1 /*
2 * SH4 emulation
3 *
4 * Copyright (c) 2005 Samuel Tardieu
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "fpu/softfloat.h"
25
26 #ifndef CONFIG_USER_ONLY
27
superh_cpu_do_unaligned_access(CPUState * cs,vaddr addr,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)28 void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
29 MMUAccessType access_type,
30 int mmu_idx, uintptr_t retaddr)
31 {
32 cpu_env(cs)->tea = addr;
33 switch (access_type) {
34 case MMU_INST_FETCH:
35 case MMU_DATA_LOAD:
36 cs->exception_index = 0x0e0;
37 break;
38 case MMU_DATA_STORE:
39 cs->exception_index = 0x100;
40 break;
41 default:
42 g_assert_not_reached();
43 }
44 cpu_loop_exit_restore(cs, retaddr);
45 }
46
47 #endif
48
helper_ldtlb(CPUSH4State * env)49 void helper_ldtlb(CPUSH4State *env)
50 {
51 #ifdef CONFIG_USER_ONLY
52 cpu_abort(env_cpu(env), "Unhandled ldtlb");
53 #else
54 cpu_load_tlb(env);
55 #endif
56 }
57
58 static inline G_NORETURN
raise_exception(CPUSH4State * env,int index,uintptr_t retaddr)59 void raise_exception(CPUSH4State *env, int index,
60 uintptr_t retaddr)
61 {
62 CPUState *cs = env_cpu(env);
63
64 cs->exception_index = index;
65 cpu_loop_exit_restore(cs, retaddr);
66 }
67
helper_raise_illegal_instruction(CPUSH4State * env)68 void helper_raise_illegal_instruction(CPUSH4State *env)
69 {
70 raise_exception(env, 0x180, 0);
71 }
72
helper_raise_slot_illegal_instruction(CPUSH4State * env)73 void helper_raise_slot_illegal_instruction(CPUSH4State *env)
74 {
75 raise_exception(env, 0x1a0, 0);
76 }
77
helper_raise_fpu_disable(CPUSH4State * env)78 void helper_raise_fpu_disable(CPUSH4State *env)
79 {
80 raise_exception(env, 0x800, 0);
81 }
82
helper_raise_slot_fpu_disable(CPUSH4State * env)83 void helper_raise_slot_fpu_disable(CPUSH4State *env)
84 {
85 raise_exception(env, 0x820, 0);
86 }
87
helper_sleep(CPUSH4State * env)88 void helper_sleep(CPUSH4State *env)
89 {
90 CPUState *cs = env_cpu(env);
91
92 cs->halted = 1;
93 env->in_sleep = 1;
94 raise_exception(env, EXCP_HLT, 0);
95 }
96
helper_trapa(CPUSH4State * env,uint32_t tra)97 void helper_trapa(CPUSH4State *env, uint32_t tra)
98 {
99 env->tra = tra << 2;
100 raise_exception(env, 0x160, 0);
101 }
102
helper_exclusive(CPUSH4State * env)103 void helper_exclusive(CPUSH4State *env)
104 {
105 /* We do not want cpu_restore_state to run. */
106 cpu_loop_exit_atomic(env_cpu(env), 0);
107 }
108
helper_movcal(CPUSH4State * env,uint32_t address,uint32_t value)109 void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
110 {
111 if (cpu_sh4_is_cached (env, address))
112 {
113 memory_content *r = g_new(memory_content, 1);
114
115 r->address = address;
116 r->value = value;
117 r->next = NULL;
118
119 *(env->movcal_backup_tail) = r;
120 env->movcal_backup_tail = &(r->next);
121 }
122 }
123
helper_discard_movcal_backup(CPUSH4State * env)124 void helper_discard_movcal_backup(CPUSH4State *env)
125 {
126 memory_content *current = env->movcal_backup;
127
128 while(current)
129 {
130 memory_content *next = current->next;
131 g_free(current);
132 env->movcal_backup = current = next;
133 if (current == NULL)
134 env->movcal_backup_tail = &(env->movcal_backup);
135 }
136 }
137
helper_ocbi(CPUSH4State * env,uint32_t address)138 void helper_ocbi(CPUSH4State *env, uint32_t address)
139 {
140 memory_content **current = &(env->movcal_backup);
141 while (*current)
142 {
143 uint32_t a = (*current)->address;
144 if ((a & ~0x1F) == (address & ~0x1F))
145 {
146 memory_content *next = (*current)->next;
147 cpu_stl_data(env, a, (*current)->value);
148
149 if (next == NULL)
150 {
151 env->movcal_backup_tail = current;
152 }
153
154 g_free(*current);
155 *current = next;
156 break;
157 }
158 }
159 }
160
helper_macl(CPUSH4State * env,int32_t arg0,int32_t arg1)161 void helper_macl(CPUSH4State *env, int32_t arg0, int32_t arg1)
162 {
163 const int64_t min = -(1ll << 47);
164 const int64_t max = (1ll << 47) - 1;
165 int64_t mul = (int64_t)arg0 * arg1;
166 int64_t mac = env->mac;
167 int64_t res;
168
169 if (!(env->sr & (1u << SR_S))) {
170 res = mac + mul;
171 } else if (sadd64_overflow(mac, mul, &res)) {
172 res = mac < 0 ? min : max;
173 } else {
174 res = MIN(MAX(res, min), max);
175 }
176
177 env->mac = res;
178 }
179
helper_macw(CPUSH4State * env,int32_t arg0,int32_t arg1)180 void helper_macw(CPUSH4State *env, int32_t arg0, int32_t arg1)
181 {
182 /* Inputs are already sign-extended from 16 bits. */
183 int32_t mul = arg0 * arg1;
184
185 if (env->sr & (1u << SR_S)) {
186 /*
187 * In saturation arithmetic mode, the accumulator is 32-bit
188 * with carry. MACH is not considered during the addition
189 * operation nor the 32-bit saturation logic.
190 */
191 int32_t res, macl = env->macl;
192
193 if (sadd32_overflow(macl, mul, &res)) {
194 res = macl < 0 ? INT32_MIN : INT32_MAX;
195 /* If overflow occurs, the MACH register is set to 1. */
196 env->mach = 1;
197 }
198 env->macl = res;
199 } else {
200 /* In non-saturation arithmetic mode, the accumulator is 64-bit */
201 env->mac += mul;
202 }
203 }
204
helper_ld_fpscr(CPUSH4State * env,uint32_t val)205 void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
206 {
207 env->fpscr = val & FPSCR_MASK;
208 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
209 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
210 } else {
211 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
212 }
213 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
214 }
215
update_fpscr(CPUSH4State * env,uintptr_t retaddr)216 static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
217 {
218 int xcpt, cause, enable;
219
220 xcpt = get_float_exception_flags(&env->fp_status);
221
222 /* Clear the cause entries */
223 env->fpscr &= ~FPSCR_CAUSE_MASK;
224
225 if (unlikely(xcpt)) {
226 if (xcpt & float_flag_invalid) {
227 env->fpscr |= FPSCR_CAUSE_V;
228 }
229 if (xcpt & float_flag_divbyzero) {
230 env->fpscr |= FPSCR_CAUSE_Z;
231 }
232 if (xcpt & float_flag_overflow) {
233 env->fpscr |= FPSCR_CAUSE_O;
234 }
235 if (xcpt & float_flag_underflow) {
236 env->fpscr |= FPSCR_CAUSE_U;
237 }
238 if (xcpt & float_flag_inexact) {
239 env->fpscr |= FPSCR_CAUSE_I;
240 }
241
242 /* Accumulate in flag entries */
243 env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
244 >> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
245
246 /* Generate an exception if enabled */
247 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
248 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
249 if (cause & enable) {
250 raise_exception(env, 0x120, retaddr);
251 }
252 }
253 }
254
helper_fadd_FT(CPUSH4State * env,float32 t0,float32 t1)255 float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
256 {
257 set_float_exception_flags(0, &env->fp_status);
258 t0 = float32_add(t0, t1, &env->fp_status);
259 update_fpscr(env, GETPC());
260 return t0;
261 }
262
helper_fadd_DT(CPUSH4State * env,float64 t0,float64 t1)263 float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
264 {
265 set_float_exception_flags(0, &env->fp_status);
266 t0 = float64_add(t0, t1, &env->fp_status);
267 update_fpscr(env, GETPC());
268 return t0;
269 }
270
helper_fcmp_eq_FT(CPUSH4State * env,float32 t0,float32 t1)271 uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
272 {
273 int relation;
274
275 set_float_exception_flags(0, &env->fp_status);
276 relation = float32_compare(t0, t1, &env->fp_status);
277 update_fpscr(env, GETPC());
278 return relation == float_relation_equal;
279 }
280
helper_fcmp_eq_DT(CPUSH4State * env,float64 t0,float64 t1)281 uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
282 {
283 int relation;
284
285 set_float_exception_flags(0, &env->fp_status);
286 relation = float64_compare(t0, t1, &env->fp_status);
287 update_fpscr(env, GETPC());
288 return relation == float_relation_equal;
289 }
290
helper_fcmp_gt_FT(CPUSH4State * env,float32 t0,float32 t1)291 uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
292 {
293 int relation;
294
295 set_float_exception_flags(0, &env->fp_status);
296 relation = float32_compare(t0, t1, &env->fp_status);
297 update_fpscr(env, GETPC());
298 return relation == float_relation_greater;
299 }
300
helper_fcmp_gt_DT(CPUSH4State * env,float64 t0,float64 t1)301 uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
302 {
303 int relation;
304
305 set_float_exception_flags(0, &env->fp_status);
306 relation = float64_compare(t0, t1, &env->fp_status);
307 update_fpscr(env, GETPC());
308 return relation == float_relation_greater;
309 }
310
helper_fcnvsd_FT_DT(CPUSH4State * env,float32 t0)311 float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
312 {
313 float64 ret;
314 set_float_exception_flags(0, &env->fp_status);
315 ret = float32_to_float64(t0, &env->fp_status);
316 update_fpscr(env, GETPC());
317 return ret;
318 }
319
helper_fcnvds_DT_FT(CPUSH4State * env,float64 t0)320 float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
321 {
322 float32 ret;
323 set_float_exception_flags(0, &env->fp_status);
324 ret = float64_to_float32(t0, &env->fp_status);
325 update_fpscr(env, GETPC());
326 return ret;
327 }
328
helper_fdiv_FT(CPUSH4State * env,float32 t0,float32 t1)329 float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
330 {
331 set_float_exception_flags(0, &env->fp_status);
332 t0 = float32_div(t0, t1, &env->fp_status);
333 update_fpscr(env, GETPC());
334 return t0;
335 }
336
helper_fdiv_DT(CPUSH4State * env,float64 t0,float64 t1)337 float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
338 {
339 set_float_exception_flags(0, &env->fp_status);
340 t0 = float64_div(t0, t1, &env->fp_status);
341 update_fpscr(env, GETPC());
342 return t0;
343 }
344
helper_float_FT(CPUSH4State * env,uint32_t t0)345 float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
346 {
347 float32 ret;
348 set_float_exception_flags(0, &env->fp_status);
349 ret = int32_to_float32(t0, &env->fp_status);
350 update_fpscr(env, GETPC());
351 return ret;
352 }
353
helper_float_DT(CPUSH4State * env,uint32_t t0)354 float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
355 {
356 float64 ret;
357 set_float_exception_flags(0, &env->fp_status);
358 ret = int32_to_float64(t0, &env->fp_status);
359 update_fpscr(env, GETPC());
360 return ret;
361 }
362
helper_fmac_FT(CPUSH4State * env,float32 t0,float32 t1,float32 t2)363 float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
364 {
365 set_float_exception_flags(0, &env->fp_status);
366 t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
367 update_fpscr(env, GETPC());
368 return t0;
369 }
370
helper_fmul_FT(CPUSH4State * env,float32 t0,float32 t1)371 float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
372 {
373 set_float_exception_flags(0, &env->fp_status);
374 t0 = float32_mul(t0, t1, &env->fp_status);
375 update_fpscr(env, GETPC());
376 return t0;
377 }
378
helper_fmul_DT(CPUSH4State * env,float64 t0,float64 t1)379 float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
380 {
381 set_float_exception_flags(0, &env->fp_status);
382 t0 = float64_mul(t0, t1, &env->fp_status);
383 update_fpscr(env, GETPC());
384 return t0;
385 }
386
helper_fsqrt_FT(CPUSH4State * env,float32 t0)387 float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
388 {
389 set_float_exception_flags(0, &env->fp_status);
390 t0 = float32_sqrt(t0, &env->fp_status);
391 update_fpscr(env, GETPC());
392 return t0;
393 }
394
helper_fsqrt_DT(CPUSH4State * env,float64 t0)395 float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
396 {
397 set_float_exception_flags(0, &env->fp_status);
398 t0 = float64_sqrt(t0, &env->fp_status);
399 update_fpscr(env, GETPC());
400 return t0;
401 }
402
helper_fsrra_FT(CPUSH4State * env,float32 t0)403 float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
404 {
405 set_float_exception_flags(0, &env->fp_status);
406 /* "Approximate" 1/sqrt(x) via actual computation. */
407 t0 = float32_sqrt(t0, &env->fp_status);
408 t0 = float32_div(float32_one, t0, &env->fp_status);
409 /*
410 * Since this is supposed to be an approximation, an imprecision
411 * exception is required. One supposes this also follows the usual
412 * IEEE rule that other exceptions take precedence.
413 */
414 if (get_float_exception_flags(&env->fp_status) == 0) {
415 set_float_exception_flags(float_flag_inexact, &env->fp_status);
416 }
417 update_fpscr(env, GETPC());
418 return t0;
419 }
420
helper_fsub_FT(CPUSH4State * env,float32 t0,float32 t1)421 float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
422 {
423 set_float_exception_flags(0, &env->fp_status);
424 t0 = float32_sub(t0, t1, &env->fp_status);
425 update_fpscr(env, GETPC());
426 return t0;
427 }
428
helper_fsub_DT(CPUSH4State * env,float64 t0,float64 t1)429 float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
430 {
431 set_float_exception_flags(0, &env->fp_status);
432 t0 = float64_sub(t0, t1, &env->fp_status);
433 update_fpscr(env, GETPC());
434 return t0;
435 }
436
helper_ftrc_FT(CPUSH4State * env,float32 t0)437 uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
438 {
439 uint32_t ret;
440 set_float_exception_flags(0, &env->fp_status);
441 ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
442 update_fpscr(env, GETPC());
443 return ret;
444 }
445
helper_ftrc_DT(CPUSH4State * env,float64 t0)446 uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
447 {
448 uint32_t ret;
449 set_float_exception_flags(0, &env->fp_status);
450 ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
451 update_fpscr(env, GETPC());
452 return ret;
453 }
454
helper_fipr(CPUSH4State * env,uint32_t m,uint32_t n)455 void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
456 {
457 int bank, i;
458 float32 r, p;
459
460 bank = (env->sr & FPSCR_FR) ? 16 : 0;
461 r = float32_zero;
462 set_float_exception_flags(0, &env->fp_status);
463
464 for (i = 0 ; i < 4 ; i++) {
465 p = float32_mul(env->fregs[bank + m + i],
466 env->fregs[bank + n + i],
467 &env->fp_status);
468 r = float32_add(r, p, &env->fp_status);
469 }
470 update_fpscr(env, GETPC());
471
472 env->fregs[bank + n + 3] = r;
473 }
474
helper_ftrv(CPUSH4State * env,uint32_t n)475 void helper_ftrv(CPUSH4State *env, uint32_t n)
476 {
477 int bank_matrix, bank_vector;
478 int i, j;
479 float32 r[4];
480 float32 p;
481
482 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
483 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
484 set_float_exception_flags(0, &env->fp_status);
485 for (i = 0 ; i < 4 ; i++) {
486 r[i] = float32_zero;
487 for (j = 0 ; j < 4 ; j++) {
488 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
489 env->fregs[bank_vector + j],
490 &env->fp_status);
491 r[i] = float32_add(r[i], p, &env->fp_status);
492 }
493 }
494 update_fpscr(env, GETPC());
495
496 for (i = 0 ; i < 4 ; i++) {
497 env->fregs[bank_vector + i] = r[i];
498 }
499 }
500