xref: /openbmc/linux/drivers/net/ethernet/natsemi/ns83820.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  #define VERSION "0.23"
3  /* ns83820.c by Benjamin LaHaise with contributions.
4   *
5   * Questions/comments/discussion to linux-ns83820@kvack.org.
6   *
7   * $Revision: 1.34.2.23 $
8   *
9   * Copyright 2001 Benjamin LaHaise.
10   * Copyright 2001, 2002 Red Hat.
11   *
12   * Mmmm, chocolate vanilla mocha...
13   *
14   * ChangeLog
15   * =========
16   *	20010414	0.1 - created
17   *	20010622	0.2 - basic rx and tx.
18   *	20010711	0.3 - added duplex and link state detection support.
19   *	20010713	0.4 - zero copy, no hangs.
20   *			0.5 - 64 bit dma support (davem will hate me for this)
21   *			    - disable jumbo frames to avoid tx hangs
22   *			    - work around tx deadlocks on my 1.02 card via
23   *			      fiddling with TXCFG
24   *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
25   *	20010816	0.7 - misc cleanups
26   *	20010826	0.8 - fix critical zero copy bugs
27   *			0.9 - internal experiment
28   *	20010827	0.10 - fix ia64 unaligned access.
29   *	20010906	0.11 - accept all packets with checksum errors as
30   *			       otherwise fragments get lost
31   *			     - fix >> 32 bugs
32   *			0.12 - add statistics counters
33   *			     - add allmulti/promisc support
34   *	20011009	0.13 - hotplug support, other smaller pci api cleanups
35   *	20011204	0.13a - optical transceiver support added
36   *				by Michael Clark <michael@metaparadigm.com>
37   *	20011205	0.13b - call register_netdev earlier in initialization
38   *				suppress duplicate link status messages
39   *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
40   *	20011204 	0.15	get ppc (big endian) working
41   *	20011218	0.16	various cleanups
42   *	20020310	0.17	speedups
43   *	20020610	0.18 -	actually use the pci dma api for highmem
44   *			     -	remove pci latency register fiddling
45   *			0.19 -	better bist support
46   *			     -	add ihr and reset_phy parameters
47   *			     -	gmii bus probing
48   *			     -	fix missed txok introduced during performance
49   *				tuning
50   *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
51   *	20040828	0.21 -	add hardware vlan accleration
52   *				by Neil Horman <nhorman@redhat.com>
53   *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
54   *			     -	removal of dead code from Adrian Bunk
55   *			     -	fix half duplex collision behaviour
56   * Driver Overview
57   * ===============
58   *
59   * This driver was originally written for the National Semiconductor
60   * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
61   * this code will turn out to be a) clean, b) correct, and c) fast.
62   * With that in mind, I'm aiming to split the code up as much as
63   * reasonably possible.  At present there are X major sections that
64   * break down into a) packet receive, b) packet transmit, c) link
65   * management, d) initialization and configuration.  Where possible,
66   * these code paths are designed to run in parallel.
67   *
68   * This driver has been tested and found to work with the following
69   * cards (in no particular order):
70   *
71   *	Cameo		SOHO-GA2000T	SOHO-GA2500T
72   *	D-Link		DGE-500T
73   *	PureData	PDP8023Z-TG
74   *	SMC		SMC9452TX	SMC9462TX
75   *	Netgear		GA621
76   *
77   * Special thanks to SMC for providing hardware to test this driver on.
78   *
79   * Reports of success or failure would be greatly appreciated.
80   */
81  //#define dprintk		printk
82  #define dprintk(x...)		do { } while (0)
83  
84  #include <linux/module.h>
85  #include <linux/moduleparam.h>
86  #include <linux/types.h>
87  #include <linux/pci.h>
88  #include <linux/dma-mapping.h>
89  #include <linux/netdevice.h>
90  #include <linux/etherdevice.h>
91  #include <linux/delay.h>
92  #include <linux/workqueue.h>
93  #include <linux/init.h>
94  #include <linux/interrupt.h>
95  #include <linux/ip.h>	/* for iph */
96  #include <linux/in.h>	/* for IPPROTO_... */
97  #include <linux/compiler.h>
98  #include <linux/prefetch.h>
99  #include <linux/ethtool.h>
100  #include <linux/sched.h>
101  #include <linux/timer.h>
102  #include <linux/if_vlan.h>
103  #include <linux/rtnetlink.h>
104  #include <linux/jiffies.h>
105  #include <linux/slab.h>
106  
107  #include <asm/io.h>
108  #include <linux/uaccess.h>
109  
110  #define DRV_NAME "ns83820"
111  
112  /* Global parameters.  See module_param near the bottom. */
113  static int ihr = 2;
114  static int reset_phy = 0;
115  static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
116  
117  /* Dprintk is used for more interesting debug events */
118  #undef Dprintk
119  #define	Dprintk			dprintk
120  
121  /* tunables */
122  #define RX_BUF_SIZE	1500	/* 8192 */
123  #if IS_ENABLED(CONFIG_VLAN_8021Q)
124  #define NS83820_VLAN_ACCEL_SUPPORT
125  #endif
126  
127  /* Must not exceed ~65000. */
128  #define NR_RX_DESC	64
129  #define NR_TX_DESC	128
130  
131  /* not tunable */
132  #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
133  
134  #define MIN_TX_DESC_FREE	8
135  
136  /* register defines */
137  #define CFGCS		0x04
138  
139  #define CR_TXE		0x00000001
140  #define CR_TXD		0x00000002
141  /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
142   * The Receive engine skips one descriptor and moves
143   * onto the next one!! */
144  #define CR_RXE		0x00000004
145  #define CR_RXD		0x00000008
146  #define CR_TXR		0x00000010
147  #define CR_RXR		0x00000020
148  #define CR_SWI		0x00000080
149  #define CR_RST		0x00000100
150  
151  #define PTSCR_EEBIST_FAIL       0x00000001
152  #define PTSCR_EEBIST_EN         0x00000002
153  #define PTSCR_EELOAD_EN         0x00000004
154  #define PTSCR_RBIST_FAIL        0x000001b8
155  #define PTSCR_RBIST_DONE        0x00000200
156  #define PTSCR_RBIST_EN          0x00000400
157  #define PTSCR_RBIST_RST         0x00002000
158  
159  #define MEAR_EEDI		0x00000001
160  #define MEAR_EEDO		0x00000002
161  #define MEAR_EECLK		0x00000004
162  #define MEAR_EESEL		0x00000008
163  #define MEAR_MDIO		0x00000010
164  #define MEAR_MDDIR		0x00000020
165  #define MEAR_MDC		0x00000040
166  
167  #define ISR_TXDESC3	0x40000000
168  #define ISR_TXDESC2	0x20000000
169  #define ISR_TXDESC1	0x10000000
170  #define ISR_TXDESC0	0x08000000
171  #define ISR_RXDESC3	0x04000000
172  #define ISR_RXDESC2	0x02000000
173  #define ISR_RXDESC1	0x01000000
174  #define ISR_RXDESC0	0x00800000
175  #define ISR_TXRCMP	0x00400000
176  #define ISR_RXRCMP	0x00200000
177  #define ISR_DPERR	0x00100000
178  #define ISR_SSERR	0x00080000
179  #define ISR_RMABT	0x00040000
180  #define ISR_RTABT	0x00020000
181  #define ISR_RXSOVR	0x00010000
182  #define ISR_HIBINT	0x00008000
183  #define ISR_PHY		0x00004000
184  #define ISR_PME		0x00002000
185  #define ISR_SWI		0x00001000
186  #define ISR_MIB		0x00000800
187  #define ISR_TXURN	0x00000400
188  #define ISR_TXIDLE	0x00000200
189  #define ISR_TXERR	0x00000100
190  #define ISR_TXDESC	0x00000080
191  #define ISR_TXOK	0x00000040
192  #define ISR_RXORN	0x00000020
193  #define ISR_RXIDLE	0x00000010
194  #define ISR_RXEARLY	0x00000008
195  #define ISR_RXERR	0x00000004
196  #define ISR_RXDESC	0x00000002
197  #define ISR_RXOK	0x00000001
198  
199  #define TXCFG_CSI	0x80000000
200  #define TXCFG_HBI	0x40000000
201  #define TXCFG_MLB	0x20000000
202  #define TXCFG_ATP	0x10000000
203  #define TXCFG_ECRETRY	0x00800000
204  #define TXCFG_BRST_DIS	0x00080000
205  #define TXCFG_MXDMA1024	0x00000000
206  #define TXCFG_MXDMA512	0x00700000
207  #define TXCFG_MXDMA256	0x00600000
208  #define TXCFG_MXDMA128	0x00500000
209  #define TXCFG_MXDMA64	0x00400000
210  #define TXCFG_MXDMA32	0x00300000
211  #define TXCFG_MXDMA16	0x00200000
212  #define TXCFG_MXDMA8	0x00100000
213  
214  #define CFG_LNKSTS	0x80000000
215  #define CFG_SPDSTS	0x60000000
216  #define CFG_SPDSTS1	0x40000000
217  #define CFG_SPDSTS0	0x20000000
218  #define CFG_DUPSTS	0x10000000
219  #define CFG_TBI_EN	0x01000000
220  #define CFG_MODE_1000	0x00400000
221  /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
222   * Read the Phy response and then configure the MAC accordingly */
223  #define CFG_AUTO_1000	0x00200000
224  #define CFG_PINT_CTL	0x001c0000
225  #define CFG_PINT_DUPSTS	0x00100000
226  #define CFG_PINT_LNKSTS	0x00080000
227  #define CFG_PINT_SPDSTS	0x00040000
228  #define CFG_TMRTEST	0x00020000
229  #define CFG_MRM_DIS	0x00010000
230  #define CFG_MWI_DIS	0x00008000
231  #define CFG_T64ADDR	0x00004000
232  #define CFG_PCI64_DET	0x00002000
233  #define CFG_DATA64_EN	0x00001000
234  #define CFG_M64ADDR	0x00000800
235  #define CFG_PHY_RST	0x00000400
236  #define CFG_PHY_DIS	0x00000200
237  #define CFG_EXTSTS_EN	0x00000100
238  #define CFG_REQALG	0x00000080
239  #define CFG_SB		0x00000040
240  #define CFG_POW		0x00000020
241  #define CFG_EXD		0x00000010
242  #define CFG_PESEL	0x00000008
243  #define CFG_BROM_DIS	0x00000004
244  #define CFG_EXT_125	0x00000002
245  #define CFG_BEM		0x00000001
246  
247  #define EXTSTS_UDPPKT	0x00200000
248  #define EXTSTS_TCPPKT	0x00080000
249  #define EXTSTS_IPPKT	0x00020000
250  #define EXTSTS_VPKT	0x00010000
251  #define EXTSTS_VTG_MASK	0x0000ffff
252  
253  #define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
254  
255  #define MIBC_MIBS	0x00000008
256  #define MIBC_ACLR	0x00000004
257  #define MIBC_FRZ	0x00000002
258  #define MIBC_WRN	0x00000001
259  
260  #define PCR_PSEN	(1 << 31)
261  #define PCR_PS_MCAST	(1 << 30)
262  #define PCR_PS_DA	(1 << 29)
263  #define PCR_STHI_8	(3 << 23)
264  #define PCR_STLO_4	(1 << 23)
265  #define PCR_FFHI_8K	(3 << 21)
266  #define PCR_FFLO_4K	(1 << 21)
267  #define PCR_PAUSE_CNT	0xFFFE
268  
269  #define RXCFG_AEP	0x80000000
270  #define RXCFG_ARP	0x40000000
271  #define RXCFG_STRIPCRC	0x20000000
272  #define RXCFG_RX_FD	0x10000000
273  #define RXCFG_ALP	0x08000000
274  #define RXCFG_AIRL	0x04000000
275  #define RXCFG_MXDMA512	0x00700000
276  #define RXCFG_DRTH	0x0000003e
277  #define RXCFG_DRTH0	0x00000002
278  
279  #define RFCR_RFEN	0x80000000
280  #define RFCR_AAB	0x40000000
281  #define RFCR_AAM	0x20000000
282  #define RFCR_AAU	0x10000000
283  #define RFCR_APM	0x08000000
284  #define RFCR_APAT	0x07800000
285  #define RFCR_APAT3	0x04000000
286  #define RFCR_APAT2	0x02000000
287  #define RFCR_APAT1	0x01000000
288  #define RFCR_APAT0	0x00800000
289  #define RFCR_AARP	0x00400000
290  #define RFCR_MHEN	0x00200000
291  #define RFCR_UHEN	0x00100000
292  #define RFCR_ULM	0x00080000
293  
294  #define VRCR_RUDPE	0x00000080
295  #define VRCR_RTCPE	0x00000040
296  #define VRCR_RIPE	0x00000020
297  #define VRCR_IPEN	0x00000010
298  #define VRCR_DUTF	0x00000008
299  #define VRCR_DVTF	0x00000004
300  #define VRCR_VTREN	0x00000002
301  #define VRCR_VTDEN	0x00000001
302  
303  #define VTCR_PPCHK	0x00000008
304  #define VTCR_GCHK	0x00000004
305  #define VTCR_VPPTI	0x00000002
306  #define VTCR_VGTI	0x00000001
307  
308  #define CR		0x00
309  #define CFG		0x04
310  #define MEAR		0x08
311  #define PTSCR		0x0c
312  #define	ISR		0x10
313  #define	IMR		0x14
314  #define	IER		0x18
315  #define	IHR		0x1c
316  #define TXDP		0x20
317  #define TXDP_HI		0x24
318  #define TXCFG		0x28
319  #define GPIOR		0x2c
320  #define RXDP		0x30
321  #define RXDP_HI		0x34
322  #define RXCFG		0x38
323  #define PQCR		0x3c
324  #define WCSR		0x40
325  #define PCR		0x44
326  #define RFCR		0x48
327  #define RFDR		0x4c
328  
329  #define SRR		0x58
330  
331  #define VRCR		0xbc
332  #define VTCR		0xc0
333  #define VDR		0xc4
334  #define CCSR		0xcc
335  
336  #define TBICR		0xe0
337  #define TBISR		0xe4
338  #define TANAR		0xe8
339  #define TANLPAR		0xec
340  #define TANER		0xf0
341  #define TESR		0xf4
342  
343  #define TBICR_MR_AN_ENABLE	0x00001000
344  #define TBICR_MR_RESTART_AN	0x00000200
345  
346  #define TBISR_MR_LINK_STATUS	0x00000020
347  #define TBISR_MR_AN_COMPLETE	0x00000004
348  
349  #define TANAR_PS2 		0x00000100
350  #define TANAR_PS1 		0x00000080
351  #define TANAR_HALF_DUP 		0x00000040
352  #define TANAR_FULL_DUP 		0x00000020
353  
354  #define GPIOR_GP5_OE		0x00000200
355  #define GPIOR_GP4_OE		0x00000100
356  #define GPIOR_GP3_OE		0x00000080
357  #define GPIOR_GP2_OE		0x00000040
358  #define GPIOR_GP1_OE		0x00000020
359  #define GPIOR_GP3_OUT		0x00000004
360  #define GPIOR_GP1_OUT		0x00000001
361  
362  #define LINK_AUTONEGOTIATE	0x01
363  #define LINK_DOWN		0x02
364  #define LINK_UP			0x04
365  
366  #define HW_ADDR_LEN	sizeof(dma_addr_t)
367  #define desc_addr_set(desc, addr)				\
368  	do {							\
369  		((desc)[0] = cpu_to_le32(addr));		\
370  		if (HW_ADDR_LEN == 8)		 		\
371  			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
372  	} while(0)
373  #define desc_addr_get(desc)					\
374  	(le32_to_cpu((desc)[0]) | \
375  	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
376  
377  #define DESC_LINK		0
378  #define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
379  #define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
380  #define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
381  
382  #define CMDSTS_OWN	0x80000000
383  #define CMDSTS_MORE	0x40000000
384  #define CMDSTS_INTR	0x20000000
385  #define CMDSTS_ERR	0x10000000
386  #define CMDSTS_OK	0x08000000
387  #define CMDSTS_RUNT	0x00200000
388  #define CMDSTS_LEN_MASK	0x0000ffff
389  
390  #define CMDSTS_DEST_MASK	0x01800000
391  #define CMDSTS_DEST_SELF	0x00800000
392  #define CMDSTS_DEST_MULTI	0x01000000
393  
394  #define DESC_SIZE	8		/* Should be cache line sized */
395  
396  struct rx_info {
397  	spinlock_t	lock;
398  	int		up;
399  	unsigned long	idle;
400  
401  	struct sk_buff	*skbs[NR_RX_DESC];
402  
403  	__le32		*next_rx_desc;
404  	u16		next_rx, next_empty;
405  
406  	__le32		*descs;
407  	dma_addr_t	phy_descs;
408  };
409  
410  
411  struct ns83820 {
412  	u8			__iomem *base;
413  
414  	struct pci_dev		*pci_dev;
415  	struct net_device	*ndev;
416  
417  	struct rx_info		rx_info;
418  	struct tasklet_struct	rx_tasklet;
419  
420  	unsigned		ihr;
421  	struct work_struct	tq_refill;
422  
423  	/* protects everything below.  irqsave when using. */
424  	spinlock_t		misc_lock;
425  
426  	u32			CFG_cache;
427  
428  	u32			MEAR_cache;
429  	u32			IMR_cache;
430  
431  	unsigned		linkstate;
432  
433  	spinlock_t	tx_lock;
434  
435  	u16		tx_done_idx;
436  	u16		tx_idx;
437  	volatile u16	tx_free_idx;	/* idx of free desc chain */
438  	u16		tx_intr_idx;
439  
440  	atomic_t	nr_tx_skbs;
441  	struct sk_buff	*tx_skbs[NR_TX_DESC];
442  
443  	char		pad[16] __attribute__((aligned(16)));
444  	__le32		*tx_descs;
445  	dma_addr_t	tx_phy_descs;
446  
447  	struct timer_list	tx_watchdog;
448  };
449  
PRIV(struct net_device * dev)450  static inline struct ns83820 *PRIV(struct net_device *dev)
451  {
452  	return netdev_priv(dev);
453  }
454  
455  #define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
456  
kick_rx(struct net_device * ndev)457  static inline void kick_rx(struct net_device *ndev)
458  {
459  	struct ns83820 *dev = PRIV(ndev);
460  	dprintk("kick_rx: maybe kicking\n");
461  	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
462  		dprintk("actually kicking\n");
463  		writel(dev->rx_info.phy_descs +
464  			(4 * DESC_SIZE * dev->rx_info.next_rx),
465  		       dev->base + RXDP);
466  		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
467  			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
468  				ndev->name);
469  		__kick_rx(dev);
470  	}
471  }
472  
473  //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
474  #define start_tx_okay(dev)	\
475  	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
476  
477  /* Packet Receiver
478   *
479   * The hardware supports linked lists of receive descriptors for
480   * which ownership is transferred back and forth by means of an
481   * ownership bit.  While the hardware does support the use of a
482   * ring for receive descriptors, we only make use of a chain in
483   * an attempt to reduce bus traffic under heavy load scenarios.
484   * This will also make bugs a bit more obvious.  The current code
485   * only makes use of a single rx chain; I hope to implement
486   * priority based rx for version 1.0.  Goal: even under overload
487   * conditions, still route realtime traffic with as low jitter as
488   * possible.
489   */
build_rx_desc(struct ns83820 * dev,__le32 * desc,dma_addr_t link,dma_addr_t buf,u32 cmdsts,u32 extsts)490  static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
491  {
492  	desc_addr_set(desc + DESC_LINK, link);
493  	desc_addr_set(desc + DESC_BUFPTR, buf);
494  	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
495  	mb();
496  	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
497  }
498  
499  #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
ns83820_add_rx_skb(struct ns83820 * dev,struct sk_buff * skb)500  static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
501  {
502  	unsigned next_empty;
503  	u32 cmdsts;
504  	__le32 *sg;
505  	dma_addr_t buf;
506  
507  	next_empty = dev->rx_info.next_empty;
508  
509  	/* don't overrun last rx marker */
510  	if (unlikely(nr_rx_empty(dev) <= 2)) {
511  		kfree_skb(skb);
512  		return 1;
513  	}
514  
515  #if 0
516  	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
517  		dev->rx_info.next_empty,
518  		dev->rx_info.nr_used,
519  		dev->rx_info.next_rx
520  		);
521  #endif
522  
523  	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
524  	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
525  	dev->rx_info.skbs[next_empty] = skb;
526  
527  	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
528  	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
529  	buf = dma_map_single(&dev->pci_dev->dev, skb->data, REAL_RX_BUF_SIZE,
530  			     DMA_FROM_DEVICE);
531  	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
532  	/* update link of previous rx */
533  	if (likely(next_empty != dev->rx_info.next_rx))
534  		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
535  
536  	return 0;
537  }
538  
rx_refill(struct net_device * ndev,gfp_t gfp)539  static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
540  {
541  	struct ns83820 *dev = PRIV(ndev);
542  	unsigned i;
543  	unsigned long flags = 0;
544  
545  	if (unlikely(nr_rx_empty(dev) <= 2))
546  		return 0;
547  
548  	dprintk("rx_refill(%p)\n", ndev);
549  	if (gfp == GFP_ATOMIC)
550  		spin_lock_irqsave(&dev->rx_info.lock, flags);
551  	for (i=0; i<NR_RX_DESC; i++) {
552  		struct sk_buff *skb;
553  		long res;
554  
555  		/* extra 16 bytes for alignment */
556  		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
557  		if (unlikely(!skb))
558  			break;
559  
560  		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
561  		if (gfp != GFP_ATOMIC)
562  			spin_lock_irqsave(&dev->rx_info.lock, flags);
563  		res = ns83820_add_rx_skb(dev, skb);
564  		if (gfp != GFP_ATOMIC)
565  			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
566  		if (res) {
567  			i = 1;
568  			break;
569  		}
570  	}
571  	if (gfp == GFP_ATOMIC)
572  		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
573  
574  	return i ? 0 : -ENOMEM;
575  }
576  
rx_refill_atomic(struct net_device * ndev)577  static void rx_refill_atomic(struct net_device *ndev)
578  {
579  	rx_refill(ndev, GFP_ATOMIC);
580  }
581  
582  /* REFILL */
queue_refill(struct work_struct * work)583  static inline void queue_refill(struct work_struct *work)
584  {
585  	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
586  	struct net_device *ndev = dev->ndev;
587  
588  	rx_refill(ndev, GFP_KERNEL);
589  	if (dev->rx_info.up)
590  		kick_rx(ndev);
591  }
592  
clear_rx_desc(struct ns83820 * dev,unsigned i)593  static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
594  {
595  	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
596  }
597  
phy_intr(struct net_device * ndev)598  static void phy_intr(struct net_device *ndev)
599  {
600  	struct ns83820 *dev = PRIV(ndev);
601  	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
602  	u32 cfg, new_cfg;
603  	u32 tanar, tanlpar;
604  	int speed, fullduplex, newlinkstate;
605  
606  	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
607  
608  	if (dev->CFG_cache & CFG_TBI_EN) {
609  		u32 __maybe_unused tbisr;
610  
611  		/* we have an optical transceiver */
612  		tbisr = readl(dev->base + TBISR);
613  		tanar = readl(dev->base + TANAR);
614  		tanlpar = readl(dev->base + TANLPAR);
615  		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
616  			tbisr, tanar, tanlpar);
617  
618  		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
619  		      (tanar & TANAR_FULL_DUP)) ) {
620  
621  			/* both of us are full duplex */
622  			writel(readl(dev->base + TXCFG)
623  			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
624  			       dev->base + TXCFG);
625  			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
626  			       dev->base + RXCFG);
627  			/* Light up full duplex LED */
628  			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
629  			       dev->base + GPIOR);
630  
631  		} else if (((tanlpar & TANAR_HALF_DUP) &&
632  			    (tanar & TANAR_HALF_DUP)) ||
633  			   ((tanlpar & TANAR_FULL_DUP) &&
634  			    (tanar & TANAR_HALF_DUP)) ||
635  			   ((tanlpar & TANAR_HALF_DUP) &&
636  			    (tanar & TANAR_FULL_DUP))) {
637  
638  			/* one or both of us are half duplex */
639  			writel((readl(dev->base + TXCFG)
640  				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
641  			       dev->base + TXCFG);
642  			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
643  			       dev->base + RXCFG);
644  			/* Turn off full duplex LED */
645  			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
646  			       dev->base + GPIOR);
647  		}
648  
649  		speed = 4; /* 1000F */
650  
651  	} else {
652  		/* we have a copper transceiver */
653  		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
654  
655  		if (cfg & CFG_SPDSTS1)
656  			new_cfg |= CFG_MODE_1000;
657  		else
658  			new_cfg &= ~CFG_MODE_1000;
659  
660  		speed = ((cfg / CFG_SPDSTS0) & 3);
661  		fullduplex = (cfg & CFG_DUPSTS);
662  
663  		if (fullduplex) {
664  			new_cfg |= CFG_SB;
665  			writel(readl(dev->base + TXCFG)
666  					| TXCFG_CSI | TXCFG_HBI,
667  			       dev->base + TXCFG);
668  			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
669  			       dev->base + RXCFG);
670  		} else {
671  			writel(readl(dev->base + TXCFG)
672  					& ~(TXCFG_CSI | TXCFG_HBI),
673  			       dev->base + TXCFG);
674  			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
675  			       dev->base + RXCFG);
676  		}
677  
678  		if ((cfg & CFG_LNKSTS) &&
679  		    ((new_cfg ^ dev->CFG_cache) != 0)) {
680  			writel(new_cfg, dev->base + CFG);
681  			dev->CFG_cache = new_cfg;
682  		}
683  
684  		dev->CFG_cache &= ~CFG_SPDSTS;
685  		dev->CFG_cache |= cfg & CFG_SPDSTS;
686  	}
687  
688  	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
689  
690  	if (newlinkstate & LINK_UP &&
691  	    dev->linkstate != newlinkstate) {
692  		netif_start_queue(ndev);
693  		netif_wake_queue(ndev);
694  		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
695  			ndev->name,
696  			speeds[speed],
697  			fullduplex ? "full" : "half");
698  	} else if (newlinkstate & LINK_DOWN &&
699  		   dev->linkstate != newlinkstate) {
700  		netif_stop_queue(ndev);
701  		printk(KERN_INFO "%s: link now down.\n", ndev->name);
702  	}
703  
704  	dev->linkstate = newlinkstate;
705  }
706  
ns83820_setup_rx(struct net_device * ndev)707  static int ns83820_setup_rx(struct net_device *ndev)
708  {
709  	struct ns83820 *dev = PRIV(ndev);
710  	unsigned i;
711  	int ret;
712  
713  	dprintk("ns83820_setup_rx(%p)\n", ndev);
714  
715  	dev->rx_info.idle = 1;
716  	dev->rx_info.next_rx = 0;
717  	dev->rx_info.next_rx_desc = dev->rx_info.descs;
718  	dev->rx_info.next_empty = 0;
719  
720  	for (i=0; i<NR_RX_DESC; i++)
721  		clear_rx_desc(dev, i);
722  
723  	writel(0, dev->base + RXDP_HI);
724  	writel(dev->rx_info.phy_descs, dev->base + RXDP);
725  
726  	ret = rx_refill(ndev, GFP_KERNEL);
727  	if (!ret) {
728  		dprintk("starting receiver\n");
729  		/* prevent the interrupt handler from stomping on us */
730  		spin_lock_irq(&dev->rx_info.lock);
731  
732  		writel(0x0001, dev->base + CCSR);
733  		writel(0, dev->base + RFCR);
734  		writel(0x7fc00000, dev->base + RFCR);
735  		writel(0xffc00000, dev->base + RFCR);
736  
737  		dev->rx_info.up = 1;
738  
739  		phy_intr(ndev);
740  
741  		/* Okay, let it rip */
742  		spin_lock(&dev->misc_lock);
743  		dev->IMR_cache |= ISR_PHY;
744  		dev->IMR_cache |= ISR_RXRCMP;
745  		//dev->IMR_cache |= ISR_RXERR;
746  		//dev->IMR_cache |= ISR_RXOK;
747  		dev->IMR_cache |= ISR_RXORN;
748  		dev->IMR_cache |= ISR_RXSOVR;
749  		dev->IMR_cache |= ISR_RXDESC;
750  		dev->IMR_cache |= ISR_RXIDLE;
751  		dev->IMR_cache |= ISR_TXDESC;
752  		dev->IMR_cache |= ISR_TXIDLE;
753  
754  		writel(dev->IMR_cache, dev->base + IMR);
755  		writel(1, dev->base + IER);
756  		spin_unlock(&dev->misc_lock);
757  
758  		kick_rx(ndev);
759  
760  		spin_unlock_irq(&dev->rx_info.lock);
761  	}
762  	return ret;
763  }
764  
ns83820_cleanup_rx(struct ns83820 * dev)765  static void ns83820_cleanup_rx(struct ns83820 *dev)
766  {
767  	unsigned i;
768  	unsigned long flags;
769  
770  	dprintk("ns83820_cleanup_rx(%p)\n", dev);
771  
772  	/* disable receive interrupts */
773  	spin_lock_irqsave(&dev->misc_lock, flags);
774  	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
775  	writel(dev->IMR_cache, dev->base + IMR);
776  	spin_unlock_irqrestore(&dev->misc_lock, flags);
777  
778  	/* synchronize with the interrupt handler and kill it */
779  	dev->rx_info.up = 0;
780  	synchronize_irq(dev->pci_dev->irq);
781  
782  	/* touch the pci bus... */
783  	readl(dev->base + IMR);
784  
785  	/* assumes the transmitter is already disabled and reset */
786  	writel(0, dev->base + RXDP_HI);
787  	writel(0, dev->base + RXDP);
788  
789  	for (i=0; i<NR_RX_DESC; i++) {
790  		struct sk_buff *skb = dev->rx_info.skbs[i];
791  		dev->rx_info.skbs[i] = NULL;
792  		clear_rx_desc(dev, i);
793  		kfree_skb(skb);
794  	}
795  }
796  
ns83820_rx_kick(struct net_device * ndev)797  static void ns83820_rx_kick(struct net_device *ndev)
798  {
799  	struct ns83820 *dev = PRIV(ndev);
800  	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
801  		if (dev->rx_info.up) {
802  			rx_refill_atomic(ndev);
803  			kick_rx(ndev);
804  		}
805  	}
806  
807  	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
808  		schedule_work(&dev->tq_refill);
809  	else
810  		kick_rx(ndev);
811  	if (dev->rx_info.idle)
812  		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
813  }
814  
815  /* rx_irq
816   *
817   */
rx_irq(struct net_device * ndev)818  static void rx_irq(struct net_device *ndev)
819  {
820  	struct ns83820 *dev = PRIV(ndev);
821  	struct rx_info *info = &dev->rx_info;
822  	unsigned next_rx;
823  	int rx_rc, len;
824  	u32 cmdsts;
825  	__le32 *desc;
826  	unsigned long flags;
827  	int nr = 0;
828  
829  	dprintk("rx_irq(%p)\n", ndev);
830  	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
831  		readl(dev->base + RXDP),
832  		(long)(dev->rx_info.phy_descs),
833  		(int)dev->rx_info.next_rx,
834  		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
835  		(int)dev->rx_info.next_empty,
836  		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
837  		);
838  
839  	spin_lock_irqsave(&info->lock, flags);
840  	if (!info->up)
841  		goto out;
842  
843  	dprintk("walking descs\n");
844  	next_rx = info->next_rx;
845  	desc = info->next_rx_desc;
846  	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
847  	       (cmdsts != CMDSTS_OWN)) {
848  		struct sk_buff *skb;
849  		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
850  		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
851  
852  		dprintk("cmdsts: %08x\n", cmdsts);
853  		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
854  		dprintk("extsts: %08x\n", extsts);
855  
856  		skb = info->skbs[next_rx];
857  		info->skbs[next_rx] = NULL;
858  		info->next_rx = (next_rx + 1) % NR_RX_DESC;
859  
860  		mb();
861  		clear_rx_desc(dev, next_rx);
862  
863  		dma_unmap_single(&dev->pci_dev->dev, bufptr, RX_BUF_SIZE,
864  				 DMA_FROM_DEVICE);
865  		len = cmdsts & CMDSTS_LEN_MASK;
866  #ifdef NS83820_VLAN_ACCEL_SUPPORT
867  		/* NH: As was mentioned below, this chip is kinda
868  		 * brain dead about vlan tag stripping.  Frames
869  		 * that are 64 bytes with a vlan header appended
870  		 * like arp frames, or pings, are flagged as Runts
871  		 * when the tag is stripped and hardware.  This
872  		 * also means that the OK bit in the descriptor
873  		 * is cleared when the frame comes in so we have
874  		 * to do a specific length check here to make sure
875  		 * the frame would have been ok, had we not stripped
876  		 * the tag.
877  		 */
878  		if (likely((CMDSTS_OK & cmdsts) ||
879  			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
880  #else
881  		if (likely(CMDSTS_OK & cmdsts)) {
882  #endif
883  			skb_put(skb, len);
884  			if (unlikely(!skb))
885  				goto netdev_mangle_me_harder_failed;
886  			if (cmdsts & CMDSTS_DEST_MULTI)
887  				ndev->stats.multicast++;
888  			ndev->stats.rx_packets++;
889  			ndev->stats.rx_bytes += len;
890  			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
891  				skb->ip_summed = CHECKSUM_UNNECESSARY;
892  			} else {
893  				skb_checksum_none_assert(skb);
894  			}
895  			skb->protocol = eth_type_trans(skb, ndev);
896  #ifdef NS83820_VLAN_ACCEL_SUPPORT
897  			if(extsts & EXTSTS_VPKT) {
898  				unsigned short tag;
899  
900  				tag = ntohs(extsts & EXTSTS_VTG_MASK);
901  				__vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
902  			}
903  #endif
904  			rx_rc = netif_rx(skb);
905  			if (NET_RX_DROP == rx_rc) {
906  netdev_mangle_me_harder_failed:
907  				ndev->stats.rx_dropped++;
908  			}
909  		} else {
910  			dev_kfree_skb_irq(skb);
911  		}
912  
913  		nr++;
914  		next_rx = info->next_rx;
915  		desc = info->descs + (DESC_SIZE * next_rx);
916  	}
917  	info->next_rx = next_rx;
918  	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
919  
920  out:
921  	if (0 && !nr) {
922  		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
923  	}
924  
925  	spin_unlock_irqrestore(&info->lock, flags);
926  }
927  
928  static void rx_action(struct tasklet_struct *t)
929  {
930  	struct ns83820 *dev = from_tasklet(dev, t, rx_tasklet);
931  	struct net_device *ndev = dev->ndev;
932  	rx_irq(ndev);
933  	writel(ihr, dev->base + IHR);
934  
935  	spin_lock_irq(&dev->misc_lock);
936  	dev->IMR_cache |= ISR_RXDESC;
937  	writel(dev->IMR_cache, dev->base + IMR);
938  	spin_unlock_irq(&dev->misc_lock);
939  
940  	rx_irq(ndev);
941  	ns83820_rx_kick(ndev);
942  }
943  
944  /* Packet Transmit code
945   */
946  static inline void kick_tx(struct ns83820 *dev)
947  {
948  	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
949  		dev, dev->tx_idx, dev->tx_free_idx);
950  	writel(CR_TXE, dev->base + CR);
951  }
952  
953  /* No spinlock needed on the transmit irq path as the interrupt handler is
954   * serialized.
955   */
956  static void do_tx_done(struct net_device *ndev)
957  {
958  	struct ns83820 *dev = PRIV(ndev);
959  	u32 cmdsts, tx_done_idx;
960  	__le32 *desc;
961  
962  	dprintk("do_tx_done(%p)\n", ndev);
963  	tx_done_idx = dev->tx_done_idx;
964  	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
965  
966  	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
967  		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
968  	while ((tx_done_idx != dev->tx_free_idx) &&
969  	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
970  		struct sk_buff *skb;
971  		unsigned len;
972  		dma_addr_t addr;
973  
974  		if (cmdsts & CMDSTS_ERR)
975  			ndev->stats.tx_errors++;
976  		if (cmdsts & CMDSTS_OK)
977  			ndev->stats.tx_packets++;
978  		if (cmdsts & CMDSTS_OK)
979  			ndev->stats.tx_bytes += cmdsts & 0xffff;
980  
981  		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
982  			tx_done_idx, dev->tx_free_idx, cmdsts);
983  		skb = dev->tx_skbs[tx_done_idx];
984  		dev->tx_skbs[tx_done_idx] = NULL;
985  		dprintk("done(%p)\n", skb);
986  
987  		len = cmdsts & CMDSTS_LEN_MASK;
988  		addr = desc_addr_get(desc + DESC_BUFPTR);
989  		if (skb) {
990  			dma_unmap_single(&dev->pci_dev->dev, addr, len,
991  					 DMA_TO_DEVICE);
992  			dev_consume_skb_irq(skb);
993  			atomic_dec(&dev->nr_tx_skbs);
994  		} else
995  			dma_unmap_page(&dev->pci_dev->dev, addr, len,
996  				       DMA_TO_DEVICE);
997  
998  		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
999  		dev->tx_done_idx = tx_done_idx;
1000  		desc[DESC_CMDSTS] = cpu_to_le32(0);
1001  		mb();
1002  		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1003  	}
1004  
1005  	/* Allow network stack to resume queueing packets after we've
1006  	 * finished transmitting at least 1/4 of the packets in the queue.
1007  	 */
1008  	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1009  		dprintk("start_queue(%p)\n", ndev);
1010  		netif_start_queue(ndev);
1011  		netif_wake_queue(ndev);
1012  	}
1013  }
1014  
1015  static void ns83820_cleanup_tx(struct ns83820 *dev)
1016  {
1017  	unsigned i;
1018  
1019  	for (i=0; i<NR_TX_DESC; i++) {
1020  		struct sk_buff *skb = dev->tx_skbs[i];
1021  		dev->tx_skbs[i] = NULL;
1022  		if (skb) {
1023  			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1024  			dma_unmap_single(&dev->pci_dev->dev,
1025  					 desc_addr_get(desc + DESC_BUFPTR),
1026  					 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1027  					 DMA_TO_DEVICE);
1028  			dev_kfree_skb_irq(skb);
1029  			atomic_dec(&dev->nr_tx_skbs);
1030  		}
1031  	}
1032  
1033  	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1034  }
1035  
1036  /* transmit routine.  This code relies on the network layer serializing
1037   * its calls in, but will run happily in parallel with the interrupt
1038   * handler.  This code currently has provisions for fragmenting tx buffers
1039   * while trying to track down a bug in either the zero copy code or
1040   * the tx fifo (hence the MAX_FRAG_LEN).
1041   */
1042  static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1043  					   struct net_device *ndev)
1044  {
1045  	struct ns83820 *dev = PRIV(ndev);
1046  	u32 free_idx, cmdsts, extsts;
1047  	int nr_free, nr_frags;
1048  	unsigned tx_done_idx, last_idx;
1049  	dma_addr_t buf;
1050  	unsigned len;
1051  	skb_frag_t *frag;
1052  	int stopped = 0;
1053  	int do_intr = 0;
1054  	volatile __le32 *first_desc;
1055  
1056  	dprintk("ns83820_hard_start_xmit\n");
1057  
1058  	nr_frags =  skb_shinfo(skb)->nr_frags;
1059  again:
1060  	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1061  		netif_stop_queue(ndev);
1062  		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1063  			return NETDEV_TX_BUSY;
1064  		netif_start_queue(ndev);
1065  	}
1066  
1067  	last_idx = free_idx = dev->tx_free_idx;
1068  	tx_done_idx = dev->tx_done_idx;
1069  	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1070  	nr_free -= 1;
1071  	if (nr_free <= nr_frags) {
1072  		dprintk("stop_queue - not enough(%p)\n", ndev);
1073  		netif_stop_queue(ndev);
1074  
1075  		/* Check again: we may have raced with a tx done irq */
1076  		if (dev->tx_done_idx != tx_done_idx) {
1077  			dprintk("restart queue(%p)\n", ndev);
1078  			netif_start_queue(ndev);
1079  			goto again;
1080  		}
1081  		return NETDEV_TX_BUSY;
1082  	}
1083  
1084  	if (free_idx == dev->tx_intr_idx) {
1085  		do_intr = 1;
1086  		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1087  	}
1088  
1089  	nr_free -= nr_frags;
1090  	if (nr_free < MIN_TX_DESC_FREE) {
1091  		dprintk("stop_queue - last entry(%p)\n", ndev);
1092  		netif_stop_queue(ndev);
1093  		stopped = 1;
1094  	}
1095  
1096  	frag = skb_shinfo(skb)->frags;
1097  	if (!nr_frags)
1098  		frag = NULL;
1099  	extsts = 0;
1100  	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1101  		extsts |= EXTSTS_IPPKT;
1102  		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1103  			extsts |= EXTSTS_TCPPKT;
1104  		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1105  			extsts |= EXTSTS_UDPPKT;
1106  	}
1107  
1108  #ifdef NS83820_VLAN_ACCEL_SUPPORT
1109  	if (skb_vlan_tag_present(skb)) {
1110  		/* fetch the vlan tag info out of the
1111  		 * ancillary data if the vlan code
1112  		 * is using hw vlan acceleration
1113  		 */
1114  		short tag = skb_vlan_tag_get(skb);
1115  		extsts |= (EXTSTS_VPKT | htons(tag));
1116  	}
1117  #endif
1118  
1119  	len = skb->len;
1120  	if (nr_frags)
1121  		len -= skb->data_len;
1122  	buf = dma_map_single(&dev->pci_dev->dev, skb->data, len,
1123  			     DMA_TO_DEVICE);
1124  
1125  	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1126  
1127  	for (;;) {
1128  		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1129  
1130  		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1131  			(unsigned long long)buf);
1132  		last_idx = free_idx;
1133  		free_idx = (free_idx + 1) % NR_TX_DESC;
1134  		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1135  		desc_addr_set(desc + DESC_BUFPTR, buf);
1136  		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1137  
1138  		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1139  		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1140  		cmdsts |= len;
1141  		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1142  
1143  		if (!nr_frags)
1144  			break;
1145  
1146  		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
1147  				       skb_frag_size(frag), DMA_TO_DEVICE);
1148  		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1149  			(long long)buf, (long) page_to_pfn(frag->page),
1150  			frag->page_offset);
1151  		len = skb_frag_size(frag);
1152  		frag++;
1153  		nr_frags--;
1154  	}
1155  	dprintk("done pkt\n");
1156  
1157  	spin_lock_irq(&dev->tx_lock);
1158  	dev->tx_skbs[last_idx] = skb;
1159  	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1160  	dev->tx_free_idx = free_idx;
1161  	atomic_inc(&dev->nr_tx_skbs);
1162  	spin_unlock_irq(&dev->tx_lock);
1163  
1164  	kick_tx(dev);
1165  
1166  	/* Check again: we may have raced with a tx done irq */
1167  	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1168  		netif_start_queue(ndev);
1169  
1170  	return NETDEV_TX_OK;
1171  }
1172  
1173  static void ns83820_update_stats(struct ns83820 *dev)
1174  {
1175  	struct net_device *ndev = dev->ndev;
1176  	u8 __iomem *base = dev->base;
1177  
1178  	/* the DP83820 will freeze counters, so we need to read all of them */
1179  	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
1180  	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
1181  	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
1182  	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
1183  	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1184  	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
1185  	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
1186  	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1187  	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
1188  	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
1189  	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
1190  }
1191  
1192  static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1193  {
1194  	struct ns83820 *dev = PRIV(ndev);
1195  
1196  	/* somewhat overkill */
1197  	spin_lock_irq(&dev->misc_lock);
1198  	ns83820_update_stats(dev);
1199  	spin_unlock_irq(&dev->misc_lock);
1200  
1201  	return &ndev->stats;
1202  }
1203  
1204  /* Let ethtool retrieve info */
1205  static int ns83820_get_link_ksettings(struct net_device *ndev,
1206  				      struct ethtool_link_ksettings *cmd)
1207  {
1208  	struct ns83820 *dev = PRIV(ndev);
1209  	u32 cfg, tbicr;
1210  	int fullduplex   = 0;
1211  	u32 supported;
1212  
1213  	/*
1214  	 * Here's the list of available ethtool commands from other drivers:
1215  	 *	cmd->advertising =
1216  	 *	ethtool_cmd_speed_set(cmd, ...)
1217  	 *	cmd->duplex =
1218  	 *	cmd->port = 0;
1219  	 *	cmd->phy_address =
1220  	 *	cmd->transceiver = 0;
1221  	 *	cmd->autoneg =
1222  	 *	cmd->maxtxpkt = 0;
1223  	 *	cmd->maxrxpkt = 0;
1224  	 */
1225  
1226  	/* read current configuration */
1227  	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1228  	readl(dev->base + TANAR);
1229  	tbicr = readl(dev->base + TBICR);
1230  
1231  	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1232  
1233  	supported = SUPPORTED_Autoneg;
1234  
1235  	if (dev->CFG_cache & CFG_TBI_EN) {
1236  		/* we have optical interface */
1237  		supported |= SUPPORTED_1000baseT_Half |
1238  					SUPPORTED_1000baseT_Full |
1239  					SUPPORTED_FIBRE;
1240  		cmd->base.port       = PORT_FIBRE;
1241  	} else {
1242  		/* we have copper */
1243  		supported |= SUPPORTED_10baseT_Half |
1244  			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
1245  			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
1246  			SUPPORTED_1000baseT_Full |
1247  			SUPPORTED_MII;
1248  		cmd->base.port = PORT_MII;
1249  	}
1250  
1251  	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1252  						supported);
1253  
1254  	cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1255  	switch (cfg / CFG_SPDSTS0 & 3) {
1256  	case 2:
1257  		cmd->base.speed = SPEED_1000;
1258  		break;
1259  	case 1:
1260  		cmd->base.speed = SPEED_100;
1261  		break;
1262  	default:
1263  		cmd->base.speed = SPEED_10;
1264  		break;
1265  	}
1266  	cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
1267  		? AUTONEG_ENABLE : AUTONEG_DISABLE;
1268  	return 0;
1269  }
1270  
1271  /* Let ethool change settings*/
1272  static int ns83820_set_link_ksettings(struct net_device *ndev,
1273  				      const struct ethtool_link_ksettings *cmd)
1274  {
1275  	struct ns83820 *dev = PRIV(ndev);
1276  	u32 cfg, tanar;
1277  	int have_optical = 0;
1278  	int fullduplex   = 0;
1279  
1280  	/* read current configuration */
1281  	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1282  	tanar = readl(dev->base + TANAR);
1283  
1284  	if (dev->CFG_cache & CFG_TBI_EN) {
1285  		/* we have optical */
1286  		have_optical = 1;
1287  		fullduplex   = (tanar & TANAR_FULL_DUP);
1288  
1289  	} else {
1290  		/* we have copper */
1291  		fullduplex = cfg & CFG_DUPSTS;
1292  	}
1293  
1294  	spin_lock_irq(&dev->misc_lock);
1295  	spin_lock(&dev->tx_lock);
1296  
1297  	/* Set duplex */
1298  	if (cmd->base.duplex != fullduplex) {
1299  		if (have_optical) {
1300  			/*set full duplex*/
1301  			if (cmd->base.duplex == DUPLEX_FULL) {
1302  				/* force full duplex */
1303  				writel(readl(dev->base + TXCFG)
1304  					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1305  					dev->base + TXCFG);
1306  				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1307  					dev->base + RXCFG);
1308  				/* Light up full duplex LED */
1309  				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1310  					dev->base + GPIOR);
1311  			} else {
1312  				/*TODO: set half duplex */
1313  			}
1314  
1315  		} else {
1316  			/*we have copper*/
1317  			/* TODO: Set duplex for copper cards */
1318  		}
1319  		printk(KERN_INFO "%s: Duplex set via ethtool\n",
1320  		ndev->name);
1321  	}
1322  
1323  	/* Set autonegotiation */
1324  	if (1) {
1325  		if (cmd->base.autoneg == AUTONEG_ENABLE) {
1326  			/* restart auto negotiation */
1327  			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1328  				dev->base + TBICR);
1329  			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1330  				dev->linkstate = LINK_AUTONEGOTIATE;
1331  
1332  			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1333  				ndev->name);
1334  		} else {
1335  			/* disable auto negotiation */
1336  			writel(0x00000000, dev->base + TBICR);
1337  		}
1338  
1339  		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1340  				cmd->base.autoneg ? "ENABLED" : "DISABLED");
1341  	}
1342  
1343  	phy_intr(ndev);
1344  	spin_unlock(&dev->tx_lock);
1345  	spin_unlock_irq(&dev->misc_lock);
1346  
1347  	return 0;
1348  }
1349  /* end ethtool get/set support -df */
1350  
1351  static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1352  {
1353  	struct ns83820 *dev = PRIV(ndev);
1354  	strscpy(info->driver, "ns83820", sizeof(info->driver));
1355  	strscpy(info->version, VERSION, sizeof(info->version));
1356  	strscpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
1357  }
1358  
1359  static u32 ns83820_get_link(struct net_device *ndev)
1360  {
1361  	struct ns83820 *dev = PRIV(ndev);
1362  	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1363  	return cfg & CFG_LNKSTS ? 1 : 0;
1364  }
1365  
1366  static const struct ethtool_ops ops = {
1367  	.get_drvinfo     = ns83820_get_drvinfo,
1368  	.get_link        = ns83820_get_link,
1369  	.get_link_ksettings = ns83820_get_link_ksettings,
1370  	.set_link_ksettings = ns83820_set_link_ksettings,
1371  };
1372  
1373  static inline void ns83820_disable_interrupts(struct ns83820 *dev)
1374  {
1375  	writel(0, dev->base + IMR);
1376  	writel(0, dev->base + IER);
1377  	readl(dev->base + IER);
1378  }
1379  
1380  /* this function is called in irq context from the ISR */
1381  static void ns83820_mib_isr(struct ns83820 *dev)
1382  {
1383  	unsigned long flags;
1384  	spin_lock_irqsave(&dev->misc_lock, flags);
1385  	ns83820_update_stats(dev);
1386  	spin_unlock_irqrestore(&dev->misc_lock, flags);
1387  }
1388  
1389  static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1390  static irqreturn_t ns83820_irq(int foo, void *data)
1391  {
1392  	struct net_device *ndev = data;
1393  	struct ns83820 *dev = PRIV(ndev);
1394  	u32 isr;
1395  	dprintk("ns83820_irq(%p)\n", ndev);
1396  
1397  	dev->ihr = 0;
1398  
1399  	isr = readl(dev->base + ISR);
1400  	dprintk("irq: %08x\n", isr);
1401  	ns83820_do_isr(ndev, isr);
1402  	return IRQ_HANDLED;
1403  }
1404  
1405  static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1406  {
1407  	struct ns83820 *dev = PRIV(ndev);
1408  	unsigned long flags;
1409  
1410  #ifdef DEBUG
1411  	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1412  		Dprintk("odd isr? 0x%08x\n", isr);
1413  #endif
1414  
1415  	if (ISR_RXIDLE & isr) {
1416  		dev->rx_info.idle = 1;
1417  		Dprintk("oh dear, we are idle\n");
1418  		ns83820_rx_kick(ndev);
1419  	}
1420  
1421  	if ((ISR_RXDESC | ISR_RXOK) & isr) {
1422  		prefetch(dev->rx_info.next_rx_desc);
1423  
1424  		spin_lock_irqsave(&dev->misc_lock, flags);
1425  		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1426  		writel(dev->IMR_cache, dev->base + IMR);
1427  		spin_unlock_irqrestore(&dev->misc_lock, flags);
1428  
1429  		tasklet_schedule(&dev->rx_tasklet);
1430  		//rx_irq(ndev);
1431  		//writel(4, dev->base + IHR);
1432  	}
1433  
1434  	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1435  		ns83820_rx_kick(ndev);
1436  
1437  	if (unlikely(ISR_RXSOVR & isr)) {
1438  		//printk("overrun: rxsovr\n");
1439  		ndev->stats.rx_fifo_errors++;
1440  	}
1441  
1442  	if (unlikely(ISR_RXORN & isr)) {
1443  		//printk("overrun: rxorn\n");
1444  		ndev->stats.rx_fifo_errors++;
1445  	}
1446  
1447  	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1448  		writel(CR_RXE, dev->base + CR);
1449  
1450  	if (ISR_TXIDLE & isr) {
1451  		u32 txdp;
1452  		txdp = readl(dev->base + TXDP);
1453  		dprintk("txdp: %08x\n", txdp);
1454  		txdp -= dev->tx_phy_descs;
1455  		dev->tx_idx = txdp / (DESC_SIZE * 4);
1456  		if (dev->tx_idx >= NR_TX_DESC) {
1457  			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1458  			dev->tx_idx = 0;
1459  		}
1460  		/* The may have been a race between a pci originated read
1461  		 * and the descriptor update from the cpu.  Just in case,
1462  		 * kick the transmitter if the hardware thinks it is on a
1463  		 * different descriptor than we are.
1464  		 */
1465  		if (dev->tx_idx != dev->tx_free_idx)
1466  			kick_tx(dev);
1467  	}
1468  
1469  	/* Defer tx ring processing until more than a minimum amount of
1470  	 * work has accumulated
1471  	 */
1472  	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1473  		spin_lock_irqsave(&dev->tx_lock, flags);
1474  		do_tx_done(ndev);
1475  		spin_unlock_irqrestore(&dev->tx_lock, flags);
1476  
1477  		/* Disable TxOk if there are no outstanding tx packets.
1478  		 */
1479  		if ((dev->tx_done_idx == dev->tx_free_idx) &&
1480  		    (dev->IMR_cache & ISR_TXOK)) {
1481  			spin_lock_irqsave(&dev->misc_lock, flags);
1482  			dev->IMR_cache &= ~ISR_TXOK;
1483  			writel(dev->IMR_cache, dev->base + IMR);
1484  			spin_unlock_irqrestore(&dev->misc_lock, flags);
1485  		}
1486  	}
1487  
1488  	/* The TxIdle interrupt can come in before the transmit has
1489  	 * completed.  Normally we reap packets off of the combination
1490  	 * of TxDesc and TxIdle and leave TxOk disabled (since it
1491  	 * occurs on every packet), but when no further irqs of this
1492  	 * nature are expected, we must enable TxOk.
1493  	 */
1494  	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1495  		spin_lock_irqsave(&dev->misc_lock, flags);
1496  		dev->IMR_cache |= ISR_TXOK;
1497  		writel(dev->IMR_cache, dev->base + IMR);
1498  		spin_unlock_irqrestore(&dev->misc_lock, flags);
1499  	}
1500  
1501  	/* MIB interrupt: one of the statistics counters is about to overflow */
1502  	if (unlikely(ISR_MIB & isr))
1503  		ns83820_mib_isr(dev);
1504  
1505  	/* PHY: Link up/down/negotiation state change */
1506  	if (unlikely(ISR_PHY & isr))
1507  		phy_intr(ndev);
1508  
1509  #if 0	/* Still working on the interrupt mitigation strategy */
1510  	if (dev->ihr)
1511  		writel(dev->ihr, dev->base + IHR);
1512  #endif
1513  }
1514  
1515  static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1516  {
1517  	Dprintk("resetting chip...\n");
1518  	writel(which, dev->base + CR);
1519  	do {
1520  		schedule();
1521  	} while (readl(dev->base + CR) & which);
1522  	Dprintk("okay!\n");
1523  }
1524  
1525  static int ns83820_stop(struct net_device *ndev)
1526  {
1527  	struct ns83820 *dev = PRIV(ndev);
1528  
1529  	/* FIXME: protect against interrupt handler? */
1530  	del_timer_sync(&dev->tx_watchdog);
1531  
1532  	ns83820_disable_interrupts(dev);
1533  
1534  	dev->rx_info.up = 0;
1535  	synchronize_irq(dev->pci_dev->irq);
1536  
1537  	ns83820_do_reset(dev, CR_RST);
1538  
1539  	synchronize_irq(dev->pci_dev->irq);
1540  
1541  	spin_lock_irq(&dev->misc_lock);
1542  	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1543  	spin_unlock_irq(&dev->misc_lock);
1544  
1545  	ns83820_cleanup_rx(dev);
1546  	ns83820_cleanup_tx(dev);
1547  
1548  	return 0;
1549  }
1550  
1551  static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1552  {
1553  	struct ns83820 *dev = PRIV(ndev);
1554          u32 tx_done_idx;
1555  	__le32 *desc;
1556  	unsigned long flags;
1557  
1558  	spin_lock_irqsave(&dev->tx_lock, flags);
1559  
1560  	tx_done_idx = dev->tx_done_idx;
1561  	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1562  
1563  	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1564  		ndev->name,
1565  		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1566  
1567  #if defined(DEBUG)
1568  	{
1569  		u32 isr;
1570  		isr = readl(dev->base + ISR);
1571  		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1572  		ns83820_do_isr(ndev, isr);
1573  	}
1574  #endif
1575  
1576  	do_tx_done(ndev);
1577  
1578  	tx_done_idx = dev->tx_done_idx;
1579  	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1580  
1581  	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1582  		ndev->name,
1583  		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1584  
1585  	spin_unlock_irqrestore(&dev->tx_lock, flags);
1586  }
1587  
1588  static void ns83820_tx_watch(struct timer_list *t)
1589  {
1590  	struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
1591  	struct net_device *ndev = dev->ndev;
1592  
1593  #if defined(DEBUG)
1594  	printk("ns83820_tx_watch: %u %u %d\n",
1595  		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1596  		);
1597  #endif
1598  
1599  	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1600  	    dev->tx_done_idx != dev->tx_free_idx) {
1601  		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1602  			ndev->name,
1603  			dev->tx_done_idx, dev->tx_free_idx,
1604  			atomic_read(&dev->nr_tx_skbs));
1605  		ns83820_tx_timeout(ndev, UINT_MAX);
1606  	}
1607  
1608  	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1609  }
1610  
1611  static int ns83820_open(struct net_device *ndev)
1612  {
1613  	struct ns83820 *dev = PRIV(ndev);
1614  	unsigned i;
1615  	u32 desc;
1616  	int ret;
1617  
1618  	dprintk("ns83820_open\n");
1619  
1620  	writel(0, dev->base + PQCR);
1621  
1622  	ret = ns83820_setup_rx(ndev);
1623  	if (ret)
1624  		goto failed;
1625  
1626  	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1627  	for (i=0; i<NR_TX_DESC; i++) {
1628  		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1629  				= cpu_to_le32(
1630  				  dev->tx_phy_descs
1631  				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1632  	}
1633  
1634  	dev->tx_idx = 0;
1635  	dev->tx_done_idx = 0;
1636  	desc = dev->tx_phy_descs;
1637  	writel(0, dev->base + TXDP_HI);
1638  	writel(desc, dev->base + TXDP);
1639  
1640  	timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
1641  	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1642  
1643  	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
1644  
1645  	return 0;
1646  
1647  failed:
1648  	ns83820_stop(ndev);
1649  	return ret;
1650  }
1651  
1652  static void ns83820_getmac(struct ns83820 *dev, struct net_device *ndev)
1653  {
1654  	u8 mac[ETH_ALEN];
1655  	unsigned i;
1656  
1657  	for (i=0; i<3; i++) {
1658  		u32 data;
1659  
1660  		/* Read from the perfect match memory: this is loaded by
1661  		 * the chip from the EEPROM via the EELOAD self test.
1662  		 */
1663  		writel(i*2, dev->base + RFCR);
1664  		data = readl(dev->base + RFDR);
1665  
1666  		mac[i * 2] = data;
1667  		mac[i * 2 + 1] = data >> 8;
1668  	}
1669  	eth_hw_addr_set(ndev, mac);
1670  }
1671  
1672  static void ns83820_set_multicast(struct net_device *ndev)
1673  {
1674  	struct ns83820 *dev = PRIV(ndev);
1675  	u8 __iomem *rfcr = dev->base + RFCR;
1676  	u32 and_mask = 0xffffffff;
1677  	u32 or_mask = 0;
1678  	u32 val;
1679  
1680  	if (ndev->flags & IFF_PROMISC)
1681  		or_mask |= RFCR_AAU | RFCR_AAM;
1682  	else
1683  		and_mask &= ~(RFCR_AAU | RFCR_AAM);
1684  
1685  	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1686  		or_mask |= RFCR_AAM;
1687  	else
1688  		and_mask &= ~RFCR_AAM;
1689  
1690  	spin_lock_irq(&dev->misc_lock);
1691  	val = (readl(rfcr) & and_mask) | or_mask;
1692  	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1693  	writel(val & ~RFCR_RFEN, rfcr);
1694  	writel(val, rfcr);
1695  	spin_unlock_irq(&dev->misc_lock);
1696  }
1697  
1698  static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1699  {
1700  	struct ns83820 *dev = PRIV(ndev);
1701  	int timed_out = 0;
1702  	unsigned long start;
1703  	u32 status;
1704  	int loops = 0;
1705  
1706  	dprintk("%s: start %s\n", ndev->name, name);
1707  
1708  	start = jiffies;
1709  
1710  	writel(enable, dev->base + PTSCR);
1711  	for (;;) {
1712  		loops++;
1713  		status = readl(dev->base + PTSCR);
1714  		if (!(status & enable))
1715  			break;
1716  		if (status & done)
1717  			break;
1718  		if (status & fail)
1719  			break;
1720  		if (time_after_eq(jiffies, start + HZ)) {
1721  			timed_out = 1;
1722  			break;
1723  		}
1724  		schedule_timeout_uninterruptible(1);
1725  	}
1726  
1727  	if (status & fail)
1728  		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1729  			ndev->name, name, status, fail);
1730  	else if (timed_out)
1731  		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1732  			ndev->name, name, status);
1733  
1734  	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1735  }
1736  
1737  #ifdef PHY_CODE_IS_FINISHED
1738  static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1739  {
1740  	/* drive MDC low */
1741  	dev->MEAR_cache &= ~MEAR_MDC;
1742  	writel(dev->MEAR_cache, dev->base + MEAR);
1743  	readl(dev->base + MEAR);
1744  
1745  	/* enable output, set bit */
1746  	dev->MEAR_cache |= MEAR_MDDIR;
1747  	if (bit)
1748  		dev->MEAR_cache |= MEAR_MDIO;
1749  	else
1750  		dev->MEAR_cache &= ~MEAR_MDIO;
1751  
1752  	/* set the output bit */
1753  	writel(dev->MEAR_cache, dev->base + MEAR);
1754  	readl(dev->base + MEAR);
1755  
1756  	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1757  	udelay(1);
1758  
1759  	/* drive MDC high causing the data bit to be latched */
1760  	dev->MEAR_cache |= MEAR_MDC;
1761  	writel(dev->MEAR_cache, dev->base + MEAR);
1762  	readl(dev->base + MEAR);
1763  
1764  	/* Wait again... */
1765  	udelay(1);
1766  }
1767  
1768  static int ns83820_mii_read_bit(struct ns83820 *dev)
1769  {
1770  	int bit;
1771  
1772  	/* drive MDC low, disable output */
1773  	dev->MEAR_cache &= ~MEAR_MDC;
1774  	dev->MEAR_cache &= ~MEAR_MDDIR;
1775  	writel(dev->MEAR_cache, dev->base + MEAR);
1776  	readl(dev->base + MEAR);
1777  
1778  	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1779  	udelay(1);
1780  
1781  	/* drive MDC high causing the data bit to be latched */
1782  	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1783  	dev->MEAR_cache |= MEAR_MDC;
1784  	writel(dev->MEAR_cache, dev->base + MEAR);
1785  
1786  	/* Wait again... */
1787  	udelay(1);
1788  
1789  	return bit;
1790  }
1791  
1792  static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1793  {
1794  	unsigned data = 0;
1795  	int i;
1796  
1797  	/* read some garbage so that we eventually sync up */
1798  	for (i=0; i<64; i++)
1799  		ns83820_mii_read_bit(dev);
1800  
1801  	ns83820_mii_write_bit(dev, 0);	/* start */
1802  	ns83820_mii_write_bit(dev, 1);
1803  	ns83820_mii_write_bit(dev, 1);	/* opcode read */
1804  	ns83820_mii_write_bit(dev, 0);
1805  
1806  	/* write out the phy address: 5 bits, msb first */
1807  	for (i=0; i<5; i++)
1808  		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1809  
1810  	/* write out the register address, 5 bits, msb first */
1811  	for (i=0; i<5; i++)
1812  		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1813  
1814  	ns83820_mii_read_bit(dev);	/* turn around cycles */
1815  	ns83820_mii_read_bit(dev);
1816  
1817  	/* read in the register data, 16 bits msb first */
1818  	for (i=0; i<16; i++) {
1819  		data <<= 1;
1820  		data |= ns83820_mii_read_bit(dev);
1821  	}
1822  
1823  	return data;
1824  }
1825  
1826  static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1827  {
1828  	int i;
1829  
1830  	/* read some garbage so that we eventually sync up */
1831  	for (i=0; i<64; i++)
1832  		ns83820_mii_read_bit(dev);
1833  
1834  	ns83820_mii_write_bit(dev, 0);	/* start */
1835  	ns83820_mii_write_bit(dev, 1);
1836  	ns83820_mii_write_bit(dev, 0);	/* opcode read */
1837  	ns83820_mii_write_bit(dev, 1);
1838  
1839  	/* write out the phy address: 5 bits, msb first */
1840  	for (i=0; i<5; i++)
1841  		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1842  
1843  	/* write out the register address, 5 bits, msb first */
1844  	for (i=0; i<5; i++)
1845  		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1846  
1847  	ns83820_mii_read_bit(dev);	/* turn around cycles */
1848  	ns83820_mii_read_bit(dev);
1849  
1850  	/* read in the register data, 16 bits msb first */
1851  	for (i=0; i<16; i++)
1852  		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1853  
1854  	return data;
1855  }
1856  
1857  static void ns83820_probe_phy(struct net_device *ndev)
1858  {
1859  	struct ns83820 *dev = PRIV(ndev);
1860  	int j;
1861  	unsigned a, b;
1862  
1863  	for (j = 0; j < 0x16; j += 4) {
1864  		dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1865  			ndev->name, j,
1866  			ns83820_mii_read_reg(dev, 1, 0 + j),
1867  			ns83820_mii_read_reg(dev, 1, 1 + j),
1868  			ns83820_mii_read_reg(dev, 1, 2 + j),
1869  			ns83820_mii_read_reg(dev, 1, 3 + j)
1870  			);
1871  	}
1872  
1873  	/* read firmware version: memory addr is 0x8402 and 0x8403 */
1874  	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1875  	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1876  	a = ns83820_mii_read_reg(dev, 1, 0x1d);
1877  
1878  	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1879  	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1880  	b = ns83820_mii_read_reg(dev, 1, 0x1d);
1881  	dprintk("version: 0x%04x 0x%04x\n", a, b);
1882  }
1883  #endif
1884  
1885  static const struct net_device_ops netdev_ops = {
1886  	.ndo_open		= ns83820_open,
1887  	.ndo_stop		= ns83820_stop,
1888  	.ndo_start_xmit		= ns83820_hard_start_xmit,
1889  	.ndo_get_stats		= ns83820_get_stats,
1890  	.ndo_set_rx_mode	= ns83820_set_multicast,
1891  	.ndo_validate_addr	= eth_validate_addr,
1892  	.ndo_set_mac_address	= eth_mac_addr,
1893  	.ndo_tx_timeout		= ns83820_tx_timeout,
1894  };
1895  
1896  static int ns83820_init_one(struct pci_dev *pci_dev,
1897  			    const struct pci_device_id *id)
1898  {
1899  	struct net_device *ndev;
1900  	struct ns83820 *dev;
1901  	long addr;
1902  	int err;
1903  	int using_dac = 0;
1904  
1905  	/* See if we can set the dma mask early on; failure is fatal. */
1906  	if (sizeof(dma_addr_t) == 8 &&
1907  		!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(64))) {
1908  		using_dac = 1;
1909  	} else if (!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) {
1910  		using_dac = 0;
1911  	} else {
1912  		dev_warn(&pci_dev->dev, "dma_set_mask failed!\n");
1913  		return -ENODEV;
1914  	}
1915  
1916  	ndev = alloc_etherdev(sizeof(struct ns83820));
1917  	err = -ENOMEM;
1918  	if (!ndev)
1919  		goto out;
1920  
1921  	dev = PRIV(ndev);
1922  	dev->ndev = ndev;
1923  
1924  	spin_lock_init(&dev->rx_info.lock);
1925  	spin_lock_init(&dev->tx_lock);
1926  	spin_lock_init(&dev->misc_lock);
1927  	dev->pci_dev = pci_dev;
1928  
1929  	SET_NETDEV_DEV(ndev, &pci_dev->dev);
1930  
1931  	INIT_WORK(&dev->tq_refill, queue_refill);
1932  	tasklet_setup(&dev->rx_tasklet, rx_action);
1933  
1934  	err = pci_enable_device(pci_dev);
1935  	if (err) {
1936  		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
1937  		goto out_free;
1938  	}
1939  
1940  	pci_set_master(pci_dev);
1941  	addr = pci_resource_start(pci_dev, 1);
1942  	dev->base = ioremap(addr, PAGE_SIZE);
1943  	dev->tx_descs = dma_alloc_coherent(&pci_dev->dev,
1944  					   4 * DESC_SIZE * NR_TX_DESC,
1945  					   &dev->tx_phy_descs, GFP_KERNEL);
1946  	dev->rx_info.descs = dma_alloc_coherent(&pci_dev->dev,
1947  						4 * DESC_SIZE * NR_RX_DESC,
1948  						&dev->rx_info.phy_descs, GFP_KERNEL);
1949  	err = -ENOMEM;
1950  	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
1951  		goto out_disable;
1952  
1953  	dprintk("%p: %08lx  %p: %08lx\n",
1954  		dev->tx_descs, (long)dev->tx_phy_descs,
1955  		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
1956  
1957  	ns83820_disable_interrupts(dev);
1958  
1959  	dev->IMR_cache = 0;
1960  
1961  	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
1962  			  DRV_NAME, ndev);
1963  	if (err) {
1964  		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
1965  			pci_dev->irq, err);
1966  		goto out_disable;
1967  	}
1968  
1969  	/*
1970  	 * FIXME: we are holding rtnl_lock() over obscenely long area only
1971  	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
1972  	 * we should be using driver-specific names for all that stuff.
1973  	 * For now that will do, but we really need to come back and kill
1974  	 * most of the dev_alloc_name() users later.
1975  	 */
1976  	rtnl_lock();
1977  	err = dev_alloc_name(ndev, ndev->name);
1978  	if (err < 0) {
1979  		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
1980  		goto out_free_irq;
1981  	}
1982  
1983  	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
1984  		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
1985  		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
1986  
1987  	ndev->netdev_ops = &netdev_ops;
1988  	ndev->ethtool_ops = &ops;
1989  	ndev->watchdog_timeo = 5 * HZ;
1990  	pci_set_drvdata(pci_dev, ndev);
1991  
1992  	ns83820_do_reset(dev, CR_RST);
1993  
1994  	/* Must reset the ram bist before running it */
1995  	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
1996  	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
1997  			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
1998  	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
1999  			 PTSCR_EEBIST_FAIL);
2000  	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2001  
2002  	/* I love config registers */
2003  	dev->CFG_cache = readl(dev->base + CFG);
2004  
2005  	if ((dev->CFG_cache & CFG_PCI64_DET)) {
2006  		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2007  			ndev->name);
2008  		/*dev->CFG_cache |= CFG_DATA64_EN;*/
2009  		if (!(dev->CFG_cache & CFG_DATA64_EN))
2010  			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2011  				ndev->name);
2012  	} else
2013  		dev->CFG_cache &= ~(CFG_DATA64_EN);
2014  
2015  	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2016  			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2017  			   CFG_M64ADDR);
2018  	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2019  			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2020  	dev->CFG_cache |= CFG_REQALG;
2021  	dev->CFG_cache |= CFG_POW;
2022  	dev->CFG_cache |= CFG_TMRTEST;
2023  
2024  	/* When compiled with 64 bit addressing, we must always enable
2025  	 * the 64 bit descriptor format.
2026  	 */
2027  	if (sizeof(dma_addr_t) == 8)
2028  		dev->CFG_cache |= CFG_M64ADDR;
2029  	if (using_dac)
2030  		dev->CFG_cache |= CFG_T64ADDR;
2031  
2032  	/* Big endian mode does not seem to do what the docs suggest */
2033  	dev->CFG_cache &= ~CFG_BEM;
2034  
2035  	/* setup optical transceiver if we have one */
2036  	if (dev->CFG_cache & CFG_TBI_EN) {
2037  		printk(KERN_INFO "%s: enabling optical transceiver\n",
2038  			ndev->name);
2039  		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2040  
2041  		/* setup auto negotiation feature advertisement */
2042  		writel(readl(dev->base + TANAR)
2043  		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2044  		       dev->base + TANAR);
2045  
2046  		/* start auto negotiation */
2047  		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2048  		       dev->base + TBICR);
2049  		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2050  		dev->linkstate = LINK_AUTONEGOTIATE;
2051  
2052  		dev->CFG_cache |= CFG_MODE_1000;
2053  	}
2054  
2055  	writel(dev->CFG_cache, dev->base + CFG);
2056  	dprintk("CFG: %08x\n", dev->CFG_cache);
2057  
2058  	if (reset_phy) {
2059  		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2060  		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2061  		msleep(10);
2062  		writel(dev->CFG_cache, dev->base + CFG);
2063  	}
2064  
2065  #if 0	/* Huh?  This sets the PCI latency register.  Should be done via
2066  	 * the PCI layer.  FIXME.
2067  	 */
2068  	if (readl(dev->base + SRR))
2069  		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2070  #endif
2071  
2072  	/* Note!  The DMA burst size interacts with packet
2073  	 * transmission, such that the largest packet that
2074  	 * can be transmitted is 8192 - FLTH - burst size.
2075  	 * If only the transmit fifo was larger...
2076  	 */
2077  	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2078  	 * some DELL and COMPAQ SMP systems */
2079  	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2080  		| ((1600 / 32) * 0x100),
2081  		dev->base + TXCFG);
2082  
2083  	/* Flush the interrupt holdoff timer */
2084  	writel(0x000, dev->base + IHR);
2085  	writel(0x100, dev->base + IHR);
2086  	writel(0x000, dev->base + IHR);
2087  
2088  	/* Set Rx to full duplex, don't accept runt, errored, long or length
2089  	 * range errored packets.  Use 512 byte DMA.
2090  	 */
2091  	/* Ramit : 1024 DMA is not a good idea, it ends up banging
2092  	 * some DELL and COMPAQ SMP systems
2093  	 * Turn on ALP, only we are accpeting Jumbo Packets */
2094  	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2095  		| RXCFG_STRIPCRC
2096  		//| RXCFG_ALP
2097  		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2098  
2099  	/* Disable priority queueing */
2100  	writel(0, dev->base + PQCR);
2101  
2102  	/* Enable IP checksum validation and detetion of VLAN headers.
2103  	 * Note: do not set the reject options as at least the 0x102
2104  	 * revision of the chip does not properly accept IP fragments
2105  	 * at least for UDP.
2106  	 */
2107  	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2108  	 * the MAC it calculates the packetsize AFTER stripping the VLAN
2109  	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2110  	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2111  	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2112  	 * it discrards it!.  These guys......
2113  	 * also turn on tag stripping if hardware acceleration is enabled
2114  	 */
2115  #ifdef NS83820_VLAN_ACCEL_SUPPORT
2116  #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2117  #else
2118  #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2119  #endif
2120  	writel(VRCR_INIT_VALUE, dev->base + VRCR);
2121  
2122  	/* Enable per-packet TCP/UDP/IP checksumming
2123  	 * and per packet vlan tag insertion if
2124  	 * vlan hardware acceleration is enabled
2125  	 */
2126  #ifdef NS83820_VLAN_ACCEL_SUPPORT
2127  #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2128  #else
2129  #define VTCR_INIT_VALUE VTCR_PPCHK
2130  #endif
2131  	writel(VTCR_INIT_VALUE, dev->base + VTCR);
2132  
2133  	/* Ramit : Enable async and sync pause frames */
2134  	/* writel(0, dev->base + PCR); */
2135  	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2136  		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2137  		dev->base + PCR);
2138  
2139  	/* Disable Wake On Lan */
2140  	writel(0, dev->base + WCSR);
2141  
2142  	ns83820_getmac(dev, ndev);
2143  
2144  	/* Yes, we support dumb IP checksum on transmit */
2145  	ndev->features |= NETIF_F_SG;
2146  	ndev->features |= NETIF_F_IP_CSUM;
2147  
2148  	ndev->min_mtu = 0;
2149  
2150  #ifdef NS83820_VLAN_ACCEL_SUPPORT
2151  	/* We also support hardware vlan acceleration */
2152  	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2153  #endif
2154  
2155  	if (using_dac) {
2156  		printk(KERN_INFO "%s: using 64 bit addressing.\n",
2157  			ndev->name);
2158  		ndev->features |= NETIF_F_HIGHDMA;
2159  	}
2160  
2161  	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2162  		ndev->name,
2163  		(unsigned)readl(dev->base + SRR) >> 8,
2164  		(unsigned)readl(dev->base + SRR) & 0xff,
2165  		ndev->dev_addr, addr, pci_dev->irq,
2166  		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2167  		);
2168  
2169  #ifdef PHY_CODE_IS_FINISHED
2170  	ns83820_probe_phy(ndev);
2171  #endif
2172  
2173  	err = register_netdevice(ndev);
2174  	if (err) {
2175  		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2176  		goto out_cleanup;
2177  	}
2178  	rtnl_unlock();
2179  
2180  	return 0;
2181  
2182  out_cleanup:
2183  	ns83820_disable_interrupts(dev); /* paranoia */
2184  out_free_irq:
2185  	rtnl_unlock();
2186  	free_irq(pci_dev->irq, ndev);
2187  out_disable:
2188  	if (dev->base)
2189  		iounmap(dev->base);
2190  	dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
2191  			  dev->tx_descs, dev->tx_phy_descs);
2192  	dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
2193  			  dev->rx_info.descs, dev->rx_info.phy_descs);
2194  	pci_disable_device(pci_dev);
2195  out_free:
2196  	free_netdev(ndev);
2197  out:
2198  	return err;
2199  }
2200  
2201  static void ns83820_remove_one(struct pci_dev *pci_dev)
2202  {
2203  	struct net_device *ndev = pci_get_drvdata(pci_dev);
2204  	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2205  
2206  	if (!ndev)			/* paranoia */
2207  		return;
2208  
2209  	ns83820_disable_interrupts(dev); /* paranoia */
2210  
2211  	unregister_netdev(ndev);
2212  	free_irq(dev->pci_dev->irq, ndev);
2213  	iounmap(dev->base);
2214  	dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
2215  			  dev->tx_descs, dev->tx_phy_descs);
2216  	dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
2217  			  dev->rx_info.descs, dev->rx_info.phy_descs);
2218  	pci_disable_device(dev->pci_dev);
2219  	free_netdev(ndev);
2220  }
2221  
2222  static const struct pci_device_id ns83820_pci_tbl[] = {
2223  	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2224  	{ 0, },
2225  };
2226  
2227  static struct pci_driver driver = {
2228  	.name		= "ns83820",
2229  	.id_table	= ns83820_pci_tbl,
2230  	.probe		= ns83820_init_one,
2231  	.remove		= ns83820_remove_one,
2232  #if 0	/* FIXME: implement */
2233  	.suspend	= ,
2234  	.resume		= ,
2235  #endif
2236  };
2237  
2238  
2239  static int __init ns83820_init(void)
2240  {
2241  	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2242  	return pci_register_driver(&driver);
2243  }
2244  
2245  static void __exit ns83820_exit(void)
2246  {
2247  	pci_unregister_driver(&driver);
2248  }
2249  
2250  MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2251  MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2252  MODULE_LICENSE("GPL");
2253  
2254  MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2255  
2256  module_param(lnksts, int, 0);
2257  MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2258  
2259  module_param(ihr, int, 0);
2260  MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2261  
2262  module_param(reset_phy, int, 0);
2263  MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2264  
2265  module_init(ns83820_init);
2266  module_exit(ns83820_exit);
2267