union iwreq_data wrqu_sec = {
9791 .encoding = {
9792 .flags = IW_ENCODE_DISABLED,
9793 },
9794 };
9795 int ret;
9796
9797 IPW_DEBUG_WX("SW_RESET\n");
9798
9799 mutex_lock(&priv->mutex);
9800
9801 ret = ipw_sw_reset(priv, 2);
9802 if (!ret) {
9803 free_firmware();
9804 ipw_adapter_restart(priv);
9805 }
9806
9807 /* The SW reset bit might have been toggled on by the 'disable'
9808 * module parameter, so take appropriate action */
9809 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9810
9811 mutex_unlock(&priv->mutex);
9812 libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9813 mutex_lock(&priv->mutex);
9814
9815 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9816 /* Configuration likely changed -- force [re]association */
9817 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9818 "reset.\n");
9819 if (!ipw_disassociate(priv))
9820 ipw_associate(priv);
9821 }
9822
9823 mutex_unlock(&priv->mutex);
9824
9825 return 0;
9826 }
9827
9828 /* Rebase the WE IOCTLs to zero for the handler array */
9829 static iw_handler ipw_wx_handlers[] = {
9830 IW_HANDLER(SIOCGIWNAME, cfg80211_wext_giwname),
9831 IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9832 IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9833 IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9834 IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9835 IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9836 IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9837 IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9838 IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9839 IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9840 IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9841 IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9842 IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9843 IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9844 IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9845 IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9846 IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9847 IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9848 IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9849 IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9850 IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9851 IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9852 IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9853 IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9854 IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9855 IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9856 IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9857 IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9858 IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9859 IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9860 IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9861 IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9862 IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9863 IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9864 IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9865 IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9866 IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9867 IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9868 IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9869 IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9870 IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9871 };
9872
9873 enum {
9874 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9875 IPW_PRIV_GET_POWER,
9876 IPW_PRIV_SET_MODE,
9877 IPW_PRIV_GET_MODE,
9878 IPW_PRIV_SET_PREAMBLE,
9879 IPW_PRIV_GET_PREAMBLE,
9880 IPW_PRIV_RESET,
9881 IPW_PRIV_SW_RESET,
9882 #ifdef CONFIG_IPW2200_MONITOR
9883 IPW_PRIV_SET_MONITOR,
9884 #endif
9885 };
9886
9887 static struct iw_priv_args ipw_priv_args[] = {
9888 {
9889 .cmd = IPW_PRIV_SET_POWER,
9890 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9891 .name = "set_power"},
9892 {
9893 .cmd = IPW_PRIV_GET_POWER,
9894 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9895 .name = "get_power"},
9896 {
9897 .cmd = IPW_PRIV_SET_MODE,
9898 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9899 .name = "set_mode"},
9900 {
9901 .cmd = IPW_PRIV_GET_MODE,
9902 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9903 .name = "get_mode"},
9904 {
9905 .cmd = IPW_PRIV_SET_PREAMBLE,
9906 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9907 .name = "set_preamble"},
9908 {
9909 .cmd = IPW_PRIV_GET_PREAMBLE,
9910 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9911 .name = "get_preamble"},
9912 {
9913 IPW_PRIV_RESET,
9914 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9915 {
9916 IPW_PRIV_SW_RESET,
9917 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9918 #ifdef CONFIG_IPW2200_MONITOR
9919 {
9920 IPW_PRIV_SET_MONITOR,
9921 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9922 #endif /* CONFIG_IPW2200_MONITOR */
9923 };
9924
9925 static iw_handler ipw_priv_handler[] = {
9926 ipw_wx_set_powermode,
9927 ipw_wx_get_powermode,
9928 ipw_wx_set_wireless_mode,
9929 ipw_wx_get_wireless_mode,
9930 ipw_wx_set_preamble,
9931 ipw_wx_get_preamble,
9932 ipw_wx_reset,
9933 ipw_wx_sw_reset,
9934 #ifdef CONFIG_IPW2200_MONITOR
9935 ipw_wx_set_monitor,
9936 #endif
9937 };
9938
9939 static const struct iw_handler_def ipw_wx_handler_def = {
9940 .standard = ipw_wx_handlers,
9941 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9942 .num_private = ARRAY_SIZE(ipw_priv_handler),
9943 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9944 .private = ipw_priv_handler,
9945 .private_args = ipw_priv_args,
9946 .get_wireless_stats = ipw_get_wireless_stats,
9947 };
9948
9949 /*
9950 * Get wireless statistics.
9951 * Called by /proc/net/wireless
9952 * Also called by SIOCGIWSTATS
9953 */
ipw_get_wireless_stats(struct net_device * dev)9954 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9955 {
9956 struct ipw_priv *priv = libipw_priv(dev);
9957 struct iw_statistics *wstats;
9958
9959 wstats = &priv->wstats;
9960
9961 /* if hw is disabled, then ipw_get_ordinal() can't be called.
9962 * netdev->get_wireless_stats seems to be called before fw is
9963 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
9964 * and associated; if not associcated, the values are all meaningless
9965 * anyway, so set them all to NULL and INVALID */
9966 if (!(priv->status & STATUS_ASSOCIATED)) {
9967 wstats->miss.beacon = 0;
9968 wstats->discard.retries = 0;
9969 wstats->qual.qual = 0;
9970 wstats->qual.level = 0;
9971 wstats->qual.noise = 0;
9972 wstats->qual.updated = 7;
9973 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9974 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9975 return wstats;
9976 }
9977
9978 wstats->qual.qual = priv->quality;
9979 wstats->qual.level = priv->exp_avg_rssi;
9980 wstats->qual.noise = priv->exp_avg_noise;
9981 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9982 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9983
9984 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9985 wstats->discard.retries = priv->last_tx_failures;
9986 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9987
9988 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9989 goto fail_get_ordinal;
9990 wstats->discard.retries += tx_retry; */
9991
9992 return wstats;
9993 }
9994
9995 /* net device stuff */
9996
init_sys_config(struct ipw_sys_config * sys_config)9997 static void init_sys_config(struct ipw_sys_config *sys_config)
9998 {
9999 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10000 sys_config->bt_coexistence = 0;
10001 sys_config->answer_broadcast_ssid_probe = 0;
10002 sys_config->accept_all_data_frames = 0;
10003 sys_config->accept_non_directed_frames = 1;
10004 sys_config->exclude_unicast_unencrypted = 0;
10005 sys_config->disable_unicast_decryption = 1;
10006 sys_config->exclude_multicast_unencrypted = 0;
10007 sys_config->disable_multicast_decryption = 1;
10008 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10009 antenna = CFG_SYS_ANTENNA_BOTH;
10010 sys_config->antenna_diversity = antenna;
10011 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10012 sys_config->dot11g_auto_detection = 0;
10013 sys_config->enable_cts_to_self = 0;
10014 sys_config->bt_coexist_collision_thr = 0;
10015 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10016 sys_config->silence_threshold = 0x1e;
10017 }
10018
ipw_net_open(struct net_device * dev)10019 static int ipw_net_open(struct net_device *dev)
10020 {
10021 IPW_DEBUG_INFO("dev->open\n");
10022 netif_start_queue(dev);
10023 return 0;
10024 }
10025
ipw_net_stop(struct net_device * dev)10026 static int ipw_net_stop(struct net_device *dev)
10027 {
10028 IPW_DEBUG_INFO("dev->close\n");
10029 netif_stop_queue(dev);
10030 return 0;
10031 }
10032
10033 /*
10034 todo:
10035
10036 modify to send one tfd per fragment instead of using chunking. otherwise
10037 we need to heavily modify the libipw_skb_to_txb.
10038 */
10039
ipw_tx_skb(struct ipw_priv * priv,struct libipw_txb * txb,int pri)10040 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10041 int pri)
10042 {
10043 struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10044 txb->fragments[0]->data;
10045 int i = 0;
10046 struct tfd_frame *tfd;
10047 #ifdef CONFIG_IPW2200_QOS
10048 int tx_id = ipw_get_tx_queue_number(priv, pri);
10049 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10050 #else
10051 struct clx2_tx_queue *txq = &priv->txq[0];
10052 #endif
10053 struct clx2_queue *q = &txq->q;
10054 u8 id, hdr_len, unicast;
10055 int fc;
10056
10057 if (!(priv->status & STATUS_ASSOCIATED))
10058 goto drop;
10059
10060 hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10061 switch (priv->ieee->iw_mode) {
10062 case IW_MODE_ADHOC:
10063 unicast = !is_multicast_ether_addr(hdr->addr1);
10064 id = ipw_find_station(priv, hdr->addr1);
10065 if (id == IPW_INVALID_STATION) {
10066 id = ipw_add_station(priv, hdr->addr1);
10067 if (id == IPW_INVALID_STATION) {
10068 IPW_WARNING("Attempt to send data to "
10069 "invalid cell: %pM\n",
10070 hdr->addr1);
10071 goto drop;
10072 }
10073 }
10074 break;
10075
10076 case IW_MODE_INFRA:
10077 default:
10078 unicast = !is_multicast_ether_addr(hdr->addr3);
10079 id = 0;
10080 break;
10081 }
10082
10083 tfd = &txq->bd[q->first_empty];
10084 txq->txb[q->first_empty] = txb;
10085 memset(tfd, 0, sizeof(*tfd));
10086 tfd->u.data.station_number = id;
10087
10088 tfd->control_flags.message_type = TX_FRAME_TYPE;
10089 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10090
10091 tfd->u.data.cmd_id = DINO_CMD_TX;
10092 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10093
10094 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10095 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10096 else
10097 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10098
10099 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10100 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10101
10102 fc = le16_to_cpu(hdr->frame_ctl);
10103 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10104
10105 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10106
10107 if (likely(unicast))
10108 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10109
10110 if (txb->encrypted && !priv->ieee->host_encrypt) {
10111 switch (priv->ieee->sec.level) {
10112 case SEC_LEVEL_3:
10113 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10114 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10115 /* XXX: ACK flag must be set for CCMP even if it
10116 * is a multicast/broadcast packet, because CCMP
10117 * group communication encrypted by GTK is
10118 * actually done by the AP. */
10119 if (!unicast)
10120 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10121
10122 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10123 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10124 tfd->u.data.key_index = 0;
10125 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10126 break;
10127 case SEC_LEVEL_2:
10128 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10129 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10130 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10131 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10132 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10133 break;
10134 case SEC_LEVEL_1:
10135 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10136 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10137 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10138 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10139 40)
10140 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10141 else
10142 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10143 break;
10144 case SEC_LEVEL_0:
10145 break;
10146 default:
10147 printk(KERN_ERR "Unknown security level %d\n",
10148 priv->ieee->sec.level);
10149 break;
10150 }
10151 } else
10152 /* No hardware encryption */
10153 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10154
10155 #ifdef CONFIG_IPW2200_QOS
10156 if (fc & IEEE80211_STYPE_QOS_DATA)
10157 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10158 #endif /* CONFIG_IPW2200_QOS */
10159
10160 /* payload */
10161 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10162 txb->nr_frags));
10163 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10164 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10165 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10166 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10167 i, le32_to_cpu(tfd->u.data.num_chunks),
10168 txb->fragments[i]->len - hdr_len);
10169 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10170 i, tfd->u.data.num_chunks,
10171 txb->fragments[i]->len - hdr_len);
10172 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10173 txb->fragments[i]->len - hdr_len);
10174
10175 tfd->u.data.chunk_ptr[i] =
10176 cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10177 txb->fragments[i]->data + hdr_len,
10178 txb->fragments[i]->len - hdr_len,
10179 DMA_TO_DEVICE));
10180 tfd->u.data.chunk_len[i] =
10181 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10182 }
10183
10184 if (i != txb->nr_frags) {
10185 struct sk_buff *skb;
10186 u16 remaining_bytes = 0;
10187 int j;
10188
10189 for (j = i; j < txb->nr_frags; j++)
10190 remaining_bytes += txb->fragments[j]->len - hdr_len;
10191
10192 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10193 remaining_bytes);
10194 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10195 if (skb != NULL) {
10196 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10197 for (j = i; j < txb->nr_frags; j++) {
10198 int size = txb->fragments[j]->len - hdr_len;
10199
10200 printk(KERN_INFO "Adding frag %d %d...\n",
10201 j, size);
10202 skb_put_data(skb,
10203 txb->fragments[j]->data + hdr_len,
10204 size);
10205 }
10206 dev_kfree_skb_any(txb->fragments[i]);
10207 txb->fragments[i] = skb;
10208 tfd->u.data.chunk_ptr[i] =
10209 cpu_to_le32(dma_map_single(&priv->pci_dev->dev,
10210 skb->data,
10211 remaining_bytes,
10212 DMA_TO_DEVICE));
10213
10214 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10215 }
10216 }
10217
10218 /* kick DMA */
10219 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10220 ipw_write32(priv, q->reg_w, q->first_empty);
10221
10222 if (ipw_tx_queue_space(q) < q->high_mark)
10223 netif_stop_queue(priv->net_dev);
10224
10225 return NETDEV_TX_OK;
10226
10227 drop:
10228 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10229 libipw_txb_free(txb);
10230 return NETDEV_TX_OK;
10231 }
10232
ipw_net_is_queue_full(struct net_device * dev,int pri)10233 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10234 {
10235 struct ipw_priv *priv = libipw_priv(dev);
10236 #ifdef CONFIG_IPW2200_QOS
10237 int tx_id = ipw_get_tx_queue_number(priv, pri);
10238 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10239 #else
10240 struct clx2_tx_queue *txq = &priv->txq[0];
10241 #endif /* CONFIG_IPW2200_QOS */
10242
10243 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10244 return 1;
10245
10246 return 0;
10247 }
10248
10249 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_handle_promiscuous_tx(struct ipw_priv * priv,struct libipw_txb * txb)10250 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10251 struct libipw_txb *txb)
10252 {
10253 struct libipw_rx_stats dummystats;
10254 struct ieee80211_hdr *hdr;
10255 u8 n;
10256 u16 filter = priv->prom_priv->filter;
10257 int hdr_only = 0;
10258
10259 if (filter & IPW_PROM_NO_TX)
10260 return;
10261
10262 memset(&dummystats, 0, sizeof(dummystats));
10263
10264 /* Filtering of fragment chains is done against the first fragment */
10265 hdr = (void *)txb->fragments[0]->data;
10266 if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10267 if (filter & IPW_PROM_NO_MGMT)
10268 return;
10269 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10270 hdr_only = 1;
10271 } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10272 if (filter & IPW_PROM_NO_CTL)
10273 return;
10274 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10275 hdr_only = 1;
10276 } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10277 if (filter & IPW_PROM_NO_DATA)
10278 return;
10279 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10280 hdr_only = 1;
10281 }
10282
10283 for(n=0; n<txb->nr_frags; ++n) {
10284 struct sk_buff *src = txb->fragments[n];
10285 struct sk_buff *dst;
10286 struct ieee80211_radiotap_header *rt_hdr;
10287 int len;
10288
10289 if (hdr_only) {
10290 hdr = (void *)src->data;
10291 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10292 } else
10293 len = src->len;
10294
10295 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10296 if (!dst)
10297 continue;
10298
10299 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10300
10301 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10302 rt_hdr->it_pad = 0;
10303 rt_hdr->it_present = 0; /* after all, it's just an idea */
10304 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10305
10306 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10307 ieee80211chan2mhz(priv->channel));
10308 if (priv->channel > 14) /* 802.11a */
10309 *(__le16*)skb_put(dst, sizeof(u16)) =
10310 cpu_to_le16(IEEE80211_CHAN_OFDM |
10311 IEEE80211_CHAN_5GHZ);
10312 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10313 *(__le16*)skb_put(dst, sizeof(u16)) =
10314 cpu_to_le16(IEEE80211_CHAN_CCK |
10315 IEEE80211_CHAN_2GHZ);
10316 else /* 802.11g */
10317 *(__le16*)skb_put(dst, sizeof(u16)) =
10318 cpu_to_le16(IEEE80211_CHAN_OFDM |
10319 IEEE80211_CHAN_2GHZ);
10320
10321 rt_hdr->it_len = cpu_to_le16(dst->len);
10322
10323 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10324
10325 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10326 dev_kfree_skb_any(dst);
10327 }
10328 }
10329 #endif
10330
ipw_net_hard_start_xmit(struct libipw_txb * txb,struct net_device * dev,int pri)10331 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10332 struct net_device *dev, int pri)
10333 {
10334 struct ipw_priv *priv = libipw_priv(dev);
10335 unsigned long flags;
10336 netdev_tx_t ret;
10337
10338 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10339 spin_lock_irqsave(&priv->lock, flags);
10340
10341 #ifdef CONFIG_IPW2200_PROMISCUOUS
10342 if (rtap_iface && netif_running(priv->prom_net_dev))
10343 ipw_handle_promiscuous_tx(priv, txb);
10344 #endif
10345
10346 ret = ipw_tx_skb(priv, txb, pri);
10347 if (ret == NETDEV_TX_OK)
10348 __ipw_led_activity_on(priv);
10349 spin_unlock_irqrestore(&priv->lock, flags);
10350
10351 return ret;
10352 }
10353
ipw_net_set_multicast_list(struct net_device * dev)10354 static void ipw_net_set_multicast_list(struct net_device *dev)
10355 {
10356
10357 }
10358
ipw_net_set_mac_address(struct net_device * dev,void * p)10359 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10360 {
10361 struct ipw_priv *priv = libipw_priv(dev);
10362 struct sockaddr *addr = p;
10363
10364 if (!is_valid_ether_addr(addr->sa_data))
10365 return -EADDRNOTAVAIL;
10366 mutex_lock(&priv->mutex);
10367 priv->config |= CFG_CUSTOM_MAC;
10368 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10369 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10370 priv->net_dev->name, priv->mac_addr);
10371 schedule_work(&priv->adapter_restart);
10372 mutex_unlock(&priv->mutex);
10373 return 0;
10374 }
10375
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)10376 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10377 struct ethtool_drvinfo *info)
10378 {
10379 struct ipw_priv *p = libipw_priv(dev);
10380 char vers[64];
10381 char date[32];
10382 u32 len;
10383
10384 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
10385 strscpy(info->version, DRV_VERSION, sizeof(info->version));
10386
10387 len = sizeof(vers);
10388 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10389 len = sizeof(date);
10390 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10391
10392 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10393 vers, date);
10394 strscpy(info->bus_info, pci_name(p->pci_dev),
10395 sizeof(info->bus_info));
10396 }
10397
ipw_ethtool_get_link(struct net_device * dev)10398 static u32 ipw_ethtool_get_link(struct net_device *dev)
10399 {
10400 struct ipw_priv *priv = libipw_priv(dev);
10401 return (priv->status & STATUS_ASSOCIATED) != 0;
10402 }
10403
ipw_ethtool_get_eeprom_len(struct net_device * dev)10404 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10405 {
10406 return IPW_EEPROM_IMAGE_SIZE;
10407 }
10408
ipw_ethtool_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10409 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10410 struct ethtool_eeprom *eeprom, u8 * bytes)
10411 {
10412 struct ipw_priv *p = libipw_priv(dev);
10413
10414 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10415 return -EINVAL;
10416 mutex_lock(&p->mutex);
10417 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10418 mutex_unlock(&p->mutex);
10419 return 0;
10420 }
10421
ipw_ethtool_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10422 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10423 struct ethtool_eeprom *eeprom, u8 * bytes)
10424 {
10425 struct ipw_priv *p = libipw_priv(dev);
10426 int i;
10427
10428 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10429 return -EINVAL;
10430 mutex_lock(&p->mutex);
10431 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10432 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10433 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10434 mutex_unlock(&p->mutex);
10435 return 0;
10436 }
10437
10438 static const struct ethtool_ops ipw_ethtool_ops = {
10439 .get_link = ipw_ethtool_get_link,
10440 .get_drvinfo = ipw_ethtool_get_drvinfo,
10441 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10442 .get_eeprom = ipw_ethtool_get_eeprom,
10443 .set_eeprom = ipw_ethtool_set_eeprom,
10444 };
10445
ipw_isr(int irq,void * data)10446 static irqreturn_t ipw_isr(int irq, void *data)
10447 {
10448 struct ipw_priv *priv = data;
10449 u32 inta, inta_mask;
10450
10451 if (!priv)
10452 return IRQ_NONE;
10453
10454 spin_lock(&priv->irq_lock);
10455
10456 if (!(priv->status & STATUS_INT_ENABLED)) {
10457 /* IRQ is disabled */
10458 goto none;
10459 }
10460
10461 inta = ipw_read32(priv, IPW_INTA_RW);
10462 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10463
10464 if (inta == 0xFFFFFFFF) {
10465 /* Hardware disappeared */
10466 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10467 goto none;
10468 }
10469
10470 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10471 /* Shared interrupt */
10472 goto none;
10473 }
10474
10475 /* tell the device to stop sending interrupts */
10476 __ipw_disable_interrupts(priv);
10477
10478 /* ack current interrupts */
10479 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10480 ipw_write32(priv, IPW_INTA_RW, inta);
10481
10482 /* Cache INTA value for our tasklet */
10483 priv->isr_inta = inta;
10484
10485 tasklet_schedule(&priv->irq_tasklet);
10486
10487 spin_unlock(&priv->irq_lock);
10488
10489 return IRQ_HANDLED;
10490 none:
10491 spin_unlock(&priv->irq_lock);
10492 return IRQ_NONE;
10493 }
10494
ipw_rf_kill(void * adapter)10495 static void ipw_rf_kill(void *adapter)
10496 {
10497 struct ipw_priv *priv = adapter;
10498 unsigned long flags;
10499
10500 spin_lock_irqsave(&priv->lock, flags);
10501
10502 if (rf_kill_active(priv)) {
10503 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10504 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10505 goto exit_unlock;
10506 }
10507
10508 /* RF Kill is now disabled, so bring the device back up */
10509
10510 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10511 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10512 "device\n");
10513
10514 /* we can not do an adapter restart while inside an irq lock */
10515 schedule_work(&priv->adapter_restart);
10516 } else
10517 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10518 "enabled\n");
10519
10520 exit_unlock:
10521 spin_unlock_irqrestore(&priv->lock, flags);
10522 }
10523
ipw_bg_rf_kill(struct work_struct * work)10524 static void ipw_bg_rf_kill(struct work_struct *work)
10525 {
10526 struct ipw_priv *priv =
10527 container_of(work, struct ipw_priv, rf_kill.work);
10528 mutex_lock(&priv->mutex);
10529 ipw_rf_kill(priv);
10530 mutex_unlock(&priv->mutex);
10531 }
10532
ipw_link_up(struct ipw_priv * priv)10533 static void ipw_link_up(struct ipw_priv *priv)
10534 {
10535 priv->last_seq_num = -1;
10536 priv->last_frag_num = -1;
10537 priv->last_packet_time = 0;
10538
10539 netif_carrier_on(priv->net_dev);
10540
10541 cancel_delayed_work(&priv->request_scan);
10542 cancel_delayed_work(&priv->request_direct_scan);
10543 cancel_delayed_work(&priv->request_passive_scan);
10544 cancel_delayed_work(&priv->scan_event);
10545 ipw_reset_stats(priv);
10546 /* Ensure the rate is updated immediately */
10547 priv->last_rate = ipw_get_current_rate(priv);
10548 ipw_gather_stats(priv);
10549 ipw_led_link_up(priv);
10550 notify_wx_assoc_event(priv);
10551
10552 if (priv->config & CFG_BACKGROUND_SCAN)
10553 schedule_delayed_work(&priv->request_scan, HZ);
10554 }
10555
ipw_bg_link_up(struct work_struct * work)10556 static void ipw_bg_link_up(struct work_struct *work)
10557 {
10558 struct ipw_priv *priv =
10559 container_of(work, struct ipw_priv, link_up);
10560 mutex_lock(&priv->mutex);
10561 ipw_link_up(priv);
10562 mutex_unlock(&priv->mutex);
10563 }
10564
ipw_link_down(struct ipw_priv * priv)10565 static void ipw_link_down(struct ipw_priv *priv)
10566 {
10567 ipw_led_link_down(priv);
10568 netif_carrier_off(priv->net_dev);
10569 notify_wx_assoc_event(priv);
10570
10571 /* Cancel any queued work ... */
10572 cancel_delayed_work(&priv->request_scan);
10573 cancel_delayed_work(&priv->request_direct_scan);
10574 cancel_delayed_work(&priv->request_passive_scan);
10575 cancel_delayed_work(&priv->adhoc_check);
10576 cancel_delayed_work(&priv->gather_stats);
10577
10578 ipw_reset_stats(priv);
10579
10580 if (!(priv->status & STATUS_EXIT_PENDING)) {
10581 /* Queue up another scan... */
10582 schedule_delayed_work(&priv->request_scan, 0);
10583 } else
10584 cancel_delayed_work(&priv->scan_event);
10585 }
10586
ipw_bg_link_down(struct work_struct * work)10587 static void ipw_bg_link_down(struct work_struct *work)
10588 {
10589 struct ipw_priv *priv =
10590 container_of(work, struct ipw_priv, link_down);
10591 mutex_lock(&priv->mutex);
10592 ipw_link_down(priv);
10593 mutex_unlock(&priv->mutex);
10594 }
10595
ipw_setup_deferred_work(struct ipw_priv * priv)10596 static void ipw_setup_deferred_work(struct ipw_priv *priv)
10597 {
10598 init_waitqueue_head(&priv->wait_command_queue);
10599 init_waitqueue_head(&priv->wait_state);
10600
10601 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10602 INIT_WORK(&priv->associate, ipw_bg_associate);
10603 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10604 INIT_WORK(&priv->system_config, ipw_system_config);
10605 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10606 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10607 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10608 INIT_WORK(&priv->up, ipw_bg_up);
10609 INIT_WORK(&priv->down, ipw_bg_down);
10610 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10611 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10612 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10613 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10614 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10615 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10616 INIT_WORK(&priv->roam, ipw_bg_roam);
10617 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10618 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10619 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10620 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10621 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10622 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10623 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10624
10625 #ifdef CONFIG_IPW2200_QOS
10626 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10627 #endif /* CONFIG_IPW2200_QOS */
10628
10629 tasklet_setup(&priv->irq_tasklet, ipw_irq_tasklet);
10630 }
10631
shim__set_security(struct net_device * dev,struct libipw_security * sec)10632 static void shim__set_security(struct net_device *dev,
10633 struct libipw_security *sec)
10634 {
10635 struct ipw_priv *priv = libipw_priv(dev);
10636 int i;
10637 for (i = 0; i < 4; i++) {
10638 if (sec->flags & (1 << i)) {
10639 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10640 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10641 if (sec->key_sizes[i] == 0)
10642 priv->ieee->sec.flags &= ~(1 << i);
10643 else {
10644 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10645 sec->key_sizes[i]);
10646 priv->ieee->sec.flags |= (1 << i);
10647 }
10648 priv->status |= STATUS_SECURITY_UPDATED;
10649 } else if (sec->level != SEC_LEVEL_1)
10650 priv->ieee->sec.flags &= ~(1 << i);
10651 }
10652
10653 if (sec->flags & SEC_ACTIVE_KEY) {
10654 priv->ieee->sec.active_key = sec->active_key;
10655 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10656 priv->status |= STATUS_SECURITY_UPDATED;
10657 } else
10658 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10659
10660 if ((sec->flags & SEC_AUTH_MODE) &&
10661 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10662 priv->ieee->sec.auth_mode = sec->auth_mode;
10663 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10664 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10665 priv->capability |= CAP_SHARED_KEY;
10666 else
10667 priv->capability &= ~CAP_SHARED_KEY;
10668 priv->status |= STATUS_SECURITY_UPDATED;
10669 }
10670
10671 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10672 priv->ieee->sec.flags |= SEC_ENABLED;
10673 priv->ieee->sec.enabled = sec->enabled;
10674 priv->status |= STATUS_SECURITY_UPDATED;
10675 if (sec->enabled)
10676 priv->capability |= CAP_PRIVACY_ON;
10677 else
10678 priv->capability &= ~CAP_PRIVACY_ON;
10679 }
10680
10681 if (sec->flags & SEC_ENCRYPT)
10682 priv->ieee->sec.encrypt = sec->encrypt;
10683
10684 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10685 priv->ieee->sec.level = sec->level;
10686 priv->ieee->sec.flags |= SEC_LEVEL;
10687 priv->status |= STATUS_SECURITY_UPDATED;
10688 }
10689
10690 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10691 ipw_set_hwcrypto_keys(priv);
10692
10693 /* To match current functionality of ipw2100 (which works well w/
10694 * various supplicants, we don't force a disassociate if the
10695 * privacy capability changes ... */
10696 #if 0
10697 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10698 (((priv->assoc_request.capability &
10699 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10700 (!(priv->assoc_request.capability &
10701 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10702 IPW_DEBUG_ASSOC("Disassociating due to capability "
10703 "change.\n");
10704 ipw_disassociate(priv);
10705 }
10706 #endif
10707 }
10708
init_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)10709 static int init_supported_rates(struct ipw_priv *priv,
10710 struct ipw_supported_rates *rates)
10711 {
10712 /* TODO: Mask out rates based on priv->rates_mask */
10713
10714 memset(rates, 0, sizeof(*rates));
10715 /* configure supported rates */
10716 switch (priv->ieee->freq_band) {
10717 case LIBIPW_52GHZ_BAND:
10718 rates->ieee_mode = IPW_A_MODE;
10719 rates->purpose = IPW_RATE_CAPABILITIES;
10720 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10721 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10722 break;
10723
10724 default: /* Mixed or 2.4Ghz */
10725 rates->ieee_mode = IPW_G_MODE;
10726 rates->purpose = IPW_RATE_CAPABILITIES;
10727 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10728 LIBIPW_CCK_DEFAULT_RATES_MASK);
10729 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10730 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10731 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10732 }
10733 break;
10734 }
10735
10736 return 0;
10737 }
10738
ipw_config(struct ipw_priv * priv)10739 static int ipw_config(struct ipw_priv *priv)
10740 {
10741 /* This is only called from ipw_up, which resets/reloads the firmware
10742 so, we don't need to first disable the card before we configure
10743 it */
10744 if (ipw_set_tx_power(priv))
10745 goto error;
10746
10747 /* initialize adapter address */
10748 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10749 goto error;
10750
10751 /* set basic system config settings */
10752 init_sys_config(&priv->sys_config);
10753
10754 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10755 * Does not support BT priority yet (don't abort or defer our Tx) */
10756 if (bt_coexist) {
10757 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10758
10759 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10760 priv->sys_config.bt_coexistence
10761 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10762 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10763 priv->sys_config.bt_coexistence
10764 |= CFG_BT_COEXISTENCE_OOB;
10765 }
10766
10767 #ifdef CONFIG_IPW2200_PROMISCUOUS
10768 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10769 priv->sys_config.accept_all_data_frames = 1;
10770 priv->sys_config.accept_non_directed_frames = 1;
10771 priv->sys_config.accept_all_mgmt_bcpr = 1;
10772 priv->sys_config.accept_all_mgmt_frames = 1;
10773 }
10774 #endif
10775
10776 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10777 priv->sys_config.answer_broadcast_ssid_probe = 1;
10778 else
10779 priv->sys_config.answer_broadcast_ssid_probe = 0;
10780
10781 if (ipw_send_system_config(priv))
10782 goto error;
10783
10784 init_supported_rates(priv, &priv->rates);
10785 if (ipw_send_supported_rates(priv, &priv->rates))
10786 goto error;
10787
10788 /* Set request-to-send threshold */
10789 if (priv->rts_threshold) {
10790 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10791 goto error;
10792 }
10793 #ifdef CONFIG_IPW2200_QOS
10794 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10795 ipw_qos_activate(priv, NULL);
10796 #endif /* CONFIG_IPW2200_QOS */
10797
10798 if (ipw_set_random_seed(priv))
10799 goto error;
10800
10801 /* final state transition to the RUN state */
10802 if (ipw_send_host_complete(priv))
10803 goto error;
10804
10805 priv->status |= STATUS_INIT;
10806
10807 ipw_led_init(priv);
10808 ipw_led_radio_on(priv);
10809 priv->notif_missed_beacons = 0;
10810
10811 /* Set hardware WEP key if it is configured. */
10812 if ((priv->capability & CAP_PRIVACY_ON) &&
10813 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10814 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10815 ipw_set_hwcrypto_keys(priv);
10816
10817 return 0;
10818
10819 error:
10820 return -EIO;
10821 }
10822
10823 /*
10824 * NOTE:
10825 *
10826 * These tables have been tested in conjunction with the
10827 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10828 *
10829 * Altering this values, using it on other hardware, or in geographies
10830 * not intended for resale of the above mentioned Intel adapters has
10831 * not been tested.
10832 *
10833 * Remember to update the table in README.ipw2200 when changing this
10834 * table.
10835 *
10836 */
10837 static const struct libipw_geo ipw_geos[] = {
10838 { /* Restricted */
10839 "---",
10840 .bg_channels = 11,
10841 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10842 {2427, 4}, {2432, 5}, {2437, 6},
10843 {2442, 7}, {2447, 8}, {2452, 9},
10844 {2457, 10}, {2462, 11}},
10845 },
10846
10847 { /* Custom US/Canada */
10848 "ZZF",
10849 .bg_channels = 11,
10850 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10851 {2427, 4}, {2432, 5}, {2437, 6},
10852 {2442, 7}, {2447, 8}, {2452, 9},
10853 {2457, 10}, {2462, 11}},
10854 .a_channels = 8,
10855 .a = {{5180, 36},
10856 {5200, 40},
10857 {5220, 44},
10858 {5240, 48},
10859 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10860 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10861 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10862 {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10863 },
10864
10865 { /* Rest of World */
10866 "ZZD",
10867 .bg_channels = 13,
10868 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10869 {2427, 4}, {2432, 5}, {2437, 6},
10870 {2442, 7}, {2447, 8}, {2452, 9},
10871 {2457, 10}, {2462, 11}, {2467, 12},
10872 {2472, 13}},
10873 },
10874
10875 { /* Custom USA & Europe & High */
10876 "ZZA",
10877 .bg_channels = 11,
10878 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10879 {2427, 4}, {2432, 5}, {2437, 6},
10880 {2442, 7}, {2447, 8}, {2452, 9},
10881 {2457, 10}, {2462, 11}},
10882 .a_channels = 13,
10883 .a = {{5180, 36},
10884 {5200, 40},
10885 {5220, 44},
10886 {5240, 48},
10887 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10888 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10889 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10890 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10891 {5745, 149},
10892 {5765, 153},
10893 {5785, 157},
10894 {5805, 161},
10895 {5825, 165}},
10896 },
10897
10898 { /* Custom NA & Europe */
10899 "ZZB",
10900 .bg_channels = 11,
10901 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10902 {2427, 4}, {2432, 5}, {2437, 6},
10903 {2442, 7}, {2447, 8}, {2452, 9},
10904 {2457, 10}, {2462, 11}},
10905 .a_channels = 13,
10906 .a = {{5180, 36},
10907 {5200, 40},
10908 {5220, 44},
10909 {5240, 48},
10910 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10911 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10912 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10913 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10914 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10915 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10916 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10917 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10918 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10919 },
10920
10921 { /* Custom Japan */
10922 "ZZC",
10923 .bg_channels = 11,
10924 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10925 {2427, 4}, {2432, 5}, {2437, 6},
10926 {2442, 7}, {2447, 8}, {2452, 9},
10927 {2457, 10}, {2462, 11}},
10928 .a_channels = 4,
10929 .a = {{5170, 34}, {5190, 38},
10930 {5210, 42}, {5230, 46}},
10931 },
10932
10933 { /* Custom */
10934 "ZZM",
10935 .bg_channels = 11,
10936 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10937 {2427, 4}, {2432, 5}, {2437, 6},
10938 {2442, 7}, {2447, 8}, {2452, 9},
10939 {2457, 10}, {2462, 11}},
10940 },
10941
10942 { /* Europe */
10943 "ZZE",
10944 .bg_channels = 13,
10945 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10946 {2427, 4}, {2432, 5}, {2437, 6},
10947 {2442, 7}, {2447, 8}, {2452, 9},
10948 {2457, 10}, {2462, 11}, {2467, 12},
10949 {2472, 13}},
10950 .a_channels = 19,
10951 .a = {{5180, 36},
10952 {5200, 40},
10953 {5220, 44},
10954 {5240, 48},
10955 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10956 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10957 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10958 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10959 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
10960 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
10961 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
10962 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
10963 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
10964 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
10965 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
10966 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
10967 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
10968 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
10969 {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
10970 },
10971
10972 { /* Custom Japan */
10973 "ZZJ",
10974 .bg_channels = 14,
10975 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10976 {2427, 4}, {2432, 5}, {2437, 6},
10977 {2442, 7}, {2447, 8}, {2452, 9},
10978 {2457, 10}, {2462, 11}, {2467, 12},
10979 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
10980 .a_channels = 4,
10981 .a = {{5170, 34}, {5190, 38},
10982 {5210, 42}, {5230, 46}},
10983 },
10984
10985 { /* Rest of World */
10986 "ZZR",
10987 .bg_channels = 14,
10988 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10989 {2427, 4}, {2432, 5}, {2437, 6},
10990 {2442, 7}, {2447, 8}, {2452, 9},
10991 {2457, 10}, {2462, 11}, {2467, 12},
10992 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
10993 LIBIPW_CH_PASSIVE_ONLY}},
10994 },
10995
10996 { /* High Band */
10997 "ZZH",
10998 .bg_channels = 13,
10999 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000 {2427, 4}, {2432, 5}, {2437, 6},
11001 {2442, 7}, {2447, 8}, {2452, 9},
11002 {2457, 10}, {2462, 11},
11003 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11004 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11005 .a_channels = 4,
11006 .a = {{5745, 149}, {5765, 153},
11007 {5785, 157}, {5805, 161}},
11008 },
11009
11010 { /* Custom Europe */
11011 "ZZG",
11012 .bg_channels = 13,
11013 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11014 {2427, 4}, {2432, 5}, {2437, 6},
11015 {2442, 7}, {2447, 8}, {2452, 9},
11016 {2457, 10}, {2462, 11},
11017 {2467, 12}, {2472, 13}},
11018 .a_channels = 4,
11019 .a = {{5180, 36}, {5200, 40},
11020 {5220, 44}, {5240, 48}},
11021 },
11022
11023 { /* Europe */
11024 "ZZK",
11025 .bg_channels = 13,
11026 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11027 {2427, 4}, {2432, 5}, {2437, 6},
11028 {2442, 7}, {2447, 8}, {2452, 9},
11029 {2457, 10}, {2462, 11},
11030 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11031 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11032 .a_channels = 24,
11033 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11034 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11035 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11036 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11037 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11038 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11039 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11040 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11041 {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11042 {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11043 {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11044 {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11045 {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11046 {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11047 {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11048 {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11049 {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11050 {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11051 {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11052 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11053 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11054 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11055 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11056 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11057 },
11058
11059 { /* Europe */
11060 "ZZL",
11061 .bg_channels = 11,
11062 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11063 {2427, 4}, {2432, 5}, {2437, 6},
11064 {2442, 7}, {2447, 8}, {2452, 9},
11065 {2457, 10}, {2462, 11}},
11066 .a_channels = 13,
11067 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11068 {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11069 {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11070 {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11071 {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11072 {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11073 {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11074 {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11075 {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11076 {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11077 {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11078 {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11079 {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11080 }
11081 };
11082
ipw_set_geo(struct ipw_priv * priv)11083 static void ipw_set_geo(struct ipw_priv *priv)
11084 {
11085 int j;
11086
11087 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11088 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11089 ipw_geos[j].name, 3))
11090 break;
11091 }
11092
11093 if (j == ARRAY_SIZE(ipw_geos)) {
11094 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11095 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11096 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11097 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11098 j = 0;
11099 }
11100
11101 libipw_set_geo(priv->ieee, &ipw_geos[j]);
11102 }
11103
11104 #define MAX_HW_RESTARTS 5
ipw_up(struct ipw_priv * priv)11105 static int ipw_up(struct ipw_priv *priv)
11106 {
11107 int rc, i;
11108
11109 /* Age scan list entries found before suspend */
11110 if (priv->suspend_time) {
11111 libipw_networks_age(priv->ieee, priv->suspend_time);
11112 priv->suspend_time = 0;
11113 }
11114
11115 if (priv->status & STATUS_EXIT_PENDING)
11116 return -EIO;
11117
11118 if (cmdlog && !priv->cmdlog) {
11119 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11120 GFP_KERNEL);
11121 if (priv->cmdlog == NULL) {
11122 IPW_ERROR("Error allocating %d command log entries.\n",
11123 cmdlog);
11124 return -ENOMEM;
11125 } else {
11126 priv->cmdlog_len = cmdlog;
11127 }
11128 }
11129
11130 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11131 /* Load the microcode, firmware, and eeprom.
11132 * Also start the clocks. */
11133 rc = ipw_load(priv);
11134 if (rc) {
11135 IPW_ERROR("Unable to load firmware: %d\n", rc);
11136 return rc;
11137 }
11138
11139 ipw_init_ordinals(priv);
11140 if (!(priv->config & CFG_CUSTOM_MAC))
11141 eeprom_parse_mac(priv, priv->mac_addr);
11142 eth_hw_addr_set(priv->net_dev, priv->mac_addr);
11143
11144 ipw_set_geo(priv);
11145
11146 if (priv->status & STATUS_RF_KILL_SW) {
11147 IPW_WARNING("Radio disabled by module parameter.\n");
11148 return 0;
11149 } else if (rf_kill_active(priv)) {
11150 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11151 "Kill switch must be turned off for "
11152 "wireless networking to work.\n");
11153 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11154 return 0;
11155 }
11156
11157 rc = ipw_config(priv);
11158 if (!rc) {
11159 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11160
11161 /* If configure to try and auto-associate, kick
11162 * off a scan. */
11163 schedule_delayed_work(&priv->request_scan, 0);
11164
11165 return 0;
11166 }
11167
11168 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11169 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11170 i, MAX_HW_RESTARTS);
11171
11172 /* We had an error bringing up the hardware, so take it
11173 * all the way back down so we can try again */
11174 ipw_down(priv);
11175 }
11176
11177 /* tried to restart and config the device for as long as our
11178 * patience could withstand */
11179 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11180
11181 return -EIO;
11182 }
11183
ipw_bg_up(struct work_struct * work)11184 static void ipw_bg_up(struct work_struct *work)
11185 {
11186 struct ipw_priv *priv =
11187 container_of(work, struct ipw_priv, up);
11188 mutex_lock(&priv->mutex);
11189 ipw_up(priv);
11190 mutex_unlock(&priv->mutex);
11191 }
11192
ipw_deinit(struct ipw_priv * priv)11193 static void ipw_deinit(struct ipw_priv *priv)
11194 {
11195 int i;
11196
11197 if (priv->status & STATUS_SCANNING) {
11198 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11199 ipw_abort_scan(priv);
11200 }
11201
11202 if (priv->status & STATUS_ASSOCIATED) {
11203 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11204 ipw_disassociate(priv);
11205 }
11206
11207 ipw_led_shutdown(priv);
11208
11209 /* Wait up to 1s for status to change to not scanning and not
11210 * associated (disassociation can take a while for a ful 802.11
11211 * exchange */
11212 for (i = 1000; i && (priv->status &
11213 (STATUS_DISASSOCIATING |
11214 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11215 udelay(10);
11216
11217 if (priv->status & (STATUS_DISASSOCIATING |
11218 STATUS_ASSOCIATED | STATUS_SCANNING))
11219 IPW_DEBUG_INFO("Still associated or scanning...\n");
11220 else
11221 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11222
11223 /* Attempt to disable the card */
11224 ipw_send_card_disable(priv, 0);
11225
11226 priv->status &= ~STATUS_INIT;
11227 }
11228
ipw_down(struct ipw_priv * priv)11229 static void ipw_down(struct ipw_priv *priv)
11230 {
11231 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11232
11233 priv->status |= STATUS_EXIT_PENDING;
11234
11235 if (ipw_is_init(priv))
11236 ipw_deinit(priv);
11237
11238 /* Wipe out the EXIT_PENDING status bit if we are not actually
11239 * exiting the module */
11240 if (!exit_pending)
11241 priv->status &= ~STATUS_EXIT_PENDING;
11242
11243 /* tell the device to stop sending interrupts */
11244 ipw_disable_interrupts(priv);
11245
11246 /* Clear all bits but the RF Kill */
11247 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11248 netif_carrier_off(priv->net_dev);
11249
11250 ipw_stop_nic(priv);
11251
11252 ipw_led_radio_off(priv);
11253 }
11254
ipw_bg_down(struct work_struct * work)11255 static void ipw_bg_down(struct work_struct *work)
11256 {
11257 struct ipw_priv *priv =
11258 container_of(work, struct ipw_priv, down);
11259 mutex_lock(&priv->mutex);
11260 ipw_down(priv);
11261 mutex_unlock(&priv->mutex);
11262 }
11263
ipw_wdev_init(struct net_device * dev)11264 static int ipw_wdev_init(struct net_device *dev)
11265 {
11266 int i, rc = 0;
11267 struct ipw_priv *priv = libipw_priv(dev);
11268 const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11269 struct wireless_dev *wdev = &priv->ieee->wdev;
11270
11271 memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11272
11273 /* fill-out priv->ieee->bg_band */
11274 if (geo->bg_channels) {
11275 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11276
11277 bg_band->band = NL80211_BAND_2GHZ;
11278 bg_band->n_channels = geo->bg_channels;
11279 bg_band->channels = kcalloc(geo->bg_channels,
11280 sizeof(struct ieee80211_channel),
11281 GFP_KERNEL);
11282 if (!bg_band->channels) {
11283 rc = -ENOMEM;
11284 goto out;
11285 }
11286 /* translate geo->bg to bg_band.channels */
11287 for (i = 0; i < geo->bg_channels; i++) {
11288 bg_band->channels[i].band = NL80211_BAND_2GHZ;
11289 bg_band->channels[i].center_freq = geo->bg[i].freq;
11290 bg_band->channels[i].hw_value = geo->bg[i].channel;
11291 bg_band->channels[i].max_power = geo->bg[i].max_power;
11292 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11293 bg_band->channels[i].flags |=
11294 IEEE80211_CHAN_NO_IR;
11295 if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11296 bg_band->channels[i].flags |=
11297 IEEE80211_CHAN_NO_IR;
11298 if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11299 bg_band->channels[i].flags |=
11300 IEEE80211_CHAN_RADAR;
11301 /* No equivalent for LIBIPW_CH_80211H_RULES,
11302 LIBIPW_CH_UNIFORM_SPREADING, or
11303 LIBIPW_CH_B_ONLY... */
11304 }
11305 /* point at bitrate info */
11306 bg_band->bitrates = ipw2200_bg_rates;
11307 bg_band->n_bitrates = ipw2200_num_bg_rates;
11308
11309 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11310 }
11311
11312 /* fill-out priv->ieee->a_band */
11313 if (geo->a_channels) {
11314 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11315
11316 a_band->band = NL80211_BAND_5GHZ;
11317 a_band->n_channels = geo->a_channels;
11318 a_band->channels = kcalloc(geo->a_channels,
11319 sizeof(struct ieee80211_channel),
11320 GFP_KERNEL);
11321 if (!a_band->channels) {
11322 rc = -ENOMEM;
11323 goto out;
11324 }
11325 /* translate geo->a to a_band.channels */
11326 for (i = 0; i < geo->a_channels; i++) {
11327 a_band->channels[i].band = NL80211_BAND_5GHZ;
11328 a_band->channels[i].center_freq = geo->a[i].freq;
11329 a_band->channels[i].hw_value = geo->a[i].channel;
11330 a_band->channels[i].max_power = geo->a[i].max_power;
11331 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11332 a_band->channels[i].flags |=
11333 IEEE80211_CHAN_NO_IR;
11334 if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11335 a_band->channels[i].flags |=
11336 IEEE80211_CHAN_NO_IR;
11337 if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11338 a_band->channels[i].flags |=
11339 IEEE80211_CHAN_RADAR;
11340 /* No equivalent for LIBIPW_CH_80211H_RULES,
11341 LIBIPW_CH_UNIFORM_SPREADING, or
11342 LIBIPW_CH_B_ONLY... */
11343 }
11344 /* point at bitrate info */
11345 a_band->bitrates = ipw2200_a_rates;
11346 a_band->n_bitrates = ipw2200_num_a_rates;
11347
11348 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11349 }
11350
11351 wdev->wiphy->cipher_suites = ipw_cipher_suites;
11352 wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11353
11354 set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11355
11356 /* With that information in place, we can now register the wiphy... */
11357 rc = wiphy_register(wdev->wiphy);
11358 if (rc)
11359 goto out;
11360
11361 return 0;
11362 out:
11363 kfree(priv->ieee->a_band.channels);
11364 kfree(priv->ieee->bg_band.channels);
11365 return rc;
11366 }
11367
11368 /* PCI driver stuff */
11369 static const struct pci_device_id card_ids[] = {
11370 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11371 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11372 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11373 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11374 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11375 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11376 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11377 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11378 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11379 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11380 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11381 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11382 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11383 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11384 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11385 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11386 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11387 {PCI_VDEVICE(INTEL, 0x104f), 0},
11388 {PCI_VDEVICE(INTEL, 0x4220), 0}, /* BG */
11389 {PCI_VDEVICE(INTEL, 0x4221), 0}, /* BG */
11390 {PCI_VDEVICE(INTEL, 0x4223), 0}, /* ABG */
11391 {PCI_VDEVICE(INTEL, 0x4224), 0}, /* ABG */
11392
11393 /* required last entry */
11394 {0,}
11395 };
11396
11397 MODULE_DEVICE_TABLE(pci, card_ids);
11398
11399 static struct attribute *ipw_sysfs_entries[] = {
11400 &dev_attr_rf_kill.attr,
11401 &dev_attr_direct_dword.attr,
11402 &dev_attr_indirect_byte.attr,
11403 &dev_attr_indirect_dword.attr,
11404 &dev_attr_mem_gpio_reg.attr,
11405 &dev_attr_command_event_reg.attr,
11406 &dev_attr_nic_type.attr,
11407 &dev_attr_status.attr,
11408 &dev_attr_cfg.attr,
11409 &dev_attr_error.attr,
11410 &dev_attr_event_log.attr,
11411 &dev_attr_cmd_log.attr,
11412 &dev_attr_eeprom_delay.attr,
11413 &dev_attr_ucode_version.attr,
11414 &dev_attr_rtc.attr,
11415 &dev_attr_scan_age.attr,
11416 &dev_attr_led.attr,
11417 &dev_attr_speed_scan.attr,
11418 &dev_attr_net_stats.attr,
11419 &dev_attr_channels.attr,
11420 #ifdef CONFIG_IPW2200_PROMISCUOUS
11421 &dev_attr_rtap_iface.attr,
11422 &dev_attr_rtap_filter.attr,
11423 #endif
11424 NULL
11425 };
11426
11427 static const struct attribute_group ipw_attribute_group = {
11428 .name = NULL, /* put in device directory */
11429 .attrs = ipw_sysfs_entries,
11430 };
11431
11432 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_prom_open(struct net_device * dev)11433 static int ipw_prom_open(struct net_device *dev)
11434 {
11435 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11436 struct ipw_priv *priv = prom_priv->priv;
11437
11438 IPW_DEBUG_INFO("prom dev->open\n");
11439 netif_carrier_off(dev);
11440
11441 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11442 priv->sys_config.accept_all_data_frames = 1;
11443 priv->sys_config.accept_non_directed_frames = 1;
11444 priv->sys_config.accept_all_mgmt_bcpr = 1;
11445 priv->sys_config.accept_all_mgmt_frames = 1;
11446
11447 ipw_send_system_config(priv);
11448 }
11449
11450 return 0;
11451 }
11452
ipw_prom_stop(struct net_device * dev)11453 static int ipw_prom_stop(struct net_device *dev)
11454 {
11455 struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11456 struct ipw_priv *priv = prom_priv->priv;
11457
11458 IPW_DEBUG_INFO("prom dev->stop\n");
11459
11460 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11461 priv->sys_config.accept_all_data_frames = 0;
11462 priv->sys_config.accept_non_directed_frames = 0;
11463 priv->sys_config.accept_all_mgmt_bcpr = 0;
11464 priv->sys_config.accept_all_mgmt_frames = 0;
11465
11466 ipw_send_system_config(priv);
11467 }
11468
11469 return 0;
11470 }
11471
ipw_prom_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)11472 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11473 struct net_device *dev)
11474 {
11475 IPW_DEBUG_INFO("prom dev->xmit\n");
11476 dev_kfree_skb(skb);
11477 return NETDEV_TX_OK;
11478 }
11479
11480 static const struct net_device_ops ipw_prom_netdev_ops = {
11481 .ndo_open = ipw_prom_open,
11482 .ndo_stop = ipw_prom_stop,
11483 .ndo_start_xmit = ipw_prom_hard_start_xmit,
11484 .ndo_set_mac_address = eth_mac_addr,
11485 .ndo_validate_addr = eth_validate_addr,
11486 };
11487
ipw_prom_alloc(struct ipw_priv * priv)11488 static int ipw_prom_alloc(struct ipw_priv *priv)
11489 {
11490 int rc = 0;
11491
11492 if (priv->prom_net_dev)
11493 return -EPERM;
11494
11495 priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11496 if (priv->prom_net_dev == NULL)
11497 return -ENOMEM;
11498
11499 priv->prom_priv = libipw_priv(priv->prom_net_dev);
11500 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11501 priv->prom_priv->priv = priv;
11502
11503 strcpy(priv->prom_net_dev->name, "rtap%d");
11504 eth_hw_addr_set(priv->prom_net_dev, priv->mac_addr);
11505
11506 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11507 priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11508
11509 priv->prom_net_dev->min_mtu = 68;
11510 priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11511
11512 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11513 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11514
11515 rc = register_netdev(priv->prom_net_dev);
11516 if (rc) {
11517 free_libipw(priv->prom_net_dev, 1);
11518 priv->prom_net_dev = NULL;
11519 return rc;
11520 }
11521
11522 return 0;
11523 }
11524
ipw_prom_free(struct ipw_priv * priv)11525 static void ipw_prom_free(struct ipw_priv *priv)
11526 {
11527 if (!priv->prom_net_dev)
11528 return;
11529
11530 unregister_netdev(priv->prom_net_dev);
11531 free_libipw(priv->prom_net_dev, 1);
11532
11533 priv->prom_net_dev = NULL;
11534 }
11535
11536 #endif
11537
11538 static const struct net_device_ops ipw_netdev_ops = {
11539 .ndo_open = ipw_net_open,
11540 .ndo_stop = ipw_net_stop,
11541 .ndo_set_rx_mode = ipw_net_set_multicast_list,
11542 .ndo_set_mac_address = ipw_net_set_mac_address,
11543 .ndo_start_xmit = libipw_xmit,
11544 .ndo_validate_addr = eth_validate_addr,
11545 };
11546
ipw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11547 static int ipw_pci_probe(struct pci_dev *pdev,
11548 const struct pci_device_id *ent)
11549 {
11550 int err = 0;
11551 struct net_device *net_dev;
11552 void __iomem *base;
11553 u32 length, val;
11554 struct ipw_priv *priv;
11555 int i;
11556
11557 net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11558 if (net_dev == NULL) {
11559 err = -ENOMEM;
11560 goto out;
11561 }
11562
11563 priv = libipw_priv(net_dev);
11564 priv->ieee = netdev_priv(net_dev);
11565
11566 priv->net_dev = net_dev;
11567 priv->pci_dev = pdev;
11568 ipw_debug_level = debug;
11569 spin_lock_init(&priv->irq_lock);
11570 spin_lock_init(&priv->lock);
11571 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11572 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11573
11574 mutex_init(&priv->mutex);
11575 if (pci_enable_device(pdev)) {
11576 err = -ENODEV;
11577 goto out_free_libipw;
11578 }
11579
11580 pci_set_master(pdev);
11581
11582 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
11583 if (!err)
11584 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
11585 if (err) {
11586 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11587 goto out_pci_disable_device;
11588 }
11589
11590 pci_set_drvdata(pdev, priv);
11591
11592 err = pci_request_regions(pdev, DRV_NAME);
11593 if (err)
11594 goto out_pci_disable_device;
11595
11596 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11597 * PCI Tx retries from interfering with C3 CPU state */
11598 pci_read_config_dword(pdev, 0x40, &val);
11599 if ((val & 0x0000ff00) != 0)
11600 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11601
11602 length = pci_resource_len(pdev, 0);
11603 priv->hw_len = length;
11604
11605 base = pci_ioremap_bar(pdev, 0);
11606 if (!base) {
11607 err = -ENODEV;
11608 goto out_pci_release_regions;
11609 }
11610
11611 priv->hw_base = base;
11612 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11613 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11614
11615 ipw_setup_deferred_work(priv);
11616
11617 ipw_sw_reset(priv, 1);
11618
11619 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11620 if (err) {
11621 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11622 goto out_iounmap;
11623 }
11624
11625 SET_NETDEV_DEV(net_dev, &pdev->dev);
11626
11627 mutex_lock(&priv->mutex);
11628
11629 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11630 priv->ieee->set_security = shim__set_security;
11631 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11632
11633 #ifdef CONFIG_IPW2200_QOS
11634 priv->ieee->is_qos_active = ipw_is_qos_active;
11635 priv->ieee->handle_probe_response = ipw_handle_beacon;
11636 priv->ieee->handle_beacon = ipw_handle_probe_response;
11637 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11638 #endif /* CONFIG_IPW2200_QOS */
11639
11640 priv->ieee->perfect_rssi = -20;
11641 priv->ieee->worst_rssi = -85;
11642
11643 net_dev->netdev_ops = &ipw_netdev_ops;
11644 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11645 net_dev->wireless_data = &priv->wireless_data;
11646 net_dev->wireless_handlers = &ipw_wx_handler_def;
11647 net_dev->ethtool_ops = &ipw_ethtool_ops;
11648
11649 net_dev->min_mtu = 68;
11650 net_dev->max_mtu = LIBIPW_DATA_LEN;
11651
11652 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11653 if (err) {
11654 IPW_ERROR("failed to create sysfs device attributes\n");
11655 mutex_unlock(&priv->mutex);
11656 goto out_release_irq;
11657 }
11658
11659 if (ipw_up(priv)) {
11660 mutex_unlock(&priv->mutex);
11661 err = -EIO;
11662 goto out_remove_sysfs;
11663 }
11664
11665 mutex_unlock(&priv->mutex);
11666
11667 err = ipw_wdev_init(net_dev);
11668 if (err) {
11669 IPW_ERROR("failed to register wireless device\n");
11670 goto out_remove_sysfs;
11671 }
11672
11673 err = register_netdev(net_dev);
11674 if (err) {
11675 IPW_ERROR("failed to register network device\n");
11676 goto out_unregister_wiphy;
11677 }
11678
11679 #ifdef CONFIG_IPW2200_PROMISCUOUS
11680 if (rtap_iface) {
11681 err = ipw_prom_alloc(priv);
11682 if (err) {
11683 IPW_ERROR("Failed to register promiscuous network "
11684 "device (error %d).\n", err);
11685 unregister_netdev(priv->net_dev);
11686 goto out_unregister_wiphy;
11687 }
11688 }
11689 #endif
11690
11691 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11692 "channels, %d 802.11a channels)\n",
11693 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11694 priv->ieee->geo.a_channels);
11695
11696 return 0;
11697
11698 out_unregister_wiphy:
11699 wiphy_unregister(priv->ieee->wdev.wiphy);
11700 kfree(priv->ieee->a_band.channels);
11701 kfree(priv->ieee->bg_band.channels);
11702 out_remove_sysfs:
11703 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11704 out_release_irq:
11705 free_irq(pdev->irq, priv);
11706 out_iounmap:
11707 iounmap(priv->hw_base);
11708 out_pci_release_regions:
11709 pci_release_regions(pdev);
11710 out_pci_disable_device:
11711 pci_disable_device(pdev);
11712 out_free_libipw:
11713 free_libipw(priv->net_dev, 0);
11714 out:
11715 return err;
11716 }
11717
ipw_pci_remove(struct pci_dev * pdev)11718 static void ipw_pci_remove(struct pci_dev *pdev)
11719 {
11720 struct ipw_priv *priv = pci_get_drvdata(pdev);
11721 struct list_head *p, *q;
11722 int i;
11723
11724 if (!priv)
11725 return;
11726
11727 mutex_lock(&priv->mutex);
11728
11729 priv->status |= STATUS_EXIT_PENDING;
11730 ipw_down(priv);
11731 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11732
11733 mutex_unlock(&priv->mutex);
11734
11735 unregister_netdev(priv->net_dev);
11736
11737 if (priv->rxq) {
11738 ipw_rx_queue_free(priv, priv->rxq);
11739 priv->rxq = NULL;
11740 }
11741 ipw_tx_queue_free(priv);
11742
11743 if (priv->cmdlog) {
11744 kfree(priv->cmdlog);
11745 priv->cmdlog = NULL;
11746 }
11747
11748 /* make sure all works are inactive */
11749 cancel_delayed_work_sync(&priv->adhoc_check);
11750 cancel_work_sync(&priv->associate);
11751 cancel_work_sync(&priv->disassociate);
11752 cancel_work_sync(&priv->system_config);
11753 cancel_work_sync(&priv->rx_replenish);
11754 cancel_work_sync(&priv->adapter_restart);
11755 cancel_delayed_work_sync(&priv->rf_kill);
11756 cancel_work_sync(&priv->up);
11757 cancel_work_sync(&priv->down);
11758 cancel_delayed_work_sync(&priv->request_scan);
11759 cancel_delayed_work_sync(&priv->request_direct_scan);
11760 cancel_delayed_work_sync(&priv->request_passive_scan);
11761 cancel_delayed_work_sync(&priv->scan_event);
11762 cancel_delayed_work_sync(&priv->gather_stats);
11763 cancel_work_sync(&priv->abort_scan);
11764 cancel_work_sync(&priv->roam);
11765 cancel_delayed_work_sync(&priv->scan_check);
11766 cancel_work_sync(&priv->link_up);
11767 cancel_work_sync(&priv->link_down);
11768 cancel_delayed_work_sync(&priv->led_link_on);
11769 cancel_delayed_work_sync(&priv->led_link_off);
11770 cancel_delayed_work_sync(&priv->led_act_off);
11771 cancel_work_sync(&priv->merge_networks);
11772
11773 /* Free MAC hash list for ADHOC */
11774 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11775 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11776 list_del(p);
11777 kfree(list_entry(p, struct ipw_ibss_seq, list));
11778 }
11779 }
11780
11781 kfree(priv->error);
11782 priv->error = NULL;
11783
11784 #ifdef CONFIG_IPW2200_PROMISCUOUS
11785 ipw_prom_free(priv);
11786 #endif
11787
11788 free_irq(pdev->irq, priv);
11789 iounmap(priv->hw_base);
11790 pci_release_regions(pdev);
11791 pci_disable_device(pdev);
11792 /* wiphy_unregister needs to be here, before free_libipw */
11793 wiphy_unregister(priv->ieee->wdev.wiphy);
11794 kfree(priv->ieee->a_band.channels);
11795 kfree(priv->ieee->bg_band.channels);
11796 free_libipw(priv->net_dev, 0);
11797 free_firmware();
11798 }
11799
ipw_pci_suspend(struct device * dev_d)11800 static int __maybe_unused ipw_pci_suspend(struct device *dev_d)
11801 {
11802 struct ipw_priv *priv = dev_get_drvdata(dev_d);
11803 struct net_device *dev = priv->net_dev;
11804
11805 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11806
11807 /* Take down the device; powers it off, etc. */
11808 ipw_down(priv);
11809
11810 /* Remove the PRESENT state of the device */
11811 netif_device_detach(dev);
11812
11813 priv->suspend_at = ktime_get_boottime_seconds();
11814
11815 return 0;
11816 }
11817
ipw_pci_resume(struct device * dev_d)11818 static int __maybe_unused ipw_pci_resume(struct device *dev_d)
11819 {
11820 struct pci_dev *pdev = to_pci_dev(dev_d);
11821 struct ipw_priv *priv = pci_get_drvdata(pdev);
11822 struct net_device *dev = priv->net_dev;
11823 u32 val;
11824
11825 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11826
11827 /*
11828 * Suspend/Resume resets the PCI configuration space, so we have to
11829 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11830 * from interfering with C3 CPU state. pci_restore_state won't help
11831 * here since it only restores the first 64 bytes pci config header.
11832 */
11833 pci_read_config_dword(pdev, 0x40, &val);
11834 if ((val & 0x0000ff00) != 0)
11835 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11836
11837 /* Set the device back into the PRESENT state; this will also wake
11838 * the queue of needed */
11839 netif_device_attach(dev);
11840
11841 priv->suspend_time = ktime_get_boottime_seconds() - priv->suspend_at;
11842
11843 /* Bring the device back up */
11844 schedule_work(&priv->up);
11845
11846 return 0;
11847 }
11848
ipw_pci_shutdown(struct pci_dev * pdev)11849 static void ipw_pci_shutdown(struct pci_dev *pdev)
11850 {
11851 struct ipw_priv *priv = pci_get_drvdata(pdev);
11852
11853 /* Take down the device; powers it off, etc. */
11854 ipw_down(priv);
11855
11856 pci_disable_device(pdev);
11857 }
11858
11859 static SIMPLE_DEV_PM_OPS(ipw_pci_pm_ops, ipw_pci_suspend, ipw_pci_resume);
11860
11861 /* driver initialization stuff */
11862 static struct pci_driver ipw_driver = {
11863 .name = DRV_NAME,
11864 .id_table = card_ids,
11865 .probe = ipw_pci_probe,
11866 .remove = ipw_pci_remove,
11867 .driver.pm = &ipw_pci_pm_ops,
11868 .shutdown = ipw_pci_shutdown,
11869 };
11870
ipw_init(void)11871 static int __init ipw_init(void)
11872 {
11873 int ret;
11874
11875 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11876 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11877
11878 ret = pci_register_driver(&ipw_driver);
11879 if (ret) {
11880 IPW_ERROR("Unable to initialize PCI module\n");
11881 return ret;
11882 }
11883
11884 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11885 if (ret) {
11886 IPW_ERROR("Unable to create driver sysfs file\n");
11887 pci_unregister_driver(&ipw_driver);
11888 return ret;
11889 }
11890
11891 return ret;
11892 }
11893
ipw_exit(void)11894 static void __exit ipw_exit(void)
11895 {
11896 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11897 pci_unregister_driver(&ipw_driver);
11898 }
11899
11900 module_param(disable, int, 0444);
11901 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11902
11903 module_param(associate, int, 0444);
11904 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11905
11906 module_param(auto_create, int, 0444);
11907 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11908
11909 module_param_named(led, led_support, int, 0444);
11910 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
11911
11912 module_param(debug, int, 0444);
11913 MODULE_PARM_DESC(debug, "debug output mask");
11914
11915 module_param_named(channel, default_channel, int, 0444);
11916 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11917
11918 #ifdef CONFIG_IPW2200_PROMISCUOUS
11919 module_param(rtap_iface, int, 0444);
11920 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11921 #endif
11922
11923 #ifdef CONFIG_IPW2200_QOS
11924 module_param(qos_enable, int, 0444);
11925 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalities");
11926
11927 module_param(qos_burst_enable, int, 0444);
11928 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11929
11930 module_param(qos_no_ack_mask, int, 0444);
11931 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11932
11933 module_param(burst_duration_CCK, int, 0444);
11934 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11935
11936 module_param(burst_duration_OFDM, int, 0444);
11937 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11938 #endif /* CONFIG_IPW2200_QOS */
11939
11940 #ifdef CONFIG_IPW2200_MONITOR
11941 module_param_named(mode, network_mode, int, 0444);
11942 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11943 #else
11944 module_param_named(mode, network_mode, int, 0444);
11945 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11946 #endif
11947
11948 module_param(bt_coexist, int, 0444);
11949 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11950
11951 module_param(hwcrypto, int, 0444);
11952 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11953
11954 module_param(cmdlog, int, 0444);
11955 MODULE_PARM_DESC(cmdlog,
11956 "allocate a ring buffer for logging firmware commands");
11957
11958 module_param(roaming, int, 0444);
11959 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11960
11961 module_param(antenna, int, 0444);
11962 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11963
11964 module_exit(ipw_exit);
11965 module_init(ipw_init);
11966