xref: /openbmc/qemu/hw/block/m25p80.c (revision 8d970f41)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
41 
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
45 
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags {
48     ER_4K                  = BIT(0),
49     ER_32K                 = BIT(1),
50     EEPROM                 = BIT(2),
51     HAS_SR_TB              = BIT(3),
52     HAS_SR_BP3_BIT6        = BIT(4),
53 };
54 
55 typedef struct FlashPartInfo {
56     const char *part_name;
57     /*
58      * This array stores the ID bytes.
59      * The first three bytes are the JEDIC ID.
60      * JEDEC ID zero means "no ID" (mostly older chips).
61      */
62     uint8_t id[SPI_NOR_MAX_ID_LEN];
63     uint8_t id_len;
64     /* there is confusion between manufacturers as to what a sector is. In this
65      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
66      * command (opcode 0xd8).
67      */
68     uint32_t sector_size;
69     uint32_t n_sectors;
70     uint32_t page_size;
71     uint16_t flags;
72     /*
73      * Big sized spi nor are often stacked devices, thus sometime
74      * replace chip erase with die erase.
75      * This field inform how many die is in the chip.
76      */
77     uint8_t die_cnt;
78     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
79 } FlashPartInfo;
80 
81 /* adapted from linux */
82 /* Used when the "_ext_id" is two bytes at most */
83 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
84     .part_name = _part_name,\
85     .id = {\
86         ((_jedec_id) >> 16) & 0xff,\
87         ((_jedec_id) >> 8) & 0xff,\
88         (_jedec_id) & 0xff,\
89         ((_ext_id) >> 8) & 0xff,\
90         (_ext_id) & 0xff,\
91           },\
92     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
93     .sector_size = (_sector_size),\
94     .n_sectors = (_n_sectors),\
95     .page_size = 256,\
96     .flags = (_flags),\
97     .die_cnt = 0
98 
99 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
100     .part_name = _part_name,\
101     .id = {\
102         ((_jedec_id) >> 16) & 0xff,\
103         ((_jedec_id) >> 8) & 0xff,\
104         (_jedec_id) & 0xff,\
105         ((_ext_id) >> 16) & 0xff,\
106         ((_ext_id) >> 8) & 0xff,\
107         (_ext_id) & 0xff,\
108           },\
109     .id_len = 6,\
110     .sector_size = (_sector_size),\
111     .n_sectors = (_n_sectors),\
112     .page_size = 256,\
113     .flags = (_flags),\
114     .die_cnt = 0
115 
116 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
117                     _flags, _die_cnt)\
118     .part_name = _part_name,\
119     .id = {\
120         ((_jedec_id) >> 16) & 0xff,\
121         ((_jedec_id) >> 8) & 0xff,\
122         (_jedec_id) & 0xff,\
123         ((_ext_id) >> 8) & 0xff,\
124         (_ext_id) & 0xff,\
125           },\
126     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
127     .sector_size = (_sector_size),\
128     .n_sectors = (_n_sectors),\
129     .page_size = 256,\
130     .flags = (_flags),\
131     .die_cnt = _die_cnt
132 
133 #define JEDEC_NUMONYX 0x20
134 #define JEDEC_WINBOND 0xEF
135 #define JEDEC_SPANSION 0x01
136 
137 /* Numonyx (Micron) Configuration register macros */
138 #define VCFG_DUMMY 0x1
139 #define VCFG_WRAP_SEQUENTIAL 0x2
140 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
141 #define NVCFG_XIP_MODE_MASK (7 << 9)
142 #define VCFG_XIP_MODE_DISABLED (1 << 3)
143 #define CFG_DUMMY_CLK_LEN 4
144 #define NVCFG_DUMMY_CLK_POS 12
145 #define VCFG_DUMMY_CLK_POS 4
146 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
147 #define EVCFG_VPP_ACCELERATOR (1 << 3)
148 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
149 #define NVCFG_DUAL_IO_MASK (1 << 2)
150 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
151 #define NVCFG_QUAD_IO_MASK (1 << 3)
152 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
153 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
154 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
155 
156 /* Numonyx (Micron) Flag Status Register macros */
157 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
158 #define FSR_FLASH_READY (1 << 7)
159 
160 /* Spansion configuration registers macros. */
161 #define SPANSION_QUAD_CFG_POS 0
162 #define SPANSION_QUAD_CFG_LEN 1
163 #define SPANSION_DUMMY_CLK_POS 0
164 #define SPANSION_DUMMY_CLK_LEN 4
165 #define SPANSION_ADDR_LEN_POS 7
166 #define SPANSION_ADDR_LEN_LEN 1
167 
168 /*
169  * Spansion read mode command length in bytes,
170  * the mode is currently not supported.
171 */
172 
173 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
174 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
175 
176 static const FlashPartInfo known_devices[] = {
177     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
178     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
179     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
180 
181     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
182     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
183     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
184 
185     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
186     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
187     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
188     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
189 
190     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
191 
192     /* Atmel EEPROMS - it is assumed, that don't care bit in command
193      * is set to 0. Block protection is not supported.
194      */
195     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
196     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
197 
198     /* EON -- en25xxx */
199     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
200     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
201     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
202     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
203     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
204 
205     /* GigaDevice */
206     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
207     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
208 
209     /* Intel/Numonyx -- xxxs33b */
210     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
211     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
212     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
213     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
214 
215     /* ISSI */
216     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
217     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
218     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
219     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
220     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
221     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
222     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
223     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
224     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
225     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
226     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K),
227       .sfdp_read = m25p80_sfdp_is25wp256 },
228 
229     /* Macronix */
230     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
231     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
232     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
233     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
234     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
235     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
236     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
237     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
238     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
239             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
240     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
241             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
242     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
243     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
244     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
245     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
246     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
247       .sfdp_read = m25p80_sfdp_mx66l1g45g },
248 
249     /* Micron */
250     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
251     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
252     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
253     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
254     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
255     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
256     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
257     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
258       .sfdp_read = m25p80_sfdp_n25q256a },
259     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
260     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
261     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
262     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
263            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
264       .sfdp_read = m25p80_sfdp_n25q256a },
265    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
266     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
267     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
268     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
269                    ER_4K | ER_32K, 2) },
270     { INFO_STACKED("mt35xu02gbba", 0x2c5b1c, 0x104100, 128 << 10, 2048,
271                    ER_4K | ER_32K, 4),
272                    .sfdp_read = m25p80_sfdp_mt35xu02g },
273     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
274     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
275     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
276     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
277     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
278     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096, ER_4K | ER_32K, 2) },
279 
280     /* Spansion -- single (large) sector size only, at least
281      * for the chips listed here (without boot sectors).
282      */
283     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
284     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
285     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
286     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
287     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
288     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
289     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
290     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
291     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
292     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
293     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
294     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
295     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
296     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
297     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
298     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
299     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
300 
301     /* Spansion --  boot sectors support  */
302     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
303     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
304 
305     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
306     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
307     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
308     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
309     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
310     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
311     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
312     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
313     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
314     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
315 
316     /* ST Microelectronics -- newer production may have feature updates */
317     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
318     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
319     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
320     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
321     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
322     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
323     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
324     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
325     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
326     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
327 
328     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
329     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
330     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
331 
332     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
333     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
334     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
335 
336     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
337     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
338     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
339     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
340 
341     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
342     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
343     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
344     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
345     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
346     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
347     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
348     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
349     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
350     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
351     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
352     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
353     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K) },
354     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
355       .sfdp_read = m25p80_sfdp_w25q256 },
356     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
357       .sfdp_read = m25p80_sfdp_w25q512jv },
358     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
359       .sfdp_read = m25p80_sfdp_w25q01jvq },
360 
361     /* Microchip */
362     { INFO("25csm04",      0x29cc00,      0x100,  64 << 10,  8, 0) },
363 };
364 
365 typedef enum {
366     NOP = 0,
367     WRSR = 0x1,
368     WRDI = 0x4,
369     RDSR = 0x5,
370     WREN = 0x6,
371     BRRD = 0x16,
372     BRWR = 0x17,
373     JEDEC_READ = 0x9f,
374     BULK_ERASE_60 = 0x60,
375     BULK_ERASE = 0xc7,
376     READ_FSR = 0x70,
377     RDCR = 0x15,
378     RDSFDP = 0x5a,
379 
380     READ = 0x03,
381     READ4 = 0x13,
382     FAST_READ = 0x0b,
383     FAST_READ4 = 0x0c,
384     DOR = 0x3b,
385     DOR4 = 0x3c,
386     QOR = 0x6b,
387     QOR4 = 0x6c,
388     DIOR = 0xbb,
389     DIOR4 = 0xbc,
390     QIOR = 0xeb,
391     QIOR4 = 0xec,
392 
393     PP = 0x02,
394     PP4 = 0x12,
395     PP4_4 = 0x3e,
396     DPP = 0xa2,
397     QPP = 0x32,
398     QPP_4 = 0x34,
399     RDID_90 = 0x90,
400     RDID_AB = 0xab,
401     AAI_WP = 0xad,
402 
403     ERASE_4K = 0x20,
404     ERASE4_4K = 0x21,
405     ERASE_32K = 0x52,
406     ERASE4_32K = 0x5c,
407     ERASE_SECTOR = 0xd8,
408     ERASE4_SECTOR = 0xdc,
409 
410     EN_4BYTE_ADDR = 0xB7,
411     EX_4BYTE_ADDR = 0xE9,
412 
413     EXTEND_ADDR_READ = 0xC8,
414     EXTEND_ADDR_WRITE = 0xC5,
415 
416     RESET_ENABLE = 0x66,
417     RESET_MEMORY = 0x99,
418 
419     /*
420      * Micron: 0x35 - enable QPI
421      * Spansion: 0x35 - read control register
422      * Winbond: 0x35 - quad enable
423      */
424     RDCR_EQIO = 0x35,
425     RSTQIO = 0xf5,
426 
427     RNVCR = 0xB5,
428     WNVCR = 0xB1,
429 
430     RVCR = 0x85,
431     WVCR = 0x81,
432 
433     REVCR = 0x65,
434     WEVCR = 0x61,
435 
436     DIE_ERASE = 0xC4,
437 } FlashCMD;
438 
439 typedef enum {
440     STATE_IDLE,
441     STATE_PAGE_PROGRAM,
442     STATE_READ,
443     STATE_COLLECTING_DATA,
444     STATE_COLLECTING_VAR_LEN_DATA,
445     STATE_READING_DATA,
446     STATE_READING_SFDP,
447 } CMDState;
448 
449 typedef enum {
450     MAN_SPANSION,
451     MAN_MACRONIX,
452     MAN_NUMONYX,
453     MAN_WINBOND,
454     MAN_SST,
455     MAN_ISSI,
456     MAN_GENERIC,
457 } Manufacturer;
458 
459 typedef enum {
460     MODE_STD = 0,
461     MODE_DIO = 1,
462     MODE_QIO = 2
463 } SPIMode;
464 
465 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
466 
467 struct Flash {
468     SSIPeripheral parent_obj;
469 
470     BlockBackend *blk;
471 
472     uint8_t *storage;
473     uint32_t size;
474     int page_size;
475 
476     uint8_t state;
477     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
478     uint32_t len;
479     uint32_t pos;
480     bool data_read_loop;
481     uint8_t needed_bytes;
482     uint8_t cmd_in_progress;
483     uint32_t cur_addr;
484     uint32_t nonvolatile_cfg;
485     /* Configuration register for Macronix */
486     uint32_t volatile_cfg;
487     uint32_t enh_volatile_cfg;
488     /* Spansion cfg registers. */
489     uint8_t spansion_cr1nv;
490     uint8_t spansion_cr2nv;
491     uint8_t spansion_cr3nv;
492     uint8_t spansion_cr4nv;
493     uint8_t spansion_cr1v;
494     uint8_t spansion_cr2v;
495     uint8_t spansion_cr3v;
496     uint8_t spansion_cr4v;
497     bool wp_level;
498     bool write_enable;
499     bool four_bytes_address_mode;
500     bool reset_enable;
501     bool quad_enable;
502     bool aai_enable;
503     bool block_protect0;
504     bool block_protect1;
505     bool block_protect2;
506     bool block_protect3;
507     bool top_bottom_bit;
508     bool status_register_write_disabled;
509     uint8_t ear;
510 
511     int64_t dirty_page;
512 
513     const FlashPartInfo *pi;
514 
515 };
516 
517 struct M25P80Class {
518     SSIPeripheralClass parent_class;
519     FlashPartInfo *pi;
520 };
521 
OBJECT_DECLARE_TYPE(Flash,M25P80Class,M25P80)522 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
523 
524 static inline Manufacturer get_man(Flash *s)
525 {
526     switch (s->pi->id[0]) {
527     case 0x20:
528         return MAN_NUMONYX;
529     case 0xEF:
530         return MAN_WINBOND;
531     case 0x01:
532         return MAN_SPANSION;
533     case 0xC2:
534         return MAN_MACRONIX;
535     case 0xBF:
536         return MAN_SST;
537     case 0x9D:
538         return MAN_ISSI;
539     default:
540         return MAN_GENERIC;
541     }
542 }
543 
blk_sync_complete(void * opaque,int ret)544 static void blk_sync_complete(void *opaque, int ret)
545 {
546     QEMUIOVector *iov = opaque;
547 
548     qemu_iovec_destroy(iov);
549     g_free(iov);
550 
551     /* do nothing. Masters do not directly interact with the backing store,
552      * only the working copy so no mutexing required.
553      */
554 }
555 
flash_sync_page(Flash * s,int page)556 static void flash_sync_page(Flash *s, int page)
557 {
558     QEMUIOVector *iov;
559 
560     if (!s->blk || !blk_is_writable(s->blk)) {
561         return;
562     }
563 
564     iov = g_new(QEMUIOVector, 1);
565     qemu_iovec_init(iov, 1);
566     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
567                    s->pi->page_size);
568     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
569                     blk_sync_complete, iov);
570 }
571 
flash_sync_area(Flash * s,int64_t off,int64_t len)572 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
573 {
574     QEMUIOVector *iov;
575 
576     if (!s->blk || !blk_is_writable(s->blk)) {
577         return;
578     }
579 
580     assert(!(len % BDRV_SECTOR_SIZE));
581     iov = g_new(QEMUIOVector, 1);
582     qemu_iovec_init(iov, 1);
583     qemu_iovec_add(iov, s->storage + off, len);
584     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
585 }
586 
flash_erase(Flash * s,int offset,FlashCMD cmd)587 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
588 {
589     uint32_t len;
590     uint8_t capa_to_assert = 0;
591 
592     switch (cmd) {
593     case ERASE_4K:
594     case ERASE4_4K:
595         len = 4 * KiB;
596         capa_to_assert = ER_4K;
597         break;
598     case ERASE_32K:
599     case ERASE4_32K:
600         len = 32 * KiB;
601         capa_to_assert = ER_32K;
602         break;
603     case ERASE_SECTOR:
604     case ERASE4_SECTOR:
605         len = s->pi->sector_size;
606         break;
607     case BULK_ERASE:
608         len = s->size;
609         break;
610     case DIE_ERASE:
611         if (s->pi->die_cnt) {
612             len = s->size / s->pi->die_cnt;
613             offset = offset & (~(len - 1));
614         } else {
615             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
616                           " by device\n");
617             return;
618         }
619         break;
620     default:
621         abort();
622     }
623 
624     trace_m25p80_flash_erase(s, offset, len);
625 
626     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
627         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
628                       " device\n", len);
629     }
630 
631     if (!s->write_enable) {
632         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
633         return;
634     }
635     memset(s->storage + offset, 0xff, len);
636     flash_sync_area(s, offset, len);
637 }
638 
flash_sync_dirty(Flash * s,int64_t newpage)639 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
640 {
641     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
642         flash_sync_page(s, s->dirty_page);
643         s->dirty_page = newpage;
644     }
645 }
646 
647 static inline
flash_write8(Flash * s,uint32_t addr,uint8_t data)648 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
649 {
650     uint32_t page = addr / s->pi->page_size;
651     uint8_t prev = s->storage[s->cur_addr];
652     uint32_t block_protect_value = (s->block_protect3 << 3) |
653                                    (s->block_protect2 << 2) |
654                                    (s->block_protect1 << 1) |
655                                    (s->block_protect0 << 0);
656 
657     if (!s->write_enable) {
658         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
659         return;
660     }
661 
662     if (block_protect_value > 0) {
663         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
664         uint32_t sector = addr / s->pi->sector_size;
665 
666         /* top_bottom_bit == 0 means TOP */
667         if (!s->top_bottom_bit) {
668             if (s->pi->n_sectors <= sector + num_protected_sectors) {
669                 qemu_log_mask(LOG_GUEST_ERROR,
670                               "M25P80: write with write protect!\n");
671                 return;
672             }
673         } else {
674             if (sector < num_protected_sectors) {
675                 qemu_log_mask(LOG_GUEST_ERROR,
676                               "M25P80: write with write protect!\n");
677                 return;
678             }
679         }
680     }
681 
682     if ((prev ^ data) & data) {
683         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
684     }
685 
686     if (s->pi->flags & EEPROM) {
687         s->storage[s->cur_addr] = data;
688     } else {
689         s->storage[s->cur_addr] &= data;
690     }
691 
692     flash_sync_dirty(s, page);
693     s->dirty_page = page;
694 }
695 
get_addr_length(Flash * s)696 static inline int get_addr_length(Flash *s)
697 {
698    /* check if eeprom is in use */
699     if (s->pi->flags == EEPROM) {
700         return 2;
701     }
702 
703    switch (s->cmd_in_progress) {
704    case RDSFDP:
705        return 3;
706    case PP4:
707    case PP4_4:
708    case QPP_4:
709    case READ4:
710    case QIOR4:
711    case ERASE4_4K:
712    case ERASE4_32K:
713    case ERASE4_SECTOR:
714    case FAST_READ4:
715    case DOR4:
716    case QOR4:
717    case DIOR4:
718        return 4;
719    default:
720        return s->four_bytes_address_mode ? 4 : 3;
721    }
722 }
723 
complete_collecting_data(Flash * s)724 static void complete_collecting_data(Flash *s)
725 {
726     int i, n;
727 
728     n = get_addr_length(s);
729     s->cur_addr = (n == 3 ? s->ear : 0);
730     for (i = 0; i < n; ++i) {
731         s->cur_addr <<= 8;
732         s->cur_addr |= s->data[i];
733     }
734 
735     s->cur_addr &= s->size - 1;
736 
737     s->state = STATE_IDLE;
738 
739     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
740                                      s->cur_addr);
741 
742     switch (s->cmd_in_progress) {
743     case DPP:
744     case QPP:
745     case QPP_4:
746     case PP:
747     case PP4:
748     case PP4_4:
749         s->state = STATE_PAGE_PROGRAM;
750         break;
751     case AAI_WP:
752         /* AAI programming starts from the even address */
753         s->cur_addr &= ~BIT(0);
754         s->state = STATE_PAGE_PROGRAM;
755         break;
756     case READ:
757     case READ4:
758     case FAST_READ:
759     case FAST_READ4:
760     case DOR:
761     case DOR4:
762     case QOR:
763     case QOR4:
764     case DIOR:
765     case DIOR4:
766     case QIOR:
767     case QIOR4:
768         s->state = STATE_READ;
769         break;
770     case ERASE_4K:
771     case ERASE4_4K:
772     case ERASE_32K:
773     case ERASE4_32K:
774     case ERASE_SECTOR:
775     case ERASE4_SECTOR:
776     case DIE_ERASE:
777         flash_erase(s, s->cur_addr, s->cmd_in_progress);
778         break;
779     case WRSR:
780         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
781         s->block_protect0 = extract32(s->data[0], 2, 1);
782         s->block_protect1 = extract32(s->data[0], 3, 1);
783         s->block_protect2 = extract32(s->data[0], 4, 1);
784         if (s->pi->flags & HAS_SR_TB) {
785             s->top_bottom_bit = extract32(s->data[0], 5, 1);
786         }
787         if (s->pi->flags & HAS_SR_BP3_BIT6) {
788             s->block_protect3 = extract32(s->data[0], 6, 1);
789         }
790 
791         switch (get_man(s)) {
792         case MAN_SPANSION:
793             s->quad_enable = !!(s->data[1] & 0x02);
794             break;
795         case MAN_ISSI:
796             s->quad_enable = extract32(s->data[0], 6, 1);
797             break;
798         case MAN_MACRONIX:
799             s->quad_enable = extract32(s->data[0], 6, 1);
800             if (s->len > 1) {
801                 s->volatile_cfg = s->data[1];
802                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
803             }
804             break;
805         case MAN_WINBOND:
806             if (s->len > 1) {
807                 s->quad_enable = !!(s->data[1] & 0x02);
808             }
809             break;
810         default:
811             break;
812         }
813         if (s->write_enable) {
814             s->write_enable = false;
815         }
816         break;
817     case BRWR:
818     case EXTEND_ADDR_WRITE:
819         s->ear = s->data[0];
820         break;
821     case WNVCR:
822         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
823         break;
824     case WVCR:
825         s->volatile_cfg = s->data[0];
826         break;
827     case WEVCR:
828         s->enh_volatile_cfg = s->data[0];
829         break;
830     case RDID_90:
831     case RDID_AB:
832         if (get_man(s) == MAN_SST) {
833             if (s->cur_addr <= 1) {
834                 if (s->cur_addr) {
835                     s->data[0] = s->pi->id[2];
836                     s->data[1] = s->pi->id[0];
837                 } else {
838                     s->data[0] = s->pi->id[0];
839                     s->data[1] = s->pi->id[2];
840                 }
841                 s->pos = 0;
842                 s->len = 2;
843                 s->data_read_loop = true;
844                 s->state = STATE_READING_DATA;
845             } else {
846                 qemu_log_mask(LOG_GUEST_ERROR,
847                               "M25P80: Invalid read id address\n");
848             }
849         } else {
850             qemu_log_mask(LOG_GUEST_ERROR,
851                           "M25P80: Read id (command 0x90/0xAB) is not supported"
852                           " by device\n");
853         }
854         break;
855 
856     case RDSFDP:
857         s->state = STATE_READING_SFDP;
858         break;
859 
860     default:
861         break;
862     }
863 }
864 
reset_memory(Flash * s)865 static void reset_memory(Flash *s)
866 {
867     s->cmd_in_progress = NOP;
868     s->cur_addr = 0;
869     s->ear = 0;
870     s->four_bytes_address_mode = false;
871     s->len = 0;
872     s->needed_bytes = 0;
873     s->pos = 0;
874     s->state = STATE_IDLE;
875     s->write_enable = false;
876     s->reset_enable = false;
877     s->quad_enable = false;
878     s->aai_enable = false;
879 
880     switch (get_man(s)) {
881     case MAN_NUMONYX:
882         s->volatile_cfg = 0;
883         s->volatile_cfg |= VCFG_DUMMY;
884         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
885         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
886                                 == NVCFG_XIP_MODE_DISABLED) {
887             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
888         }
889         s->volatile_cfg |= deposit32(s->volatile_cfg,
890                             VCFG_DUMMY_CLK_POS,
891                             CFG_DUMMY_CLK_LEN,
892                             extract32(s->nonvolatile_cfg,
893                                         NVCFG_DUMMY_CLK_POS,
894                                         CFG_DUMMY_CLK_LEN)
895                             );
896 
897         s->enh_volatile_cfg = 0;
898         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
899         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
900         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
901         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
902             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
903         }
904         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
905             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
906         }
907         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
908             s->four_bytes_address_mode = true;
909         }
910         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
911             s->ear = s->size / MAX_3BYTES_SIZE - 1;
912         }
913         break;
914     case MAN_MACRONIX:
915         s->volatile_cfg = 0x7;
916         break;
917     case MAN_SPANSION:
918         s->spansion_cr1v = s->spansion_cr1nv;
919         s->spansion_cr2v = s->spansion_cr2nv;
920         s->spansion_cr3v = s->spansion_cr3nv;
921         s->spansion_cr4v = s->spansion_cr4nv;
922         s->quad_enable = extract32(s->spansion_cr1v,
923                                    SPANSION_QUAD_CFG_POS,
924                                    SPANSION_QUAD_CFG_LEN
925                                    );
926         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
927                 SPANSION_ADDR_LEN_POS,
928                 SPANSION_ADDR_LEN_LEN
929                 );
930         break;
931     default:
932         break;
933     }
934 
935     trace_m25p80_reset_done(s);
936 }
937 
numonyx_mode(Flash * s)938 static uint8_t numonyx_mode(Flash *s)
939 {
940     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
941         return MODE_QIO;
942     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
943         return MODE_DIO;
944     } else {
945         return MODE_STD;
946     }
947 }
948 
numonyx_extract_cfg_num_dummies(Flash * s)949 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
950 {
951     uint8_t num_dummies;
952     uint8_t mode;
953     assert(get_man(s) == MAN_NUMONYX);
954 
955     mode = numonyx_mode(s);
956     num_dummies = extract32(s->volatile_cfg, 4, 4);
957 
958     if (num_dummies == 0x0 || num_dummies == 0xf) {
959         switch (s->cmd_in_progress) {
960         case QIOR:
961         case QIOR4:
962             num_dummies = 10;
963             break;
964         default:
965             num_dummies = (mode == MODE_QIO) ? 10 : 8;
966             break;
967         }
968     }
969 
970     return num_dummies;
971 }
972 
decode_fast_read_cmd(Flash * s)973 static void decode_fast_read_cmd(Flash *s)
974 {
975     s->needed_bytes = get_addr_length(s);
976     switch (get_man(s)) {
977     /* Dummy cycles - modeled with bytes writes instead of bits */
978     case MAN_SST:
979         s->needed_bytes += 1;
980         break;
981     case MAN_WINBOND:
982         s->needed_bytes += 8;
983         break;
984     case MAN_NUMONYX:
985         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
986         break;
987     case MAN_MACRONIX:
988         if (extract32(s->volatile_cfg, 6, 2) == 1) {
989             s->needed_bytes += 6;
990         } else {
991             s->needed_bytes += 8;
992         }
993         break;
994     case MAN_SPANSION:
995         s->needed_bytes += extract32(s->spansion_cr2v,
996                                     SPANSION_DUMMY_CLK_POS,
997                                     SPANSION_DUMMY_CLK_LEN
998                                     );
999         break;
1000     case MAN_ISSI:
1001         /*
1002          * The Fast Read instruction code is followed by address bytes and
1003          * dummy cycles, transmitted via the SI line.
1004          *
1005          * The number of dummy cycles is configurable but this is currently
1006          * unmodeled, hence the default value 8 is used.
1007          *
1008          * QPI (Quad Peripheral Interface) mode has different default value
1009          * of dummy cycles, but this is unsupported at the time being.
1010          */
1011         s->needed_bytes += 1;
1012         break;
1013     default:
1014         break;
1015     }
1016     s->pos = 0;
1017     s->len = 0;
1018     s->state = STATE_COLLECTING_DATA;
1019 }
1020 
decode_dio_read_cmd(Flash * s)1021 static void decode_dio_read_cmd(Flash *s)
1022 {
1023     s->needed_bytes = get_addr_length(s);
1024     /* Dummy cycles modeled with bytes writes instead of bits */
1025     switch (get_man(s)) {
1026     case MAN_WINBOND:
1027         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1028         break;
1029     case MAN_SPANSION:
1030         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1031         s->needed_bytes += extract32(s->spansion_cr2v,
1032                                     SPANSION_DUMMY_CLK_POS,
1033                                     SPANSION_DUMMY_CLK_LEN
1034                                     );
1035         break;
1036     case MAN_NUMONYX:
1037         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1038         break;
1039     case MAN_MACRONIX:
1040         switch (extract32(s->volatile_cfg, 6, 2)) {
1041         case 1:
1042             s->needed_bytes += 6;
1043             break;
1044         case 2:
1045             s->needed_bytes += 8;
1046             break;
1047         default:
1048             s->needed_bytes += 4;
1049             break;
1050         }
1051         break;
1052     case MAN_ISSI:
1053         /*
1054          * The Fast Read Dual I/O instruction code is followed by address bytes
1055          * and dummy cycles, transmitted via the IO1 and IO0 line.
1056          *
1057          * The number of dummy cycles is configurable but this is currently
1058          * unmodeled, hence the default value 4 is used.
1059          */
1060         s->needed_bytes += 1;
1061         break;
1062     default:
1063         break;
1064     }
1065     s->pos = 0;
1066     s->len = 0;
1067     s->state = STATE_COLLECTING_DATA;
1068 }
1069 
decode_qio_read_cmd(Flash * s)1070 static void decode_qio_read_cmd(Flash *s)
1071 {
1072     s->needed_bytes = get_addr_length(s);
1073     /* Dummy cycles modeled with bytes writes instead of bits */
1074     switch (get_man(s)) {
1075     case MAN_WINBOND:
1076         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1077         s->needed_bytes += 4;
1078         break;
1079     case MAN_SPANSION:
1080         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1081         s->needed_bytes += extract32(s->spansion_cr2v,
1082                                     SPANSION_DUMMY_CLK_POS,
1083                                     SPANSION_DUMMY_CLK_LEN
1084                                     );
1085         break;
1086     case MAN_NUMONYX:
1087         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1088         break;
1089     case MAN_MACRONIX:
1090         switch (extract32(s->volatile_cfg, 6, 2)) {
1091         case 1:
1092             s->needed_bytes += 4;
1093             break;
1094         case 2:
1095             s->needed_bytes += 8;
1096             break;
1097         default:
1098             s->needed_bytes += 6;
1099             break;
1100         }
1101         break;
1102     case MAN_ISSI:
1103         /*
1104          * The Fast Read Quad I/O instruction code is followed by address bytes
1105          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1106          *
1107          * The number of dummy cycles is configurable but this is currently
1108          * unmodeled, hence the default value 6 is used.
1109          *
1110          * QPI (Quad Peripheral Interface) mode has different default value
1111          * of dummy cycles, but this is unsupported at the time being.
1112          */
1113         s->needed_bytes += 3;
1114         break;
1115     default:
1116         break;
1117     }
1118     s->pos = 0;
1119     s->len = 0;
1120     s->state = STATE_COLLECTING_DATA;
1121 }
1122 
is_valid_aai_cmd(uint32_t cmd)1123 static bool is_valid_aai_cmd(uint32_t cmd)
1124 {
1125     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1126 }
1127 
decode_new_cmd(Flash * s,uint32_t value)1128 static void decode_new_cmd(Flash *s, uint32_t value)
1129 {
1130     int i;
1131 
1132     s->cmd_in_progress = value;
1133     trace_m25p80_command_decoded(s, value);
1134 
1135     if (value != RESET_MEMORY) {
1136         s->reset_enable = false;
1137     }
1138 
1139     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1140         qemu_log_mask(LOG_GUEST_ERROR,
1141                       "M25P80: Invalid cmd within AAI programming sequence");
1142     }
1143 
1144     switch (value) {
1145 
1146     case ERASE_4K:
1147     case ERASE4_4K:
1148     case ERASE_32K:
1149     case ERASE4_32K:
1150     case ERASE_SECTOR:
1151     case ERASE4_SECTOR:
1152     case PP:
1153     case PP4:
1154     case DIE_ERASE:
1155     case RDID_90:
1156     case RDID_AB:
1157         s->needed_bytes = get_addr_length(s);
1158         s->pos = 0;
1159         s->len = 0;
1160         s->state = STATE_COLLECTING_DATA;
1161         break;
1162     case READ:
1163     case READ4:
1164         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1165             s->needed_bytes = get_addr_length(s);
1166             s->pos = 0;
1167             s->len = 0;
1168             s->state = STATE_COLLECTING_DATA;
1169         } else {
1170             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1171                           "DIO or QIO mode\n", s->cmd_in_progress);
1172         }
1173         break;
1174     case DPP:
1175         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1176             s->needed_bytes = get_addr_length(s);
1177             s->pos = 0;
1178             s->len = 0;
1179             s->state = STATE_COLLECTING_DATA;
1180         } else {
1181             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1182                           "QIO mode\n", s->cmd_in_progress);
1183         }
1184         break;
1185     case QPP:
1186     case QPP_4:
1187     case PP4_4:
1188         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1189             s->needed_bytes = get_addr_length(s);
1190             s->pos = 0;
1191             s->len = 0;
1192             s->state = STATE_COLLECTING_DATA;
1193         } else {
1194             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1195                           "DIO mode\n", s->cmd_in_progress);
1196         }
1197         break;
1198 
1199     case FAST_READ:
1200     case FAST_READ4:
1201         decode_fast_read_cmd(s);
1202         break;
1203     case DOR:
1204     case DOR4:
1205         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1206             decode_fast_read_cmd(s);
1207         } else {
1208             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1209                           "QIO mode\n", s->cmd_in_progress);
1210         }
1211         break;
1212     case QOR:
1213     case QOR4:
1214         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1215             decode_fast_read_cmd(s);
1216         } else {
1217             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1218                           "DIO mode\n", s->cmd_in_progress);
1219         }
1220         break;
1221 
1222     case DIOR:
1223     case DIOR4:
1224         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1225             decode_dio_read_cmd(s);
1226         } else {
1227             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1228                           "QIO mode\n", s->cmd_in_progress);
1229         }
1230         break;
1231 
1232     case QIOR:
1233     case QIOR4:
1234         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1235             decode_qio_read_cmd(s);
1236         } else {
1237             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1238                           "DIO mode\n", s->cmd_in_progress);
1239         }
1240         break;
1241 
1242     case WRSR:
1243         /*
1244          * If WP# is low and status_register_write_disabled is high,
1245          * status register writes are disabled.
1246          * This is also called "hardware protected mode" (HPM). All other
1247          * combinations of the two states are called "software protected mode"
1248          * (SPM), and status register writes are permitted.
1249          */
1250         if ((s->wp_level == 0 && s->status_register_write_disabled)
1251             || !s->write_enable) {
1252             qemu_log_mask(LOG_GUEST_ERROR,
1253                           "M25P80: Status register write is disabled!\n");
1254             break;
1255         }
1256 
1257         switch (get_man(s)) {
1258         case MAN_SPANSION:
1259             s->needed_bytes = 2;
1260             s->state = STATE_COLLECTING_DATA;
1261             break;
1262         case MAN_MACRONIX:
1263             s->needed_bytes = 2;
1264             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1265             break;
1266         case MAN_WINBOND:
1267             s->needed_bytes = 2;
1268             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1269             break;
1270         default:
1271             s->needed_bytes = 1;
1272             s->state = STATE_COLLECTING_DATA;
1273         }
1274         s->pos = 0;
1275         break;
1276 
1277     case WRDI:
1278         s->write_enable = false;
1279         if (get_man(s) == MAN_SST) {
1280             s->aai_enable = false;
1281         }
1282         break;
1283     case WREN:
1284         s->write_enable = true;
1285         break;
1286 
1287     case RDSR:
1288         s->data[0] = (!!s->write_enable) << 1;
1289         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1290         s->data[0] |= (!!s->block_protect0) << 2;
1291         s->data[0] |= (!!s->block_protect1) << 3;
1292         s->data[0] |= (!!s->block_protect2) << 4;
1293         if (s->pi->flags & HAS_SR_TB) {
1294             s->data[0] |= (!!s->top_bottom_bit) << 5;
1295         }
1296         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1297             s->data[0] |= (!!s->block_protect3) << 6;
1298         }
1299 
1300         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1301             s->data[0] |= (!!s->quad_enable) << 6;
1302         }
1303         if (get_man(s) == MAN_SST) {
1304             s->data[0] |= (!!s->aai_enable) << 6;
1305         }
1306 
1307         s->pos = 0;
1308         s->len = 1;
1309         s->data_read_loop = true;
1310         s->state = STATE_READING_DATA;
1311         break;
1312 
1313     case READ_FSR:
1314         s->data[0] = FSR_FLASH_READY;
1315         if (s->four_bytes_address_mode) {
1316             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1317         }
1318         s->pos = 0;
1319         s->len = 1;
1320         s->data_read_loop = true;
1321         s->state = STATE_READING_DATA;
1322         break;
1323 
1324     case JEDEC_READ:
1325         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1326             trace_m25p80_populated_jedec(s);
1327             for (i = 0; i < s->pi->id_len; i++) {
1328                 s->data[i] = s->pi->id[i];
1329             }
1330             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1331                 s->data[i] = 0;
1332             }
1333 
1334             s->len = SPI_NOR_MAX_ID_LEN;
1335             s->pos = 0;
1336             s->state = STATE_READING_DATA;
1337         } else {
1338             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1339                           "in DIO or QIO mode\n");
1340         }
1341         break;
1342 
1343     case RDCR:
1344         s->data[0] = s->volatile_cfg & 0xFF;
1345         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1346         s->pos = 0;
1347         s->len = 1;
1348         s->state = STATE_READING_DATA;
1349         break;
1350 
1351     case BULK_ERASE_60:
1352     case BULK_ERASE:
1353         if (s->write_enable) {
1354             trace_m25p80_chip_erase(s);
1355             flash_erase(s, 0, BULK_ERASE);
1356         } else {
1357             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1358                           "protect!\n");
1359         }
1360         break;
1361     case NOP:
1362         break;
1363     case EN_4BYTE_ADDR:
1364         s->four_bytes_address_mode = true;
1365         break;
1366     case EX_4BYTE_ADDR:
1367         s->four_bytes_address_mode = false;
1368         break;
1369     case BRRD:
1370     case EXTEND_ADDR_READ:
1371         s->data[0] = s->ear;
1372         s->pos = 0;
1373         s->len = 1;
1374         s->state = STATE_READING_DATA;
1375         break;
1376     case BRWR:
1377     case EXTEND_ADDR_WRITE:
1378         if (s->write_enable) {
1379             s->needed_bytes = 1;
1380             s->pos = 0;
1381             s->len = 0;
1382             s->state = STATE_COLLECTING_DATA;
1383         }
1384         break;
1385     case RNVCR:
1386         s->data[0] = s->nonvolatile_cfg & 0xFF;
1387         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1388         s->pos = 0;
1389         s->len = 2;
1390         s->state = STATE_READING_DATA;
1391         break;
1392     case WNVCR:
1393         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1394             s->needed_bytes = 2;
1395             s->pos = 0;
1396             s->len = 0;
1397             s->state = STATE_COLLECTING_DATA;
1398         }
1399         break;
1400     case RVCR:
1401         s->data[0] = s->volatile_cfg & 0xFF;
1402         s->pos = 0;
1403         s->len = 1;
1404         s->state = STATE_READING_DATA;
1405         break;
1406     case WVCR:
1407         if (s->write_enable) {
1408             s->needed_bytes = 1;
1409             s->pos = 0;
1410             s->len = 0;
1411             s->state = STATE_COLLECTING_DATA;
1412         }
1413         break;
1414     case REVCR:
1415         s->data[0] = s->enh_volatile_cfg & 0xFF;
1416         s->pos = 0;
1417         s->len = 1;
1418         s->state = STATE_READING_DATA;
1419         break;
1420     case WEVCR:
1421         if (s->write_enable) {
1422             s->needed_bytes = 1;
1423             s->pos = 0;
1424             s->len = 0;
1425             s->state = STATE_COLLECTING_DATA;
1426         }
1427         break;
1428     case RESET_ENABLE:
1429         s->reset_enable = true;
1430         break;
1431     case RESET_MEMORY:
1432         if (s->reset_enable) {
1433             reset_memory(s);
1434         }
1435         break;
1436     case RDCR_EQIO:
1437         switch (get_man(s)) {
1438         case MAN_SPANSION:
1439             s->data[0] = (!!s->quad_enable) << 1;
1440             s->pos = 0;
1441             s->len = 1;
1442             s->state = STATE_READING_DATA;
1443             break;
1444         case MAN_MACRONIX:
1445             s->quad_enable = true;
1446             break;
1447         case MAN_WINBOND:
1448             s->data[0] = (!!s->quad_enable) << 1;
1449             s->pos = 0;
1450             s->len = 1;
1451             s->state = STATE_READING_DATA;
1452             break;
1453         default:
1454             break;
1455         }
1456         break;
1457     case RSTQIO:
1458         s->quad_enable = false;
1459         break;
1460     case AAI_WP:
1461         if (get_man(s) == MAN_SST) {
1462             if (s->write_enable) {
1463                 if (s->aai_enable) {
1464                     s->state = STATE_PAGE_PROGRAM;
1465                 } else {
1466                     s->aai_enable = true;
1467                     s->needed_bytes = get_addr_length(s);
1468                     s->state = STATE_COLLECTING_DATA;
1469                 }
1470             } else {
1471                 qemu_log_mask(LOG_GUEST_ERROR,
1472                               "M25P80: AAI_WP with write protect\n");
1473             }
1474         } else {
1475             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1476         }
1477         break;
1478     case RDSFDP:
1479         if (s->pi->sfdp_read) {
1480             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1481             s->pos = 0;
1482             s->len = 0;
1483             s->state = STATE_COLLECTING_DATA;
1484             break;
1485         }
1486         /* Fallthrough */
1487 
1488     default:
1489         s->pos = 0;
1490         s->len = 1;
1491         s->state = STATE_READING_DATA;
1492         s->data_read_loop = true;
1493         s->data[0] = 0;
1494         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1495         break;
1496     }
1497 }
1498 
m25p80_cs(SSIPeripheral * ss,bool select)1499 static int m25p80_cs(SSIPeripheral *ss, bool select)
1500 {
1501     Flash *s = M25P80(ss);
1502 
1503     if (select) {
1504         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1505             complete_collecting_data(s);
1506         }
1507         s->len = 0;
1508         s->pos = 0;
1509         s->state = STATE_IDLE;
1510         flash_sync_dirty(s, -1);
1511         s->data_read_loop = false;
1512     }
1513 
1514     trace_m25p80_select(s, select ? "de" : "");
1515 
1516     return 0;
1517 }
1518 
m25p80_transfer8(SSIPeripheral * ss,uint32_t tx)1519 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1520 {
1521     Flash *s = M25P80(ss);
1522     uint32_t r = 0;
1523 
1524     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1525                           s->cur_addr, (uint8_t)tx);
1526 
1527     switch (s->state) {
1528 
1529     case STATE_PAGE_PROGRAM:
1530         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1531         flash_write8(s, s->cur_addr, (uint8_t)tx);
1532         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1533 
1534         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1535             /*
1536              * There is no wrap mode during AAI programming once the highest
1537              * unprotected memory address is reached. The Write-Enable-Latch
1538              * bit is automatically reset, and AAI programming mode aborts.
1539              */
1540             s->write_enable = false;
1541             s->aai_enable = false;
1542         }
1543 
1544         break;
1545 
1546     case STATE_READ:
1547         r = s->storage[s->cur_addr];
1548         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1549         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1550         break;
1551 
1552     case STATE_COLLECTING_DATA:
1553     case STATE_COLLECTING_VAR_LEN_DATA:
1554 
1555         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1556             qemu_log_mask(LOG_GUEST_ERROR,
1557                           "M25P80: Write overrun internal data buffer. "
1558                           "SPI controller (QEMU emulator or guest driver) "
1559                           "is misbehaving\n");
1560             s->len = s->pos = 0;
1561             s->state = STATE_IDLE;
1562             break;
1563         }
1564 
1565         s->data[s->len] = (uint8_t)tx;
1566         s->len++;
1567 
1568         if (s->len == s->needed_bytes) {
1569             complete_collecting_data(s);
1570         }
1571         break;
1572 
1573     case STATE_READING_DATA:
1574 
1575         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1576             qemu_log_mask(LOG_GUEST_ERROR,
1577                           "M25P80: Read overrun internal data buffer. "
1578                           "SPI controller (QEMU emulator or guest driver) "
1579                           "is misbehaving\n");
1580             s->len = s->pos = 0;
1581             s->state = STATE_IDLE;
1582             break;
1583         }
1584 
1585         r = s->data[s->pos];
1586         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1587         s->pos++;
1588         if (s->pos == s->len) {
1589             s->pos = 0;
1590             if (!s->data_read_loop) {
1591                 s->state = STATE_IDLE;
1592             }
1593         }
1594         break;
1595     case STATE_READING_SFDP:
1596         assert(s->pi->sfdp_read);
1597         r = s->pi->sfdp_read(s->cur_addr);
1598         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1599         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1600         break;
1601 
1602     default:
1603     case STATE_IDLE:
1604         decode_new_cmd(s, (uint8_t)tx);
1605         break;
1606     }
1607 
1608     return r;
1609 }
1610 
m25p80_write_protect_pin_irq_handler(void * opaque,int n,int level)1611 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1612 {
1613     Flash *s = M25P80(opaque);
1614     /* WP# is just a single pin. */
1615     assert(n == 0);
1616     s->wp_level = !!level;
1617 }
1618 
m25p80_realize(SSIPeripheral * ss,Error ** errp)1619 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1620 {
1621     Flash *s = M25P80(ss);
1622     M25P80Class *mc = M25P80_GET_CLASS(s);
1623     int ret;
1624 
1625     s->pi = mc->pi;
1626 
1627     s->size = s->pi->sector_size * s->pi->n_sectors;
1628     s->dirty_page = -1;
1629 
1630     if (s->blk) {
1631         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1632                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1633         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1634         if (ret < 0) {
1635             return;
1636         }
1637 
1638         trace_m25p80_binding(s);
1639         s->storage = blk_blockalign(s->blk, s->size);
1640 
1641         if (!blk_check_size_and_read_all(s->blk, DEVICE(s),
1642                                          s->storage, s->size, errp)) {
1643             return;
1644         }
1645     } else {
1646         trace_m25p80_binding_no_bdrv(s);
1647         s->storage = blk_blockalign(NULL, s->size);
1648         memset(s->storage, 0xFF, s->size);
1649     }
1650 
1651     qdev_init_gpio_in_named(DEVICE(s),
1652                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1653 }
1654 
m25p80_reset(DeviceState * d)1655 static void m25p80_reset(DeviceState *d)
1656 {
1657     Flash *s = M25P80(d);
1658 
1659     s->wp_level = true;
1660     s->status_register_write_disabled = false;
1661     s->block_protect0 = false;
1662     s->block_protect1 = false;
1663     s->block_protect2 = false;
1664     s->block_protect3 = false;
1665     s->top_bottom_bit = false;
1666 
1667     reset_memory(s);
1668 }
1669 
m25p80_pre_save(void * opaque)1670 static int m25p80_pre_save(void *opaque)
1671 {
1672     flash_sync_dirty((Flash *)opaque, -1);
1673 
1674     return 0;
1675 }
1676 
1677 static Property m25p80_properties[] = {
1678     /* This is default value for Micron flash */
1679     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1680     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1681     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1682     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1683     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1684     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1685     DEFINE_PROP_DRIVE("drive", Flash, blk),
1686     DEFINE_PROP_END_OF_LIST(),
1687 };
1688 
m25p80_pre_load(void * opaque)1689 static int m25p80_pre_load(void *opaque)
1690 {
1691     Flash *s = (Flash *)opaque;
1692 
1693     s->data_read_loop = false;
1694     return 0;
1695 }
1696 
m25p80_data_read_loop_needed(void * opaque)1697 static bool m25p80_data_read_loop_needed(void *opaque)
1698 {
1699     Flash *s = (Flash *)opaque;
1700 
1701     return s->data_read_loop;
1702 }
1703 
1704 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1705     .name = "m25p80/data_read_loop",
1706     .version_id = 1,
1707     .minimum_version_id = 1,
1708     .needed = m25p80_data_read_loop_needed,
1709     .fields = (const VMStateField[]) {
1710         VMSTATE_BOOL(data_read_loop, Flash),
1711         VMSTATE_END_OF_LIST()
1712     }
1713 };
1714 
m25p80_aai_enable_needed(void * opaque)1715 static bool m25p80_aai_enable_needed(void *opaque)
1716 {
1717     Flash *s = (Flash *)opaque;
1718 
1719     return s->aai_enable;
1720 }
1721 
1722 static const VMStateDescription vmstate_m25p80_aai_enable = {
1723     .name = "m25p80/aai_enable",
1724     .version_id = 1,
1725     .minimum_version_id = 1,
1726     .needed = m25p80_aai_enable_needed,
1727     .fields = (const VMStateField[]) {
1728         VMSTATE_BOOL(aai_enable, Flash),
1729         VMSTATE_END_OF_LIST()
1730     }
1731 };
1732 
m25p80_wp_level_srwd_needed(void * opaque)1733 static bool m25p80_wp_level_srwd_needed(void *opaque)
1734 {
1735     Flash *s = (Flash *)opaque;
1736 
1737     return !s->wp_level || s->status_register_write_disabled;
1738 }
1739 
1740 static const VMStateDescription vmstate_m25p80_write_protect = {
1741     .name = "m25p80/write_protect",
1742     .version_id = 1,
1743     .minimum_version_id = 1,
1744     .needed = m25p80_wp_level_srwd_needed,
1745     .fields = (const VMStateField[]) {
1746         VMSTATE_BOOL(wp_level, Flash),
1747         VMSTATE_BOOL(status_register_write_disabled, Flash),
1748         VMSTATE_END_OF_LIST()
1749     }
1750 };
1751 
m25p80_block_protect_needed(void * opaque)1752 static bool m25p80_block_protect_needed(void *opaque)
1753 {
1754     Flash *s = (Flash *)opaque;
1755 
1756     return s->block_protect0 ||
1757            s->block_protect1 ||
1758            s->block_protect2 ||
1759            s->block_protect3 ||
1760            s->top_bottom_bit;
1761 }
1762 
1763 static const VMStateDescription vmstate_m25p80_block_protect = {
1764     .name = "m25p80/block_protect",
1765     .version_id = 1,
1766     .minimum_version_id = 1,
1767     .needed = m25p80_block_protect_needed,
1768     .fields = (const VMStateField[]) {
1769         VMSTATE_BOOL(block_protect0, Flash),
1770         VMSTATE_BOOL(block_protect1, Flash),
1771         VMSTATE_BOOL(block_protect2, Flash),
1772         VMSTATE_BOOL(block_protect3, Flash),
1773         VMSTATE_BOOL(top_bottom_bit, Flash),
1774         VMSTATE_END_OF_LIST()
1775     }
1776 };
1777 
1778 static const VMStateDescription vmstate_m25p80 = {
1779     .name = "m25p80",
1780     .version_id = 0,
1781     .minimum_version_id = 0,
1782     .pre_save = m25p80_pre_save,
1783     .pre_load = m25p80_pre_load,
1784     .fields = (const VMStateField[]) {
1785         VMSTATE_UINT8(state, Flash),
1786         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1787         VMSTATE_UINT32(len, Flash),
1788         VMSTATE_UINT32(pos, Flash),
1789         VMSTATE_UINT8(needed_bytes, Flash),
1790         VMSTATE_UINT8(cmd_in_progress, Flash),
1791         VMSTATE_UINT32(cur_addr, Flash),
1792         VMSTATE_BOOL(write_enable, Flash),
1793         VMSTATE_BOOL(reset_enable, Flash),
1794         VMSTATE_UINT8(ear, Flash),
1795         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1796         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1797         VMSTATE_UINT32(volatile_cfg, Flash),
1798         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1799         VMSTATE_BOOL(quad_enable, Flash),
1800         VMSTATE_UINT8(spansion_cr1nv, Flash),
1801         VMSTATE_UINT8(spansion_cr2nv, Flash),
1802         VMSTATE_UINT8(spansion_cr3nv, Flash),
1803         VMSTATE_UINT8(spansion_cr4nv, Flash),
1804         VMSTATE_END_OF_LIST()
1805     },
1806     .subsections = (const VMStateDescription * const []) {
1807         &vmstate_m25p80_data_read_loop,
1808         &vmstate_m25p80_aai_enable,
1809         &vmstate_m25p80_write_protect,
1810         &vmstate_m25p80_block_protect,
1811         NULL
1812     }
1813 };
1814 
m25p80_class_init(ObjectClass * klass,void * data)1815 static void m25p80_class_init(ObjectClass *klass, void *data)
1816 {
1817     DeviceClass *dc = DEVICE_CLASS(klass);
1818     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1819     M25P80Class *mc = M25P80_CLASS(klass);
1820 
1821     k->realize = m25p80_realize;
1822     k->transfer = m25p80_transfer8;
1823     k->set_cs = m25p80_cs;
1824     k->cs_polarity = SSI_CS_LOW;
1825     dc->vmsd = &vmstate_m25p80;
1826     device_class_set_props(dc, m25p80_properties);
1827     dc->reset = m25p80_reset;
1828     mc->pi = data;
1829 }
1830 
1831 static const TypeInfo m25p80_info = {
1832     .name           = TYPE_M25P80,
1833     .parent         = TYPE_SSI_PERIPHERAL,
1834     .instance_size  = sizeof(Flash),
1835     .class_size     = sizeof(M25P80Class),
1836     .abstract       = true,
1837 };
1838 
m25p80_register_types(void)1839 static void m25p80_register_types(void)
1840 {
1841     int i;
1842 
1843     type_register_static(&m25p80_info);
1844     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1845         TypeInfo ti = {
1846             .name       = known_devices[i].part_name,
1847             .parent     = TYPE_M25P80,
1848             .class_init = m25p80_class_init,
1849             .class_data = (void *)&known_devices[i],
1850         };
1851         type_register(&ti);
1852     }
1853 }
1854 
type_init(m25p80_register_types)1855 type_init(m25p80_register_types)
1856 
1857 BlockBackend *m25p80_get_blk(DeviceState *dev)
1858 {
1859     return M25P80(dev)->blk;
1860 }
1861