xref: /openbmc/linux/include/linux/platform_data/cros_ec_commands.h (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  /* SPDX-License-Identifier: GPL-2.0-only */
2  /*
3   * Host communication command constants for ChromeOS EC
4   *
5   * Copyright (C) 2012 Google, Inc
6   *
7   * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8   * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9   */
10  
11  /* Host communication command constants for Chrome EC */
12  
13  #ifndef __CROS_EC_COMMANDS_H
14  #define __CROS_EC_COMMANDS_H
15  
16  #include <linux/bits.h>
17  #include <linux/types.h>
18  
19  #define BUILD_ASSERT(_cond)
20  
21  /*
22   * Current version of this protocol
23   *
24   * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25   * determined in other ways.  Remove this once the kernel code no longer
26   * depends on it.
27   */
28  #define EC_PROTO_VERSION          0x00000002
29  
30  /* Command version mask */
31  #define EC_VER_MASK(version) BIT(version)
32  
33  /* I/O addresses for ACPI commands */
34  #define EC_LPC_ADDR_ACPI_DATA  0x62
35  #define EC_LPC_ADDR_ACPI_CMD   0x66
36  
37  /* I/O addresses for host command */
38  #define EC_LPC_ADDR_HOST_DATA  0x200
39  #define EC_LPC_ADDR_HOST_CMD   0x204
40  
41  /* I/O addresses for host command args and params */
42  /* Protocol version 2 */
43  #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
44  #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
45  					 * EC_PROTO2_MAX_PARAM_SIZE
46  					 */
47  /* Protocol version 3 */
48  #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
49  #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
50  
51  /*
52   * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53   * and they tell the kernel that so we have to think of it as two parts.
54   *
55   * Other BIOSes report only the I/O port region spanned by the Microchip
56   * MEC series EC; an attempt to address a larger region may fail.
57   */
58  #define EC_HOST_CMD_REGION0       0x800
59  #define EC_HOST_CMD_REGION1       0x880
60  #define EC_HOST_CMD_REGION_SIZE    0x80
61  #define EC_HOST_CMD_MEC_REGION_SIZE 0x8
62  
63  /* EC command register bit functions */
64  #define EC_LPC_CMDR_DATA	BIT(0)  /* Data ready for host to read */
65  #define EC_LPC_CMDR_PENDING	BIT(1)  /* Write pending to EC */
66  #define EC_LPC_CMDR_BUSY	BIT(2)  /* EC is busy processing a command */
67  #define EC_LPC_CMDR_CMD		BIT(3)  /* Last host write was a command */
68  #define EC_LPC_CMDR_ACPI_BRST	BIT(4)  /* Burst mode (not used) */
69  #define EC_LPC_CMDR_SCI		BIT(5)  /* SCI event is pending */
70  #define EC_LPC_CMDR_SMI		BIT(6)  /* SMI event is pending */
71  
72  #define EC_LPC_ADDR_MEMMAP       0x900
73  #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
74  #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
75  
76  /* The offset address of each type of data in mapped memory. */
77  #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
78  #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
79  #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
80  #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
81  #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
82  #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
83  #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
84  #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
85  #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
86  #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
87  /* Unused 0x28 - 0x2f */
88  #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
89  /* Unused 0x31 - 0x33 */
90  #define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
91  /* Battery values are all 32 bits, unless otherwise noted. */
92  #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
93  #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
94  #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
95  #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
96  #define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
97  #define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
98  /* Unused 0x4f */
99  #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
100  #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
101  #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
102  #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
103  /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104  #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
105  #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
106  #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
107  #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
108  #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
109  /* Unused 0x84 - 0x8f */
110  #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
111  /* Unused 0x91 */
112  #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
113  /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114  /* 0x94 - 0x99: 1st Accelerometer */
115  /* 0x9a - 0x9f: 2nd Accelerometer */
116  #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117  /* Unused 0xa6 - 0xdf */
118  
119  /*
120   * ACPI is unable to access memory mapped data at or above this offset due to
121   * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122   * which might be needed by ACPI.
123   */
124  #define EC_MEMMAP_NO_ACPI 0xe0
125  
126  /* Define the format of the accelerometer mapped memory status byte. */
127  #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
128  #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
129  #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
130  
131  /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132  #define EC_TEMP_SENSOR_ENTRIES     16
133  /*
134   * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135   *
136   * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137   */
138  #define EC_TEMP_SENSOR_B_ENTRIES      8
139  
140  /* Special values for mapped temperature sensors */
141  #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
142  #define EC_TEMP_SENSOR_ERROR          0xfe
143  #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
144  #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145  /*
146   * The offset of temperature value stored in mapped memory.  This allows
147   * reporting a temperature range of 200K to 454K = -73C to 181C.
148   */
149  #define EC_TEMP_SENSOR_OFFSET      200
150  
151  /*
152   * Number of ALS readings at EC_MEMMAP_ALS
153   */
154  #define EC_ALS_ENTRIES             2
155  
156  /*
157   * The default value a temperature sensor will return when it is present but
158   * has not been read this boot.  This is a reasonable number to avoid
159   * triggering alarms on the host.
160   */
161  #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
162  
163  #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
164  #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
165  #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
166  
167  /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168  #define EC_BATT_FLAG_AC_PRESENT   0x01
169  #define EC_BATT_FLAG_BATT_PRESENT 0x02
170  #define EC_BATT_FLAG_DISCHARGING  0x04
171  #define EC_BATT_FLAG_CHARGING     0x08
172  #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173  /* Set if some of the static/dynamic data is invalid (or outdated). */
174  #define EC_BATT_FLAG_INVALID_DATA 0x20
175  
176  /* Switch flags at EC_MEMMAP_SWITCHES */
177  #define EC_SWITCH_LID_OPEN               0x01
178  #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
179  #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
180  /* Was recovery requested via keyboard; now unused. */
181  #define EC_SWITCH_IGNORE1		 0x08
182  /* Recovery requested via dedicated signal (from servo board) */
183  #define EC_SWITCH_DEDICATED_RECOVERY     0x10
184  /* Was fake developer mode switch; now unused.  Remove in next refactor. */
185  #define EC_SWITCH_IGNORE0                0x20
186  
187  /* Host command interface flags */
188  /* Host command interface supports LPC args (LPC interface only) */
189  #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
190  /* Host command interface supports version 3 protocol */
191  #define EC_HOST_CMD_FLAG_VERSION_3   0x02
192  
193  /* Wireless switch flags */
194  #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
195  #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
196  #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
197  #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
198  #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
199  
200  /*****************************************************************************/
201  /*
202   * ACPI commands
203   *
204   * These are valid ONLY on the ACPI command/data port.
205   */
206  
207  /*
208   * ACPI Read Embedded Controller
209   *
210   * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
211   *
212   * Use the following sequence:
213   *
214   *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
215   *    - Wait for EC_LPC_CMDR_PENDING bit to clear
216   *    - Write address to EC_LPC_ADDR_ACPI_DATA
217   *    - Wait for EC_LPC_CMDR_DATA bit to set
218   *    - Read value from EC_LPC_ADDR_ACPI_DATA
219   */
220  #define EC_CMD_ACPI_READ 0x0080
221  
222  /*
223   * ACPI Write Embedded Controller
224   *
225   * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
226   *
227   * Use the following sequence:
228   *
229   *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
230   *    - Wait for EC_LPC_CMDR_PENDING bit to clear
231   *    - Write address to EC_LPC_ADDR_ACPI_DATA
232   *    - Wait for EC_LPC_CMDR_PENDING bit to clear
233   *    - Write value to EC_LPC_ADDR_ACPI_DATA
234   */
235  #define EC_CMD_ACPI_WRITE 0x0081
236  
237  /*
238   * ACPI Burst Enable Embedded Controller
239   *
240   * This enables burst mode on the EC to allow the host to issue several
241   * commands back-to-back. While in this mode, writes to mapped multi-byte
242   * data are locked out to ensure data consistency.
243   */
244  #define EC_CMD_ACPI_BURST_ENABLE 0x0082
245  
246  /*
247   * ACPI Burst Disable Embedded Controller
248   *
249   * This disables burst mode on the EC and stops preventing EC writes to mapped
250   * multi-byte data.
251   */
252  #define EC_CMD_ACPI_BURST_DISABLE 0x0083
253  
254  /*
255   * ACPI Query Embedded Controller
256   *
257   * This clears the lowest-order bit in the currently pending host events, and
258   * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
259   * event 0x80000000 = 32), or 0 if no event was pending.
260   */
261  #define EC_CMD_ACPI_QUERY_EVENT 0x0084
262  
263  /* Valid addresses in ACPI memory space, for read/write commands */
264  
265  /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
266  #define EC_ACPI_MEM_VERSION            0x00
267  /*
268   * Test location; writing value here updates test compliment byte to (0xff -
269   * value).
270   */
271  #define EC_ACPI_MEM_TEST               0x01
272  /* Test compliment; writes here are ignored. */
273  #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
274  
275  /* Keyboard backlight brightness percent (0 - 100) */
276  #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
277  /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
278  #define EC_ACPI_MEM_FAN_DUTY           0x04
279  
280  /*
281   * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
282   * independent thresholds attached to them. The current value of the ID
283   * register determines which sensor is affected by the THRESHOLD and COMMIT
284   * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
285   * as the memory-mapped sensors. The COMMIT register applies those settings.
286   *
287   * The spec does not mandate any way to read back the threshold settings
288   * themselves, but when a threshold is crossed the AP needs a way to determine
289   * which sensor(s) are responsible. Each reading of the ID register clears and
290   * returns one sensor ID that has crossed one of its threshold (in either
291   * direction) since the last read. A value of 0xFF means "no new thresholds
292   * have tripped". Setting or enabling the thresholds for a sensor will clear
293   * the unread event count for that sensor.
294   */
295  #define EC_ACPI_MEM_TEMP_ID            0x05
296  #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
297  #define EC_ACPI_MEM_TEMP_COMMIT        0x07
298  /*
299   * Here are the bits for the COMMIT register:
300   *   bit 0 selects the threshold index for the chosen sensor (0/1)
301   *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
302   * Each write to the commit register affects one threshold.
303   */
304  #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
305  #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
306  /*
307   * Example:
308   *
309   * Set the thresholds for sensor 2 to 50 C and 60 C:
310   *   write 2 to [0x05]      --  select temp sensor 2
311   *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
312   *   write 0x2 to [0x07]    --  enable threshold 0 with this value
313   *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
314   *   write 0x3 to [0x07]    --  enable threshold 1 with this value
315   *
316   * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
317   *   write 2 to [0x05]      --  select temp sensor 2
318   *   write 0x1 to [0x07]    --  disable threshold 1
319   */
320  
321  /* DPTF battery charging current limit */
322  #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
323  
324  /* Charging limit is specified in 64 mA steps */
325  #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
326  /* Value to disable DPTF battery charging limit */
327  #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
328  
329  /*
330   * Report device orientation
331   *  Bits       Definition
332   *  3:1        Device DPTF Profile Number (DDPN)
333   *               0   = Reserved for backward compatibility (indicates no valid
334   *                     profile number. Host should fall back to using TBMD).
335   *              1..7 = DPTF Profile number to indicate to host which table needs
336   *                     to be loaded.
337   *   0         Tablet Mode Device Indicator (TBMD)
338   */
339  #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
340  #define EC_ACPI_MEM_TBMD_SHIFT         0
341  #define EC_ACPI_MEM_TBMD_MASK          0x1
342  #define EC_ACPI_MEM_DDPN_SHIFT         1
343  #define EC_ACPI_MEM_DDPN_MASK          0x7
344  
345  /*
346   * Report device features. Uses the same format as the host command, except:
347   *
348   * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
349   * of features", which is of limited interest when the system is already
350   * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
351   * these are supported, it defaults to 0.
352   * This allows detecting the presence of this field since older versions of
353   * the EC codebase would simply return 0xff to that unknown address. Check
354   * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
355   * are valid.
356   */
357  #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
358  #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
359  #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
360  #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
361  #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
362  #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
363  #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
364  #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
365  
366  #define EC_ACPI_MEM_BATTERY_INDEX    0x12
367  
368  /*
369   * USB Port Power. Each bit indicates whether the corresponding USB ports' power
370   * is enabled (1) or disabled (0).
371   *   bit 0 USB port ID 0
372   *   ...
373   *   bit 7 USB port ID 7
374   */
375  #define EC_ACPI_MEM_USB_PORT_POWER 0x13
376  
377  /*
378   * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
379   * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
380   */
381  #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
382  #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
383  
384  /* Current version of ACPI memory address space */
385  #define EC_ACPI_MEM_VERSION_CURRENT 2
386  
387  
388  /*
389   * This header file is used in coreboot both in C and ACPI code.  The ACPI code
390   * is pre-processed to handle constants but the ASL compiler is unable to
391   * handle actual C code so keep it separate.
392   */
393  
394  
395  /*
396   * Attributes for EC request and response packets.  Just defining __packed
397   * results in inefficient assembly code on ARM, if the structure is actually
398   * 32-bit aligned, as it should be for all buffers.
399   *
400   * Be very careful when adding these to existing structures.  They will round
401   * up the structure size to the specified boundary.
402   *
403   * Also be very careful to make that if a structure is included in some other
404   * parent structure that the alignment will still be true given the packing of
405   * the parent structure.  This is particularly important if the sub-structure
406   * will be passed as a pointer to another function, since that function will
407   * not know about the misaligment caused by the parent structure's packing.
408   *
409   * Also be very careful using __packed - particularly when nesting non-packed
410   * structures inside packed ones.  In fact, DO NOT use __packed directly;
411   * always use one of these attributes.
412   *
413   * Once everything is annotated properly, the following search strings should
414   * not return ANY matches in this file other than right here:
415   *
416   * "__packed" - generates inefficient code; all sub-structs must also be packed
417   *
418   * "struct [^_]" - all structs should be annotated, except for structs that are
419   * members of other structs/unions (and their original declarations should be
420   * annotated).
421   */
422  
423  /*
424   * Packed structures make no assumption about alignment, so they do inefficient
425   * byte-wise reads.
426   */
427  #define __ec_align1 __packed
428  #define __ec_align2 __packed
429  #define __ec_align4 __packed
430  #define __ec_align_size1 __packed
431  #define __ec_align_offset1 __packed
432  #define __ec_align_offset2 __packed
433  #define __ec_todo_packed __packed
434  #define __ec_todo_unpacked
435  
436  
437  /* LPC command status byte masks */
438  /* EC has written a byte in the data register and host hasn't read it yet */
439  #define EC_LPC_STATUS_TO_HOST     0x01
440  /* Host has written a command/data byte and the EC hasn't read it yet */
441  #define EC_LPC_STATUS_FROM_HOST   0x02
442  /* EC is processing a command */
443  #define EC_LPC_STATUS_PROCESSING  0x04
444  /* Last write to EC was a command, not data */
445  #define EC_LPC_STATUS_LAST_CMD    0x08
446  /* EC is in burst mode */
447  #define EC_LPC_STATUS_BURST_MODE  0x10
448  /* SCI event is pending (requesting SCI query) */
449  #define EC_LPC_STATUS_SCI_PENDING 0x20
450  /* SMI event is pending (requesting SMI query) */
451  #define EC_LPC_STATUS_SMI_PENDING 0x40
452  /* (reserved) */
453  #define EC_LPC_STATUS_RESERVED    0x80
454  
455  /*
456   * EC is busy.  This covers both the EC processing a command, and the host has
457   * written a new command but the EC hasn't picked it up yet.
458   */
459  #define EC_LPC_STATUS_BUSY_MASK \
460  	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
461  
462  /*
463   * Host command response codes (16-bit).  Note that response codes should be
464   * stored in a uint16_t rather than directly in a value of this type.
465   */
466  enum ec_status {
467  	EC_RES_SUCCESS = 0,
468  	EC_RES_INVALID_COMMAND = 1,
469  	EC_RES_ERROR = 2,
470  	EC_RES_INVALID_PARAM = 3,
471  	EC_RES_ACCESS_DENIED = 4,
472  	EC_RES_INVALID_RESPONSE = 5,
473  	EC_RES_INVALID_VERSION = 6,
474  	EC_RES_INVALID_CHECKSUM = 7,
475  	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
476  	EC_RES_UNAVAILABLE = 9,		/* No response available */
477  	EC_RES_TIMEOUT = 10,		/* We got a timeout */
478  	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
479  	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
480  	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
481  	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
482  	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
483  	EC_RES_BUSY = 16,		/* Up but too busy.  Should retry */
484  	EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
485  	EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
486  	EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
487  	EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
488  };
489  
490  /*
491   * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
492   * EC command uses code 0 to mean "no event pending".  We explicitly specify
493   * each value in the enum listing so they won't change if we delete/insert an
494   * item or rearrange the list (it needs to be stable across platforms, not
495   * just within a single compiled instance).
496   */
497  enum host_event_code {
498  	EC_HOST_EVENT_LID_CLOSED = 1,
499  	EC_HOST_EVENT_LID_OPEN = 2,
500  	EC_HOST_EVENT_POWER_BUTTON = 3,
501  	EC_HOST_EVENT_AC_CONNECTED = 4,
502  	EC_HOST_EVENT_AC_DISCONNECTED = 5,
503  	EC_HOST_EVENT_BATTERY_LOW = 6,
504  	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
505  	EC_HOST_EVENT_BATTERY = 8,
506  	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
507  	/* Event generated by a device attached to the EC */
508  	EC_HOST_EVENT_DEVICE = 10,
509  	EC_HOST_EVENT_THERMAL = 11,
510  	EC_HOST_EVENT_USB_CHARGER = 12,
511  	EC_HOST_EVENT_KEY_PRESSED = 13,
512  	/*
513  	 * EC has finished initializing the host interface.  The host can check
514  	 * for this event following sending a EC_CMD_REBOOT_EC command to
515  	 * determine when the EC is ready to accept subsequent commands.
516  	 */
517  	EC_HOST_EVENT_INTERFACE_READY = 14,
518  	/* Keyboard recovery combo has been pressed */
519  	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
520  
521  	/* Shutdown due to thermal overload */
522  	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
523  	/* Shutdown due to battery level too low */
524  	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
525  
526  	/* Suggest that the AP throttle itself */
527  	EC_HOST_EVENT_THROTTLE_START = 18,
528  	/* Suggest that the AP resume normal speed */
529  	EC_HOST_EVENT_THROTTLE_STOP = 19,
530  
531  	/* Hang detect logic detected a hang and host event timeout expired */
532  	EC_HOST_EVENT_HANG_DETECT = 20,
533  	/* Hang detect logic detected a hang and warm rebooted the AP */
534  	EC_HOST_EVENT_HANG_REBOOT = 21,
535  
536  	/* PD MCU triggering host event */
537  	EC_HOST_EVENT_PD_MCU = 22,
538  
539  	/* Battery Status flags have changed */
540  	EC_HOST_EVENT_BATTERY_STATUS = 23,
541  
542  	/* EC encountered a panic, triggering a reset */
543  	EC_HOST_EVENT_PANIC = 24,
544  
545  	/* Keyboard fastboot combo has been pressed */
546  	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
547  
548  	/* EC RTC event occurred */
549  	EC_HOST_EVENT_RTC = 26,
550  
551  	/* Emulate MKBP event */
552  	EC_HOST_EVENT_MKBP = 27,
553  
554  	/* EC desires to change state of host-controlled USB mux */
555  	EC_HOST_EVENT_USB_MUX = 28,
556  
557  	/* TABLET/LAPTOP mode or detachable base attach/detach event */
558  	EC_HOST_EVENT_MODE_CHANGE = 29,
559  
560  	/* Keyboard recovery combo with hardware reinitialization */
561  	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
562  
563  	/* WoV */
564  	EC_HOST_EVENT_WOV = 31,
565  
566  	/*
567  	 * The high bit of the event mask is not used as a host event code.  If
568  	 * it reads back as set, then the entire event mask should be
569  	 * considered invalid by the host.  This can happen when reading the
570  	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
571  	 * not initialized on the EC, or improperly configured on the host.
572  	 */
573  	EC_HOST_EVENT_INVALID = 32
574  };
575  /* Host event mask */
576  #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
577  
578  /**
579   * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
580   * @flags: The host argument flags.
581   * @command_version: Command version.
582   * @data_size: The length of data.
583   * @checksum: Checksum; sum of command + flags + command_version + data_size +
584   *            all params/response data bytes.
585   */
586  struct ec_lpc_host_args {
587  	uint8_t flags;
588  	uint8_t command_version;
589  	uint8_t data_size;
590  	uint8_t checksum;
591  } __ec_align4;
592  
593  /* Flags for ec_lpc_host_args.flags */
594  /*
595   * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
596   * params.
597   *
598   * If EC gets a command and this flag is not set, this is an old-style command.
599   * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
600   * unknown length.  EC must respond with an old-style response (that is,
601   * without setting EC_HOST_ARGS_FLAG_TO_HOST).
602   */
603  #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
604  /*
605   * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
606   *
607   * If EC responds to a command and this flag is not set, this is an old-style
608   * response.  Command version is 0 and response data from EC is at
609   * EC_LPC_ADDR_OLD_PARAM with unknown length.
610   */
611  #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
612  
613  /*****************************************************************************/
614  /*
615   * Byte codes returned by EC over SPI interface.
616   *
617   * These can be used by the AP to debug the EC interface, and to determine
618   * when the EC is not in a state where it will ever get around to responding
619   * to the AP.
620   *
621   * Example of sequence of bytes read from EC for a current good transfer:
622   *   1. -                  - AP asserts chip select (CS#)
623   *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
624   *   3. -                  - EC starts handling CS# interrupt
625   *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
626   *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
627   *                           bytes looking for EC_SPI_FRAME_START
628   *   6. -                  - EC finishes processing and sets up response
629   *   7. EC_SPI_FRAME_START - AP reads frame byte
630   *   8. (response packet)  - AP reads response packet
631   *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
632   *   10 -                  - AP deasserts chip select
633   *   11 -                  - EC processes CS# interrupt and sets up DMA for
634   *                           next request
635   *
636   * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
637   * the following byte values:
638   *   EC_SPI_OLD_READY
639   *   EC_SPI_RX_READY
640   *   EC_SPI_RECEIVING
641   *   EC_SPI_PROCESSING
642   *
643   * Then the EC found an error in the request, or was not ready for the request
644   * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
645   * because the EC is unable to tell when the AP is done sending its request.
646   */
647  
648  /*
649   * Framing byte which precedes a response packet from the EC.  After sending a
650   * request, the AP will clock in bytes until it sees the framing byte, then
651   * clock in the response packet.
652   */
653  #define EC_SPI_FRAME_START    0xec
654  
655  /*
656   * Padding bytes which are clocked out after the end of a response packet.
657   */
658  #define EC_SPI_PAST_END       0xed
659  
660  /*
661   * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
662   * that the AP will send a valid packet header (starting with
663   * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
664   */
665  #define EC_SPI_RX_READY       0xf8
666  
667  /*
668   * EC has started receiving the request from the AP, but hasn't started
669   * processing it yet.
670   */
671  #define EC_SPI_RECEIVING      0xf9
672  
673  /* EC has received the entire request from the AP and is processing it. */
674  #define EC_SPI_PROCESSING     0xfa
675  
676  /*
677   * EC received bad data from the AP, such as a packet header with an invalid
678   * length.  EC will ignore all data until chip select deasserts.
679   */
680  #define EC_SPI_RX_BAD_DATA    0xfb
681  
682  /*
683   * EC received data from the AP before it was ready.  That is, the AP asserted
684   * chip select and started clocking data before the EC was ready to receive it.
685   * EC will ignore all data until chip select deasserts.
686   */
687  #define EC_SPI_NOT_READY      0xfc
688  
689  /*
690   * EC was ready to receive a request from the AP.  EC has treated the byte sent
691   * by the AP as part of a request packet, or (for old-style ECs) is processing
692   * a fully received packet but is not ready to respond yet.
693   */
694  #define EC_SPI_OLD_READY      0xfd
695  
696  /*****************************************************************************/
697  
698  /*
699   * Protocol version 2 for I2C and SPI send a request this way:
700   *
701   *	0	EC_CMD_VERSION0 + (command version)
702   *	1	Command number
703   *	2	Length of params = N
704   *	3..N+2	Params, if any
705   *	N+3	8-bit checksum of bytes 0..N+2
706   *
707   * The corresponding response is:
708   *
709   *	0	Result code (EC_RES_*)
710   *	1	Length of params = M
711   *	2..M+1	Params, if any
712   *	M+2	8-bit checksum of bytes 0..M+1
713   */
714  #define EC_PROTO2_REQUEST_HEADER_BYTES 3
715  #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
716  #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
717  				    EC_PROTO2_REQUEST_TRAILER_BYTES)
718  
719  #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
720  #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
721  #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
722  				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
723  
724  /* Parameter length was limited by the LPC interface */
725  #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
726  
727  /* Maximum request and response packet sizes for protocol version 2 */
728  #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
729  				    EC_PROTO2_MAX_PARAM_SIZE)
730  #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
731  				     EC_PROTO2_MAX_PARAM_SIZE)
732  
733  /*****************************************************************************/
734  
735  /*
736   * Value written to legacy command port / prefix byte to indicate protocol
737   * 3+ structs are being used.  Usage is bus-dependent.
738   */
739  #define EC_COMMAND_PROTOCOL_3 0xda
740  
741  #define EC_HOST_REQUEST_VERSION 3
742  
743  /**
744   * struct ec_host_request - Version 3 request from host.
745   * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
746   *                  receives a header with a version it doesn't know how to
747   *                  parse.
748   * @checksum: Checksum of request and data; sum of all bytes including checksum
749   *            should total to 0.
750   * @command: Command to send (EC_CMD_...)
751   * @command_version: Command version.
752   * @reserved: Unused byte in current protocol version; set to 0.
753   * @data_len: Length of data which follows this header.
754   */
755  struct ec_host_request {
756  	uint8_t struct_version;
757  	uint8_t checksum;
758  	uint16_t command;
759  	uint8_t command_version;
760  	uint8_t reserved;
761  	uint16_t data_len;
762  } __ec_align4;
763  
764  #define EC_HOST_RESPONSE_VERSION 3
765  
766  /**
767   * struct ec_host_response - Version 3 response from EC.
768   * @struct_version: Struct version (=3).
769   * @checksum: Checksum of response and data; sum of all bytes including
770   *            checksum should total to 0.
771   * @result: EC's response to the command (separate from communication failure)
772   * @data_len: Length of data which follows this header.
773   * @reserved: Unused bytes in current protocol version; set to 0.
774   */
775  struct ec_host_response {
776  	uint8_t struct_version;
777  	uint8_t checksum;
778  	uint16_t result;
779  	uint16_t data_len;
780  	uint16_t reserved;
781  } __ec_align4;
782  
783  /*****************************************************************************/
784  
785  /*
786   * Host command protocol V4.
787   *
788   * Packets always start with a request or response header.  They are followed
789   * by data_len bytes of data.  If the data_crc_present flag is set, the data
790   * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1
791   * polynomial.
792   *
793   * Host algorithm when sending a request q:
794   *
795   * 101) tries_left=(some value, e.g. 3);
796   * 102) q.seq_num++
797   * 103) q.seq_dup=0
798   * 104) Calculate q.header_crc.
799   * 105) Send request q to EC.
800   * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
801   *
802   * 201) If r.struct_version != 4, go to 301.
803   * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
804   * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
805   * 204) If r.seq_num != q.seq_num, go to 301.
806   * 205) If r.seq_dup == q.seq_dup, return success.
807   * 207) If r.seq_dup == 1, go to 301.
808   * 208) Return error.
809   *
810   * 301) If --tries_left <= 0, return error.
811   * 302) If q.seq_dup == 1, go to 105.
812   * 303) q.seq_dup = 1
813   * 304) Go to 104.
814   *
815   * EC algorithm when receiving a request q.
816   * EC has response buffer r, error buffer e.
817   *
818   * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
819   *      and go to 301
820   * 102) If q.header_crc mismatches calculated CRC, set e.result =
821   *      EC_RES_INVALID_HEADER_CRC and go to 301
822   * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
823   *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
824   *      and go to 301.
825   * 104) If q.seq_dup == 0, go to 201.
826   * 105) If q.seq_num != r.seq_num, go to 201.
827   * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
828   *
829   * 201) Process request q into response r.
830   * 202) r.seq_num = q.seq_num
831   * 203) r.seq_dup = q.seq_dup
832   * 204) Calculate r.header_crc
833   * 205) If r.data_len > 0 and data is no longer available, set e.result =
834   *      EC_RES_DUP_UNAVAILABLE and go to 301.
835   * 206) Send response r.
836   *
837   * 301) e.seq_num = q.seq_num
838   * 302) e.seq_dup = q.seq_dup
839   * 303) Calculate e.header_crc.
840   * 304) Send error response e.
841   */
842  
843  /* Version 4 request from host */
844  struct ec_host_request4 {
845  	/*
846  	 * bits 0-3: struct_version: Structure version (=4)
847  	 * bit    4: is_response: Is response (=0)
848  	 * bits 5-6: seq_num: Sequence number
849  	 * bit    7: seq_dup: Sequence duplicate flag
850  	 */
851  	uint8_t fields0;
852  
853  	/*
854  	 * bits 0-4: command_version: Command version
855  	 * bits 5-6: Reserved (set 0, ignore on read)
856  	 * bit    7: data_crc_present: Is data CRC present after data
857  	 */
858  	uint8_t fields1;
859  
860  	/* Command code (EC_CMD_*) */
861  	uint16_t command;
862  
863  	/* Length of data which follows this header (not including data CRC) */
864  	uint16_t data_len;
865  
866  	/* Reserved (set 0, ignore on read) */
867  	uint8_t reserved;
868  
869  	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
870  	uint8_t header_crc;
871  } __ec_align4;
872  
873  /* Version 4 response from EC */
874  struct ec_host_response4 {
875  	/*
876  	 * bits 0-3: struct_version: Structure version (=4)
877  	 * bit    4: is_response: Is response (=1)
878  	 * bits 5-6: seq_num: Sequence number
879  	 * bit    7: seq_dup: Sequence duplicate flag
880  	 */
881  	uint8_t fields0;
882  
883  	/*
884  	 * bits 0-6: Reserved (set 0, ignore on read)
885  	 * bit    7: data_crc_present: Is data CRC present after data
886  	 */
887  	uint8_t fields1;
888  
889  	/* Result code (EC_RES_*) */
890  	uint16_t result;
891  
892  	/* Length of data which follows this header (not including data CRC) */
893  	uint16_t data_len;
894  
895  	/* Reserved (set 0, ignore on read) */
896  	uint8_t reserved;
897  
898  	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
899  	uint8_t header_crc;
900  } __ec_align4;
901  
902  /* Fields in fields0 byte */
903  #define EC_PACKET4_0_STRUCT_VERSION_MASK	0x0f
904  #define EC_PACKET4_0_IS_RESPONSE_MASK		0x10
905  #define EC_PACKET4_0_SEQ_NUM_SHIFT		5
906  #define EC_PACKET4_0_SEQ_NUM_MASK		0x60
907  #define EC_PACKET4_0_SEQ_DUP_MASK		0x80
908  
909  /* Fields in fields1 byte */
910  #define EC_PACKET4_1_COMMAND_VERSION_MASK	0x1f  /* (request only) */
911  #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK	0x80
912  
913  /*****************************************************************************/
914  /*
915   * Notes on commands:
916   *
917   * Each command is an 16-bit command value.  Commands which take params or
918   * return response data specify structures for that data.  If no structure is
919   * specified, the command does not input or output data, respectively.
920   * Parameter/response length is implicit in the structs.  Some underlying
921   * communication protocols (I2C, SPI) may add length or checksum headers, but
922   * those are implementation-dependent and not defined here.
923   *
924   * All commands MUST be #defined to be 4-digit UPPER CASE hex values
925   * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
926   */
927  
928  /*****************************************************************************/
929  /* General / test commands */
930  
931  /*
932   * Get protocol version, used to deal with non-backward compatible protocol
933   * changes.
934   */
935  #define EC_CMD_PROTO_VERSION 0x0000
936  
937  /**
938   * struct ec_response_proto_version - Response to the proto version command.
939   * @version: The protocol version.
940   */
941  struct ec_response_proto_version {
942  	uint32_t version;
943  } __ec_align4;
944  
945  /*
946   * Hello.  This is a simple command to test the EC is responsive to
947   * commands.
948   */
949  #define EC_CMD_HELLO 0x0001
950  
951  /**
952   * struct ec_params_hello - Parameters to the hello command.
953   * @in_data: Pass anything here.
954   */
955  struct ec_params_hello {
956  	uint32_t in_data;
957  } __ec_align4;
958  
959  /**
960   * struct ec_response_hello - Response to the hello command.
961   * @out_data: Output will be in_data + 0x01020304.
962   */
963  struct ec_response_hello {
964  	uint32_t out_data;
965  } __ec_align4;
966  
967  /* Get version number */
968  #define EC_CMD_GET_VERSION 0x0002
969  
970  enum ec_current_image {
971  	EC_IMAGE_UNKNOWN = 0,
972  	EC_IMAGE_RO,
973  	EC_IMAGE_RW
974  };
975  
976  /**
977   * struct ec_response_get_version - Response to the get version command.
978   * @version_string_ro: Null-terminated RO firmware version string.
979   * @version_string_rw: Null-terminated RW firmware version string.
980   * @reserved: Unused bytes; was previously RW-B firmware version string.
981   * @current_image: One of ec_current_image.
982   */
983  struct ec_response_get_version {
984  	char version_string_ro[32];
985  	char version_string_rw[32];
986  	char reserved[32];
987  	uint32_t current_image;
988  } __ec_align4;
989  
990  /* Read test */
991  #define EC_CMD_READ_TEST 0x0003
992  
993  /**
994   * struct ec_params_read_test - Parameters for the read test command.
995   * @offset: Starting value for read buffer.
996   * @size: Size to read in bytes.
997   */
998  struct ec_params_read_test {
999  	uint32_t offset;
1000  	uint32_t size;
1001  } __ec_align4;
1002  
1003  /**
1004   * struct ec_response_read_test - Response to the read test command.
1005   * @data: Data returned by the read test command.
1006   */
1007  struct ec_response_read_test {
1008  	uint32_t data[32];
1009  } __ec_align4;
1010  
1011  /*
1012   * Get build information
1013   *
1014   * Response is null-terminated string.
1015   */
1016  #define EC_CMD_GET_BUILD_INFO 0x0004
1017  
1018  /* Get chip info */
1019  #define EC_CMD_GET_CHIP_INFO 0x0005
1020  
1021  /**
1022   * struct ec_response_get_chip_info - Response to the get chip info command.
1023   * @vendor: Null-terminated string for chip vendor.
1024   * @name: Null-terminated string for chip name.
1025   * @revision: Null-terminated string for chip mask version.
1026   */
1027  struct ec_response_get_chip_info {
1028  	char vendor[32];
1029  	char name[32];
1030  	char revision[32];
1031  } __ec_align4;
1032  
1033  /* Get board HW version */
1034  #define EC_CMD_GET_BOARD_VERSION 0x0006
1035  
1036  /**
1037   * struct ec_response_board_version - Response to the board version command.
1038   * @board_version: A monotonously incrementing number.
1039   */
1040  struct ec_response_board_version {
1041  	uint16_t board_version;
1042  } __ec_align2;
1043  
1044  /*
1045   * Read memory-mapped data.
1046   *
1047   * This is an alternate interface to memory-mapped data for bus protocols
1048   * which don't support direct-mapped memory - I2C, SPI, etc.
1049   *
1050   * Response is params.size bytes of data.
1051   */
1052  #define EC_CMD_READ_MEMMAP 0x0007
1053  
1054  /**
1055   * struct ec_params_read_memmap - Parameters for the read memory map command.
1056   * @offset: Offset in memmap (EC_MEMMAP_*).
1057   * @size: Size to read in bytes.
1058   */
1059  struct ec_params_read_memmap {
1060  	uint8_t offset;
1061  	uint8_t size;
1062  } __ec_align1;
1063  
1064  /* Read versions supported for a command */
1065  #define EC_CMD_GET_CMD_VERSIONS 0x0008
1066  
1067  /**
1068   * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1069   * @cmd: Command to check.
1070   */
1071  struct ec_params_get_cmd_versions {
1072  	uint8_t cmd;
1073  } __ec_align1;
1074  
1075  /**
1076   * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1077   *         versions (v1)
1078   * @cmd: Command to check.
1079   */
1080  struct ec_params_get_cmd_versions_v1 {
1081  	uint16_t cmd;
1082  } __ec_align2;
1083  
1084  /**
1085   * struct ec_response_get_cmd_versions - Response to the get command versions.
1086   * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1087   *                a desired version.
1088   */
1089  struct ec_response_get_cmd_versions {
1090  	uint32_t version_mask;
1091  } __ec_align4;
1092  
1093  /*
1094   * Check EC communications status (busy). This is needed on i2c/spi but not
1095   * on lpc since it has its own out-of-band busy indicator.
1096   *
1097   * lpc must read the status from the command register. Attempting this on
1098   * lpc will overwrite the args/parameter space and corrupt its data.
1099   */
1100  #define EC_CMD_GET_COMMS_STATUS		0x0009
1101  
1102  /* Avoid using ec_status which is for return values */
1103  enum ec_comms_status {
1104  	EC_COMMS_STATUS_PROCESSING	= BIT(0),	/* Processing cmd */
1105  };
1106  
1107  /**
1108   * struct ec_response_get_comms_status - Response to the get comms status
1109   *         command.
1110   * @flags: Mask of enum ec_comms_status.
1111   */
1112  struct ec_response_get_comms_status {
1113  	uint32_t flags;		/* Mask of enum ec_comms_status */
1114  } __ec_align4;
1115  
1116  /* Fake a variety of responses, purely for testing purposes. */
1117  #define EC_CMD_TEST_PROTOCOL		0x000A
1118  
1119  /* Tell the EC what to send back to us. */
1120  struct ec_params_test_protocol {
1121  	uint32_t ec_result;
1122  	uint32_t ret_len;
1123  	uint8_t buf[32];
1124  } __ec_align4;
1125  
1126  /* Here it comes... */
1127  struct ec_response_test_protocol {
1128  	uint8_t buf[32];
1129  } __ec_align4;
1130  
1131  /* Get protocol information */
1132  #define EC_CMD_GET_PROTOCOL_INFO	0x000B
1133  
1134  /* Flags for ec_response_get_protocol_info.flags */
1135  /* EC_RES_IN_PROGRESS may be returned if a command is slow */
1136  #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1137  
1138  /**
1139   * struct ec_response_get_protocol_info - Response to the get protocol info.
1140   * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1141   *                     version n).
1142   * @max_request_packet_size: Maximum request packet size in bytes.
1143   * @max_response_packet_size: Maximum response packet size in bytes.
1144   * @flags: see EC_PROTOCOL_INFO_*
1145   */
1146  struct ec_response_get_protocol_info {
1147  	/* Fields which exist if at least protocol version 3 supported */
1148  	uint32_t protocol_versions;
1149  	uint16_t max_request_packet_size;
1150  	uint16_t max_response_packet_size;
1151  	uint32_t flags;
1152  } __ec_align4;
1153  
1154  
1155  /*****************************************************************************/
1156  /* Get/Set miscellaneous values */
1157  
1158  /* The upper byte of .flags tells what to do (nothing means "get") */
1159  #define EC_GSV_SET        0x80000000
1160  
1161  /*
1162   * The lower three bytes of .flags identifies the parameter, if that has
1163   * meaning for an individual command.
1164   */
1165  #define EC_GSV_PARAM_MASK 0x00ffffff
1166  
1167  struct ec_params_get_set_value {
1168  	uint32_t flags;
1169  	uint32_t value;
1170  } __ec_align4;
1171  
1172  struct ec_response_get_set_value {
1173  	uint32_t flags;
1174  	uint32_t value;
1175  } __ec_align4;
1176  
1177  /* More than one command can use these structs to get/set parameters. */
1178  #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1179  
1180  /*****************************************************************************/
1181  /* List the features supported by the firmware */
1182  #define EC_CMD_GET_FEATURES  0x000D
1183  
1184  /* Supported features */
1185  enum ec_feature_code {
1186  	/*
1187  	 * This image contains a limited set of features. Another image
1188  	 * in RW partition may support more features.
1189  	 */
1190  	EC_FEATURE_LIMITED = 0,
1191  	/*
1192  	 * Commands for probing/reading/writing/erasing the flash in the
1193  	 * EC are present.
1194  	 */
1195  	EC_FEATURE_FLASH = 1,
1196  	/*
1197  	 * Can control the fan speed directly.
1198  	 */
1199  	EC_FEATURE_PWM_FAN = 2,
1200  	/*
1201  	 * Can control the intensity of the keyboard backlight.
1202  	 */
1203  	EC_FEATURE_PWM_KEYB = 3,
1204  	/*
1205  	 * Support Google lightbar, introduced on Pixel.
1206  	 */
1207  	EC_FEATURE_LIGHTBAR = 4,
1208  	/* Control of LEDs  */
1209  	EC_FEATURE_LED = 5,
1210  	/* Exposes an interface to control gyro and sensors.
1211  	 * The host goes through the EC to access these sensors.
1212  	 * In addition, the EC may provide composite sensors, like lid angle.
1213  	 */
1214  	EC_FEATURE_MOTION_SENSE = 6,
1215  	/* The keyboard is controlled by the EC */
1216  	EC_FEATURE_KEYB = 7,
1217  	/* The AP can use part of the EC flash as persistent storage. */
1218  	EC_FEATURE_PSTORE = 8,
1219  	/* The EC monitors BIOS port 80h, and can return POST codes. */
1220  	EC_FEATURE_PORT80 = 9,
1221  	/*
1222  	 * Thermal management: include TMP specific commands.
1223  	 * Higher level than direct fan control.
1224  	 */
1225  	EC_FEATURE_THERMAL = 10,
1226  	/* Can switch the screen backlight on/off */
1227  	EC_FEATURE_BKLIGHT_SWITCH = 11,
1228  	/* Can switch the wifi module on/off */
1229  	EC_FEATURE_WIFI_SWITCH = 12,
1230  	/* Monitor host events, through for example SMI or SCI */
1231  	EC_FEATURE_HOST_EVENTS = 13,
1232  	/* The EC exposes GPIO commands to control/monitor connected devices. */
1233  	EC_FEATURE_GPIO = 14,
1234  	/* The EC can send i2c messages to downstream devices. */
1235  	EC_FEATURE_I2C = 15,
1236  	/* Command to control charger are included */
1237  	EC_FEATURE_CHARGER = 16,
1238  	/* Simple battery support. */
1239  	EC_FEATURE_BATTERY = 17,
1240  	/*
1241  	 * Support Smart battery protocol
1242  	 * (Common Smart Battery System Interface Specification)
1243  	 */
1244  	EC_FEATURE_SMART_BATTERY = 18,
1245  	/* EC can detect when the host hangs. */
1246  	EC_FEATURE_HANG_DETECT = 19,
1247  	/* Report power information, for pit only */
1248  	EC_FEATURE_PMU = 20,
1249  	/* Another Cros EC device is present downstream of this one */
1250  	EC_FEATURE_SUB_MCU = 21,
1251  	/* Support USB Power delivery (PD) commands */
1252  	EC_FEATURE_USB_PD = 22,
1253  	/* Control USB multiplexer, for audio through USB port for instance. */
1254  	EC_FEATURE_USB_MUX = 23,
1255  	/* Motion Sensor code has an internal software FIFO */
1256  	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1257  	/* Support temporary secure vstore */
1258  	EC_FEATURE_VSTORE = 25,
1259  	/* EC decides on USB-C SS mux state, muxes configured by host */
1260  	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1261  	/* EC has RTC feature that can be controlled by host commands */
1262  	EC_FEATURE_RTC = 27,
1263  	/* The MCU exposes a Fingerprint sensor */
1264  	EC_FEATURE_FINGERPRINT = 28,
1265  	/* The MCU exposes a Touchpad */
1266  	EC_FEATURE_TOUCHPAD = 29,
1267  	/* The MCU has RWSIG task enabled */
1268  	EC_FEATURE_RWSIG = 30,
1269  	/* EC has device events support */
1270  	EC_FEATURE_DEVICE_EVENT = 31,
1271  	/* EC supports the unified wake masks for LPC/eSPI systems */
1272  	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1273  	/* EC supports 64-bit host events */
1274  	EC_FEATURE_HOST_EVENT64 = 33,
1275  	/* EC runs code in RAM (not in place, a.k.a. XIP) */
1276  	EC_FEATURE_EXEC_IN_RAM = 34,
1277  	/* EC supports CEC commands */
1278  	EC_FEATURE_CEC = 35,
1279  	/* EC supports tight sensor timestamping. */
1280  	EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1281  	/*
1282  	 * EC supports tablet mode detection aligned to Chrome and allows
1283  	 * setting of threshold by host command using
1284  	 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1285  	 */
1286  	EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1287  	/* The MCU is a System Companion Processor (SCP). */
1288  	EC_FEATURE_SCP = 39,
1289  	/* The MCU is an Integrated Sensor Hub */
1290  	EC_FEATURE_ISH = 40,
1291  	/* New TCPMv2 TYPEC_ prefaced commands supported */
1292  	EC_FEATURE_TYPEC_CMD = 41,
1293  	/*
1294  	 * The EC will wait for direction from the AP to enter Type-C alternate
1295  	 * modes or USB4.
1296  	 */
1297  	EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1298  	/*
1299  	 * The EC will wait for an acknowledge from the AP after setting the
1300  	 * mux.
1301  	 */
1302  	EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1303  	/*
1304  	 * The EC supports entering and residing in S4.
1305  	 */
1306  	EC_FEATURE_S4_RESIDENCY = 44,
1307  	/*
1308  	 * The EC supports the AP directing mux sets for the board.
1309  	 */
1310  	EC_FEATURE_TYPEC_AP_MUX_SET = 45,
1311  	/*
1312  	 * The EC supports the AP composing VDMs for us to send.
1313  	 */
1314  	EC_FEATURE_TYPEC_AP_VDM_SEND = 46,
1315  };
1316  
1317  #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1318  #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1319  
1320  struct ec_response_get_features {
1321  	uint32_t flags[2];
1322  } __ec_align4;
1323  
1324  /*****************************************************************************/
1325  /* Get the board's SKU ID from EC */
1326  #define EC_CMD_GET_SKU_ID 0x000E
1327  
1328  /* Set SKU ID from AP */
1329  #define EC_CMD_SET_SKU_ID 0x000F
1330  
1331  struct ec_sku_id_info {
1332  	uint32_t sku_id;
1333  } __ec_align4;
1334  
1335  /*****************************************************************************/
1336  /* Flash commands */
1337  
1338  /* Get flash info */
1339  #define EC_CMD_FLASH_INFO 0x0010
1340  #define EC_VER_FLASH_INFO 2
1341  
1342  /**
1343   * struct ec_response_flash_info - Response to the flash info command.
1344   * @flash_size: Usable flash size in bytes.
1345   * @write_block_size: Write block size. Write offset and size must be a
1346   *                    multiple of this.
1347   * @erase_block_size: Erase block size. Erase offset and size must be a
1348   *                    multiple of this.
1349   * @protect_block_size: Protection block size. Protection offset and size
1350   *                      must be a multiple of this.
1351   *
1352   * Version 0 returns these fields.
1353   */
1354  struct ec_response_flash_info {
1355  	uint32_t flash_size;
1356  	uint32_t write_block_size;
1357  	uint32_t erase_block_size;
1358  	uint32_t protect_block_size;
1359  } __ec_align4;
1360  
1361  /*
1362   * Flags for version 1+ flash info command
1363   * EC flash erases bits to 0 instead of 1.
1364   */
1365  #define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1366  
1367  /*
1368   * Flash must be selected for read/write/erase operations to succeed.  This may
1369   * be necessary on a chip where write/erase can be corrupted by other board
1370   * activity, or where the chip needs to enable some sort of programming voltage,
1371   * or where the read/write/erase operations require cleanly suspending other
1372   * chip functionality.
1373   */
1374  #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1375  
1376  /**
1377   * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1378   * @flash_size: Usable flash size in bytes.
1379   * @write_block_size: Write block size. Write offset and size must be a
1380   *                    multiple of this.
1381   * @erase_block_size: Erase block size. Erase offset and size must be a
1382   *                    multiple of this.
1383   * @protect_block_size: Protection block size. Protection offset and size
1384   *                      must be a multiple of this.
1385   * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1386   *                    size is exactly this and offset is a multiple of this.
1387   *                    For example, an EC may have a write buffer which can do
1388   *                    half-page operations if data is aligned, and a slower
1389   *                    word-at-a-time write mode.
1390   * @flags: Flags; see EC_FLASH_INFO_*
1391   *
1392   * Version 1 returns the same initial fields as version 0, with additional
1393   * fields following.
1394   *
1395   * gcc anonymous structs don't seem to get along with the __packed directive;
1396   * if they did we'd define the version 0 structure as a sub-structure of this
1397   * one.
1398   *
1399   * Version 2 supports flash banks of different sizes:
1400   * The caller specified the number of banks it has preallocated
1401   * (num_banks_desc)
1402   * The EC returns the number of banks describing the flash memory.
1403   * It adds banks descriptions up to num_banks_desc.
1404   */
1405  struct ec_response_flash_info_1 {
1406  	/* Version 0 fields; see above for description */
1407  	uint32_t flash_size;
1408  	uint32_t write_block_size;
1409  	uint32_t erase_block_size;
1410  	uint32_t protect_block_size;
1411  
1412  	/* Version 1 adds these fields: */
1413  	uint32_t write_ideal_size;
1414  	uint32_t flags;
1415  } __ec_align4;
1416  
1417  struct ec_params_flash_info_2 {
1418  	/* Number of banks to describe */
1419  	uint16_t num_banks_desc;
1420  	/* Reserved; set 0; ignore on read */
1421  	uint8_t reserved[2];
1422  } __ec_align4;
1423  
1424  struct ec_flash_bank {
1425  	/* Number of sector is in this bank. */
1426  	uint16_t count;
1427  	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1428  	uint8_t size_exp;
1429  	/* Minimal write size for the sectors in this bank */
1430  	uint8_t write_size_exp;
1431  	/* Erase size for the sectors in this bank */
1432  	uint8_t erase_size_exp;
1433  	/* Size for write protection, usually identical to erase size. */
1434  	uint8_t protect_size_exp;
1435  	/* Reserved; set 0; ignore on read */
1436  	uint8_t reserved[2];
1437  };
1438  
1439  struct ec_response_flash_info_2 {
1440  	/* Total flash in the EC. */
1441  	uint32_t flash_size;
1442  	/* Flags; see EC_FLASH_INFO_* */
1443  	uint32_t flags;
1444  	/* Maximum size to use to send data to write to the EC. */
1445  	uint32_t write_ideal_size;
1446  	/* Number of banks present in the EC. */
1447  	uint16_t num_banks_total;
1448  	/* Number of banks described in banks array. */
1449  	uint16_t num_banks_desc;
1450  	struct ec_flash_bank banks[];
1451  } __ec_align4;
1452  
1453  /*
1454   * Read flash
1455   *
1456   * Response is params.size bytes of data.
1457   */
1458  #define EC_CMD_FLASH_READ 0x0011
1459  
1460  /**
1461   * struct ec_params_flash_read - Parameters for the flash read command.
1462   * @offset: Byte offset to read.
1463   * @size: Size to read in bytes.
1464   */
1465  struct ec_params_flash_read {
1466  	uint32_t offset;
1467  	uint32_t size;
1468  } __ec_align4;
1469  
1470  /* Write flash */
1471  #define EC_CMD_FLASH_WRITE 0x0012
1472  #define EC_VER_FLASH_WRITE 1
1473  
1474  /* Version 0 of the flash command supported only 64 bytes of data */
1475  #define EC_FLASH_WRITE_VER0_SIZE 64
1476  
1477  /**
1478   * struct ec_params_flash_write - Parameters for the flash write command.
1479   * @offset: Byte offset to write.
1480   * @size: Size to write in bytes.
1481   */
1482  struct ec_params_flash_write {
1483  	uint32_t offset;
1484  	uint32_t size;
1485  	/* Followed by data to write */
1486  } __ec_align4;
1487  
1488  /* Erase flash */
1489  #define EC_CMD_FLASH_ERASE 0x0013
1490  
1491  /**
1492   * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1493   * @offset: Byte offset to erase.
1494   * @size: Size to erase in bytes.
1495   */
1496  struct ec_params_flash_erase {
1497  	uint32_t offset;
1498  	uint32_t size;
1499  } __ec_align4;
1500  
1501  /*
1502   * v1 add async erase:
1503   * subcommands can returns:
1504   * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1505   * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1506   * EC_RES_ERROR : other errors.
1507   * EC_RES_BUSY : an existing erase operation is in progress.
1508   * EC_RES_ACCESS_DENIED: Trying to erase running image.
1509   *
1510   * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1511   * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1512   * the proper result.
1513   * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1514   * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1515   * ERASE_GET_RESULT command may timeout on EC where flash access is not
1516   * permitted while erasing. (For instance, STM32F4).
1517   */
1518  enum ec_flash_erase_cmd {
1519  	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1520  	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1521  	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1522  };
1523  
1524  /**
1525   * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1526   * @cmd: One of ec_flash_erase_cmd.
1527   * @reserved: Pad byte; currently always contains 0.
1528   * @flag: No flags defined yet; set to 0.
1529   * @params: Same as v0 parameters.
1530   */
1531  struct ec_params_flash_erase_v1 {
1532  	uint8_t  cmd;
1533  	uint8_t  reserved;
1534  	uint16_t flag;
1535  	struct ec_params_flash_erase params;
1536  } __ec_align4;
1537  
1538  /*
1539   * Get/set flash protection.
1540   *
1541   * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1542   * firmware write protect GPIO, not all flags will take effect immediately;
1543   * some flags require a subsequent hard reset to take effect.  Check the
1544   * returned flags bits to see what actually happened.
1545   *
1546   * If mask=0, simply returns the current flags state.
1547   */
1548  #define EC_CMD_FLASH_PROTECT 0x0015
1549  #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1550  
1551  /* Flags for flash protection */
1552  /* RO flash code protected when the EC boots */
1553  #define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1554  /*
1555   * RO flash code protected now.  If this bit is set, at-boot status cannot
1556   * be changed.
1557   */
1558  #define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1559  /* Entire flash code protected now, until reboot. */
1560  #define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1561  /* Flash write protect GPIO is asserted now */
1562  #define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1563  /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1564  #define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1565  /*
1566   * Error - flash protection is in inconsistent state.  At least one bank of
1567   * flash which should be protected is not protected.  Usually fixed by
1568   * re-requesting the desired flags, or by a hard reset if that fails.
1569   */
1570  #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1571  /* Entire flash code protected when the EC boots */
1572  #define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1573  /* RW flash code protected when the EC boots */
1574  #define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1575  /* RW flash code protected now. */
1576  #define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1577  /* Rollback information flash region protected when the EC boots */
1578  #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1579  /* Rollback information flash region protected now */
1580  #define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1581  
1582  
1583  /**
1584   * struct ec_params_flash_protect - Parameters for the flash protect command.
1585   * @mask: Bits in flags to apply.
1586   * @flags: New flags to apply.
1587   */
1588  struct ec_params_flash_protect {
1589  	uint32_t mask;
1590  	uint32_t flags;
1591  } __ec_align4;
1592  
1593  /**
1594   * struct ec_response_flash_protect - Response to the flash protect command.
1595   * @flags: Current value of flash protect flags.
1596   * @valid_flags: Flags which are valid on this platform. This allows the
1597   *               caller to distinguish between flags which aren't set vs. flags
1598   *               which can't be set on this platform.
1599   * @writable_flags: Flags which can be changed given the current protection
1600   *                  state.
1601   */
1602  struct ec_response_flash_protect {
1603  	uint32_t flags;
1604  	uint32_t valid_flags;
1605  	uint32_t writable_flags;
1606  } __ec_align4;
1607  
1608  /*
1609   * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1610   * write protect.  These commands may be reused with version > 0.
1611   */
1612  
1613  /* Get the region offset/size */
1614  #define EC_CMD_FLASH_REGION_INFO 0x0016
1615  #define EC_VER_FLASH_REGION_INFO 1
1616  
1617  enum ec_flash_region {
1618  	/* Region which holds read-only EC image */
1619  	EC_FLASH_REGION_RO = 0,
1620  	/*
1621  	 * Region which holds active RW image. 'Active' is different from
1622  	 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1623  	 * scheduled to run, active/non-active applies only to RW images (for
1624  	 * the same reason 'update' applies only to RW images. It's a state of
1625  	 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1626  	 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1627  	 * doesn't enter 'running' state but it's still active on a flash.
1628  	 */
1629  	EC_FLASH_REGION_ACTIVE,
1630  	/*
1631  	 * Region which should be write-protected in the factory (a superset of
1632  	 * EC_FLASH_REGION_RO)
1633  	 */
1634  	EC_FLASH_REGION_WP_RO,
1635  	/* Region which holds updatable (non-active) RW image */
1636  	EC_FLASH_REGION_UPDATE,
1637  	/* Number of regions */
1638  	EC_FLASH_REGION_COUNT,
1639  };
1640  /*
1641   * 'RW' is vague if there are multiple RW images; we mean the active one,
1642   * so the old constant is deprecated.
1643   */
1644  #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1645  
1646  /**
1647   * struct ec_params_flash_region_info - Parameters for the flash region info
1648   *         command.
1649   * @region: Flash region; see EC_FLASH_REGION_*
1650   */
1651  struct ec_params_flash_region_info {
1652  	uint32_t region;
1653  } __ec_align4;
1654  
1655  struct ec_response_flash_region_info {
1656  	uint32_t offset;
1657  	uint32_t size;
1658  } __ec_align4;
1659  
1660  /* Read/write VbNvContext */
1661  #define EC_CMD_VBNV_CONTEXT 0x0017
1662  #define EC_VER_VBNV_CONTEXT 1
1663  #define EC_VBNV_BLOCK_SIZE 16
1664  
1665  enum ec_vbnvcontext_op {
1666  	EC_VBNV_CONTEXT_OP_READ,
1667  	EC_VBNV_CONTEXT_OP_WRITE,
1668  };
1669  
1670  struct ec_params_vbnvcontext {
1671  	uint32_t op;
1672  	uint8_t block[EC_VBNV_BLOCK_SIZE];
1673  } __ec_align4;
1674  
1675  struct ec_response_vbnvcontext {
1676  	uint8_t block[EC_VBNV_BLOCK_SIZE];
1677  } __ec_align4;
1678  
1679  
1680  /* Get SPI flash information */
1681  #define EC_CMD_FLASH_SPI_INFO 0x0018
1682  
1683  struct ec_response_flash_spi_info {
1684  	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1685  	uint8_t jedec[3];
1686  
1687  	/* Pad byte; currently always contains 0 */
1688  	uint8_t reserved0;
1689  
1690  	/* Manufacturer / device ID from command 0x90 */
1691  	uint8_t mfr_dev_id[2];
1692  
1693  	/* Status registers from command 0x05 and 0x35 */
1694  	uint8_t sr1, sr2;
1695  } __ec_align1;
1696  
1697  
1698  /* Select flash during flash operations */
1699  #define EC_CMD_FLASH_SELECT 0x0019
1700  
1701  /**
1702   * struct ec_params_flash_select - Parameters for the flash select command.
1703   * @select: 1 to select flash, 0 to deselect flash
1704   */
1705  struct ec_params_flash_select {
1706  	uint8_t select;
1707  } __ec_align4;
1708  
1709  
1710  /*****************************************************************************/
1711  /* PWM commands */
1712  
1713  /* Get fan target RPM */
1714  #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1715  
1716  struct ec_response_pwm_get_fan_rpm {
1717  	uint32_t rpm;
1718  } __ec_align4;
1719  
1720  /* Set target fan RPM */
1721  #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1722  
1723  /* Version 0 of input params */
1724  struct ec_params_pwm_set_fan_target_rpm_v0 {
1725  	uint32_t rpm;
1726  } __ec_align4;
1727  
1728  /* Version 1 of input params */
1729  struct ec_params_pwm_set_fan_target_rpm_v1 {
1730  	uint32_t rpm;
1731  	uint8_t fan_idx;
1732  } __ec_align_size1;
1733  
1734  /* Get keyboard backlight */
1735  /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1736  #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1737  
1738  struct ec_response_pwm_get_keyboard_backlight {
1739  	uint8_t percent;
1740  	uint8_t enabled;
1741  } __ec_align1;
1742  
1743  /* Set keyboard backlight */
1744  /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1745  #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1746  
1747  struct ec_params_pwm_set_keyboard_backlight {
1748  	uint8_t percent;
1749  } __ec_align1;
1750  
1751  /* Set target fan PWM duty cycle */
1752  #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1753  
1754  /* Version 0 of input params */
1755  struct ec_params_pwm_set_fan_duty_v0 {
1756  	uint32_t percent;
1757  } __ec_align4;
1758  
1759  /* Version 1 of input params */
1760  struct ec_params_pwm_set_fan_duty_v1 {
1761  	uint32_t percent;
1762  	uint8_t fan_idx;
1763  } __ec_align_size1;
1764  
1765  #define EC_CMD_PWM_SET_DUTY 0x0025
1766  /* 16 bit duty cycle, 0xffff = 100% */
1767  #define EC_PWM_MAX_DUTY 0xffff
1768  
1769  enum ec_pwm_type {
1770  	/* All types, indexed by board-specific enum pwm_channel */
1771  	EC_PWM_TYPE_GENERIC = 0,
1772  	/* Keyboard backlight */
1773  	EC_PWM_TYPE_KB_LIGHT,
1774  	/* Display backlight */
1775  	EC_PWM_TYPE_DISPLAY_LIGHT,
1776  	EC_PWM_TYPE_COUNT,
1777  };
1778  
1779  struct ec_params_pwm_set_duty {
1780  	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1781  	uint8_t pwm_type;  /* ec_pwm_type */
1782  	uint8_t index;     /* Type-specific index, or 0 if unique */
1783  } __ec_align4;
1784  
1785  #define EC_CMD_PWM_GET_DUTY 0x0026
1786  
1787  struct ec_params_pwm_get_duty {
1788  	uint8_t pwm_type;  /* ec_pwm_type */
1789  	uint8_t index;     /* Type-specific index, or 0 if unique */
1790  } __ec_align1;
1791  
1792  struct ec_response_pwm_get_duty {
1793  	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1794  } __ec_align2;
1795  
1796  /*****************************************************************************/
1797  /*
1798   * Lightbar commands. This looks worse than it is. Since we only use one HOST
1799   * command to say "talk to the lightbar", we put the "and tell it to do X" part
1800   * into a subcommand. We'll make separate structs for subcommands with
1801   * different input args, so that we know how much to expect.
1802   */
1803  #define EC_CMD_LIGHTBAR_CMD 0x0028
1804  
1805  struct rgb_s {
1806  	uint8_t r, g, b;
1807  } __ec_todo_unpacked;
1808  
1809  #define LB_BATTERY_LEVELS 4
1810  
1811  /*
1812   * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1813   * host command, but the alignment is the same regardless. Keep it that way.
1814   */
1815  struct lightbar_params_v0 {
1816  	/* Timing */
1817  	int32_t google_ramp_up;
1818  	int32_t google_ramp_down;
1819  	int32_t s3s0_ramp_up;
1820  	int32_t s0_tick_delay[2];		/* AC=0/1 */
1821  	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1822  	int32_t s0s3_ramp_down;
1823  	int32_t s3_sleep_for;
1824  	int32_t s3_ramp_up;
1825  	int32_t s3_ramp_down;
1826  
1827  	/* Oscillation */
1828  	uint8_t new_s0;
1829  	uint8_t osc_min[2];			/* AC=0/1 */
1830  	uint8_t osc_max[2];			/* AC=0/1 */
1831  	uint8_t w_ofs[2];			/* AC=0/1 */
1832  
1833  	/* Brightness limits based on the backlight and AC. */
1834  	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1835  	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1836  	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1837  
1838  	/* Battery level thresholds */
1839  	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1840  
1841  	/* Map [AC][battery_level] to color index */
1842  	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1843  	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1844  
1845  	/* Color palette */
1846  	struct rgb_s color[8];			/* 0-3 are Google colors */
1847  } __ec_todo_packed;
1848  
1849  struct lightbar_params_v1 {
1850  	/* Timing */
1851  	int32_t google_ramp_up;
1852  	int32_t google_ramp_down;
1853  	int32_t s3s0_ramp_up;
1854  	int32_t s0_tick_delay[2];		/* AC=0/1 */
1855  	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1856  	int32_t s0s3_ramp_down;
1857  	int32_t s3_sleep_for;
1858  	int32_t s3_ramp_up;
1859  	int32_t s3_ramp_down;
1860  	int32_t s5_ramp_up;
1861  	int32_t s5_ramp_down;
1862  	int32_t tap_tick_delay;
1863  	int32_t tap_gate_delay;
1864  	int32_t tap_display_time;
1865  
1866  	/* Tap-for-battery params */
1867  	uint8_t tap_pct_red;
1868  	uint8_t tap_pct_green;
1869  	uint8_t tap_seg_min_on;
1870  	uint8_t tap_seg_max_on;
1871  	uint8_t tap_seg_osc;
1872  	uint8_t tap_idx[3];
1873  
1874  	/* Oscillation */
1875  	uint8_t osc_min[2];			/* AC=0/1 */
1876  	uint8_t osc_max[2];			/* AC=0/1 */
1877  	uint8_t w_ofs[2];			/* AC=0/1 */
1878  
1879  	/* Brightness limits based on the backlight and AC. */
1880  	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1881  	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1882  	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1883  
1884  	/* Battery level thresholds */
1885  	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1886  
1887  	/* Map [AC][battery_level] to color index */
1888  	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1889  	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1890  
1891  	/* s5: single color pulse on inhibited power-up */
1892  	uint8_t s5_idx;
1893  
1894  	/* Color palette */
1895  	struct rgb_s color[8];			/* 0-3 are Google colors */
1896  } __ec_todo_packed;
1897  
1898  /* Lightbar command params v2
1899   * crbug.com/467716
1900   *
1901   * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1902   * logical groups to make it more manageable ( < 120 bytes).
1903   *
1904   * NOTE: Each of these groups must be less than 120 bytes.
1905   */
1906  
1907  struct lightbar_params_v2_timing {
1908  	/* Timing */
1909  	int32_t google_ramp_up;
1910  	int32_t google_ramp_down;
1911  	int32_t s3s0_ramp_up;
1912  	int32_t s0_tick_delay[2];		/* AC=0/1 */
1913  	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1914  	int32_t s0s3_ramp_down;
1915  	int32_t s3_sleep_for;
1916  	int32_t s3_ramp_up;
1917  	int32_t s3_ramp_down;
1918  	int32_t s5_ramp_up;
1919  	int32_t s5_ramp_down;
1920  	int32_t tap_tick_delay;
1921  	int32_t tap_gate_delay;
1922  	int32_t tap_display_time;
1923  } __ec_todo_packed;
1924  
1925  struct lightbar_params_v2_tap {
1926  	/* Tap-for-battery params */
1927  	uint8_t tap_pct_red;
1928  	uint8_t tap_pct_green;
1929  	uint8_t tap_seg_min_on;
1930  	uint8_t tap_seg_max_on;
1931  	uint8_t tap_seg_osc;
1932  	uint8_t tap_idx[3];
1933  } __ec_todo_packed;
1934  
1935  struct lightbar_params_v2_oscillation {
1936  	/* Oscillation */
1937  	uint8_t osc_min[2];			/* AC=0/1 */
1938  	uint8_t osc_max[2];			/* AC=0/1 */
1939  	uint8_t w_ofs[2];			/* AC=0/1 */
1940  } __ec_todo_packed;
1941  
1942  struct lightbar_params_v2_brightness {
1943  	/* Brightness limits based on the backlight and AC. */
1944  	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1945  	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1946  	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1947  } __ec_todo_packed;
1948  
1949  struct lightbar_params_v2_thresholds {
1950  	/* Battery level thresholds */
1951  	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1952  } __ec_todo_packed;
1953  
1954  struct lightbar_params_v2_colors {
1955  	/* Map [AC][battery_level] to color index */
1956  	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1957  	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1958  
1959  	/* s5: single color pulse on inhibited power-up */
1960  	uint8_t s5_idx;
1961  
1962  	/* Color palette */
1963  	struct rgb_s color[8];			/* 0-3 are Google colors */
1964  } __ec_todo_packed;
1965  
1966  /* Lightbar program. */
1967  #define EC_LB_PROG_LEN 192
1968  struct lightbar_program {
1969  	uint8_t size;
1970  	uint8_t data[EC_LB_PROG_LEN];
1971  } __ec_todo_unpacked;
1972  
1973  struct ec_params_lightbar {
1974  	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1975  	union {
1976  		/*
1977  		 * The following commands have no args:
1978  		 *
1979  		 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1980  		 * version, get_brightness, get_demo, suspend, resume,
1981  		 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1982  		 * get_params_v2_bright, get_params_v2_thlds,
1983  		 * get_params_v2_colors
1984  		 *
1985  		 * Don't use an empty struct, because C++ hates that.
1986  		 */
1987  
1988  		struct __ec_todo_unpacked {
1989  			uint8_t num;
1990  		} set_brightness, seq, demo;
1991  
1992  		struct __ec_todo_unpacked {
1993  			uint8_t ctrl, reg, value;
1994  		} reg;
1995  
1996  		struct __ec_todo_unpacked {
1997  			uint8_t led, red, green, blue;
1998  		} set_rgb;
1999  
2000  		struct __ec_todo_unpacked {
2001  			uint8_t led;
2002  		} get_rgb;
2003  
2004  		struct __ec_todo_unpacked {
2005  			uint8_t enable;
2006  		} manual_suspend_ctrl;
2007  
2008  		struct lightbar_params_v0 set_params_v0;
2009  		struct lightbar_params_v1 set_params_v1;
2010  
2011  		struct lightbar_params_v2_timing set_v2par_timing;
2012  		struct lightbar_params_v2_tap set_v2par_tap;
2013  		struct lightbar_params_v2_oscillation set_v2par_osc;
2014  		struct lightbar_params_v2_brightness set_v2par_bright;
2015  		struct lightbar_params_v2_thresholds set_v2par_thlds;
2016  		struct lightbar_params_v2_colors set_v2par_colors;
2017  
2018  		struct lightbar_program set_program;
2019  	};
2020  } __ec_todo_packed;
2021  
2022  struct ec_response_lightbar {
2023  	union {
2024  		struct __ec_todo_unpacked {
2025  			struct __ec_todo_unpacked {
2026  				uint8_t reg;
2027  				uint8_t ic0;
2028  				uint8_t ic1;
2029  			} vals[23];
2030  		} dump;
2031  
2032  		struct __ec_todo_unpacked {
2033  			uint8_t num;
2034  		} get_seq, get_brightness, get_demo;
2035  
2036  		struct lightbar_params_v0 get_params_v0;
2037  		struct lightbar_params_v1 get_params_v1;
2038  
2039  
2040  		struct lightbar_params_v2_timing get_params_v2_timing;
2041  		struct lightbar_params_v2_tap get_params_v2_tap;
2042  		struct lightbar_params_v2_oscillation get_params_v2_osc;
2043  		struct lightbar_params_v2_brightness get_params_v2_bright;
2044  		struct lightbar_params_v2_thresholds get_params_v2_thlds;
2045  		struct lightbar_params_v2_colors get_params_v2_colors;
2046  
2047  		struct __ec_todo_unpacked {
2048  			uint32_t num;
2049  			uint32_t flags;
2050  		} version;
2051  
2052  		struct __ec_todo_unpacked {
2053  			uint8_t red, green, blue;
2054  		} get_rgb;
2055  
2056  		/*
2057  		 * The following commands have no response:
2058  		 *
2059  		 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2060  		 * set_params_v0, set_params_v1, set_program,
2061  		 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2062  		 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2063  		 * set_v2par_thlds, set_v2par_colors
2064  		 */
2065  	};
2066  } __ec_todo_packed;
2067  
2068  /* Lightbar commands */
2069  enum lightbar_command {
2070  	LIGHTBAR_CMD_DUMP = 0,
2071  	LIGHTBAR_CMD_OFF = 1,
2072  	LIGHTBAR_CMD_ON = 2,
2073  	LIGHTBAR_CMD_INIT = 3,
2074  	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2075  	LIGHTBAR_CMD_SEQ = 5,
2076  	LIGHTBAR_CMD_REG = 6,
2077  	LIGHTBAR_CMD_SET_RGB = 7,
2078  	LIGHTBAR_CMD_GET_SEQ = 8,
2079  	LIGHTBAR_CMD_DEMO = 9,
2080  	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2081  	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2082  	LIGHTBAR_CMD_VERSION = 12,
2083  	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2084  	LIGHTBAR_CMD_GET_RGB = 14,
2085  	LIGHTBAR_CMD_GET_DEMO = 15,
2086  	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2087  	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2088  	LIGHTBAR_CMD_SET_PROGRAM = 18,
2089  	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2090  	LIGHTBAR_CMD_SUSPEND = 20,
2091  	LIGHTBAR_CMD_RESUME = 21,
2092  	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2093  	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2094  	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2095  	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2096  	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2097  	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2098  	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2099  	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2100  	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2101  	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2102  	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2103  	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2104  	LIGHTBAR_NUM_CMDS
2105  };
2106  
2107  /*****************************************************************************/
2108  /* LED control commands */
2109  
2110  #define EC_CMD_LED_CONTROL 0x0029
2111  
2112  enum ec_led_id {
2113  	/* LED to indicate battery state of charge */
2114  	EC_LED_ID_BATTERY_LED = 0,
2115  	/*
2116  	 * LED to indicate system power state (on or in suspend).
2117  	 * May be on power button or on C-panel.
2118  	 */
2119  	EC_LED_ID_POWER_LED,
2120  	/* LED on power adapter or its plug */
2121  	EC_LED_ID_ADAPTER_LED,
2122  	/* LED to indicate left side */
2123  	EC_LED_ID_LEFT_LED,
2124  	/* LED to indicate right side */
2125  	EC_LED_ID_RIGHT_LED,
2126  	/* LED to indicate recovery mode with HW_REINIT */
2127  	EC_LED_ID_RECOVERY_HW_REINIT_LED,
2128  	/* LED to indicate sysrq debug mode. */
2129  	EC_LED_ID_SYSRQ_DEBUG_LED,
2130  
2131  	EC_LED_ID_COUNT
2132  };
2133  
2134  /* LED control flags */
2135  #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2136  #define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2137  
2138  enum ec_led_colors {
2139  	EC_LED_COLOR_RED = 0,
2140  	EC_LED_COLOR_GREEN,
2141  	EC_LED_COLOR_BLUE,
2142  	EC_LED_COLOR_YELLOW,
2143  	EC_LED_COLOR_WHITE,
2144  	EC_LED_COLOR_AMBER,
2145  
2146  	EC_LED_COLOR_COUNT
2147  };
2148  
2149  struct ec_params_led_control {
2150  	uint8_t led_id;     /* Which LED to control */
2151  	uint8_t flags;      /* Control flags */
2152  
2153  	uint8_t brightness[EC_LED_COLOR_COUNT];
2154  } __ec_align1;
2155  
2156  struct ec_response_led_control {
2157  	/*
2158  	 * Available brightness value range.
2159  	 *
2160  	 * Range 0 means color channel not present.
2161  	 * Range 1 means on/off control.
2162  	 * Other values means the LED is control by PWM.
2163  	 */
2164  	uint8_t brightness_range[EC_LED_COLOR_COUNT];
2165  } __ec_align1;
2166  
2167  /*****************************************************************************/
2168  /* Verified boot commands */
2169  
2170  /*
2171   * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2172   * reused for other purposes with version > 0.
2173   */
2174  
2175  /* Verified boot hash command */
2176  #define EC_CMD_VBOOT_HASH 0x002A
2177  
2178  struct ec_params_vboot_hash {
2179  	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2180  	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2181  	uint8_t nonce_size;      /* Nonce size; may be 0 */
2182  	uint8_t reserved0;       /* Reserved; set 0 */
2183  	uint32_t offset;         /* Offset in flash to hash */
2184  	uint32_t size;           /* Number of bytes to hash */
2185  	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2186  } __ec_align4;
2187  
2188  struct ec_response_vboot_hash {
2189  	uint8_t status;          /* enum ec_vboot_hash_status */
2190  	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2191  	uint8_t digest_size;     /* Size of hash digest in bytes */
2192  	uint8_t reserved0;       /* Ignore; will be 0 */
2193  	uint32_t offset;         /* Offset in flash which was hashed */
2194  	uint32_t size;           /* Number of bytes hashed */
2195  	uint8_t hash_digest[64]; /* Hash digest data */
2196  } __ec_align4;
2197  
2198  enum ec_vboot_hash_cmd {
2199  	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2200  	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2201  	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2202  	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2203  };
2204  
2205  enum ec_vboot_hash_type {
2206  	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2207  };
2208  
2209  enum ec_vboot_hash_status {
2210  	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2211  	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2212  	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2213  };
2214  
2215  /*
2216   * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2217   * If one of these is specified, the EC will automatically update offset and
2218   * size to the correct values for the specified image (RO or RW).
2219   */
2220  #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
2221  #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
2222  #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
2223  
2224  /*
2225   * 'RW' is vague if there are multiple RW images; we mean the active one,
2226   * so the old constant is deprecated.
2227   */
2228  #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2229  
2230  /*****************************************************************************/
2231  /*
2232   * Motion sense commands. We'll make separate structs for sub-commands with
2233   * different input args, so that we know how much to expect.
2234   */
2235  #define EC_CMD_MOTION_SENSE_CMD 0x002B
2236  
2237  /* Motion sense commands */
2238  enum motionsense_command {
2239  	/*
2240  	 * Dump command returns all motion sensor data including motion sense
2241  	 * module flags and individual sensor flags.
2242  	 */
2243  	MOTIONSENSE_CMD_DUMP = 0,
2244  
2245  	/*
2246  	 * Info command returns data describing the details of a given sensor,
2247  	 * including enum motionsensor_type, enum motionsensor_location, and
2248  	 * enum motionsensor_chip.
2249  	 */
2250  	MOTIONSENSE_CMD_INFO = 1,
2251  
2252  	/*
2253  	 * EC Rate command is a setter/getter command for the EC sampling rate
2254  	 * in milliseconds.
2255  	 * It is per sensor, the EC run sample task  at the minimum of all
2256  	 * sensors EC_RATE.
2257  	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2258  	 * to collect all the sensor samples.
2259  	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2260  	 * to process of all motion sensors in milliseconds.
2261  	 */
2262  	MOTIONSENSE_CMD_EC_RATE = 2,
2263  
2264  	/*
2265  	 * Sensor ODR command is a setter/getter command for the output data
2266  	 * rate of a specific motion sensor in millihertz.
2267  	 */
2268  	MOTIONSENSE_CMD_SENSOR_ODR = 3,
2269  
2270  	/*
2271  	 * Sensor range command is a setter/getter command for the range of
2272  	 * a specified motion sensor in +/-G's or +/- deg/s.
2273  	 */
2274  	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2275  
2276  	/*
2277  	 * Setter/getter command for the keyboard wake angle. When the lid
2278  	 * angle is greater than this value, keyboard wake is disabled in S3,
2279  	 * and when the lid angle goes less than this value, keyboard wake is
2280  	 * enabled. Note, the lid angle measurement is an approximate,
2281  	 * un-calibrated value, hence the wake angle isn't exact.
2282  	 */
2283  	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2284  
2285  	/*
2286  	 * Returns a single sensor data.
2287  	 */
2288  	MOTIONSENSE_CMD_DATA = 6,
2289  
2290  	/*
2291  	 * Return sensor fifo info.
2292  	 */
2293  	MOTIONSENSE_CMD_FIFO_INFO = 7,
2294  
2295  	/*
2296  	 * Insert a flush element in the fifo and return sensor fifo info.
2297  	 * The host can use that element to synchronize its operation.
2298  	 */
2299  	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2300  
2301  	/*
2302  	 * Return a portion of the fifo.
2303  	 */
2304  	MOTIONSENSE_CMD_FIFO_READ = 9,
2305  
2306  	/*
2307  	 * Perform low level calibration.
2308  	 * On sensors that support it, ask to do offset calibration.
2309  	 */
2310  	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2311  
2312  	/*
2313  	 * Sensor Offset command is a setter/getter command for the offset
2314  	 * used for calibration.
2315  	 * The offsets can be calculated by the host, or via
2316  	 * PERFORM_CALIB command.
2317  	 */
2318  	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2319  
2320  	/*
2321  	 * List available activities for a MOTION sensor.
2322  	 * Indicates if they are enabled or disabled.
2323  	 */
2324  	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2325  
2326  	/*
2327  	 * Activity management
2328  	 * Enable/Disable activity recognition.
2329  	 */
2330  	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2331  
2332  	/*
2333  	 * Lid Angle
2334  	 */
2335  	MOTIONSENSE_CMD_LID_ANGLE = 14,
2336  
2337  	/*
2338  	 * Allow the FIFO to trigger interrupt via MKBP events.
2339  	 * By default the FIFO does not send interrupt to process the FIFO
2340  	 * until the AP is ready or it is coming from a wakeup sensor.
2341  	 */
2342  	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2343  
2344  	/*
2345  	 * Spoof the readings of the sensors.  The spoofed readings can be set
2346  	 * to arbitrary values, or will lock to the last read actual values.
2347  	 */
2348  	MOTIONSENSE_CMD_SPOOF = 16,
2349  
2350  	/* Set lid angle for tablet mode detection. */
2351  	MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2352  
2353  	/*
2354  	 * Sensor Scale command is a setter/getter command for the calibration
2355  	 * scale.
2356  	 */
2357  	MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2358  
2359  	/* Number of motionsense sub-commands. */
2360  	MOTIONSENSE_NUM_CMDS
2361  };
2362  
2363  /* List of motion sensor types. */
2364  enum motionsensor_type {
2365  	MOTIONSENSE_TYPE_ACCEL = 0,
2366  	MOTIONSENSE_TYPE_GYRO = 1,
2367  	MOTIONSENSE_TYPE_MAG = 2,
2368  	MOTIONSENSE_TYPE_PROX = 3,
2369  	MOTIONSENSE_TYPE_LIGHT = 4,
2370  	MOTIONSENSE_TYPE_ACTIVITY = 5,
2371  	MOTIONSENSE_TYPE_BARO = 6,
2372  	MOTIONSENSE_TYPE_SYNC = 7,
2373  	MOTIONSENSE_TYPE_MAX,
2374  };
2375  
2376  /* List of motion sensor locations. */
2377  enum motionsensor_location {
2378  	MOTIONSENSE_LOC_BASE = 0,
2379  	MOTIONSENSE_LOC_LID = 1,
2380  	MOTIONSENSE_LOC_CAMERA = 2,
2381  	MOTIONSENSE_LOC_MAX,
2382  };
2383  
2384  /* List of motion sensor chips. */
2385  enum motionsensor_chip {
2386  	MOTIONSENSE_CHIP_KXCJ9 = 0,
2387  	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2388  	MOTIONSENSE_CHIP_BMI160 = 2,
2389  	MOTIONSENSE_CHIP_SI1141 = 3,
2390  	MOTIONSENSE_CHIP_SI1142 = 4,
2391  	MOTIONSENSE_CHIP_SI1143 = 5,
2392  	MOTIONSENSE_CHIP_KX022 = 6,
2393  	MOTIONSENSE_CHIP_L3GD20H = 7,
2394  	MOTIONSENSE_CHIP_BMA255 = 8,
2395  	MOTIONSENSE_CHIP_BMP280 = 9,
2396  	MOTIONSENSE_CHIP_OPT3001 = 10,
2397  	MOTIONSENSE_CHIP_BH1730 = 11,
2398  	MOTIONSENSE_CHIP_GPIO = 12,
2399  	MOTIONSENSE_CHIP_LIS2DH = 13,
2400  	MOTIONSENSE_CHIP_LSM6DSM = 14,
2401  	MOTIONSENSE_CHIP_LIS2DE = 15,
2402  	MOTIONSENSE_CHIP_LIS2MDL = 16,
2403  	MOTIONSENSE_CHIP_LSM6DS3 = 17,
2404  	MOTIONSENSE_CHIP_LSM6DSO = 18,
2405  	MOTIONSENSE_CHIP_LNG2DM = 19,
2406  	MOTIONSENSE_CHIP_MAX,
2407  };
2408  
2409  /* List of orientation positions */
2410  enum motionsensor_orientation {
2411  	MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2412  	MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2413  	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2414  	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2415  	MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2416  };
2417  
2418  struct ec_response_motion_sensor_data {
2419  	/* Flags for each sensor. */
2420  	uint8_t flags;
2421  	/* Sensor number the data comes from. */
2422  	uint8_t sensor_num;
2423  	/* Each sensor is up to 3-axis. */
2424  	union {
2425  		int16_t             data[3];
2426  		struct __ec_todo_packed {
2427  			uint16_t    reserved;
2428  			uint32_t    timestamp;
2429  		};
2430  		struct __ec_todo_unpacked {
2431  			uint8_t     activity; /* motionsensor_activity */
2432  			uint8_t     state;
2433  			int16_t     add_info[2];
2434  		};
2435  	};
2436  } __ec_todo_packed;
2437  
2438  /* Note: used in ec_response_get_next_data */
2439  struct ec_response_motion_sense_fifo_info {
2440  	/* Size of the fifo */
2441  	uint16_t size;
2442  	/* Amount of space used in the fifo */
2443  	uint16_t count;
2444  	/* Timestamp recorded in us.
2445  	 * aka accurate timestamp when host event was triggered.
2446  	 */
2447  	uint32_t timestamp;
2448  	/* Total amount of vector lost */
2449  	uint16_t total_lost;
2450  	/* Lost events since the last fifo_info, per sensors */
2451  	uint16_t lost[];
2452  } __ec_todo_packed;
2453  
2454  struct ec_response_motion_sense_fifo_data {
2455  	uint32_t number_data;
2456  	struct ec_response_motion_sensor_data data[];
2457  } __ec_todo_packed;
2458  
2459  /* List supported activity recognition */
2460  enum motionsensor_activity {
2461  	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2462  	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2463  	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2464  	MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2465  };
2466  
2467  struct ec_motion_sense_activity {
2468  	uint8_t sensor_num;
2469  	uint8_t activity; /* one of enum motionsensor_activity */
2470  	uint8_t enable;   /* 1: enable, 0: disable */
2471  	uint8_t reserved;
2472  	uint16_t parameters[3]; /* activity dependent parameters */
2473  } __ec_todo_unpacked;
2474  
2475  /* Module flag masks used for the dump sub-command. */
2476  #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2477  
2478  /* Sensor flag masks used for the dump sub-command. */
2479  #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2480  
2481  /*
2482   * Flush entry for synchronization.
2483   * data contains time stamp
2484   */
2485  #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2486  #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2487  #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2488  #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2489  #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2490  
2491  /*
2492   * Send this value for the data element to only perform a read. If you
2493   * send any other value, the EC will interpret it as data to set and will
2494   * return the actual value set.
2495   */
2496  #define EC_MOTION_SENSE_NO_VALUE -1
2497  
2498  #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2499  
2500  /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2501  /* Set Calibration information */
2502  #define MOTION_SENSE_SET_OFFSET BIT(0)
2503  
2504  /* Default Scale value, factor 1. */
2505  #define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2506  
2507  #define LID_ANGLE_UNRELIABLE 500
2508  
2509  enum motionsense_spoof_mode {
2510  	/* Disable spoof mode. */
2511  	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2512  
2513  	/* Enable spoof mode, but use provided component values. */
2514  	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2515  
2516  	/* Enable spoof mode, but use the current sensor values. */
2517  	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2518  
2519  	/* Query the current spoof mode status for the sensor. */
2520  	MOTIONSENSE_SPOOF_MODE_QUERY,
2521  };
2522  
2523  struct ec_params_motion_sense {
2524  	uint8_t cmd;
2525  	union {
2526  		/* Used for MOTIONSENSE_CMD_DUMP. */
2527  		struct __ec_todo_unpacked {
2528  			/*
2529  			 * Maximal number of sensor the host is expecting.
2530  			 * 0 means the host is only interested in the number
2531  			 * of sensors controlled by the EC.
2532  			 */
2533  			uint8_t max_sensor_count;
2534  		} dump;
2535  
2536  		/*
2537  		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2538  		 */
2539  		struct __ec_todo_unpacked {
2540  			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2541  			 * kb_wake_angle: angle to wakup AP.
2542  			 */
2543  			int16_t data;
2544  		} kb_wake_angle;
2545  
2546  		/*
2547  		 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2548  		 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2549  		 */
2550  		struct __ec_todo_unpacked {
2551  			uint8_t sensor_num;
2552  		} info, info_3, data, fifo_flush, perform_calib,
2553  				list_activities;
2554  
2555  		/*
2556  		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2557  		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2558  		 */
2559  		struct __ec_todo_unpacked {
2560  			uint8_t sensor_num;
2561  
2562  			/* Rounding flag, true for round-up, false for down. */
2563  			uint8_t roundup;
2564  
2565  			uint16_t reserved;
2566  
2567  			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2568  			int32_t data;
2569  		} ec_rate, sensor_odr, sensor_range;
2570  
2571  		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2572  		struct __ec_todo_packed {
2573  			uint8_t sensor_num;
2574  
2575  			/*
2576  			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2577  			 * the calibration information in the EC.
2578  			 * If unset, just retrieve calibration information.
2579  			 */
2580  			uint16_t flags;
2581  
2582  			/*
2583  			 * Temperature at calibration, in units of 0.01 C
2584  			 * 0x8000: invalid / unknown.
2585  			 * 0x0: 0C
2586  			 * 0x7fff: +327.67C
2587  			 */
2588  			int16_t temp;
2589  
2590  			/*
2591  			 * Offset for calibration.
2592  			 * Unit:
2593  			 * Accelerometer: 1/1024 g
2594  			 * Gyro:          1/1024 deg/s
2595  			 * Compass:       1/16 uT
2596  			 */
2597  			int16_t offset[3];
2598  		} sensor_offset;
2599  
2600  		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2601  		struct __ec_todo_packed {
2602  			uint8_t sensor_num;
2603  
2604  			/*
2605  			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2606  			 * the calibration information in the EC.
2607  			 * If unset, just retrieve calibration information.
2608  			 */
2609  			uint16_t flags;
2610  
2611  			/*
2612  			 * Temperature at calibration, in units of 0.01 C
2613  			 * 0x8000: invalid / unknown.
2614  			 * 0x0: 0C
2615  			 * 0x7fff: +327.67C
2616  			 */
2617  			int16_t temp;
2618  
2619  			/*
2620  			 * Scale for calibration:
2621  			 * By default scale is 1, it is encoded on 16bits:
2622  			 * 1 = BIT(15)
2623  			 * ~2 = 0xFFFF
2624  			 * ~0 = 0.
2625  			 */
2626  			uint16_t scale[3];
2627  		} sensor_scale;
2628  
2629  
2630  		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2631  		/* (no params) */
2632  
2633  		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2634  		struct __ec_todo_unpacked {
2635  			/*
2636  			 * Number of expected vector to return.
2637  			 * EC may return less or 0 if none available.
2638  			 */
2639  			uint32_t max_data_vector;
2640  		} fifo_read;
2641  
2642  		struct ec_motion_sense_activity set_activity;
2643  
2644  		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2645  		/* (no params) */
2646  
2647  		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2648  		struct __ec_todo_unpacked {
2649  			/*
2650  			 * 1: enable, 0 disable fifo,
2651  			 * EC_MOTION_SENSE_NO_VALUE return value.
2652  			 */
2653  			int8_t enable;
2654  		} fifo_int_enable;
2655  
2656  		/* Used for MOTIONSENSE_CMD_SPOOF */
2657  		struct __ec_todo_packed {
2658  			uint8_t sensor_id;
2659  
2660  			/* See enum motionsense_spoof_mode. */
2661  			uint8_t spoof_enable;
2662  
2663  			/* Ignored, used for alignment. */
2664  			uint8_t reserved;
2665  
2666  			/* Individual component values to spoof. */
2667  			int16_t components[3];
2668  		} spoof;
2669  
2670  		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2671  		struct __ec_todo_unpacked {
2672  			/*
2673  			 * Lid angle threshold for switching between tablet and
2674  			 * clamshell mode.
2675  			 */
2676  			int16_t lid_angle;
2677  
2678  			/*
2679  			 * Hysteresis degree to prevent fluctuations between
2680  			 * clamshell and tablet mode if lid angle keeps
2681  			 * changing around the threshold. Lid motion driver will
2682  			 * use lid_angle + hys_degree to trigger tablet mode and
2683  			 * lid_angle - hys_degree to trigger clamshell mode.
2684  			 */
2685  			int16_t hys_degree;
2686  		} tablet_mode_threshold;
2687  	};
2688  } __ec_todo_packed;
2689  
2690  struct ec_response_motion_sense {
2691  	union {
2692  		/* Used for MOTIONSENSE_CMD_DUMP */
2693  		struct __ec_todo_unpacked {
2694  			/* Flags representing the motion sensor module. */
2695  			uint8_t module_flags;
2696  
2697  			/* Number of sensors managed directly by the EC. */
2698  			uint8_t sensor_count;
2699  
2700  			/*
2701  			 * Sensor data is truncated if response_max is too small
2702  			 * for holding all the data.
2703  			 */
2704  			DECLARE_FLEX_ARRAY(struct ec_response_motion_sensor_data, sensor);
2705  		} dump;
2706  
2707  		/* Used for MOTIONSENSE_CMD_INFO. */
2708  		struct __ec_todo_unpacked {
2709  			/* Should be element of enum motionsensor_type. */
2710  			uint8_t type;
2711  
2712  			/* Should be element of enum motionsensor_location. */
2713  			uint8_t location;
2714  
2715  			/* Should be element of enum motionsensor_chip. */
2716  			uint8_t chip;
2717  		} info;
2718  
2719  		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2720  		struct __ec_todo_unpacked {
2721  			/* Should be element of enum motionsensor_type. */
2722  			uint8_t type;
2723  
2724  			/* Should be element of enum motionsensor_location. */
2725  			uint8_t location;
2726  
2727  			/* Should be element of enum motionsensor_chip. */
2728  			uint8_t chip;
2729  
2730  			/* Minimum sensor sampling frequency */
2731  			uint32_t min_frequency;
2732  
2733  			/* Maximum sensor sampling frequency */
2734  			uint32_t max_frequency;
2735  
2736  			/* Max number of sensor events that could be in fifo */
2737  			uint32_t fifo_max_event_count;
2738  		} info_3;
2739  
2740  		/* Used for MOTIONSENSE_CMD_DATA */
2741  		struct ec_response_motion_sensor_data data;
2742  
2743  		/*
2744  		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2745  		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2746  		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2747  		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2748  		 * MOTIONSENSE_CMD_SPOOF.
2749  		 */
2750  		struct __ec_todo_unpacked {
2751  			/* Current value of the parameter queried. */
2752  			int32_t ret;
2753  		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2754  		  fifo_int_enable, spoof;
2755  
2756  		/*
2757  		 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2758  		 * PERFORM_CALIB.
2759  		 */
2760  		struct __ec_todo_unpacked  {
2761  			int16_t temp;
2762  			int16_t offset[3];
2763  		} sensor_offset, perform_calib;
2764  
2765  		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2766  		struct __ec_todo_unpacked  {
2767  			int16_t temp;
2768  			uint16_t scale[3];
2769  		} sensor_scale;
2770  
2771  		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2772  
2773  		struct ec_response_motion_sense_fifo_data fifo_read;
2774  
2775  		struct __ec_todo_packed {
2776  			uint16_t reserved;
2777  			uint32_t enabled;
2778  			uint32_t disabled;
2779  		} list_activities;
2780  
2781  		/* No params for set activity */
2782  
2783  		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2784  		struct __ec_todo_unpacked {
2785  			/*
2786  			 * Angle between 0 and 360 degree if available,
2787  			 * LID_ANGLE_UNRELIABLE otherwise.
2788  			 */
2789  			uint16_t value;
2790  		} lid_angle;
2791  
2792  		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2793  		struct __ec_todo_unpacked {
2794  			/*
2795  			 * Lid angle threshold for switching between tablet and
2796  			 * clamshell mode.
2797  			 */
2798  			uint16_t lid_angle;
2799  
2800  			/* Hysteresis degree. */
2801  			uint16_t hys_degree;
2802  		} tablet_mode_threshold;
2803  
2804  	};
2805  } __ec_todo_packed;
2806  
2807  /*****************************************************************************/
2808  /* Force lid open command */
2809  
2810  /* Make lid event always open */
2811  #define EC_CMD_FORCE_LID_OPEN 0x002C
2812  
2813  struct ec_params_force_lid_open {
2814  	uint8_t enabled;
2815  } __ec_align1;
2816  
2817  /*****************************************************************************/
2818  /* Configure the behavior of the power button */
2819  #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2820  
2821  enum ec_config_power_button_flags {
2822  	/* Enable/Disable power button pulses for x86 devices */
2823  	EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2824  };
2825  
2826  struct ec_params_config_power_button {
2827  	/* See enum ec_config_power_button_flags */
2828  	uint8_t flags;
2829  } __ec_align1;
2830  
2831  /*****************************************************************************/
2832  /* USB charging control commands */
2833  
2834  /* Set USB port charging mode */
2835  #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2836  
2837  struct ec_params_usb_charge_set_mode {
2838  	uint8_t usb_port_id;
2839  	uint8_t mode:7;
2840  	uint8_t inhibit_charge:1;
2841  } __ec_align1;
2842  
2843  /*****************************************************************************/
2844  /* Persistent storage for host */
2845  
2846  /* Maximum bytes that can be read/written in a single command */
2847  #define EC_PSTORE_SIZE_MAX 64
2848  
2849  /* Get persistent storage info */
2850  #define EC_CMD_PSTORE_INFO 0x0040
2851  
2852  struct ec_response_pstore_info {
2853  	/* Persistent storage size, in bytes */
2854  	uint32_t pstore_size;
2855  	/* Access size; read/write offset and size must be a multiple of this */
2856  	uint32_t access_size;
2857  } __ec_align4;
2858  
2859  /*
2860   * Read persistent storage
2861   *
2862   * Response is params.size bytes of data.
2863   */
2864  #define EC_CMD_PSTORE_READ 0x0041
2865  
2866  struct ec_params_pstore_read {
2867  	uint32_t offset;   /* Byte offset to read */
2868  	uint32_t size;     /* Size to read in bytes */
2869  } __ec_align4;
2870  
2871  /* Write persistent storage */
2872  #define EC_CMD_PSTORE_WRITE 0x0042
2873  
2874  struct ec_params_pstore_write {
2875  	uint32_t offset;   /* Byte offset to write */
2876  	uint32_t size;     /* Size to write in bytes */
2877  	uint8_t data[EC_PSTORE_SIZE_MAX];
2878  } __ec_align4;
2879  
2880  /*****************************************************************************/
2881  /* Real-time clock */
2882  
2883  /* RTC params and response structures */
2884  struct ec_params_rtc {
2885  	uint32_t time;
2886  } __ec_align4;
2887  
2888  struct ec_response_rtc {
2889  	uint32_t time;
2890  } __ec_align4;
2891  
2892  /* These use ec_response_rtc */
2893  #define EC_CMD_RTC_GET_VALUE 0x0044
2894  #define EC_CMD_RTC_GET_ALARM 0x0045
2895  
2896  /* These all use ec_params_rtc */
2897  #define EC_CMD_RTC_SET_VALUE 0x0046
2898  #define EC_CMD_RTC_SET_ALARM 0x0047
2899  
2900  /* Pass as time param to SET_ALARM to clear the current alarm */
2901  #define EC_RTC_ALARM_CLEAR 0
2902  
2903  /*****************************************************************************/
2904  /* Port80 log access */
2905  
2906  /* Maximum entries that can be read/written in a single command */
2907  #define EC_PORT80_SIZE_MAX 32
2908  
2909  /* Get last port80 code from previous boot */
2910  #define EC_CMD_PORT80_LAST_BOOT 0x0048
2911  #define EC_CMD_PORT80_READ 0x0048
2912  
2913  enum ec_port80_subcmd {
2914  	EC_PORT80_GET_INFO = 0,
2915  	EC_PORT80_READ_BUFFER,
2916  };
2917  
2918  struct ec_params_port80_read {
2919  	uint16_t subcmd;
2920  	union {
2921  		struct __ec_todo_unpacked {
2922  			uint32_t offset;
2923  			uint32_t num_entries;
2924  		} read_buffer;
2925  	};
2926  } __ec_todo_packed;
2927  
2928  struct ec_response_port80_read {
2929  	union {
2930  		struct __ec_todo_unpacked {
2931  			uint32_t writes;
2932  			uint32_t history_size;
2933  			uint32_t last_boot;
2934  		} get_info;
2935  		struct __ec_todo_unpacked {
2936  			uint16_t codes[EC_PORT80_SIZE_MAX];
2937  		} data;
2938  	};
2939  } __ec_todo_packed;
2940  
2941  struct ec_response_port80_last_boot {
2942  	uint16_t code;
2943  } __ec_align2;
2944  
2945  /*****************************************************************************/
2946  /* Temporary secure storage for host verified boot use */
2947  
2948  /* Number of bytes in a vstore slot */
2949  #define EC_VSTORE_SLOT_SIZE 64
2950  
2951  /* Maximum number of vstore slots */
2952  #define EC_VSTORE_SLOT_MAX 32
2953  
2954  /* Get persistent storage info */
2955  #define EC_CMD_VSTORE_INFO 0x0049
2956  struct ec_response_vstore_info {
2957  	/* Indicates which slots are locked */
2958  	uint32_t slot_locked;
2959  	/* Total number of slots available */
2960  	uint8_t slot_count;
2961  } __ec_align_size1;
2962  
2963  /*
2964   * Read temporary secure storage
2965   *
2966   * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2967   */
2968  #define EC_CMD_VSTORE_READ 0x004A
2969  
2970  struct ec_params_vstore_read {
2971  	uint8_t slot; /* Slot to read from */
2972  } __ec_align1;
2973  
2974  struct ec_response_vstore_read {
2975  	uint8_t data[EC_VSTORE_SLOT_SIZE];
2976  } __ec_align1;
2977  
2978  /*
2979   * Write temporary secure storage and lock it.
2980   */
2981  #define EC_CMD_VSTORE_WRITE 0x004B
2982  
2983  struct ec_params_vstore_write {
2984  	uint8_t slot; /* Slot to write to */
2985  	uint8_t data[EC_VSTORE_SLOT_SIZE];
2986  } __ec_align1;
2987  
2988  /*****************************************************************************/
2989  /* Thermal engine commands. Note that there are two implementations. We'll
2990   * reuse the command number, but the data and behavior is incompatible.
2991   * Version 0 is what originally shipped on Link.
2992   * Version 1 separates the CPU thermal limits from the fan control.
2993   */
2994  
2995  #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2996  #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2997  
2998  /* The version 0 structs are opaque. You have to know what they are for
2999   * the get/set commands to make any sense.
3000   */
3001  
3002  /* Version 0 - set */
3003  struct ec_params_thermal_set_threshold {
3004  	uint8_t sensor_type;
3005  	uint8_t threshold_id;
3006  	uint16_t value;
3007  } __ec_align2;
3008  
3009  /* Version 0 - get */
3010  struct ec_params_thermal_get_threshold {
3011  	uint8_t sensor_type;
3012  	uint8_t threshold_id;
3013  } __ec_align1;
3014  
3015  struct ec_response_thermal_get_threshold {
3016  	uint16_t value;
3017  } __ec_align2;
3018  
3019  
3020  /* The version 1 structs are visible. */
3021  enum ec_temp_thresholds {
3022  	EC_TEMP_THRESH_WARN = 0,
3023  	EC_TEMP_THRESH_HIGH,
3024  	EC_TEMP_THRESH_HALT,
3025  
3026  	EC_TEMP_THRESH_COUNT
3027  };
3028  
3029  /*
3030   * Thermal configuration for one temperature sensor. Temps are in degrees K.
3031   * Zero values will be silently ignored by the thermal task.
3032   *
3033   * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3034   * hysteresis.
3035   * For example,
3036   *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3037   *	temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3038   * EC will throttle ap when temperature >= 301 K, and release throttling when
3039   * temperature <= 299 K.
3040   *
3041   * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3042   * For example,
3043   *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3044   *	temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3045   * EC will throttle ap when temperature >= 301 K, and release throttling when
3046   * temperature <= 294 K.
3047   *
3048   * Note that this structure is a sub-structure of
3049   * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3050   */
3051  struct ec_thermal_config {
3052  	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3053  	uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3054  	uint32_t temp_fan_off;		/* no active cooling needed */
3055  	uint32_t temp_fan_max;		/* max active cooling needed */
3056  } __ec_align4;
3057  
3058  /* Version 1 - get config for one sensor. */
3059  struct ec_params_thermal_get_threshold_v1 {
3060  	uint32_t sensor_num;
3061  } __ec_align4;
3062  /* This returns a struct ec_thermal_config */
3063  
3064  /*
3065   * Version 1 - set config for one sensor.
3066   * Use read-modify-write for best results!
3067   */
3068  struct ec_params_thermal_set_threshold_v1 {
3069  	uint32_t sensor_num;
3070  	struct ec_thermal_config cfg;
3071  } __ec_align4;
3072  /* This returns no data */
3073  
3074  /****************************************************************************/
3075  
3076  /* Toggle automatic fan control */
3077  #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3078  
3079  /* Version 1 of input params */
3080  struct ec_params_auto_fan_ctrl_v1 {
3081  	uint8_t fan_idx;
3082  } __ec_align1;
3083  
3084  /* Get/Set TMP006 calibration data */
3085  #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3086  #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3087  
3088  /*
3089   * The original TMP006 calibration only needed four params, but now we need
3090   * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3091   * the params opaque. The v1 "get" response will include the algorithm number
3092   * and how many params it requires. That way we can change the EC code without
3093   * needing to update this file. We can also use a different algorithm on each
3094   * sensor.
3095   */
3096  
3097  /* This is the same struct for both v0 and v1. */
3098  struct ec_params_tmp006_get_calibration {
3099  	uint8_t index;
3100  } __ec_align1;
3101  
3102  /* Version 0 */
3103  struct ec_response_tmp006_get_calibration_v0 {
3104  	float s0;
3105  	float b0;
3106  	float b1;
3107  	float b2;
3108  } __ec_align4;
3109  
3110  struct ec_params_tmp006_set_calibration_v0 {
3111  	uint8_t index;
3112  	uint8_t reserved[3];
3113  	float s0;
3114  	float b0;
3115  	float b1;
3116  	float b2;
3117  } __ec_align4;
3118  
3119  /* Version 1 */
3120  struct ec_response_tmp006_get_calibration_v1 {
3121  	uint8_t algorithm;
3122  	uint8_t num_params;
3123  	uint8_t reserved[2];
3124  	float val[];
3125  } __ec_align4;
3126  
3127  struct ec_params_tmp006_set_calibration_v1 {
3128  	uint8_t index;
3129  	uint8_t algorithm;
3130  	uint8_t num_params;
3131  	uint8_t reserved;
3132  	float val[];
3133  } __ec_align4;
3134  
3135  
3136  /* Read raw TMP006 data */
3137  #define EC_CMD_TMP006_GET_RAW 0x0055
3138  
3139  struct ec_params_tmp006_get_raw {
3140  	uint8_t index;
3141  } __ec_align1;
3142  
3143  struct ec_response_tmp006_get_raw {
3144  	int32_t t;  /* In 1/100 K */
3145  	int32_t v;  /* In nV */
3146  } __ec_align4;
3147  
3148  /*****************************************************************************/
3149  /* MKBP - Matrix KeyBoard Protocol */
3150  
3151  /*
3152   * Read key state
3153   *
3154   * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3155   * expected response size.
3156   *
3157   * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3158   * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3159   * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3160   */
3161  #define EC_CMD_MKBP_STATE 0x0060
3162  
3163  /*
3164   * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3165   */
3166  #define EC_CMD_MKBP_INFO 0x0061
3167  
3168  struct ec_response_mkbp_info {
3169  	uint32_t rows;
3170  	uint32_t cols;
3171  	/* Formerly "switches", which was 0. */
3172  	uint8_t reserved;
3173  } __ec_align_size1;
3174  
3175  struct ec_params_mkbp_info {
3176  	uint8_t info_type;
3177  	uint8_t event_type;
3178  } __ec_align1;
3179  
3180  enum ec_mkbp_info_type {
3181  	/*
3182  	 * Info about the keyboard matrix: number of rows and columns.
3183  	 *
3184  	 * Returns struct ec_response_mkbp_info.
3185  	 */
3186  	EC_MKBP_INFO_KBD = 0,
3187  
3188  	/*
3189  	 * For buttons and switches, info about which specifically are
3190  	 * supported.  event_type must be set to one of the values in enum
3191  	 * ec_mkbp_event.
3192  	 *
3193  	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3194  	 * bitmask indicating which buttons or switches are present.  See the
3195  	 * bit inidices below.
3196  	 */
3197  	EC_MKBP_INFO_SUPPORTED = 1,
3198  
3199  	/*
3200  	 * Instantaneous state of buttons and switches.
3201  	 *
3202  	 * event_type must be set to one of the values in enum ec_mkbp_event.
3203  	 *
3204  	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3205  	 * indicating the current state of the keyboard matrix.
3206  	 *
3207  	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3208  	 * event state.
3209  	 *
3210  	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3211  	 * state of supported buttons.
3212  	 *
3213  	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3214  	 * state of supported switches.
3215  	 */
3216  	EC_MKBP_INFO_CURRENT = 2,
3217  };
3218  
3219  /* Simulate key press */
3220  #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3221  
3222  struct ec_params_mkbp_simulate_key {
3223  	uint8_t col;
3224  	uint8_t row;
3225  	uint8_t pressed;
3226  } __ec_align1;
3227  
3228  #define EC_CMD_GET_KEYBOARD_ID 0x0063
3229  
3230  struct ec_response_keyboard_id {
3231  	uint32_t keyboard_id;
3232  } __ec_align4;
3233  
3234  enum keyboard_id {
3235  	KEYBOARD_ID_UNSUPPORTED = 0,
3236  	KEYBOARD_ID_UNREADABLE = 0xffffffff,
3237  };
3238  
3239  /* Configure keyboard scanning */
3240  #define EC_CMD_MKBP_SET_CONFIG 0x0064
3241  #define EC_CMD_MKBP_GET_CONFIG 0x0065
3242  
3243  /* flags */
3244  enum mkbp_config_flags {
3245  	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
3246  };
3247  
3248  enum mkbp_config_valid {
3249  	EC_MKBP_VALID_SCAN_PERIOD		= BIT(0),
3250  	EC_MKBP_VALID_POLL_TIMEOUT		= BIT(1),
3251  	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= BIT(3),
3252  	EC_MKBP_VALID_OUTPUT_SETTLE		= BIT(4),
3253  	EC_MKBP_VALID_DEBOUNCE_DOWN		= BIT(5),
3254  	EC_MKBP_VALID_DEBOUNCE_UP		= BIT(6),
3255  	EC_MKBP_VALID_FIFO_MAX_DEPTH		= BIT(7),
3256  };
3257  
3258  /*
3259   * Configuration for our key scanning algorithm.
3260   *
3261   * Note that this is used as a sub-structure of
3262   * ec_{params/response}_mkbp_get_config.
3263   */
3264  struct ec_mkbp_config {
3265  	uint32_t valid_mask;		/* valid fields */
3266  	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
3267  	uint8_t valid_flags;		/* which flags are valid */
3268  	uint16_t scan_period_us;	/* period between start of scans */
3269  	/* revert to interrupt mode after no activity for this long */
3270  	uint32_t poll_timeout_us;
3271  	/*
3272  	 * minimum post-scan relax time. Once we finish a scan we check
3273  	 * the time until we are due to start the next one. If this time is
3274  	 * shorter this field, we use this instead.
3275  	 */
3276  	uint16_t min_post_scan_delay_us;
3277  	/* delay between setting up output and waiting for it to settle */
3278  	uint16_t output_settle_us;
3279  	uint16_t debounce_down_us;	/* time for debounce on key down */
3280  	uint16_t debounce_up_us;	/* time for debounce on key up */
3281  	/* maximum depth to allow for fifo (0 = no keyscan output) */
3282  	uint8_t fifo_max_depth;
3283  } __ec_align_size1;
3284  
3285  struct ec_params_mkbp_set_config {
3286  	struct ec_mkbp_config config;
3287  } __ec_align_size1;
3288  
3289  struct ec_response_mkbp_get_config {
3290  	struct ec_mkbp_config config;
3291  } __ec_align_size1;
3292  
3293  /* Run the key scan emulation */
3294  #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3295  
3296  enum ec_keyscan_seq_cmd {
3297  	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
3298  	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
3299  	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
3300  	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
3301  	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
3302  };
3303  
3304  enum ec_collect_flags {
3305  	/*
3306  	 * Indicates this scan was processed by the EC. Due to timing, some
3307  	 * scans may be skipped.
3308  	 */
3309  	EC_KEYSCAN_SEQ_FLAG_DONE	= BIT(0),
3310  };
3311  
3312  struct ec_collect_item {
3313  	uint8_t flags;		/* some flags (enum ec_collect_flags) */
3314  } __ec_align1;
3315  
3316  struct ec_params_keyscan_seq_ctrl {
3317  	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
3318  	union {
3319  		struct __ec_align1 {
3320  			uint8_t active;		/* still active */
3321  			uint8_t num_items;	/* number of items */
3322  			/* Current item being presented */
3323  			uint8_t cur_item;
3324  		} status;
3325  		struct __ec_todo_unpacked {
3326  			/*
3327  			 * Absolute time for this scan, measured from the
3328  			 * start of the sequence.
3329  			 */
3330  			uint32_t time_us;
3331  			uint8_t scan[0];	/* keyscan data */
3332  		} add;
3333  		struct __ec_align1 {
3334  			uint8_t start_item;	/* First item to return */
3335  			uint8_t num_items;	/* Number of items to return */
3336  		} collect;
3337  	};
3338  } __ec_todo_packed;
3339  
3340  struct ec_result_keyscan_seq_ctrl {
3341  	union {
3342  		struct __ec_todo_unpacked {
3343  			uint8_t num_items;	/* Number of items */
3344  			/* Data for each item */
3345  			struct ec_collect_item item[0];
3346  		} collect;
3347  	};
3348  } __ec_todo_packed;
3349  
3350  /*
3351   * Get the next pending MKBP event.
3352   *
3353   * Returns EC_RES_UNAVAILABLE if there is no event pending.
3354   */
3355  #define EC_CMD_GET_NEXT_EVENT 0x0067
3356  
3357  #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3358  
3359  /*
3360   * We use the most significant bit of the event type to indicate to the host
3361   * that the EC has more MKBP events available to provide.
3362   */
3363  #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3364  
3365  /* The mask to apply to get the raw event type */
3366  #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3367  
3368  enum ec_mkbp_event {
3369  	/* Keyboard matrix changed. The event data is the new matrix state. */
3370  	EC_MKBP_EVENT_KEY_MATRIX = 0,
3371  
3372  	/* New host event. The event data is 4 bytes of host event flags. */
3373  	EC_MKBP_EVENT_HOST_EVENT = 1,
3374  
3375  	/* New Sensor FIFO data. The event data is fifo_info structure. */
3376  	EC_MKBP_EVENT_SENSOR_FIFO = 2,
3377  
3378  	/* The state of the non-matrixed buttons have changed. */
3379  	EC_MKBP_EVENT_BUTTON = 3,
3380  
3381  	/* The state of the switches have changed. */
3382  	EC_MKBP_EVENT_SWITCH = 4,
3383  
3384  	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
3385  	EC_MKBP_EVENT_FINGERPRINT = 5,
3386  
3387  	/*
3388  	 * Sysrq event: send emulated sysrq. The event data is sysrq,
3389  	 * corresponding to the key to be pressed.
3390  	 */
3391  	EC_MKBP_EVENT_SYSRQ = 6,
3392  
3393  	/*
3394  	 * New 64-bit host event.
3395  	 * The event data is 8 bytes of host event flags.
3396  	 */
3397  	EC_MKBP_EVENT_HOST_EVENT64 = 7,
3398  
3399  	/* Notify the AP that something happened on CEC */
3400  	EC_MKBP_EVENT_CEC_EVENT = 8,
3401  
3402  	/* Send an incoming CEC message to the AP */
3403  	EC_MKBP_EVENT_CEC_MESSAGE = 9,
3404  
3405  	/* Peripheral device charger event */
3406  	EC_MKBP_EVENT_PCHG = 12,
3407  
3408  	/* Number of MKBP events */
3409  	EC_MKBP_EVENT_COUNT,
3410  };
3411  BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3412  
3413  union __ec_align_offset1 ec_response_get_next_data {
3414  	uint8_t key_matrix[13];
3415  
3416  	/* Unaligned */
3417  	uint32_t host_event;
3418  	uint64_t host_event64;
3419  
3420  	struct __ec_todo_unpacked {
3421  		/* For aligning the fifo_info */
3422  		uint8_t reserved[3];
3423  		struct ec_response_motion_sense_fifo_info info;
3424  	} sensor_fifo;
3425  
3426  	uint32_t buttons;
3427  
3428  	uint32_t switches;
3429  
3430  	uint32_t fp_events;
3431  
3432  	uint32_t sysrq;
3433  
3434  	/* CEC events from enum mkbp_cec_event */
3435  	uint32_t cec_events;
3436  };
3437  
3438  union __ec_align_offset1 ec_response_get_next_data_v1 {
3439  	uint8_t key_matrix[16];
3440  
3441  	/* Unaligned */
3442  	uint32_t host_event;
3443  	uint64_t host_event64;
3444  
3445  	struct __ec_todo_unpacked {
3446  		/* For aligning the fifo_info */
3447  		uint8_t reserved[3];
3448  		struct ec_response_motion_sense_fifo_info info;
3449  	} sensor_fifo;
3450  
3451  	uint32_t buttons;
3452  
3453  	uint32_t switches;
3454  
3455  	uint32_t fp_events;
3456  
3457  	uint32_t sysrq;
3458  
3459  	/* CEC events from enum mkbp_cec_event */
3460  	uint32_t cec_events;
3461  
3462  	uint8_t cec_message[16];
3463  };
3464  BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3465  
3466  struct ec_response_get_next_event {
3467  	uint8_t event_type;
3468  	/* Followed by event data if any */
3469  	union ec_response_get_next_data data;
3470  } __ec_align1;
3471  
3472  struct ec_response_get_next_event_v1 {
3473  	uint8_t event_type;
3474  	/* Followed by event data if any */
3475  	union ec_response_get_next_data_v1 data;
3476  } __ec_align1;
3477  
3478  /* Bit indices for buttons and switches.*/
3479  /* Buttons */
3480  #define EC_MKBP_POWER_BUTTON	0
3481  #define EC_MKBP_VOL_UP		1
3482  #define EC_MKBP_VOL_DOWN	2
3483  #define EC_MKBP_RECOVERY	3
3484  #define EC_MKBP_BRI_UP		4
3485  #define EC_MKBP_BRI_DOWN	5
3486  #define EC_MKBP_SCREEN_LOCK	6
3487  
3488  /* Switches */
3489  #define EC_MKBP_LID_OPEN	0
3490  #define EC_MKBP_TABLET_MODE	1
3491  #define EC_MKBP_BASE_ATTACHED	2
3492  #define EC_MKBP_FRONT_PROXIMITY	3
3493  
3494  /* Run keyboard factory test scanning */
3495  #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3496  
3497  struct ec_response_keyboard_factory_test {
3498  	uint16_t shorted;	/* Keyboard pins are shorted */
3499  } __ec_align2;
3500  
3501  /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3502  #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3503  #define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3504  #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3505  #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3506  					 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3507  #define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3508  #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3509  #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3510  					 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3511  #define EC_MKBP_FP_ENROLL               BIT(27)
3512  #define EC_MKBP_FP_MATCH                BIT(28)
3513  #define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3514  #define EC_MKBP_FP_FINGER_UP            BIT(30)
3515  #define EC_MKBP_FP_IMAGE_READY          BIT(31)
3516  /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3517  #define EC_MKBP_FP_ERR_ENROLL_OK               0
3518  #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3519  #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3520  #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3521  #define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3522  /* Can be used to detect if image was usable for enrollment or not. */
3523  #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3524  /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3525  #define EC_MKBP_FP_ERR_MATCH_NO                0
3526  #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3527  #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3528  #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3529  #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3530  #define EC_MKBP_FP_ERR_MATCH_YES               1
3531  #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3532  #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3533  
3534  
3535  /*****************************************************************************/
3536  /* Temperature sensor commands */
3537  
3538  /* Read temperature sensor info */
3539  #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3540  
3541  struct ec_params_temp_sensor_get_info {
3542  	uint8_t id;
3543  } __ec_align1;
3544  
3545  struct ec_response_temp_sensor_get_info {
3546  	char sensor_name[32];
3547  	uint8_t sensor_type;
3548  } __ec_align1;
3549  
3550  /*****************************************************************************/
3551  
3552  /*
3553   * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3554   * commands accidentally sent to the wrong interface.  See the ACPI section
3555   * below.
3556   */
3557  
3558  /*****************************************************************************/
3559  /* Host event commands */
3560  
3561  
3562  /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3563  /*
3564   * Host event mask params and response structures, shared by all of the host
3565   * event commands below.
3566   */
3567  struct ec_params_host_event_mask {
3568  	uint32_t mask;
3569  } __ec_align4;
3570  
3571  struct ec_response_host_event_mask {
3572  	uint32_t mask;
3573  } __ec_align4;
3574  
3575  /* These all use ec_response_host_event_mask */
3576  #define EC_CMD_HOST_EVENT_GET_B         0x0087
3577  #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3578  #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3579  #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3580  
3581  /* These all use ec_params_host_event_mask */
3582  #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3583  #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3584  #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3585  #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3586  #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3587  
3588  /*
3589   * Unified host event programming interface - Should be used by newer versions
3590   * of BIOS/OS to program host events and masks
3591   */
3592  
3593  struct ec_params_host_event {
3594  
3595  	/* Action requested by host - one of enum ec_host_event_action. */
3596  	uint8_t action;
3597  
3598  	/*
3599  	 * Mask type that the host requested the action on - one of
3600  	 * enum ec_host_event_mask_type.
3601  	 */
3602  	uint8_t mask_type;
3603  
3604  	/* Set to 0, ignore on read */
3605  	uint16_t reserved;
3606  
3607  	/* Value to be used in case of set operations. */
3608  	uint64_t value;
3609  } __ec_align4;
3610  
3611  /*
3612   * Response structure returned by EC_CMD_HOST_EVENT.
3613   * Update the value on a GET request. Set to 0 on GET/CLEAR
3614   */
3615  
3616  struct ec_response_host_event {
3617  
3618  	/* Mask value in case of get operation */
3619  	uint64_t value;
3620  } __ec_align4;
3621  
3622  enum ec_host_event_action {
3623  	/*
3624  	 * params.value is ignored. Value of mask_type populated
3625  	 * in response.value
3626  	 */
3627  	EC_HOST_EVENT_GET,
3628  
3629  	/* Bits in params.value are set */
3630  	EC_HOST_EVENT_SET,
3631  
3632  	/* Bits in params.value are cleared */
3633  	EC_HOST_EVENT_CLEAR,
3634  };
3635  
3636  enum ec_host_event_mask_type {
3637  
3638  	/* Main host event copy */
3639  	EC_HOST_EVENT_MAIN,
3640  
3641  	/* Copy B of host events */
3642  	EC_HOST_EVENT_B,
3643  
3644  	/* SCI Mask */
3645  	EC_HOST_EVENT_SCI_MASK,
3646  
3647  	/* SMI Mask */
3648  	EC_HOST_EVENT_SMI_MASK,
3649  
3650  	/* Mask of events that should be always reported in hostevents */
3651  	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3652  
3653  	/* Active wake mask */
3654  	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3655  
3656  	/* Lazy wake mask for S0ix */
3657  	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3658  
3659  	/* Lazy wake mask for S3 */
3660  	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3661  
3662  	/* Lazy wake mask for S5 */
3663  	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3664  };
3665  
3666  #define EC_CMD_HOST_EVENT       0x00A4
3667  
3668  /*****************************************************************************/
3669  /* Switch commands */
3670  
3671  /* Enable/disable LCD backlight */
3672  #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3673  
3674  struct ec_params_switch_enable_backlight {
3675  	uint8_t enabled;
3676  } __ec_align1;
3677  
3678  /* Enable/disable WLAN/Bluetooth */
3679  #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3680  #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3681  
3682  /* Version 0 params; no response */
3683  struct ec_params_switch_enable_wireless_v0 {
3684  	uint8_t enabled;
3685  } __ec_align1;
3686  
3687  /* Version 1 params */
3688  struct ec_params_switch_enable_wireless_v1 {
3689  	/* Flags to enable now */
3690  	uint8_t now_flags;
3691  
3692  	/* Which flags to copy from now_flags */
3693  	uint8_t now_mask;
3694  
3695  	/*
3696  	 * Flags to leave enabled in S3, if they're on at the S0->S3
3697  	 * transition.  (Other flags will be disabled by the S0->S3
3698  	 * transition.)
3699  	 */
3700  	uint8_t suspend_flags;
3701  
3702  	/* Which flags to copy from suspend_flags */
3703  	uint8_t suspend_mask;
3704  } __ec_align1;
3705  
3706  /* Version 1 response */
3707  struct ec_response_switch_enable_wireless_v1 {
3708  	/* Flags to enable now */
3709  	uint8_t now_flags;
3710  
3711  	/* Flags to leave enabled in S3 */
3712  	uint8_t suspend_flags;
3713  } __ec_align1;
3714  
3715  /*****************************************************************************/
3716  /* GPIO commands. Only available on EC if write protect has been disabled. */
3717  
3718  /* Set GPIO output value */
3719  #define EC_CMD_GPIO_SET 0x0092
3720  
3721  struct ec_params_gpio_set {
3722  	char name[32];
3723  	uint8_t val;
3724  } __ec_align1;
3725  
3726  /* Get GPIO value */
3727  #define EC_CMD_GPIO_GET 0x0093
3728  
3729  /* Version 0 of input params and response */
3730  struct ec_params_gpio_get {
3731  	char name[32];
3732  } __ec_align1;
3733  
3734  struct ec_response_gpio_get {
3735  	uint8_t val;
3736  } __ec_align1;
3737  
3738  /* Version 1 of input params and response */
3739  struct ec_params_gpio_get_v1 {
3740  	uint8_t subcmd;
3741  	union {
3742  		struct __ec_align1 {
3743  			char name[32];
3744  		} get_value_by_name;
3745  		struct __ec_align1 {
3746  			uint8_t index;
3747  		} get_info;
3748  	};
3749  } __ec_align1;
3750  
3751  struct ec_response_gpio_get_v1 {
3752  	union {
3753  		struct __ec_align1 {
3754  			uint8_t val;
3755  		} get_value_by_name, get_count;
3756  		struct __ec_todo_unpacked {
3757  			uint8_t val;
3758  			char name[32];
3759  			uint32_t flags;
3760  		} get_info;
3761  	};
3762  } __ec_todo_packed;
3763  
3764  enum gpio_get_subcmd {
3765  	EC_GPIO_GET_BY_NAME = 0,
3766  	EC_GPIO_GET_COUNT = 1,
3767  	EC_GPIO_GET_INFO = 2,
3768  };
3769  
3770  /*****************************************************************************/
3771  /* I2C commands. Only available when flash write protect is unlocked. */
3772  
3773  /*
3774   * CAUTION: These commands are deprecated, and are not supported anymore in EC
3775   * builds >= 8398.0.0 (see crosbug.com/p/23570).
3776   *
3777   * Use EC_CMD_I2C_PASSTHRU instead.
3778   */
3779  
3780  /* Read I2C bus */
3781  #define EC_CMD_I2C_READ 0x0094
3782  
3783  struct ec_params_i2c_read {
3784  	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3785  	uint8_t read_size; /* Either 8 or 16. */
3786  	uint8_t port;
3787  	uint8_t offset;
3788  } __ec_align_size1;
3789  
3790  struct ec_response_i2c_read {
3791  	uint16_t data;
3792  } __ec_align2;
3793  
3794  /* Write I2C bus */
3795  #define EC_CMD_I2C_WRITE 0x0095
3796  
3797  struct ec_params_i2c_write {
3798  	uint16_t data;
3799  	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3800  	uint8_t write_size; /* Either 8 or 16. */
3801  	uint8_t port;
3802  	uint8_t offset;
3803  } __ec_align_size1;
3804  
3805  /*****************************************************************************/
3806  /* Charge state commands. Only available when flash write protect unlocked. */
3807  
3808  /* Force charge state machine to stop charging the battery or force it to
3809   * discharge the battery.
3810   */
3811  #define EC_CMD_CHARGE_CONTROL 0x0096
3812  #define EC_VER_CHARGE_CONTROL 1
3813  
3814  enum ec_charge_control_mode {
3815  	CHARGE_CONTROL_NORMAL = 0,
3816  	CHARGE_CONTROL_IDLE,
3817  	CHARGE_CONTROL_DISCHARGE,
3818  };
3819  
3820  struct ec_params_charge_control {
3821  	uint32_t mode;  /* enum charge_control_mode */
3822  } __ec_align4;
3823  
3824  /*****************************************************************************/
3825  
3826  /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3827  #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3828  
3829  /*
3830   * Read data from the saved snapshot. If the subcmd parameter is
3831   * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3832   * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3833   * end of the previous snapshot.
3834   *
3835   * The params are only looked at in version >= 1 of this command. Prior
3836   * versions will just default to CONSOLE_READ_NEXT behavior.
3837   *
3838   * Response is null-terminated string.  Empty string, if there is no more
3839   * remaining output.
3840   */
3841  #define EC_CMD_CONSOLE_READ 0x0098
3842  
3843  enum ec_console_read_subcmd {
3844  	CONSOLE_READ_NEXT = 0,
3845  	CONSOLE_READ_RECENT
3846  };
3847  
3848  struct ec_params_console_read_v1 {
3849  	uint8_t subcmd; /* enum ec_console_read_subcmd */
3850  } __ec_align1;
3851  
3852  /*****************************************************************************/
3853  
3854  /*
3855   * Cut off battery power immediately or after the host has shut down.
3856   *
3857   * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3858   *	  EC_RES_SUCCESS if the command was successful.
3859   *	  EC_RES_ERROR if the cut off command failed.
3860   */
3861  #define EC_CMD_BATTERY_CUT_OFF 0x0099
3862  
3863  #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	BIT(0)
3864  
3865  struct ec_params_battery_cutoff {
3866  	uint8_t flags;
3867  } __ec_align1;
3868  
3869  /*****************************************************************************/
3870  /* USB port mux control. */
3871  
3872  /*
3873   * Switch USB mux or return to automatic switching.
3874   */
3875  #define EC_CMD_USB_MUX 0x009A
3876  
3877  struct ec_params_usb_mux {
3878  	uint8_t mux;
3879  } __ec_align1;
3880  
3881  /*****************************************************************************/
3882  /* LDOs / FETs control. */
3883  
3884  enum ec_ldo_state {
3885  	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3886  	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3887  };
3888  
3889  /*
3890   * Switch on/off a LDO.
3891   */
3892  #define EC_CMD_LDO_SET 0x009B
3893  
3894  struct ec_params_ldo_set {
3895  	uint8_t index;
3896  	uint8_t state;
3897  } __ec_align1;
3898  
3899  /*
3900   * Get LDO state.
3901   */
3902  #define EC_CMD_LDO_GET 0x009C
3903  
3904  struct ec_params_ldo_get {
3905  	uint8_t index;
3906  } __ec_align1;
3907  
3908  struct ec_response_ldo_get {
3909  	uint8_t state;
3910  } __ec_align1;
3911  
3912  /*****************************************************************************/
3913  /* Power info. */
3914  
3915  /*
3916   * Get power info.
3917   */
3918  #define EC_CMD_POWER_INFO 0x009D
3919  
3920  struct ec_response_power_info {
3921  	uint32_t usb_dev_type;
3922  	uint16_t voltage_ac;
3923  	uint16_t voltage_system;
3924  	uint16_t current_system;
3925  	uint16_t usb_current_limit;
3926  } __ec_align4;
3927  
3928  /*****************************************************************************/
3929  /* I2C passthru command */
3930  
3931  #define EC_CMD_I2C_PASSTHRU 0x009E
3932  
3933  /* Read data; if not present, message is a write */
3934  #define EC_I2C_FLAG_READ	BIT(15)
3935  
3936  /* Mask for address */
3937  #define EC_I2C_ADDR_MASK	0x3ff
3938  
3939  #define EC_I2C_STATUS_NAK	BIT(0) /* Transfer was not acknowledged */
3940  #define EC_I2C_STATUS_TIMEOUT	BIT(1) /* Timeout during transfer */
3941  
3942  /* Any error */
3943  #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3944  
3945  struct ec_params_i2c_passthru_msg {
3946  	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3947  	uint16_t len;		/* Number of bytes to read or write */
3948  } __ec_align2;
3949  
3950  struct ec_params_i2c_passthru {
3951  	uint8_t port;		/* I2C port number */
3952  	uint8_t num_msgs;	/* Number of messages */
3953  	struct ec_params_i2c_passthru_msg msg[];
3954  	/* Data to write for all messages is concatenated here */
3955  } __ec_align2;
3956  
3957  struct ec_response_i2c_passthru {
3958  	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3959  	uint8_t num_msgs;	/* Number of messages processed */
3960  	uint8_t data[];		/* Data read by messages concatenated here */
3961  } __ec_align1;
3962  
3963  /*****************************************************************************/
3964  /* Power button hang detect */
3965  
3966  #define EC_CMD_HANG_DETECT 0x009F
3967  
3968  /* Reasons to start hang detection timer */
3969  /* Power button pressed */
3970  #define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3971  
3972  /* Lid closed */
3973  #define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3974  
3975   /* Lid opened */
3976  #define EC_HANG_START_ON_LID_OPEN     BIT(2)
3977  
3978  /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3979  #define EC_HANG_START_ON_RESUME       BIT(3)
3980  
3981  /* Reasons to cancel hang detection */
3982  
3983  /* Power button released */
3984  #define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3985  
3986  /* Any host command from AP received */
3987  #define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3988  
3989  /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3990  #define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3991  
3992  /*
3993   * If this flag is set, all the other fields are ignored, and the hang detect
3994   * timer is started.  This provides the AP a way to start the hang timer
3995   * without reconfiguring any of the other hang detect settings.  Note that
3996   * you must previously have configured the timeouts.
3997   */
3998  #define EC_HANG_START_NOW             BIT(30)
3999  
4000  /*
4001   * If this flag is set, all the other fields are ignored (including
4002   * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
4003   * without reconfiguring any of the other hang detect settings.
4004   */
4005  #define EC_HANG_STOP_NOW              BIT(31)
4006  
4007  struct ec_params_hang_detect {
4008  	/* Flags; see EC_HANG_* */
4009  	uint32_t flags;
4010  
4011  	/* Timeout in msec before generating host event, if enabled */
4012  	uint16_t host_event_timeout_msec;
4013  
4014  	/* Timeout in msec before generating warm reboot, if enabled */
4015  	uint16_t warm_reboot_timeout_msec;
4016  } __ec_align4;
4017  
4018  /*****************************************************************************/
4019  /* Commands for battery charging */
4020  
4021  /*
4022   * This is the single catch-all host command to exchange data regarding the
4023   * charge state machine (v2 and up).
4024   */
4025  #define EC_CMD_CHARGE_STATE 0x00A0
4026  
4027  /* Subcommands for this host command */
4028  enum charge_state_command {
4029  	CHARGE_STATE_CMD_GET_STATE,
4030  	CHARGE_STATE_CMD_GET_PARAM,
4031  	CHARGE_STATE_CMD_SET_PARAM,
4032  	CHARGE_STATE_NUM_CMDS
4033  };
4034  
4035  /*
4036   * Known param numbers are defined here. Ranges are reserved for board-specific
4037   * params, which are handled by the particular implementations.
4038   */
4039  enum charge_state_params {
4040  	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
4041  	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
4042  	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4043  	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
4044  	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
4045  	CS_PARAM_LIMIT_POWER,	      /*
4046  				       * Check if power is limited due to
4047  				       * low battery and / or a weak external
4048  				       * charger. READ ONLY.
4049  				       */
4050  	/* How many so far? */
4051  	CS_NUM_BASE_PARAMS,
4052  
4053  	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4054  	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4055  	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4056  
4057  	/* Range for CONFIG_CHARGE_STATE_DEBUG params */
4058  	CS_PARAM_DEBUG_MIN = 0x20000,
4059  	CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4060  	CS_PARAM_DEBUG_MANUAL_MODE,
4061  	CS_PARAM_DEBUG_SEEMS_DEAD,
4062  	CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4063  	CS_PARAM_DEBUG_BATT_REMOVED,
4064  	CS_PARAM_DEBUG_MANUAL_CURRENT,
4065  	CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4066  	CS_PARAM_DEBUG_MAX = 0x2ffff,
4067  
4068  	/* Other custom param ranges go here... */
4069  };
4070  
4071  struct ec_params_charge_state {
4072  	uint8_t cmd;				/* enum charge_state_command */
4073  	union {
4074  		/* get_state has no args */
4075  
4076  		struct __ec_todo_unpacked {
4077  			uint32_t param;		/* enum charge_state_param */
4078  		} get_param;
4079  
4080  		struct __ec_todo_unpacked {
4081  			uint32_t param;		/* param to set */
4082  			uint32_t value;		/* value to set */
4083  		} set_param;
4084  	};
4085  } __ec_todo_packed;
4086  
4087  struct ec_response_charge_state {
4088  	union {
4089  		struct __ec_align4 {
4090  			int ac;
4091  			int chg_voltage;
4092  			int chg_current;
4093  			int chg_input_current;
4094  			int batt_state_of_charge;
4095  		} get_state;
4096  
4097  		struct __ec_align4 {
4098  			uint32_t value;
4099  		} get_param;
4100  
4101  		/* set_param returns no args */
4102  	};
4103  } __ec_align4;
4104  
4105  
4106  /*
4107   * Set maximum battery charging current.
4108   */
4109  #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4110  
4111  struct ec_params_current_limit {
4112  	uint32_t limit; /* in mA */
4113  } __ec_align4;
4114  
4115  /*
4116   * Set maximum external voltage / current.
4117   */
4118  #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4119  
4120  /* Command v0 is used only on Spring and is obsolete + unsupported */
4121  struct ec_params_external_power_limit_v1 {
4122  	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4123  	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4124  } __ec_align2;
4125  
4126  #define EC_POWER_LIMIT_NONE 0xffff
4127  
4128  /*
4129   * Set maximum voltage & current of a dedicated charge port
4130   */
4131  #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4132  
4133  struct ec_params_dedicated_charger_limit {
4134  	uint16_t current_lim; /* in mA */
4135  	uint16_t voltage_lim; /* in mV */
4136  } __ec_align2;
4137  
4138  /*****************************************************************************/
4139  /* Hibernate/Deep Sleep Commands */
4140  
4141  /* Set the delay before going into hibernation. */
4142  #define EC_CMD_HIBERNATION_DELAY 0x00A8
4143  
4144  struct ec_params_hibernation_delay {
4145  	/*
4146  	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4147  	 * current settings without changing them.
4148  	 */
4149  	uint32_t seconds;
4150  } __ec_align4;
4151  
4152  struct ec_response_hibernation_delay {
4153  	/*
4154  	 * The current time in seconds in which the system has been in the G3
4155  	 * state.  This value is reset if the EC transitions out of G3.
4156  	 */
4157  	uint32_t time_g3;
4158  
4159  	/*
4160  	 * The current time remaining in seconds until the EC should hibernate.
4161  	 * This value is also reset if the EC transitions out of G3.
4162  	 */
4163  	uint32_t time_remaining;
4164  
4165  	/*
4166  	 * The current time in seconds that the EC should wait in G3 before
4167  	 * hibernating.
4168  	 */
4169  	uint32_t hibernate_delay;
4170  } __ec_align4;
4171  
4172  /* Inform the EC when entering a sleep state */
4173  #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4174  
4175  enum host_sleep_event {
4176  	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4177  	HOST_SLEEP_EVENT_S3_RESUME    = 2,
4178  	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4179  	HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4180  	/* S3 suspend with additional enabled wake sources */
4181  	HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4182  };
4183  
4184  struct ec_params_host_sleep_event {
4185  	uint8_t sleep_event;
4186  } __ec_align1;
4187  
4188  /*
4189   * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4190   * transition failures
4191   */
4192  #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4193  
4194  /* Disable timeout detection for this sleep transition */
4195  #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4196  
4197  struct ec_params_host_sleep_event_v1 {
4198  	/* The type of sleep being entered or exited. */
4199  	uint8_t sleep_event;
4200  
4201  	/* Padding */
4202  	uint8_t reserved;
4203  	union {
4204  		/* Parameters that apply for suspend messages. */
4205  		struct {
4206  			/*
4207  			 * The timeout in milliseconds between when this message
4208  			 * is received and when the EC will declare sleep
4209  			 * transition failure if the sleep signal is not
4210  			 * asserted.
4211  			 */
4212  			uint16_t sleep_timeout_ms;
4213  		} suspend_params;
4214  
4215  		/* No parameters for non-suspend messages. */
4216  	};
4217  } __ec_align2;
4218  
4219  /* A timeout occurred when this bit is set */
4220  #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4221  
4222  /*
4223   * The mask defining which bits correspond to the number of sleep transitions,
4224   * as well as the maximum number of suspend line transitions that will be
4225   * reported back to the host.
4226   */
4227  #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4228  
4229  struct ec_response_host_sleep_event_v1 {
4230  	union {
4231  		/* Response fields that apply for resume messages. */
4232  		struct {
4233  			/*
4234  			 * The number of sleep power signal transitions that
4235  			 * occurred since the suspend message. The high bit
4236  			 * indicates a timeout occurred.
4237  			 */
4238  			uint32_t sleep_transitions;
4239  		} resume_response;
4240  
4241  		/* No response fields for non-resume messages. */
4242  	};
4243  } __ec_align4;
4244  
4245  /*****************************************************************************/
4246  /* Device events */
4247  #define EC_CMD_DEVICE_EVENT 0x00AA
4248  
4249  enum ec_device_event {
4250  	EC_DEVICE_EVENT_TRACKPAD,
4251  	EC_DEVICE_EVENT_DSP,
4252  	EC_DEVICE_EVENT_WIFI,
4253  	EC_DEVICE_EVENT_WLC,
4254  };
4255  
4256  enum ec_device_event_param {
4257  	/* Get and clear pending device events */
4258  	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4259  	/* Get device event mask */
4260  	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4261  	/* Set device event mask */
4262  	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4263  };
4264  
4265  #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4266  
4267  struct ec_params_device_event {
4268  	uint32_t event_mask;
4269  	uint8_t param;
4270  } __ec_align_size1;
4271  
4272  struct ec_response_device_event {
4273  	uint32_t event_mask;
4274  } __ec_align4;
4275  
4276  /*****************************************************************************/
4277  /* Smart battery pass-through */
4278  
4279  /* Get / Set 16-bit smart battery registers */
4280  #define EC_CMD_SB_READ_WORD   0x00B0
4281  #define EC_CMD_SB_WRITE_WORD  0x00B1
4282  
4283  /* Get / Set string smart battery parameters
4284   * formatted as SMBUS "block".
4285   */
4286  #define EC_CMD_SB_READ_BLOCK  0x00B2
4287  #define EC_CMD_SB_WRITE_BLOCK 0x00B3
4288  
4289  struct ec_params_sb_rd {
4290  	uint8_t reg;
4291  } __ec_align1;
4292  
4293  struct ec_response_sb_rd_word {
4294  	uint16_t value;
4295  } __ec_align2;
4296  
4297  struct ec_params_sb_wr_word {
4298  	uint8_t reg;
4299  	uint16_t value;
4300  } __ec_align1;
4301  
4302  struct ec_response_sb_rd_block {
4303  	uint8_t data[32];
4304  } __ec_align1;
4305  
4306  struct ec_params_sb_wr_block {
4307  	uint8_t reg;
4308  	uint16_t data[32];
4309  } __ec_align1;
4310  
4311  /*****************************************************************************/
4312  /* Battery vendor parameters
4313   *
4314   * Get or set vendor-specific parameters in the battery. Implementations may
4315   * differ between boards or batteries. On a set operation, the response
4316   * contains the actual value set, which may be rounded or clipped from the
4317   * requested value.
4318   */
4319  
4320  #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4321  
4322  enum ec_battery_vendor_param_mode {
4323  	BATTERY_VENDOR_PARAM_MODE_GET = 0,
4324  	BATTERY_VENDOR_PARAM_MODE_SET,
4325  };
4326  
4327  struct ec_params_battery_vendor_param {
4328  	uint32_t param;
4329  	uint32_t value;
4330  	uint8_t mode;
4331  } __ec_align_size1;
4332  
4333  struct ec_response_battery_vendor_param {
4334  	uint32_t value;
4335  } __ec_align4;
4336  
4337  /*****************************************************************************/
4338  /*
4339   * Smart Battery Firmware Update Commands
4340   */
4341  #define EC_CMD_SB_FW_UPDATE 0x00B5
4342  
4343  enum ec_sb_fw_update_subcmd {
4344  	EC_SB_FW_UPDATE_PREPARE  = 0x0,
4345  	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4346  	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4347  	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4348  	EC_SB_FW_UPDATE_END      = 0x4,
4349  	EC_SB_FW_UPDATE_STATUS   = 0x5,
4350  	EC_SB_FW_UPDATE_PROTECT  = 0x6,
4351  	EC_SB_FW_UPDATE_MAX      = 0x7,
4352  };
4353  
4354  #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4355  #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4356  #define SB_FW_UPDATE_CMD_INFO_SIZE 8
4357  
4358  struct ec_sb_fw_update_header {
4359  	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4360  	uint16_t fw_id;   /* firmware id */
4361  } __ec_align4;
4362  
4363  struct ec_params_sb_fw_update {
4364  	struct ec_sb_fw_update_header hdr;
4365  	union {
4366  		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4367  		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4368  		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4369  		/* EC_SB_FW_UPDATE_END      = 0x4 */
4370  		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4371  		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4372  		/* Those have no args */
4373  
4374  		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4375  		struct __ec_align4 {
4376  			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4377  		} write;
4378  	};
4379  } __ec_align4;
4380  
4381  struct ec_response_sb_fw_update {
4382  	union {
4383  		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4384  		struct __ec_align1 {
4385  			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4386  		} info;
4387  
4388  		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4389  		struct __ec_align1 {
4390  			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4391  		} status;
4392  	};
4393  } __ec_align1;
4394  
4395  /*
4396   * Entering Verified Boot Mode Command
4397   * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4398   * Valid Modes are: normal, developer, and recovery.
4399   */
4400  #define EC_CMD_ENTERING_MODE 0x00B6
4401  
4402  struct ec_params_entering_mode {
4403  	int vboot_mode;
4404  } __ec_align4;
4405  
4406  #define VBOOT_MODE_NORMAL    0
4407  #define VBOOT_MODE_DEVELOPER 1
4408  #define VBOOT_MODE_RECOVERY  2
4409  
4410  /*****************************************************************************/
4411  /*
4412   * I2C passthru protection command: Protects I2C tunnels against access on
4413   * certain addresses (board-specific).
4414   */
4415  #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4416  
4417  enum ec_i2c_passthru_protect_subcmd {
4418  	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4419  	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4420  };
4421  
4422  struct ec_params_i2c_passthru_protect {
4423  	uint8_t subcmd;
4424  	uint8_t port;		/* I2C port number */
4425  } __ec_align1;
4426  
4427  struct ec_response_i2c_passthru_protect {
4428  	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
4429  } __ec_align1;
4430  
4431  
4432  /*****************************************************************************/
4433  /*
4434   * HDMI CEC commands
4435   *
4436   * These commands are for sending and receiving message via HDMI CEC
4437   */
4438  
4439  #define MAX_CEC_MSG_LEN 16
4440  
4441  /* CEC message from the AP to be written on the CEC bus */
4442  #define EC_CMD_CEC_WRITE_MSG 0x00B8
4443  
4444  /**
4445   * struct ec_params_cec_write - Message to write to the CEC bus
4446   * @msg: message content to write to the CEC bus
4447   */
4448  struct ec_params_cec_write {
4449  	uint8_t msg[MAX_CEC_MSG_LEN];
4450  } __ec_align1;
4451  
4452  /* Set various CEC parameters */
4453  #define EC_CMD_CEC_SET 0x00BA
4454  
4455  /**
4456   * struct ec_params_cec_set - CEC parameters set
4457   * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4458   * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4459   *	or 1 to enable CEC functionality, in case cmd is
4460   *	CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4461   *	address between 0 and 15 or 0xff to unregister
4462   */
4463  struct ec_params_cec_set {
4464  	uint8_t cmd; /* enum cec_command */
4465  	uint8_t val;
4466  } __ec_align1;
4467  
4468  /* Read various CEC parameters */
4469  #define EC_CMD_CEC_GET 0x00BB
4470  
4471  /**
4472   * struct ec_params_cec_get - CEC parameters get
4473   * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4474   */
4475  struct ec_params_cec_get {
4476  	uint8_t cmd; /* enum cec_command */
4477  } __ec_align1;
4478  
4479  /**
4480   * struct ec_response_cec_get - CEC parameters get response
4481   * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4482   *	disabled or 1 if CEC functionality is enabled,
4483   *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4484   *	configured logical address between 0 and 15 or 0xff if unregistered
4485   */
4486  struct ec_response_cec_get {
4487  	uint8_t val;
4488  } __ec_align1;
4489  
4490  /* CEC parameters command */
4491  enum cec_command {
4492  	/* CEC reading, writing and events enable */
4493  	CEC_CMD_ENABLE,
4494  	/* CEC logical address  */
4495  	CEC_CMD_LOGICAL_ADDRESS,
4496  };
4497  
4498  /* Events from CEC to AP */
4499  enum mkbp_cec_event {
4500  	/* Outgoing message was acknowledged by a follower */
4501  	EC_MKBP_CEC_SEND_OK			= BIT(0),
4502  	/* Outgoing message was not acknowledged */
4503  	EC_MKBP_CEC_SEND_FAILED			= BIT(1),
4504  };
4505  
4506  /*****************************************************************************/
4507  
4508  /* Commands for audio codec. */
4509  #define EC_CMD_EC_CODEC 0x00BC
4510  
4511  enum ec_codec_subcmd {
4512  	EC_CODEC_GET_CAPABILITIES = 0x0,
4513  	EC_CODEC_GET_SHM_ADDR = 0x1,
4514  	EC_CODEC_SET_SHM_ADDR = 0x2,
4515  	EC_CODEC_SUBCMD_COUNT,
4516  };
4517  
4518  enum ec_codec_cap {
4519  	EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4520  	EC_CODEC_CAP_WOV_LANG_SHM = 1,
4521  	EC_CODEC_CAP_LAST = 32,
4522  };
4523  
4524  enum ec_codec_shm_id {
4525  	EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4526  	EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4527  	EC_CODEC_SHM_ID_LAST,
4528  };
4529  
4530  enum ec_codec_shm_type {
4531  	EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4532  	EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4533  };
4534  
4535  struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4536  	uint8_t shm_id;
4537  	uint8_t reserved[3];
4538  };
4539  
4540  struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4541  	uint64_t phys_addr;
4542  	uint32_t len;
4543  	uint8_t shm_id;
4544  	uint8_t reserved[3];
4545  };
4546  
4547  struct __ec_align4 ec_param_ec_codec {
4548  	uint8_t cmd; /* enum ec_codec_subcmd */
4549  	uint8_t reserved[3];
4550  
4551  	union {
4552  		struct ec_param_ec_codec_get_shm_addr
4553  				get_shm_addr_param;
4554  		struct ec_param_ec_codec_set_shm_addr
4555  				set_shm_addr_param;
4556  	};
4557  };
4558  
4559  struct __ec_align4 ec_response_ec_codec_get_capabilities {
4560  	uint32_t capabilities;
4561  };
4562  
4563  struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4564  	uint64_t phys_addr;
4565  	uint32_t len;
4566  	uint8_t type;
4567  	uint8_t reserved[3];
4568  };
4569  
4570  /*****************************************************************************/
4571  
4572  /* Commands for DMIC on audio codec. */
4573  #define EC_CMD_EC_CODEC_DMIC 0x00BD
4574  
4575  enum ec_codec_dmic_subcmd {
4576  	EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4577  	EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4578  	EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4579  	EC_CODEC_DMIC_SUBCMD_COUNT,
4580  };
4581  
4582  enum ec_codec_dmic_channel {
4583  	EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4584  	EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4585  	EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4586  	EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4587  	EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4588  	EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4589  	EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4590  	EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4591  	EC_CODEC_DMIC_CHANNEL_COUNT,
4592  };
4593  
4594  struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4595  	uint8_t channel; /* enum ec_codec_dmic_channel */
4596  	uint8_t gain;
4597  	uint8_t reserved[2];
4598  };
4599  
4600  struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4601  	uint8_t channel; /* enum ec_codec_dmic_channel */
4602  	uint8_t reserved[3];
4603  };
4604  
4605  struct __ec_align4 ec_param_ec_codec_dmic {
4606  	uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4607  	uint8_t reserved[3];
4608  
4609  	union {
4610  		struct ec_param_ec_codec_dmic_set_gain_idx
4611  				set_gain_idx_param;
4612  		struct ec_param_ec_codec_dmic_get_gain_idx
4613  				get_gain_idx_param;
4614  	};
4615  };
4616  
4617  struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4618  	uint8_t max_gain;
4619  };
4620  
4621  struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4622  	uint8_t gain;
4623  };
4624  
4625  /*****************************************************************************/
4626  
4627  /* Commands for I2S RX on audio codec. */
4628  
4629  #define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4630  
4631  enum ec_codec_i2s_rx_subcmd {
4632  	EC_CODEC_I2S_RX_ENABLE = 0x0,
4633  	EC_CODEC_I2S_RX_DISABLE = 0x1,
4634  	EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4635  	EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4636  	EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4637  	EC_CODEC_I2S_RX_RESET = 0x5,
4638  	EC_CODEC_I2S_RX_SUBCMD_COUNT,
4639  };
4640  
4641  enum ec_codec_i2s_rx_sample_depth {
4642  	EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4643  	EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4644  	EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4645  };
4646  
4647  enum ec_codec_i2s_rx_daifmt {
4648  	EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4649  	EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4650  	EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4651  	EC_CODEC_I2S_RX_DAIFMT_COUNT,
4652  };
4653  
4654  struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4655  	uint8_t depth;
4656  	uint8_t reserved[3];
4657  };
4658  
4659  struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4660  	uint8_t left;
4661  	uint8_t right;
4662  	uint8_t reserved[2];
4663  };
4664  
4665  struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4666  	uint8_t daifmt;
4667  	uint8_t reserved[3];
4668  };
4669  
4670  struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4671  	uint32_t bclk;
4672  };
4673  
4674  struct __ec_align4 ec_param_ec_codec_i2s_rx {
4675  	uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4676  	uint8_t reserved[3];
4677  
4678  	union {
4679  		struct ec_param_ec_codec_i2s_rx_set_sample_depth
4680  				set_sample_depth_param;
4681  		struct ec_param_ec_codec_i2s_rx_set_daifmt
4682  				set_daifmt_param;
4683  		struct ec_param_ec_codec_i2s_rx_set_bclk
4684  				set_bclk_param;
4685  	};
4686  };
4687  
4688  /*****************************************************************************/
4689  /* Commands for WoV on audio codec. */
4690  
4691  #define EC_CMD_EC_CODEC_WOV 0x00BF
4692  
4693  enum ec_codec_wov_subcmd {
4694  	EC_CODEC_WOV_SET_LANG = 0x0,
4695  	EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4696  	EC_CODEC_WOV_GET_LANG = 0x2,
4697  	EC_CODEC_WOV_ENABLE = 0x3,
4698  	EC_CODEC_WOV_DISABLE = 0x4,
4699  	EC_CODEC_WOV_READ_AUDIO = 0x5,
4700  	EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4701  	EC_CODEC_WOV_SUBCMD_COUNT,
4702  };
4703  
4704  /*
4705   * @hash is SHA256 of the whole language model.
4706   * @total_len indicates the length of whole language model.
4707   * @offset is the cursor from the beginning of the model.
4708   * @buf is the packet buffer.
4709   * @len denotes how many bytes in the buf.
4710   */
4711  struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4712  	uint8_t hash[32];
4713  	uint32_t total_len;
4714  	uint32_t offset;
4715  	uint8_t buf[128];
4716  	uint32_t len;
4717  };
4718  
4719  struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4720  	uint8_t hash[32];
4721  	uint32_t total_len;
4722  };
4723  
4724  struct __ec_align4 ec_param_ec_codec_wov {
4725  	uint8_t cmd; /* enum ec_codec_wov_subcmd */
4726  	uint8_t reserved[3];
4727  
4728  	union {
4729  		struct ec_param_ec_codec_wov_set_lang
4730  				set_lang_param;
4731  		struct ec_param_ec_codec_wov_set_lang_shm
4732  				set_lang_shm_param;
4733  	};
4734  };
4735  
4736  struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4737  	uint8_t hash[32];
4738  };
4739  
4740  struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4741  	uint8_t buf[128];
4742  	uint32_t len;
4743  };
4744  
4745  struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4746  	uint32_t offset;
4747  	uint32_t len;
4748  };
4749  
4750  /*****************************************************************************/
4751  /* System commands */
4752  
4753  /*
4754   * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4755   * necessarily reboot the EC.  Rename to "image" or something similar?
4756   */
4757  #define EC_CMD_REBOOT_EC 0x00D2
4758  
4759  /* Command */
4760  enum ec_reboot_cmd {
4761  	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4762  	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4763  	EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4764  	/* (command 3 was jump to RW-B) */
4765  	EC_REBOOT_COLD = 4,          /* Cold-reboot */
4766  	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4767  	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4768  	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4769  	EC_REBOOT_COLD_AP_OFF = 8,   /* Cold-reboot and don't boot AP */
4770  };
4771  
4772  /* Flags for ec_params_reboot_ec.reboot_flags */
4773  #define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4774  #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4775  #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4776  
4777  struct ec_params_reboot_ec {
4778  	uint8_t cmd;           /* enum ec_reboot_cmd */
4779  	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4780  } __ec_align1;
4781  
4782  /*
4783   * Get information on last EC panic.
4784   *
4785   * Returns variable-length platform-dependent panic information.  See panic.h
4786   * for details.
4787   */
4788  #define EC_CMD_GET_PANIC_INFO 0x00D3
4789  
4790  /*****************************************************************************/
4791  /*
4792   * Special commands
4793   *
4794   * These do not follow the normal rules for commands.  See each command for
4795   * details.
4796   */
4797  
4798  /*
4799   * Reboot NOW
4800   *
4801   * This command will work even when the EC LPC interface is busy, because the
4802   * reboot command is processed at interrupt level.  Note that when the EC
4803   * reboots, the host will reboot too, so there is no response to this command.
4804   *
4805   * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4806   */
4807  #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4808  
4809  /*
4810   * Resend last response (not supported on LPC).
4811   *
4812   * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4813   * there was no previous command, or the previous command's response was too
4814   * big to save.
4815   */
4816  #define EC_CMD_RESEND_RESPONSE 0x00DB
4817  
4818  /*
4819   * This header byte on a command indicate version 0. Any header byte less
4820   * than this means that we are talking to an old EC which doesn't support
4821   * versioning. In that case, we assume version 0.
4822   *
4823   * Header bytes greater than this indicate a later version. For example,
4824   * EC_CMD_VERSION0 + 1 means we are using version 1.
4825   *
4826   * The old EC interface must not use commands 0xdc or higher.
4827   */
4828  #define EC_CMD_VERSION0 0x00DC
4829  
4830  /*****************************************************************************/
4831  /*
4832   * PD commands
4833   *
4834   * These commands are for PD MCU communication.
4835   */
4836  
4837  /* EC to PD MCU exchange status command */
4838  #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4839  #define EC_VER_PD_EXCHANGE_STATUS 2
4840  
4841  enum pd_charge_state {
4842  	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4843  	PD_CHARGE_NONE,          /* No charging allowed */
4844  	PD_CHARGE_5V,            /* 5V charging only */
4845  	PD_CHARGE_MAX            /* Charge at max voltage */
4846  };
4847  
4848  /* Status of EC being sent to PD */
4849  #define EC_STATUS_HIBERNATING	BIT(0)
4850  
4851  struct ec_params_pd_status {
4852  	uint8_t status;       /* EC status */
4853  	int8_t batt_soc;      /* battery state of charge */
4854  	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4855  } __ec_align1;
4856  
4857  /* Status of PD being sent back to EC */
4858  #define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4859  #define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4860  #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4861  #define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4862  #define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4863  #define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4864  #define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4865  #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4866  				      PD_STATUS_TCPC_ALERT_1 | \
4867  				      PD_STATUS_HOST_EVENT)
4868  struct ec_response_pd_status {
4869  	uint32_t curr_lim_ma;       /* input current limit */
4870  	uint16_t status;            /* PD MCU status */
4871  	int8_t active_charge_port;  /* active charging port */
4872  } __ec_align_size1;
4873  
4874  /* AP to PD MCU host event status command, cleared on read */
4875  #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4876  
4877  /* PD MCU host event status bits */
4878  #define PD_EVENT_UPDATE_DEVICE     BIT(0)
4879  #define PD_EVENT_POWER_CHANGE      BIT(1)
4880  #define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4881  #define PD_EVENT_DATA_SWAP         BIT(3)
4882  struct ec_response_host_event_status {
4883  	uint32_t status;      /* PD MCU host event status */
4884  } __ec_align4;
4885  
4886  /* Set USB type-C port role and muxes */
4887  #define EC_CMD_USB_PD_CONTROL 0x0101
4888  
4889  enum usb_pd_control_role {
4890  	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4891  	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4892  	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4893  	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4894  	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4895  	USB_PD_CTRL_ROLE_FREEZE = 5,
4896  	USB_PD_CTRL_ROLE_COUNT
4897  };
4898  
4899  enum usb_pd_control_mux {
4900  	USB_PD_CTRL_MUX_NO_CHANGE = 0,
4901  	USB_PD_CTRL_MUX_NONE = 1,
4902  	USB_PD_CTRL_MUX_USB = 2,
4903  	USB_PD_CTRL_MUX_DP = 3,
4904  	USB_PD_CTRL_MUX_DOCK = 4,
4905  	USB_PD_CTRL_MUX_AUTO = 5,
4906  	USB_PD_CTRL_MUX_COUNT
4907  };
4908  
4909  enum usb_pd_control_swap {
4910  	USB_PD_CTRL_SWAP_NONE = 0,
4911  	USB_PD_CTRL_SWAP_DATA = 1,
4912  	USB_PD_CTRL_SWAP_POWER = 2,
4913  	USB_PD_CTRL_SWAP_VCONN = 3,
4914  	USB_PD_CTRL_SWAP_COUNT
4915  };
4916  
4917  struct ec_params_usb_pd_control {
4918  	uint8_t port;
4919  	uint8_t role;
4920  	uint8_t mux;
4921  	uint8_t swap;
4922  } __ec_align1;
4923  
4924  #define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4925  #define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4926  #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4927  
4928  #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4929  #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4930  #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4931  #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4932  #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4933  #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4934  #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4935  
4936  struct ec_response_usb_pd_control {
4937  	uint8_t enabled;
4938  	uint8_t role;
4939  	uint8_t polarity;
4940  	uint8_t state;
4941  } __ec_align1;
4942  
4943  struct ec_response_usb_pd_control_v1 {
4944  	uint8_t enabled;
4945  	uint8_t role;
4946  	uint8_t polarity;
4947  	char state[32];
4948  } __ec_align1;
4949  
4950  /* Values representing usbc PD CC state */
4951  #define USBC_PD_CC_NONE		0 /* No accessory connected */
4952  #define USBC_PD_CC_NO_UFP	1 /* No UFP accessory connected */
4953  #define USBC_PD_CC_AUDIO_ACC	2 /* Audio accessory connected */
4954  #define USBC_PD_CC_DEBUG_ACC	3 /* Debug accessory connected */
4955  #define USBC_PD_CC_UFP_ATTACHED	4 /* UFP attached to usbc */
4956  #define USBC_PD_CC_DFP_ATTACHED	5 /* DPF attached to usbc */
4957  
4958  /* Active/Passive Cable */
4959  #define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4960  /* Optical/Non-optical cable */
4961  #define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4962  /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4963  #define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4964  /* Active Link Uni-Direction */
4965  #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4966  
4967  struct ec_response_usb_pd_control_v2 {
4968  	uint8_t enabled;
4969  	uint8_t role;
4970  	uint8_t polarity;
4971  	char state[32];
4972  	uint8_t cc_state;	/* enum pd_cc_states representing cc state */
4973  	uint8_t dp_mode;	/* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4974  	uint8_t reserved;	/* Reserved for future use */
4975  	uint8_t control_flags;	/* USB_PD_CTRL_*flags */
4976  	uint8_t cable_speed;	/* TBT_SS_* cable speed */
4977  	uint8_t cable_gen;	/* TBT_GEN3_* cable rounded support */
4978  } __ec_align1;
4979  
4980  #define EC_CMD_USB_PD_PORTS 0x0102
4981  
4982  /* Maximum number of PD ports on a device, num_ports will be <= this */
4983  #define EC_USB_PD_MAX_PORTS 8
4984  
4985  struct ec_response_usb_pd_ports {
4986  	uint8_t num_ports;
4987  } __ec_align1;
4988  
4989  #define EC_CMD_USB_PD_POWER_INFO 0x0103
4990  
4991  #define PD_POWER_CHARGING_PORT 0xff
4992  struct ec_params_usb_pd_power_info {
4993  	uint8_t port;
4994  } __ec_align1;
4995  
4996  enum usb_chg_type {
4997  	USB_CHG_TYPE_NONE,
4998  	USB_CHG_TYPE_PD,
4999  	USB_CHG_TYPE_C,
5000  	USB_CHG_TYPE_PROPRIETARY,
5001  	USB_CHG_TYPE_BC12_DCP,
5002  	USB_CHG_TYPE_BC12_CDP,
5003  	USB_CHG_TYPE_BC12_SDP,
5004  	USB_CHG_TYPE_OTHER,
5005  	USB_CHG_TYPE_VBUS,
5006  	USB_CHG_TYPE_UNKNOWN,
5007  	USB_CHG_TYPE_DEDICATED,
5008  };
5009  enum usb_power_roles {
5010  	USB_PD_PORT_POWER_DISCONNECTED,
5011  	USB_PD_PORT_POWER_SOURCE,
5012  	USB_PD_PORT_POWER_SINK,
5013  	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
5014  };
5015  
5016  struct usb_chg_measures {
5017  	uint16_t voltage_max;
5018  	uint16_t voltage_now;
5019  	uint16_t current_max;
5020  	uint16_t current_lim;
5021  } __ec_align2;
5022  
5023  struct ec_response_usb_pd_power_info {
5024  	uint8_t role;
5025  	uint8_t type;
5026  	uint8_t dualrole;
5027  	uint8_t reserved1;
5028  	struct usb_chg_measures meas;
5029  	uint32_t max_power;
5030  } __ec_align4;
5031  
5032  
5033  /*
5034   * This command will return the number of USB PD charge port + the number
5035   * of dedicated port present.
5036   * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5037   */
5038  #define EC_CMD_CHARGE_PORT_COUNT 0x0105
5039  struct ec_response_charge_port_count {
5040  	uint8_t port_count;
5041  } __ec_align1;
5042  
5043  /* Write USB-PD device FW */
5044  #define EC_CMD_USB_PD_FW_UPDATE 0x0110
5045  
5046  enum usb_pd_fw_update_cmds {
5047  	USB_PD_FW_REBOOT,
5048  	USB_PD_FW_FLASH_ERASE,
5049  	USB_PD_FW_FLASH_WRITE,
5050  	USB_PD_FW_ERASE_SIG,
5051  };
5052  
5053  struct ec_params_usb_pd_fw_update {
5054  	uint16_t dev_id;
5055  	uint8_t cmd;
5056  	uint8_t port;
5057  	uint32_t size;     /* Size to write in bytes */
5058  	/* Followed by data to write */
5059  } __ec_align4;
5060  
5061  /* Write USB-PD Accessory RW_HASH table entry */
5062  #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5063  /* RW hash is first 20 bytes of SHA-256 of RW section */
5064  #define PD_RW_HASH_SIZE 20
5065  struct ec_params_usb_pd_rw_hash_entry {
5066  	uint16_t dev_id;
5067  	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5068  	uint8_t reserved;        /*
5069  				  * For alignment of current_image
5070  				  * TODO(rspangler) but it's not aligned!
5071  				  * Should have been reserved[2].
5072  				  */
5073  	uint32_t current_image;  /* One of ec_current_image */
5074  } __ec_align1;
5075  
5076  /* Read USB-PD Accessory info */
5077  #define EC_CMD_USB_PD_DEV_INFO 0x0112
5078  
5079  struct ec_params_usb_pd_info_request {
5080  	uint8_t port;
5081  } __ec_align1;
5082  
5083  /* Read USB-PD Device discovery info */
5084  #define EC_CMD_USB_PD_DISCOVERY 0x0113
5085  struct ec_params_usb_pd_discovery_entry {
5086  	uint16_t vid;  /* USB-IF VID */
5087  	uint16_t pid;  /* USB-IF PID */
5088  	uint8_t ptype; /* product type (hub,periph,cable,ama) */
5089  } __ec_align_size1;
5090  
5091  /* Override default charge behavior */
5092  #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5093  
5094  /* Negative port parameters have special meaning */
5095  enum usb_pd_override_ports {
5096  	OVERRIDE_DONT_CHARGE = -2,
5097  	OVERRIDE_OFF = -1,
5098  	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5099  };
5100  
5101  struct ec_params_charge_port_override {
5102  	int16_t override_port; /* Override port# */
5103  } __ec_align2;
5104  
5105  /*
5106   * Read (and delete) one entry of PD event log.
5107   * TODO(crbug.com/751742): Make this host command more generic to accommodate
5108   * future non-PD logs that use the same internal EC event_log.
5109   */
5110  #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5111  
5112  struct ec_response_pd_log {
5113  	uint32_t timestamp; /* relative timestamp in milliseconds */
5114  	uint8_t type;       /* event type : see PD_EVENT_xx below */
5115  	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5116  	uint16_t data;      /* type-defined data payload */
5117  	uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5118  } __ec_align4;
5119  
5120  /* The timestamp is the microsecond counter shifted to get about a ms. */
5121  #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5122  
5123  #define PD_LOG_SIZE_MASK  0x1f
5124  #define PD_LOG_PORT_MASK  0xe0
5125  #define PD_LOG_PORT_SHIFT    5
5126  #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5127  				      ((size) & PD_LOG_SIZE_MASK))
5128  #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5129  #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5130  
5131  /* PD event log : entry types */
5132  /* PD MCU events */
5133  #define PD_EVENT_MCU_BASE       0x00
5134  #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5135  #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5136  /* Reserved for custom board event */
5137  #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5138  /* PD generic accessory events */
5139  #define PD_EVENT_ACC_BASE       0x20
5140  #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5141  #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5142  /* PD power supply events */
5143  #define PD_EVENT_PS_BASE        0x40
5144  #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5145  /* PD video dongles events */
5146  #define PD_EVENT_VIDEO_BASE     0x60
5147  #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5148  #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5149  /* Returned in the "type" field, when there is no entry available */
5150  #define PD_EVENT_NO_ENTRY       0xff
5151  
5152  /*
5153   * PD_EVENT_MCU_CHARGE event definition :
5154   * the payload is "struct usb_chg_measures"
5155   * the data field contains the port state flags as defined below :
5156   */
5157  /* Port partner is a dual role device */
5158  #define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5159  /* Port is the pending override port */
5160  #define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5161  /* Port is the override port */
5162  #define CHARGE_FLAGS_OVERRIDE          BIT(13)
5163  /* Charger type */
5164  #define CHARGE_FLAGS_TYPE_SHIFT               3
5165  #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5166  /* Power delivery role */
5167  #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5168  
5169  /*
5170   * PD_EVENT_PS_FAULT data field flags definition :
5171   */
5172  #define PS_FAULT_OCP                          1
5173  #define PS_FAULT_FAST_OCP                     2
5174  #define PS_FAULT_OVP                          3
5175  #define PS_FAULT_DISCH                        4
5176  
5177  /*
5178   * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5179   */
5180  struct mcdp_version {
5181  	uint8_t major;
5182  	uint8_t minor;
5183  	uint16_t build;
5184  } __ec_align4;
5185  
5186  struct mcdp_info {
5187  	uint8_t family[2];
5188  	uint8_t chipid[2];
5189  	struct mcdp_version irom;
5190  	struct mcdp_version fw;
5191  } __ec_align4;
5192  
5193  /* struct mcdp_info field decoding */
5194  #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5195  #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5196  
5197  /* Get/Set USB-PD Alternate mode info */
5198  #define EC_CMD_USB_PD_GET_AMODE 0x0116
5199  struct ec_params_usb_pd_get_mode_request {
5200  	uint16_t svid_idx; /* SVID index to get */
5201  	uint8_t port;      /* port */
5202  } __ec_align_size1;
5203  
5204  struct ec_params_usb_pd_get_mode_response {
5205  	uint16_t svid;   /* SVID */
5206  	uint16_t opos;    /* Object Position */
5207  	uint32_t vdo[6]; /* Mode VDOs */
5208  } __ec_align4;
5209  
5210  #define EC_CMD_USB_PD_SET_AMODE 0x0117
5211  
5212  enum pd_mode_cmd {
5213  	PD_EXIT_MODE = 0,
5214  	PD_ENTER_MODE = 1,
5215  	/* Not a command.  Do NOT remove. */
5216  	PD_MODE_CMD_COUNT,
5217  };
5218  
5219  struct ec_params_usb_pd_set_mode_request {
5220  	uint32_t cmd;  /* enum pd_mode_cmd */
5221  	uint16_t svid; /* SVID to set */
5222  	uint8_t opos;  /* Object Position */
5223  	uint8_t port;  /* port */
5224  } __ec_align4;
5225  
5226  /* Ask the PD MCU to record a log of a requested type */
5227  #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5228  
5229  struct ec_params_pd_write_log_entry {
5230  	uint8_t type; /* event type : see PD_EVENT_xx above */
5231  	uint8_t port; /* port#, or 0 for events unrelated to a given port */
5232  } __ec_align1;
5233  
5234  
5235  /* Control USB-PD chip */
5236  #define EC_CMD_PD_CONTROL 0x0119
5237  
5238  enum ec_pd_control_cmd {
5239  	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5240  	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5241  	PD_RESET,            /* Force reset the PD chip */
5242  	PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5243  	PD_CHIP_ON,          /* Power on the PD chip */
5244  };
5245  
5246  struct ec_params_pd_control {
5247  	uint8_t chip;         /* chip id */
5248  	uint8_t subcmd;
5249  } __ec_align1;
5250  
5251  /* Get info about USB-C SS muxes */
5252  #define EC_CMD_USB_PD_MUX_INFO 0x011A
5253  
5254  struct ec_params_usb_pd_mux_info {
5255  	uint8_t port; /* USB-C port number */
5256  } __ec_align1;
5257  
5258  /* Flags representing mux state */
5259  #define USB_PD_MUX_NONE               0      /* Open switch */
5260  #define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5261  #define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5262  #define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5263  #define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5264  #define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5265  #define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5266  #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5267  #define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5268  
5269  struct ec_response_usb_pd_mux_info {
5270  	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5271  } __ec_align1;
5272  
5273  #define EC_CMD_PD_CHIP_INFO		0x011B
5274  
5275  struct ec_params_pd_chip_info {
5276  	uint8_t port;	/* USB-C port number */
5277  	uint8_t renew;	/* Force renewal */
5278  } __ec_align1;
5279  
5280  struct ec_response_pd_chip_info {
5281  	uint16_t vendor_id;
5282  	uint16_t product_id;
5283  	uint16_t device_id;
5284  	union {
5285  		uint8_t fw_version_string[8];
5286  		uint64_t fw_version_number;
5287  	};
5288  } __ec_align2;
5289  
5290  struct ec_response_pd_chip_info_v1 {
5291  	uint16_t vendor_id;
5292  	uint16_t product_id;
5293  	uint16_t device_id;
5294  	union {
5295  		uint8_t fw_version_string[8];
5296  		uint64_t fw_version_number;
5297  	};
5298  	union {
5299  		uint8_t min_req_fw_version_string[8];
5300  		uint64_t min_req_fw_version_number;
5301  	};
5302  } __ec_align2;
5303  
5304  /* Run RW signature verification and get status */
5305  #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
5306  
5307  struct ec_response_rwsig_check_status {
5308  	uint32_t status;
5309  } __ec_align4;
5310  
5311  /* For controlling RWSIG task */
5312  #define EC_CMD_RWSIG_ACTION	0x011D
5313  
5314  enum rwsig_action {
5315  	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
5316  	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
5317  };
5318  
5319  struct ec_params_rwsig_action {
5320  	uint32_t action;
5321  } __ec_align4;
5322  
5323  /* Run verification on a slot */
5324  #define EC_CMD_EFS_VERIFY	0x011E
5325  
5326  struct ec_params_efs_verify {
5327  	uint8_t region;		/* enum ec_flash_region */
5328  } __ec_align1;
5329  
5330  /*
5331   * Retrieve info from Cros Board Info store. Response is based on the data
5332   * type. Integers return a uint32. Strings return a string, using the response
5333   * size to determine how big it is.
5334   */
5335  #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
5336  /*
5337   * Write info into Cros Board Info on EEPROM. Write fails if the board has
5338   * hardware write-protect enabled.
5339   */
5340  #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
5341  
5342  enum cbi_data_tag {
5343  	CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5344  	CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5345  	CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5346  	CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5347  	CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5348  	CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5349  	CBI_TAG_COUNT,
5350  };
5351  
5352  /*
5353   * Flags to control read operation
5354   *
5355   * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5356   *          write was successful without reboot.
5357   */
5358  #define CBI_GET_RELOAD		BIT(0)
5359  
5360  struct ec_params_get_cbi {
5361  	uint32_t tag;		/* enum cbi_data_tag */
5362  	uint32_t flag;		/* CBI_GET_* */
5363  } __ec_align4;
5364  
5365  /*
5366   * Flags to control write behavior.
5367   *
5368   * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5369   *          useful when writing multiple fields in a row.
5370   * INIT:    Need to be set when creating a new CBI from scratch. All fields
5371   *          will be initialized to zero first.
5372   */
5373  #define CBI_SET_NO_SYNC		BIT(0)
5374  #define CBI_SET_INIT		BIT(1)
5375  
5376  struct ec_params_set_cbi {
5377  	uint32_t tag;		/* enum cbi_data_tag */
5378  	uint32_t flag;		/* CBI_SET_* */
5379  	uint32_t size;		/* Data size */
5380  	uint8_t data[];		/* For string and raw data */
5381  } __ec_align1;
5382  
5383  /*
5384   * Information about resets of the AP by the EC and the EC's own uptime.
5385   */
5386  #define EC_CMD_GET_UPTIME_INFO 0x0121
5387  
5388  struct ec_response_uptime_info {
5389  	/*
5390  	 * Number of milliseconds since the last EC boot. Sysjump resets
5391  	 * typically do not restart the EC's time_since_boot epoch.
5392  	 *
5393  	 * WARNING: The EC's sense of time is much less accurate than the AP's
5394  	 * sense of time, in both phase and frequency.  This timebase is similar
5395  	 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5396  	 */
5397  	uint32_t time_since_ec_boot_ms;
5398  
5399  	/*
5400  	 * Number of times the AP was reset by the EC since the last EC boot.
5401  	 * Note that the AP may be held in reset by the EC during the initial
5402  	 * boot sequence, such that the very first AP boot may count as more
5403  	 * than one here.
5404  	 */
5405  	uint32_t ap_resets_since_ec_boot;
5406  
5407  	/*
5408  	 * The set of flags which describe the EC's most recent reset.  See
5409  	 * include/system.h RESET_FLAG_* for details.
5410  	 */
5411  	uint32_t ec_reset_flags;
5412  
5413  	/* Empty log entries have both the cause and timestamp set to zero. */
5414  	struct ap_reset_log_entry {
5415  		/*
5416  		 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5417  		 * for details.
5418  		 */
5419  		uint16_t reset_cause;
5420  
5421  		/* Reserved for protocol growth. */
5422  		uint16_t reserved;
5423  
5424  		/*
5425  		 * The time of the reset's assertion, in milliseconds since the
5426  		 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5427  		 * Set to zero if the log entry is empty.
5428  		 */
5429  		uint32_t reset_time_ms;
5430  	} recent_ap_reset[4];
5431  } __ec_align4;
5432  
5433  /*
5434   * Add entropy to the device secret (stored in the rollback region).
5435   *
5436   * Depending on the chip, the operation may take a long time (e.g. to erase
5437   * flash), so the commands are asynchronous.
5438   */
5439  #define EC_CMD_ADD_ENTROPY	0x0122
5440  
5441  enum add_entropy_action {
5442  	/* Add entropy to the current secret. */
5443  	ADD_ENTROPY_ASYNC = 0,
5444  	/*
5445  	 * Add entropy, and also make sure that the previous secret is erased.
5446  	 * (this can be implemented by adding entropy multiple times until
5447  	 * all rolback blocks have been overwritten).
5448  	 */
5449  	ADD_ENTROPY_RESET_ASYNC = 1,
5450  	/* Read back result from the previous operation. */
5451  	ADD_ENTROPY_GET_RESULT = 2,
5452  };
5453  
5454  struct ec_params_rollback_add_entropy {
5455  	uint8_t action;
5456  } __ec_align1;
5457  
5458  /*
5459   * Perform a single read of a given ADC channel.
5460   */
5461  #define EC_CMD_ADC_READ		0x0123
5462  
5463  struct ec_params_adc_read {
5464  	uint8_t adc_channel;
5465  } __ec_align1;
5466  
5467  struct ec_response_adc_read {
5468  	int32_t adc_value;
5469  } __ec_align4;
5470  
5471  /*
5472   * Read back rollback info
5473   */
5474  #define EC_CMD_ROLLBACK_INFO		0x0124
5475  
5476  struct ec_response_rollback_info {
5477  	int32_t id; /* Incrementing number to indicate which region to use. */
5478  	int32_t rollback_min_version;
5479  	int32_t rw_rollback_version;
5480  } __ec_align4;
5481  
5482  
5483  /* Issue AP reset */
5484  #define EC_CMD_AP_RESET 0x0125
5485  
5486  /*
5487   * Get the number of peripheral charge ports
5488   */
5489  #define EC_CMD_PCHG_COUNT 0x0134
5490  
5491  #define EC_PCHG_MAX_PORTS 8
5492  
5493  struct ec_response_pchg_count {
5494  	uint8_t port_count;
5495  } __ec_align1;
5496  
5497  /*
5498   * Get the status of a peripheral charge port
5499   */
5500  #define EC_CMD_PCHG 0x0135
5501  
5502  struct ec_params_pchg {
5503  	uint8_t port;
5504  } __ec_align1;
5505  
5506  struct ec_response_pchg {
5507  	uint32_t error;			/* enum pchg_error */
5508  	uint8_t state;			/* enum pchg_state state */
5509  	uint8_t battery_percentage;
5510  	uint8_t unused0;
5511  	uint8_t unused1;
5512  	/* Fields added in version 1 */
5513  	uint32_t fw_version;
5514  	uint32_t dropped_event_count;
5515  } __ec_align2;
5516  
5517  enum pchg_state {
5518  	/* Charger is reset and not initialized. */
5519  	PCHG_STATE_RESET = 0,
5520  	/* Charger is initialized or disabled. */
5521  	PCHG_STATE_INITIALIZED,
5522  	/* Charger is enabled and ready to detect a device. */
5523  	PCHG_STATE_ENABLED,
5524  	/* Device is in proximity. */
5525  	PCHG_STATE_DETECTED,
5526  	/* Device is being charged. */
5527  	PCHG_STATE_CHARGING,
5528  	/* Device is fully charged. It implies DETECTED (& not charging). */
5529  	PCHG_STATE_FULL,
5530  	/* In download (a.k.a. firmware update) mode */
5531  	PCHG_STATE_DOWNLOAD,
5532  	/* In download mode. Ready for receiving data. */
5533  	PCHG_STATE_DOWNLOADING,
5534  	/* Device is ready for data communication. */
5535  	PCHG_STATE_CONNECTED,
5536  	/* Put no more entry below */
5537  	PCHG_STATE_COUNT,
5538  };
5539  
5540  #define EC_PCHG_STATE_TEXT { \
5541  	[PCHG_STATE_RESET] = "RESET", \
5542  	[PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5543  	[PCHG_STATE_ENABLED] = "ENABLED", \
5544  	[PCHG_STATE_DETECTED] = "DETECTED", \
5545  	[PCHG_STATE_CHARGING] = "CHARGING", \
5546  	[PCHG_STATE_FULL] = "FULL", \
5547  	[PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5548  	[PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5549  	[PCHG_STATE_CONNECTED] = "CONNECTED", \
5550  	}
5551  
5552  /*
5553   * Update firmware of peripheral chip
5554   */
5555  #define EC_CMD_PCHG_UPDATE 0x0136
5556  
5557  /* Port number is encoded in bit[28:31]. */
5558  #define EC_MKBP_PCHG_PORT_SHIFT		28
5559  /* Utility macro for converting MKBP event to port number. */
5560  #define EC_MKBP_PCHG_EVENT_TO_PORT(e)	(((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
5561  /* Utility macro for extracting event bits. */
5562  #define EC_MKBP_PCHG_EVENT_MASK(e)	((e) \
5563  					& GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0))
5564  
5565  #define EC_MKBP_PCHG_UPDATE_OPENED	BIT(0)
5566  #define EC_MKBP_PCHG_WRITE_COMPLETE	BIT(1)
5567  #define EC_MKBP_PCHG_UPDATE_CLOSED	BIT(2)
5568  #define EC_MKBP_PCHG_UPDATE_ERROR	BIT(3)
5569  #define EC_MKBP_PCHG_DEVICE_EVENT	BIT(4)
5570  
5571  enum ec_pchg_update_cmd {
5572  	/* Reset chip to normal mode. */
5573  	EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
5574  	/* Reset and put a chip in update (a.k.a. download) mode. */
5575  	EC_PCHG_UPDATE_CMD_OPEN,
5576  	/* Write a block of data containing FW image. */
5577  	EC_PCHG_UPDATE_CMD_WRITE,
5578  	/* Close update session. */
5579  	EC_PCHG_UPDATE_CMD_CLOSE,
5580  	/* End of commands */
5581  	EC_PCHG_UPDATE_CMD_COUNT,
5582  };
5583  
5584  struct ec_params_pchg_update {
5585  	/* PCHG port number */
5586  	uint8_t port;
5587  	/* enum ec_pchg_update_cmd */
5588  	uint8_t cmd;
5589  	/* Padding */
5590  	uint8_t reserved0;
5591  	uint8_t reserved1;
5592  	/* Version of new firmware */
5593  	uint32_t version;
5594  	/* CRC32 of new firmware */
5595  	uint32_t crc32;
5596  	/* Address in chip memory where <data> is written to */
5597  	uint32_t addr;
5598  	/* Size of <data> */
5599  	uint32_t size;
5600  	/* Partial data of new firmware */
5601  	uint8_t data[];
5602  } __ec_align4;
5603  
5604  BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT
5605  	     < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8));
5606  
5607  struct ec_response_pchg_update {
5608  	/* Block size */
5609  	uint32_t block_size;
5610  } __ec_align4;
5611  
5612  
5613  /*****************************************************************************/
5614  /* Voltage regulator controls */
5615  
5616  /*
5617   * Get basic info of voltage regulator for given index.
5618   *
5619   * Returns the regulator name and supported voltage list in mV.
5620   */
5621  #define EC_CMD_REGULATOR_GET_INFO 0x012C
5622  
5623  /* Maximum length of regulator name */
5624  #define EC_REGULATOR_NAME_MAX_LEN 16
5625  
5626  /* Maximum length of the supported voltage list. */
5627  #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5628  
5629  struct ec_params_regulator_get_info {
5630  	uint32_t index;
5631  } __ec_align4;
5632  
5633  struct ec_response_regulator_get_info {
5634  	char name[EC_REGULATOR_NAME_MAX_LEN];
5635  	uint16_t num_voltages;
5636  	uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5637  } __ec_align2;
5638  
5639  /*
5640   * Configure the regulator as enabled / disabled.
5641   */
5642  #define EC_CMD_REGULATOR_ENABLE 0x012D
5643  
5644  struct ec_params_regulator_enable {
5645  	uint32_t index;
5646  	uint8_t enable;
5647  } __ec_align4;
5648  
5649  /*
5650   * Query if the regulator is enabled.
5651   *
5652   * Returns 1 if the regulator is enabled, 0 if not.
5653   */
5654  #define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5655  
5656  struct ec_params_regulator_is_enabled {
5657  	uint32_t index;
5658  } __ec_align4;
5659  
5660  struct ec_response_regulator_is_enabled {
5661  	uint8_t enabled;
5662  } __ec_align1;
5663  
5664  /*
5665   * Set voltage for the voltage regulator within the range specified.
5666   *
5667   * The driver should select the voltage in range closest to min_mv.
5668   *
5669   * Also note that this might be called before the regulator is enabled, and the
5670   * setting should be in effect after the regulator is enabled.
5671   */
5672  #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5673  
5674  struct ec_params_regulator_set_voltage {
5675  	uint32_t index;
5676  	uint32_t min_mv;
5677  	uint32_t max_mv;
5678  } __ec_align4;
5679  
5680  /*
5681   * Get the currently configured voltage for the voltage regulator.
5682   *
5683   * Note that this might be called before the regulator is enabled, and this
5684   * should return the configured output voltage if the regulator is enabled.
5685   */
5686  #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5687  
5688  struct ec_params_regulator_get_voltage {
5689  	uint32_t index;
5690  } __ec_align4;
5691  
5692  struct ec_response_regulator_get_voltage {
5693  	uint32_t voltage_mv;
5694  } __ec_align4;
5695  
5696  /*
5697   * Gather all discovery information for the given port and partner type.
5698   *
5699   * Note that if discovery has not yet completed, only the currently completed
5700   * responses will be filled in.   If the discovery data structures are changed
5701   * in the process of the command running, BUSY will be returned.
5702   *
5703   * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5704   * contain, while the number of SVIDs here is selected to fit within the PROTO2
5705   * maximum parameter size.
5706   */
5707  #define EC_CMD_TYPEC_DISCOVERY 0x0131
5708  
5709  enum typec_partner_type {
5710  	TYPEC_PARTNER_SOP = 0,
5711  	TYPEC_PARTNER_SOP_PRIME = 1,
5712  };
5713  
5714  struct ec_params_typec_discovery {
5715  	uint8_t port;
5716  	uint8_t partner_type; /* enum typec_partner_type */
5717  } __ec_align1;
5718  
5719  struct svid_mode_info {
5720  	uint16_t svid;
5721  	uint16_t mode_count;  /* Number of modes partner sent */
5722  	uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5723  };
5724  
5725  struct ec_response_typec_discovery {
5726  	uint8_t identity_count;    /* Number of identity VDOs partner sent */
5727  	uint8_t svid_count;	   /* Number of SVIDs partner sent */
5728  	uint16_t reserved;
5729  	uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5730  	struct svid_mode_info svids[];
5731  } __ec_align1;
5732  
5733  /* USB Type-C commands for AP-controlled device policy. */
5734  #define EC_CMD_TYPEC_CONTROL 0x0132
5735  
5736  enum typec_control_command {
5737  	TYPEC_CONTROL_COMMAND_EXIT_MODES,
5738  	TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5739  	TYPEC_CONTROL_COMMAND_ENTER_MODE,
5740  	TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY,
5741  	TYPEC_CONTROL_COMMAND_USB_MUX_SET,
5742  	TYPEC_CONTROL_COMMAND_BIST_SHARE_MODE,
5743  	TYPEC_CONTROL_COMMAND_SEND_VDM_REQ,
5744  };
5745  
5746  /* Replies the AP may specify to the TBT EnterMode command as a UFP */
5747  enum typec_tbt_ufp_reply {
5748  	TYPEC_TBT_UFP_REPLY_NAK,
5749  	TYPEC_TBT_UFP_REPLY_ACK,
5750  };
5751  
5752  struct typec_usb_mux_set {
5753  	uint8_t mux_index;	/* Index of the mux to set in the chain */
5754  	uint8_t mux_flags;	/* USB_PD_MUX_*-encoded USB mux state to set */
5755  } __ec_align1;
5756  
5757  #define VDO_MAX_SIZE 7
5758  
5759  struct typec_vdm_req {
5760  	/* VDM data, including VDM header */
5761  	uint32_t vdm_data[VDO_MAX_SIZE];
5762  	/* Number of 32-bit fields filled in */
5763  	uint8_t vdm_data_objects;
5764  	/* Partner to address - see enum typec_partner_type */
5765  	uint8_t partner_type;
5766  } __ec_align1;
5767  
5768  struct ec_params_typec_control {
5769  	uint8_t port;
5770  	uint8_t command;	/* enum typec_control_command */
5771  	uint16_t reserved;
5772  
5773  	/*
5774  	 * This section will be interpreted based on |command|. Define a
5775  	 * placeholder structure to avoid having to increase the size and bump
5776  	 * the command version when adding new sub-commands.
5777  	 */
5778  	union {
5779  		uint32_t clear_events_mask;
5780  		uint8_t mode_to_enter;      /* enum typec_mode */
5781  		uint8_t tbt_ufp_reply;      /* enum typec_tbt_ufp_reply */
5782  		struct typec_usb_mux_set mux_params;
5783  		/* Used for VMD_REQ */
5784  		struct typec_vdm_req vdm_req_params;
5785  		uint8_t placeholder[128];
5786  	};
5787  } __ec_align1;
5788  
5789  /*
5790   * Gather all status information for a port.
5791   *
5792   * Note: this covers many of the return fields from the deprecated
5793   * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
5794   * discovery data.  The "enum pd_cc_states" is defined with the deprecated
5795   * EC_CMD_USB_PD_CONTROL command.
5796   *
5797   * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
5798   */
5799  #define EC_CMD_TYPEC_STATUS 0x0133
5800  
5801  /*
5802   * Power role.
5803   *
5804   * Note this is also used for PD header creation, and values align to those in
5805   * the Power Delivery Specification Revision 3.0 (See
5806   * 6.2.1.1.4 Port Power Role).
5807   */
5808  enum pd_power_role {
5809  	PD_ROLE_SINK = 0,
5810  	PD_ROLE_SOURCE = 1
5811  };
5812  
5813  /*
5814   * Data role.
5815   *
5816   * Note this is also used for PD header creation, and the first two values
5817   * align to those in the Power Delivery Specification Revision 3.0 (See
5818   * 6.2.1.1.6 Port Data Role).
5819   */
5820  enum pd_data_role {
5821  	PD_ROLE_UFP = 0,
5822  	PD_ROLE_DFP = 1,
5823  	PD_ROLE_DISCONNECTED = 2,
5824  };
5825  
5826  enum pd_vconn_role {
5827  	PD_ROLE_VCONN_OFF = 0,
5828  	PD_ROLE_VCONN_SRC = 1,
5829  };
5830  
5831  /*
5832   * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
5833   * regardless of whether a debug accessory is connected.
5834   */
5835  enum tcpc_cc_polarity {
5836  	/*
5837  	 * _CCx: is used to indicate the polarity while not connected to
5838  	 * a Debug Accessory.  Only one CC line will assert a resistor and
5839  	 * the other will be open.
5840  	 */
5841  	POLARITY_CC1 = 0,
5842  	POLARITY_CC2 = 1,
5843  
5844  	/*
5845  	 * _CCx_DTS is used to indicate the polarity while connected to a
5846  	 * SRC Debug Accessory.  Assert resistors on both lines.
5847  	 */
5848  	POLARITY_CC1_DTS = 2,
5849  	POLARITY_CC2_DTS = 3,
5850  
5851  	/*
5852  	 * The current TCPC code relies on these specific POLARITY values.
5853  	 * Adding in a check to verify if the list grows for any reason
5854  	 * that this will give a hint that other places need to be
5855  	 * adjusted.
5856  	 */
5857  	POLARITY_COUNT
5858  };
5859  
5860  #define PD_STATUS_EVENT_SOP_DISC_DONE		BIT(0)
5861  #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE	BIT(1)
5862  #define PD_STATUS_EVENT_HARD_RESET		BIT(2)
5863  #define PD_STATUS_EVENT_DISCONNECTED		BIT(3)
5864  #define PD_STATUS_EVENT_MUX_0_SET_DONE		BIT(4)
5865  #define PD_STATUS_EVENT_MUX_1_SET_DONE		BIT(5)
5866  #define PD_STATUS_EVENT_VDM_REQ_REPLY		BIT(6)
5867  #define PD_STATUS_EVENT_VDM_REQ_FAILED		BIT(7)
5868  #define PD_STATUS_EVENT_VDM_ATTENTION		BIT(8)
5869  
5870  struct ec_params_typec_status {
5871  	uint8_t port;
5872  } __ec_align1;
5873  
5874  struct ec_response_typec_status {
5875  	uint8_t pd_enabled;		/* PD communication enabled - bool */
5876  	uint8_t dev_connected;		/* Device connected - bool */
5877  	uint8_t sop_connected;		/* Device is SOP PD capable - bool */
5878  	uint8_t source_cap_count;	/* Number of Source Cap PDOs */
5879  
5880  	uint8_t power_role;		/* enum pd_power_role */
5881  	uint8_t data_role;		/* enum pd_data_role */
5882  	uint8_t vconn_role;		/* enum pd_vconn_role */
5883  	uint8_t sink_cap_count;		/* Number of Sink Cap PDOs */
5884  
5885  	uint8_t polarity;		/* enum tcpc_cc_polarity */
5886  	uint8_t cc_state;		/* enum pd_cc_states */
5887  	uint8_t dp_pin;			/* DP pin mode (MODE_DP_IN_[A-E]) */
5888  	uint8_t mux_state;		/* USB_PD_MUX* - encoded mux state */
5889  
5890  	char tc_state[32];		/* TC state name */
5891  
5892  	uint32_t events;		/* PD_STATUS_EVENT bitmask */
5893  
5894  	/*
5895  	 * BCD PD revisions for partners
5896  	 *
5897  	 * The format has the PD major reversion in the upper nibble, and PD
5898  	 * minor version in the next nibble.  Following two nibbles are
5899  	 * currently 0.
5900  	 * ex. PD 3.2 would map to 0x3200
5901  	 *
5902  	 * PD major/minor will be 0 if no PD device is connected.
5903  	 */
5904  	uint16_t sop_revision;
5905  	uint16_t sop_prime_revision;
5906  
5907  	uint32_t source_cap_pdos[7];	/* Max 7 PDOs can be present */
5908  
5909  	uint32_t sink_cap_pdos[7];	/* Max 7 PDOs can be present */
5910  } __ec_align1;
5911  
5912  /*
5913   * Gather the response to the most recent VDM REQ from the AP, as well
5914   * as popping the oldest VDM:Attention from the DPM queue
5915   */
5916  #define EC_CMD_TYPEC_VDM_RESPONSE 0x013C
5917  
5918  struct ec_params_typec_vdm_response {
5919  	uint8_t port;
5920  } __ec_align1;
5921  
5922  struct ec_response_typec_vdm_response {
5923  	/* Number of 32-bit fields filled in */
5924  	uint8_t vdm_data_objects;
5925  	/* Partner to address - see enum typec_partner_type */
5926  	uint8_t partner_type;
5927  	/* enum ec_status describing VDM response */
5928  	uint16_t vdm_response_err;
5929  	/* VDM data, including VDM header */
5930  	uint32_t vdm_response[VDO_MAX_SIZE];
5931  	/* Number of 32-bit Attention fields filled in */
5932  	uint8_t vdm_attention_objects;
5933  	/* Number of remaining messages to consume */
5934  	uint8_t vdm_attention_left;
5935  	/* Reserved */
5936  	uint16_t reserved1;
5937  	/* VDM:Attention contents */
5938  	uint32_t vdm_attention[2];
5939  } __ec_align1;
5940  
5941  #undef VDO_MAX_SIZE
5942  
5943  /*****************************************************************************/
5944  /* The command range 0x200-0x2FF is reserved for Rotor. */
5945  
5946  /*****************************************************************************/
5947  /*
5948   * Reserve a range of host commands for the CR51 firmware.
5949   */
5950  #define EC_CMD_CR51_BASE 0x0300
5951  #define EC_CMD_CR51_LAST 0x03FF
5952  
5953  /*****************************************************************************/
5954  /* Fingerprint MCU commands: range 0x0400-0x040x */
5955  
5956  /* Fingerprint SPI sensor passthru command: prototyping ONLY */
5957  #define EC_CMD_FP_PASSTHRU 0x0400
5958  
5959  #define EC_FP_FLAG_NOT_COMPLETE 0x1
5960  
5961  struct ec_params_fp_passthru {
5962  	uint16_t len;		/* Number of bytes to write then read */
5963  	uint16_t flags;		/* EC_FP_FLAG_xxx */
5964  	uint8_t data[];		/* Data to send */
5965  } __ec_align2;
5966  
5967  /* Configure the Fingerprint MCU behavior */
5968  #define EC_CMD_FP_MODE 0x0402
5969  
5970  /* Put the sensor in its lowest power mode */
5971  #define FP_MODE_DEEPSLEEP      BIT(0)
5972  /* Wait to see a finger on the sensor */
5973  #define FP_MODE_FINGER_DOWN    BIT(1)
5974  /* Poll until the finger has left the sensor */
5975  #define FP_MODE_FINGER_UP      BIT(2)
5976  /* Capture the current finger image */
5977  #define FP_MODE_CAPTURE        BIT(3)
5978  /* Finger enrollment session on-going */
5979  #define FP_MODE_ENROLL_SESSION BIT(4)
5980  /* Enroll the current finger image */
5981  #define FP_MODE_ENROLL_IMAGE   BIT(5)
5982  /* Try to match the current finger image */
5983  #define FP_MODE_MATCH          BIT(6)
5984  /* Reset and re-initialize the sensor. */
5985  #define FP_MODE_RESET_SENSOR   BIT(7)
5986  /* special value: don't change anything just read back current mode */
5987  #define FP_MODE_DONT_CHANGE    BIT(31)
5988  
5989  #define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5990  			FP_MODE_FINGER_DOWN    | \
5991  			FP_MODE_FINGER_UP      | \
5992  			FP_MODE_CAPTURE        | \
5993  			FP_MODE_ENROLL_SESSION | \
5994  			FP_MODE_ENROLL_IMAGE   | \
5995  			FP_MODE_MATCH          | \
5996  			FP_MODE_RESET_SENSOR   | \
5997  			FP_MODE_DONT_CHANGE)
5998  
5999  /* Capture types defined in bits [30..28] */
6000  #define FP_MODE_CAPTURE_TYPE_SHIFT 28
6001  #define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
6002  /*
6003   * This enum must remain ordered, if you add new values you must ensure that
6004   * FP_CAPTURE_TYPE_MAX is still the last one.
6005   */
6006  enum fp_capture_type {
6007  	/* Full blown vendor-defined capture (produces 'frame_size' bytes) */
6008  	FP_CAPTURE_VENDOR_FORMAT = 0,
6009  	/* Simple raw image capture (produces width x height x bpp bits) */
6010  	FP_CAPTURE_SIMPLE_IMAGE = 1,
6011  	/* Self test pattern (e.g. checkerboard) */
6012  	FP_CAPTURE_PATTERN0 = 2,
6013  	/* Self test pattern (e.g. inverted checkerboard) */
6014  	FP_CAPTURE_PATTERN1 = 3,
6015  	/* Capture for Quality test with fixed contrast */
6016  	FP_CAPTURE_QUALITY_TEST = 4,
6017  	/* Capture for pixel reset value test */
6018  	FP_CAPTURE_RESET_TEST = 5,
6019  	FP_CAPTURE_TYPE_MAX,
6020  };
6021  /* Extracts the capture type from the sensor 'mode' word */
6022  #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
6023  				       >> FP_MODE_CAPTURE_TYPE_SHIFT)
6024  
6025  struct ec_params_fp_mode {
6026  	uint32_t mode; /* as defined by FP_MODE_ constants */
6027  } __ec_align4;
6028  
6029  struct ec_response_fp_mode {
6030  	uint32_t mode; /* as defined by FP_MODE_ constants */
6031  } __ec_align4;
6032  
6033  /* Retrieve Fingerprint sensor information */
6034  #define EC_CMD_FP_INFO 0x0403
6035  
6036  /* Number of dead pixels detected on the last maintenance */
6037  #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
6038  /* Unknown number of dead pixels detected on the last maintenance */
6039  #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
6040  /* No interrupt from the sensor */
6041  #define FP_ERROR_NO_IRQ    BIT(12)
6042  /* SPI communication error */
6043  #define FP_ERROR_SPI_COMM  BIT(13)
6044  /* Invalid sensor Hardware ID */
6045  #define FP_ERROR_BAD_HWID  BIT(14)
6046  /* Sensor initialization failed */
6047  #define FP_ERROR_INIT_FAIL BIT(15)
6048  
6049  struct ec_response_fp_info_v0 {
6050  	/* Sensor identification */
6051  	uint32_t vendor_id;
6052  	uint32_t product_id;
6053  	uint32_t model_id;
6054  	uint32_t version;
6055  	/* Image frame characteristics */
6056  	uint32_t frame_size;
6057  	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6058  	uint16_t width;
6059  	uint16_t height;
6060  	uint16_t bpp;
6061  	uint16_t errors; /* see FP_ERROR_ flags above */
6062  } __ec_align4;
6063  
6064  struct ec_response_fp_info {
6065  	/* Sensor identification */
6066  	uint32_t vendor_id;
6067  	uint32_t product_id;
6068  	uint32_t model_id;
6069  	uint32_t version;
6070  	/* Image frame characteristics */
6071  	uint32_t frame_size;
6072  	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6073  	uint16_t width;
6074  	uint16_t height;
6075  	uint16_t bpp;
6076  	uint16_t errors; /* see FP_ERROR_ flags above */
6077  	/* Template/finger current information */
6078  	uint32_t template_size;  /* max template size in bytes */
6079  	uint16_t template_max;   /* maximum number of fingers/templates */
6080  	uint16_t template_valid; /* number of valid fingers/templates */
6081  	uint32_t template_dirty; /* bitmap of templates with MCU side changes */
6082  	uint32_t template_version; /* version of the template format */
6083  } __ec_align4;
6084  
6085  /* Get the last captured finger frame or a template content */
6086  #define EC_CMD_FP_FRAME 0x0404
6087  
6088  /* constants defining the 'offset' field which also contains the frame index */
6089  #define FP_FRAME_INDEX_SHIFT       28
6090  /* Frame buffer where the captured image is stored */
6091  #define FP_FRAME_INDEX_RAW_IMAGE    0
6092  /* First frame buffer holding a template */
6093  #define FP_FRAME_INDEX_TEMPLATE     1
6094  #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
6095  #define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
6096  
6097  /* Version of the format of the encrypted templates. */
6098  #define FP_TEMPLATE_FORMAT_VERSION 3
6099  
6100  /* Constants for encryption parameters */
6101  #define FP_CONTEXT_NONCE_BYTES 12
6102  #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
6103  #define FP_CONTEXT_TAG_BYTES 16
6104  #define FP_CONTEXT_SALT_BYTES 16
6105  #define FP_CONTEXT_TPM_BYTES 32
6106  
6107  struct ec_fp_template_encryption_metadata {
6108  	/*
6109  	 * Version of the structure format (N=3).
6110  	 */
6111  	uint16_t struct_version;
6112  	/* Reserved bytes, set to 0. */
6113  	uint16_t reserved;
6114  	/*
6115  	 * The salt is *only* ever used for key derivation. The nonce is unique,
6116  	 * a different one is used for every message.
6117  	 */
6118  	uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
6119  	uint8_t salt[FP_CONTEXT_SALT_BYTES];
6120  	uint8_t tag[FP_CONTEXT_TAG_BYTES];
6121  };
6122  
6123  struct ec_params_fp_frame {
6124  	/*
6125  	 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
6126  	 * in the high nibble, and the real offset within the frame in
6127  	 * FP_FRAME_OFFSET_MASK.
6128  	 */
6129  	uint32_t offset;
6130  	uint32_t size;
6131  } __ec_align4;
6132  
6133  /* Load a template into the MCU */
6134  #define EC_CMD_FP_TEMPLATE 0x0405
6135  
6136  /* Flag in the 'size' field indicating that the full template has been sent */
6137  #define FP_TEMPLATE_COMMIT 0x80000000
6138  
6139  struct ec_params_fp_template {
6140  	uint32_t offset;
6141  	uint32_t size;
6142  	uint8_t data[];
6143  } __ec_align4;
6144  
6145  /* Clear the current fingerprint user context and set a new one */
6146  #define EC_CMD_FP_CONTEXT 0x0406
6147  
6148  struct ec_params_fp_context {
6149  	uint32_t userid[FP_CONTEXT_USERID_WORDS];
6150  } __ec_align4;
6151  
6152  #define EC_CMD_FP_STATS 0x0407
6153  
6154  #define FPSTATS_CAPTURE_INV  BIT(0)
6155  #define FPSTATS_MATCHING_INV BIT(1)
6156  
6157  struct ec_response_fp_stats {
6158  	uint32_t capture_time_us;
6159  	uint32_t matching_time_us;
6160  	uint32_t overall_time_us;
6161  	struct {
6162  		uint32_t lo;
6163  		uint32_t hi;
6164  	} overall_t0;
6165  	uint8_t timestamps_invalid;
6166  	int8_t template_matched;
6167  } __ec_align2;
6168  
6169  #define EC_CMD_FP_SEED 0x0408
6170  struct ec_params_fp_seed {
6171  	/*
6172  	 * Version of the structure format (N=3).
6173  	 */
6174  	uint16_t struct_version;
6175  	/* Reserved bytes, set to 0. */
6176  	uint16_t reserved;
6177  	/* Seed from the TPM. */
6178  	uint8_t seed[FP_CONTEXT_TPM_BYTES];
6179  } __ec_align4;
6180  
6181  #define EC_CMD_FP_ENC_STATUS 0x0409
6182  
6183  /* FP TPM seed has been set or not */
6184  #define FP_ENC_STATUS_SEED_SET BIT(0)
6185  
6186  struct ec_response_fp_encryption_status {
6187  	/* Used bits in encryption engine status */
6188  	uint32_t valid_flags;
6189  	/* Encryption engine status */
6190  	uint32_t status;
6191  } __ec_align4;
6192  
6193  /*****************************************************************************/
6194  /* Touchpad MCU commands: range 0x0500-0x05FF */
6195  
6196  /* Perform touchpad self test */
6197  #define EC_CMD_TP_SELF_TEST 0x0500
6198  
6199  /* Get number of frame types, and the size of each type */
6200  #define EC_CMD_TP_FRAME_INFO 0x0501
6201  
6202  struct ec_response_tp_frame_info {
6203  	uint32_t n_frames;
6204  	uint32_t frame_sizes[];
6205  } __ec_align4;
6206  
6207  /* Create a snapshot of current frame readings */
6208  #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6209  
6210  /* Read the frame */
6211  #define EC_CMD_TP_FRAME_GET 0x0503
6212  
6213  struct ec_params_tp_frame_get {
6214  	uint32_t frame_index;
6215  	uint32_t offset;
6216  	uint32_t size;
6217  } __ec_align4;
6218  
6219  /*****************************************************************************/
6220  /* EC-EC communication commands: range 0x0600-0x06FF */
6221  
6222  #define EC_COMM_TEXT_MAX 8
6223  
6224  /*
6225   * Get battery static information, i.e. information that never changes, or
6226   * very infrequently.
6227   */
6228  #define EC_CMD_BATTERY_GET_STATIC 0x0600
6229  
6230  /**
6231   * struct ec_params_battery_static_info - Battery static info parameters
6232   * @index: Battery index.
6233   */
6234  struct ec_params_battery_static_info {
6235  	uint8_t index;
6236  } __ec_align_size1;
6237  
6238  /**
6239   * struct ec_response_battery_static_info - Battery static info response
6240   * @design_capacity: Battery Design Capacity (mAh)
6241   * @design_voltage: Battery Design Voltage (mV)
6242   * @manufacturer: Battery Manufacturer String
6243   * @model: Battery Model Number String
6244   * @serial: Battery Serial Number String
6245   * @type: Battery Type String
6246   * @cycle_count: Battery Cycle Count
6247   */
6248  struct ec_response_battery_static_info {
6249  	uint16_t design_capacity;
6250  	uint16_t design_voltage;
6251  	char manufacturer[EC_COMM_TEXT_MAX];
6252  	char model[EC_COMM_TEXT_MAX];
6253  	char serial[EC_COMM_TEXT_MAX];
6254  	char type[EC_COMM_TEXT_MAX];
6255  	/* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6256  	uint32_t cycle_count;
6257  } __ec_align4;
6258  
6259  /*
6260   * Get battery dynamic information, i.e. information that is likely to change
6261   * every time it is read.
6262   */
6263  #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6264  
6265  /**
6266   * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6267   * @index: Battery index.
6268   */
6269  struct ec_params_battery_dynamic_info {
6270  	uint8_t index;
6271  } __ec_align_size1;
6272  
6273  /**
6274   * struct ec_response_battery_dynamic_info - Battery dynamic info response
6275   * @actual_voltage: Battery voltage (mV)
6276   * @actual_current: Battery current (mA); negative=discharging
6277   * @remaining_capacity: Remaining capacity (mAh)
6278   * @full_capacity: Capacity (mAh, might change occasionally)
6279   * @flags: Flags, see EC_BATT_FLAG_*
6280   * @desired_voltage: Charging voltage desired by battery (mV)
6281   * @desired_current: Charging current desired by battery (mA)
6282   */
6283  struct ec_response_battery_dynamic_info {
6284  	int16_t actual_voltage;
6285  	int16_t actual_current;
6286  	int16_t remaining_capacity;
6287  	int16_t full_capacity;
6288  	int16_t flags;
6289  	int16_t desired_voltage;
6290  	int16_t desired_current;
6291  } __ec_align2;
6292  
6293  /*
6294   * Control charger chip. Used to control charger chip on the slave.
6295   */
6296  #define EC_CMD_CHARGER_CONTROL 0x0602
6297  
6298  /**
6299   * struct ec_params_charger_control - Charger control parameters
6300   * @max_current: Charger current (mA). Positive to allow base to draw up to
6301   *     max_current and (possibly) charge battery, negative to request current
6302   *     from base (OTG).
6303   * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6304   *     >= 0.
6305   * @allow_charging: Allow base battery charging (only makes sense if
6306   *     max_current > 0).
6307   */
6308  struct ec_params_charger_control {
6309  	int16_t max_current;
6310  	uint16_t otg_voltage;
6311  	uint8_t allow_charging;
6312  } __ec_align_size1;
6313  
6314  /* Get ACK from the USB-C SS muxes */
6315  #define EC_CMD_USB_PD_MUX_ACK 0x0603
6316  
6317  struct ec_params_usb_pd_mux_ack {
6318  	uint8_t port; /* USB-C port number */
6319  } __ec_align1;
6320  
6321  /*****************************************************************************/
6322  /*
6323   * Reserve a range of host commands for board-specific, experimental, or
6324   * special purpose features. These can be (re)used without updating this file.
6325   *
6326   * CAUTION: Don't go nuts with this. Shipping products should document ALL
6327   * their EC commands for easier development, testing, debugging, and support.
6328   *
6329   * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6330   * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6331   *
6332   * In your experimental code, you may want to do something like this:
6333   *
6334   *   #define EC_CMD_MAGIC_FOO 0x0000
6335   *   #define EC_CMD_MAGIC_BAR 0x0001
6336   *   #define EC_CMD_MAGIC_HEY 0x0002
6337   *
6338   *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6339   *      EC_VER_MASK(0);
6340   *
6341   *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6342   *      EC_VER_MASK(0);
6343   *
6344   *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6345   *      EC_VER_MASK(0);
6346   */
6347  #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6348  #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6349  
6350  /*
6351   * Given the private host command offset, calculate the true private host
6352   * command value.
6353   */
6354  #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6355  	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
6356  
6357  /*****************************************************************************/
6358  /*
6359   * Passthru commands
6360   *
6361   * Some platforms have sub-processors chained to each other.  For example.
6362   *
6363   *     AP <--> EC <--> PD MCU
6364   *
6365   * The top 2 bits of the command number are used to indicate which device the
6366   * command is intended for.  Device 0 is always the device receiving the
6367   * command; other device mapping is board-specific.
6368   *
6369   * When a device receives a command to be passed to a sub-processor, it passes
6370   * it on with the device number set back to 0.  This allows the sub-processor
6371   * to remain blissfully unaware of whether the command originated on the next
6372   * device up the chain, or was passed through from the AP.
6373   *
6374   * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6375   *     AP sends command 0x4002 to the EC
6376   *     EC sends command 0x0002 to the PD MCU
6377   *     EC forwards PD MCU response back to the AP
6378   */
6379  
6380  /* Offset and max command number for sub-device n */
6381  #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6382  #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6383  
6384  /*****************************************************************************/
6385  /*
6386   * Deprecated constants. These constants have been renamed for clarity. The
6387   * meaning and size has not changed. Programs that use the old names should
6388   * switch to the new names soon, as the old names may not be carried forward
6389   * forever.
6390   */
6391  #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
6392  #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
6393  #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
6394  
6395  
6396  
6397  #endif  /* __CROS_EC_COMMANDS_H */
6398