xref: /openbmc/linux/drivers/dma/ti/edma.c (revision 060f35a317ef09101b128f399dce7ed13d019461)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI EDMA DMA engine driver
4  *
5  * Copyright 2012 Texas Instruments
6  */
7 
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/pm_runtime.h>
24 
25 #include <linux/platform_data/edma.h>
26 
27 #include "../dmaengine.h"
28 #include "../virt-dma.h"
29 
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT		0x00
32 #define PARM_SRC		0x04
33 #define PARM_A_B_CNT		0x08
34 #define PARM_DST		0x0c
35 #define PARM_SRC_DST_BIDX	0x10
36 #define PARM_LINK_BCNTRLD	0x14
37 #define PARM_SRC_DST_CIDX	0x18
38 #define PARM_CCNT		0x1c
39 
40 #define PARM_SIZE		0x20
41 
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER			0x00	/* 64 bits */
44 #define SH_ECR			0x08	/* 64 bits */
45 #define SH_ESR			0x10	/* 64 bits */
46 #define SH_CER			0x18	/* 64 bits */
47 #define SH_EER			0x20	/* 64 bits */
48 #define SH_EECR			0x28	/* 64 bits */
49 #define SH_EESR			0x30	/* 64 bits */
50 #define SH_SER			0x38	/* 64 bits */
51 #define SH_SECR			0x40	/* 64 bits */
52 #define SH_IER			0x50	/* 64 bits */
53 #define SH_IECR			0x58	/* 64 bits */
54 #define SH_IESR			0x60	/* 64 bits */
55 #define SH_IPR			0x68	/* 64 bits */
56 #define SH_ICR			0x70	/* 64 bits */
57 #define SH_IEVAL		0x78
58 #define SH_QER			0x80
59 #define SH_QEER			0x84
60 #define SH_QEECR		0x88
61 #define SH_QEESR		0x8c
62 #define SH_QSER			0x90
63 #define SH_QSECR		0x94
64 #define SH_SIZE			0x200
65 
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV		0x0000
68 #define EDMA_CCCFG		0x0004
69 #define EDMA_QCHMAP		0x0200	/* 8 registers */
70 #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM		0x0260
72 #define EDMA_QUETCMAP		0x0280
73 #define EDMA_QUEPRI		0x0284
74 #define EDMA_EMR		0x0300	/* 64 bits */
75 #define EDMA_EMCR		0x0308	/* 64 bits */
76 #define EDMA_QEMR		0x0310
77 #define EDMA_QEMCR		0x0314
78 #define EDMA_CCERR		0x0318
79 #define EDMA_CCERRCLR		0x031c
80 #define EDMA_EEVAL		0x0320
81 #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
82 #define EDMA_QRAE		0x0380	/* 4 registers */
83 #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
84 #define EDMA_QSTAT		0x0600	/* 2 registers */
85 #define EDMA_QWMTHRA		0x0620
86 #define EDMA_QWMTHRB		0x0624
87 #define EDMA_CCSTAT		0x0640
88 
89 #define EDMA_M			0x1000	/* global channel registers */
90 #define EDMA_ECR		0x1008
91 #define EDMA_ECRH		0x100C
92 #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
93 #define EDMA_PARM		0x4000	/* PaRAM entries */
94 
95 #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
96 
97 #define EDMA_DCHMAP		0x0100  /* 64 registers */
98 
99 /* CCCFG register */
100 #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
101 #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
102 #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
103 #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
104 #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
105 #define CHMAP_EXIST		BIT(24)
106 
107 /* CCSTAT register */
108 #define EDMA_CCSTAT_ACTV	BIT(4)
109 
110 /*
111  * Max of 20 segments per channel to conserve PaRAM slots
112  * Also note that MAX_NR_SG should be at least the no.of periods
113  * that are required for ASoC, otherwise DMA prep calls will
114  * fail. Today davinci-pcm is the only user of this driver and
115  * requires at least 17 slots, so we setup the default to 20.
116  */
117 #define MAX_NR_SG		20
118 #define EDMA_MAX_SLOTS		MAX_NR_SG
119 #define EDMA_DESCRIPTORS	16
120 
121 #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
122 #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
123 #define EDMA_CONT_PARAMS_ANY		 1001
124 #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
125 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
126 
127 /*
128  * 64bit array registers are split into two 32bit registers:
129  * reg0: channel/event 0-31
130  * reg1: channel/event 32-63
131  *
132  * bit 5 in the channel number tells the array index (0/1)
133  * bit 0-4 (0x1f) is the bit offset within the register
134  */
135 #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
136 #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
137 
138 /* PaRAM slots are laid out like this */
139 struct edmacc_param {
140 	u32 opt;
141 	u32 src;
142 	u32 a_b_cnt;
143 	u32 dst;
144 	u32 src_dst_bidx;
145 	u32 link_bcntrld;
146 	u32 src_dst_cidx;
147 	u32 ccnt;
148 } __packed;
149 
150 /* fields in edmacc_param.opt */
151 #define SAM		BIT(0)
152 #define DAM		BIT(1)
153 #define SYNCDIM		BIT(2)
154 #define STATIC		BIT(3)
155 #define EDMA_FWID	(0x07 << 8)
156 #define TCCMODE		BIT(11)
157 #define EDMA_TCC(t)	((t) << 12)
158 #define TCINTEN		BIT(20)
159 #define ITCINTEN	BIT(21)
160 #define TCCHEN		BIT(22)
161 #define ITCCHEN		BIT(23)
162 
163 struct edma_pset {
164 	u32				len;
165 	dma_addr_t			addr;
166 	struct edmacc_param		param;
167 };
168 
169 struct edma_desc {
170 	struct virt_dma_desc		vdesc;
171 	struct list_head		node;
172 	enum dma_transfer_direction	direction;
173 	int				cyclic;
174 	bool				polled;
175 	int				absync;
176 	int				pset_nr;
177 	struct edma_chan		*echan;
178 	int				processed;
179 
180 	/*
181 	 * The following 4 elements are used for residue accounting.
182 	 *
183 	 * - processed_stat: the number of SG elements we have traversed
184 	 * so far to cover accounting. This is updated directly to processed
185 	 * during edma_callback and is always <= processed, because processed
186 	 * refers to the number of pending transfer (programmed to EDMA
187 	 * controller), where as processed_stat tracks number of transfers
188 	 * accounted for so far.
189 	 *
190 	 * - residue: The amount of bytes we have left to transfer for this desc
191 	 *
192 	 * - residue_stat: The residue in bytes of data we have covered
193 	 * so far for accounting. This is updated directly to residue
194 	 * during callbacks to keep it current.
195 	 *
196 	 * - sg_len: Tracks the length of the current intermediate transfer,
197 	 * this is required to update the residue during intermediate transfer
198 	 * completion callback.
199 	 */
200 	int				processed_stat;
201 	u32				sg_len;
202 	u32				residue;
203 	u32				residue_stat;
204 
205 	struct edma_pset		pset[];
206 };
207 
208 struct edma_cc;
209 
210 struct edma_tc {
211 	u16				id;
212 };
213 
214 struct edma_chan {
215 	struct virt_dma_chan		vchan;
216 	struct list_head		node;
217 	struct edma_desc		*edesc;
218 	struct edma_cc			*ecc;
219 	struct edma_tc			*tc;
220 	int				ch_num;
221 	bool				alloced;
222 	bool				hw_triggered;
223 	int				slot[EDMA_MAX_SLOTS];
224 	int				missed;
225 	struct dma_slave_config		cfg;
226 };
227 
228 struct edma_cc {
229 	struct device			*dev;
230 	struct edma_soc_info		*info;
231 	void __iomem			*base;
232 	int				id;
233 	bool				legacy_mode;
234 
235 	/* eDMA3 resource information */
236 	unsigned			num_channels;
237 	unsigned			num_qchannels;
238 	unsigned			num_region;
239 	unsigned			num_slots;
240 	unsigned			num_tc;
241 	bool				chmap_exist;
242 	enum dma_event_q		default_queue;
243 
244 	unsigned int			ccint;
245 	unsigned int			ccerrint;
246 
247 	/*
248 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
249 	 * in use by Linux or if it is allocated to be used by DSP.
250 	 */
251 	unsigned long *slot_inuse;
252 
253 	/*
254 	 * For tracking reserved channels used by DSP.
255 	 * If the bit is cleared, the channel is allocated to be used by DSP
256 	 * and Linux must not touch it.
257 	 */
258 	unsigned long *channels_mask;
259 
260 	struct dma_device		dma_slave;
261 	struct dma_device		*dma_memcpy;
262 	struct edma_chan		*slave_chans;
263 	struct edma_tc			*tc_list;
264 	int				dummy_slot;
265 };
266 
267 /* dummy param set used to (re)initialize parameter RAM slots */
268 static const struct edmacc_param dummy_paramset = {
269 	.link_bcntrld = 0xffff,
270 	.ccnt = 1,
271 };
272 
273 #define EDMA_BINDING_LEGACY	0
274 #define EDMA_BINDING_TPCC	1
275 static const u32 edma_binding_type[] = {
276 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
277 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
278 };
279 
280 static const struct of_device_id edma_of_ids[] = {
281 	{
282 		.compatible = "ti,edma3",
283 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
284 	},
285 	{
286 		.compatible = "ti,edma3-tpcc",
287 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
288 	},
289 	{}
290 };
291 MODULE_DEVICE_TABLE(of, edma_of_ids);
292 
293 static const struct of_device_id edma_tptc_of_ids[] = {
294 	{ .compatible = "ti,edma3-tptc", },
295 	{}
296 };
297 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
298 
edma_read(struct edma_cc * ecc,int offset)299 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
300 {
301 	return (unsigned int)__raw_readl(ecc->base + offset);
302 }
303 
edma_write(struct edma_cc * ecc,int offset,int val)304 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
305 {
306 	__raw_writel(val, ecc->base + offset);
307 }
308 
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)309 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
310 			       unsigned or)
311 {
312 	unsigned val = edma_read(ecc, offset);
313 
314 	val &= and;
315 	val |= or;
316 	edma_write(ecc, offset, val);
317 }
318 
edma_or(struct edma_cc * ecc,int offset,unsigned or)319 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
320 {
321 	unsigned val = edma_read(ecc, offset);
322 
323 	val |= or;
324 	edma_write(ecc, offset, val);
325 }
326 
edma_read_array(struct edma_cc * ecc,int offset,int i)327 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
328 					   int i)
329 {
330 	return edma_read(ecc, offset + (i << 2));
331 }
332 
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)333 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
334 				    unsigned val)
335 {
336 	edma_write(ecc, offset + (i << 2), val);
337 }
338 
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)339 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
340 				     unsigned and, unsigned or)
341 {
342 	edma_modify(ecc, offset + (i << 2), and, or);
343 }
344 
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)345 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
346 				  unsigned or)
347 {
348 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
349 }
350 
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)351 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
352 				     int j, unsigned val)
353 {
354 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
355 }
356 
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)357 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
358 						   int offset, int i)
359 {
360 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
361 }
362 
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)363 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
364 				      unsigned val)
365 {
366 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
367 }
368 
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)369 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
370 					    int i, unsigned val)
371 {
372 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
373 }
374 
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)375 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
376 				     int param_no, unsigned and, unsigned or)
377 {
378 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
379 }
380 
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)381 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
382 					  int priority)
383 {
384 	int bit = queue_no * 4;
385 
386 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
387 }
388 
edma_set_chmap(struct edma_chan * echan,int slot)389 static void edma_set_chmap(struct edma_chan *echan, int slot)
390 {
391 	struct edma_cc *ecc = echan->ecc;
392 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
393 
394 	if (ecc->chmap_exist) {
395 		slot = EDMA_CHAN_SLOT(slot);
396 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
397 	}
398 }
399 
edma_setup_interrupt(struct edma_chan * echan,bool enable)400 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
401 {
402 	struct edma_cc *ecc = echan->ecc;
403 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
404 	int idx = EDMA_REG_ARRAY_INDEX(channel);
405 	int ch_bit = EDMA_CHANNEL_BIT(channel);
406 
407 	if (enable) {
408 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
409 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
410 	} else {
411 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
412 	}
413 }
414 
415 /*
416  * paRAM slot management functions
417  */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)418 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
419 			    const struct edmacc_param *param)
420 {
421 	slot = EDMA_CHAN_SLOT(slot);
422 	if (slot >= ecc->num_slots)
423 		return;
424 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
425 }
426 
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)427 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
428 			   struct edmacc_param *param)
429 {
430 	slot = EDMA_CHAN_SLOT(slot);
431 	if (slot >= ecc->num_slots)
432 		return -EINVAL;
433 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
434 
435 	return 0;
436 }
437 
438 /**
439  * edma_alloc_slot - allocate DMA parameter RAM
440  * @ecc: pointer to edma_cc struct
441  * @slot: specific slot to allocate; negative for "any unused slot"
442  *
443  * This allocates a parameter RAM slot, initializing it to hold a
444  * dummy transfer.  Slots allocated using this routine have not been
445  * mapped to a hardware DMA channel, and will normally be used by
446  * linking to them from a slot associated with a DMA channel.
447  *
448  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
449  * slots may be allocated on behalf of DSP firmware.
450  *
451  * Returns the number of the slot, else negative errno.
452  */
edma_alloc_slot(struct edma_cc * ecc,int slot)453 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
454 {
455 	if (slot >= 0) {
456 		slot = EDMA_CHAN_SLOT(slot);
457 		/* Requesting entry paRAM slot for a HW triggered channel. */
458 		if (ecc->chmap_exist && slot < ecc->num_channels)
459 			slot = EDMA_SLOT_ANY;
460 	}
461 
462 	if (slot < 0) {
463 		if (ecc->chmap_exist)
464 			slot = 0;
465 		else
466 			slot = ecc->num_channels;
467 		for (;;) {
468 			slot = find_next_zero_bit(ecc->slot_inuse,
469 						  ecc->num_slots,
470 						  slot);
471 			if (slot == ecc->num_slots)
472 				return -ENOMEM;
473 			if (!test_and_set_bit(slot, ecc->slot_inuse))
474 				break;
475 		}
476 	} else if (slot >= ecc->num_slots) {
477 		return -EINVAL;
478 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
479 		return -EBUSY;
480 	}
481 
482 	edma_write_slot(ecc, slot, &dummy_paramset);
483 
484 	return EDMA_CTLR_CHAN(ecc->id, slot);
485 }
486 
edma_free_slot(struct edma_cc * ecc,unsigned slot)487 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
488 {
489 	slot = EDMA_CHAN_SLOT(slot);
490 	if (slot >= ecc->num_slots)
491 		return;
492 
493 	edma_write_slot(ecc, slot, &dummy_paramset);
494 	clear_bit(slot, ecc->slot_inuse);
495 }
496 
497 /**
498  * edma_link - link one parameter RAM slot to another
499  * @ecc: pointer to edma_cc struct
500  * @from: parameter RAM slot originating the link
501  * @to: parameter RAM slot which is the link target
502  *
503  * The originating slot should not be part of any active DMA transfer.
504  */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)505 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
506 {
507 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
508 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
509 
510 	from = EDMA_CHAN_SLOT(from);
511 	to = EDMA_CHAN_SLOT(to);
512 	if (from >= ecc->num_slots || to >= ecc->num_slots)
513 		return;
514 
515 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
516 			  PARM_OFFSET(to));
517 }
518 
519 /**
520  * edma_get_position - returns the current transfer point
521  * @ecc: pointer to edma_cc struct
522  * @slot: parameter RAM slot being examined
523  * @dst:  true selects the dest position, false the source
524  *
525  * Returns the position of the current active slot
526  */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)527 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
528 				    bool dst)
529 {
530 	u32 offs;
531 
532 	slot = EDMA_CHAN_SLOT(slot);
533 	offs = PARM_OFFSET(slot);
534 	offs += dst ? PARM_DST : PARM_SRC;
535 
536 	return edma_read(ecc, offs);
537 }
538 
539 /*
540  * Channels with event associations will be triggered by their hardware
541  * events, and channels without such associations will be triggered by
542  * software.  (At this writing there is no interface for using software
543  * triggers except with channels that don't support hardware triggers.)
544  */
edma_start(struct edma_chan * echan)545 static void edma_start(struct edma_chan *echan)
546 {
547 	struct edma_cc *ecc = echan->ecc;
548 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
549 	int idx = EDMA_REG_ARRAY_INDEX(channel);
550 	int ch_bit = EDMA_CHANNEL_BIT(channel);
551 
552 	if (!echan->hw_triggered) {
553 		/* EDMA channels without event association */
554 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
555 			edma_shadow0_read_array(ecc, SH_ESR, idx));
556 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
557 	} else {
558 		/* EDMA channel with event association */
559 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
560 			edma_shadow0_read_array(ecc, SH_ER, idx));
561 		/* Clear any pending event or error */
562 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
563 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
564 		/* Clear any SER */
565 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
566 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
567 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
568 			edma_shadow0_read_array(ecc, SH_EER, idx));
569 	}
570 }
571 
edma_stop(struct edma_chan * echan)572 static void edma_stop(struct edma_chan *echan)
573 {
574 	struct edma_cc *ecc = echan->ecc;
575 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
576 	int idx = EDMA_REG_ARRAY_INDEX(channel);
577 	int ch_bit = EDMA_CHANNEL_BIT(channel);
578 
579 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
580 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
581 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
582 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
583 
584 	/* clear possibly pending completion interrupt */
585 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
586 
587 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
588 		edma_shadow0_read_array(ecc, SH_EER, idx));
589 
590 	/* REVISIT:  consider guarding against inappropriate event
591 	 * chaining by overwriting with dummy_paramset.
592 	 */
593 }
594 
595 /*
596  * Temporarily disable EDMA hardware events on the specified channel,
597  * preventing them from triggering new transfers
598  */
edma_pause(struct edma_chan * echan)599 static void edma_pause(struct edma_chan *echan)
600 {
601 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
602 
603 	edma_shadow0_write_array(echan->ecc, SH_EECR,
604 				 EDMA_REG_ARRAY_INDEX(channel),
605 				 EDMA_CHANNEL_BIT(channel));
606 }
607 
608 /* Re-enable EDMA hardware events on the specified channel.  */
edma_resume(struct edma_chan * echan)609 static void edma_resume(struct edma_chan *echan)
610 {
611 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
612 
613 	edma_shadow0_write_array(echan->ecc, SH_EESR,
614 				 EDMA_REG_ARRAY_INDEX(channel),
615 				 EDMA_CHANNEL_BIT(channel));
616 }
617 
edma_trigger_channel(struct edma_chan * echan)618 static void edma_trigger_channel(struct edma_chan *echan)
619 {
620 	struct edma_cc *ecc = echan->ecc;
621 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
622 	int idx = EDMA_REG_ARRAY_INDEX(channel);
623 	int ch_bit = EDMA_CHANNEL_BIT(channel);
624 
625 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
626 
627 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
628 		edma_shadow0_read_array(ecc, SH_ESR, idx));
629 }
630 
edma_clean_channel(struct edma_chan * echan)631 static void edma_clean_channel(struct edma_chan *echan)
632 {
633 	struct edma_cc *ecc = echan->ecc;
634 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
635 	int idx = EDMA_REG_ARRAY_INDEX(channel);
636 	int ch_bit = EDMA_CHANNEL_BIT(channel);
637 
638 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
639 		edma_read_array(ecc, EDMA_EMR, idx));
640 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
641 	/* Clear the corresponding EMR bits */
642 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
643 	/* Clear any SER */
644 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
645 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
646 }
647 
648 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)649 static void edma_assign_channel_eventq(struct edma_chan *echan,
650 				       enum dma_event_q eventq_no)
651 {
652 	struct edma_cc *ecc = echan->ecc;
653 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
654 	int bit = (channel & 0x7) * 4;
655 
656 	/* default to low priority queue */
657 	if (eventq_no == EVENTQ_DEFAULT)
658 		eventq_no = ecc->default_queue;
659 	if (eventq_no >= ecc->num_tc)
660 		return;
661 
662 	eventq_no &= 7;
663 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
664 			  eventq_no << bit);
665 }
666 
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)667 static int edma_alloc_channel(struct edma_chan *echan,
668 			      enum dma_event_q eventq_no)
669 {
670 	struct edma_cc *ecc = echan->ecc;
671 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
672 
673 	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
674 		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
675 			echan->ch_num);
676 		return -EINVAL;
677 	}
678 
679 	/* ensure access through shadow region 0 */
680 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
681 		       EDMA_CHANNEL_BIT(channel));
682 
683 	/* ensure no events are pending */
684 	edma_stop(echan);
685 
686 	edma_setup_interrupt(echan, true);
687 
688 	edma_assign_channel_eventq(echan, eventq_no);
689 
690 	return 0;
691 }
692 
edma_free_channel(struct edma_chan * echan)693 static void edma_free_channel(struct edma_chan *echan)
694 {
695 	/* ensure no events are pending */
696 	edma_stop(echan);
697 	/* REVISIT should probably take out of shadow region 0 */
698 	edma_setup_interrupt(echan, false);
699 }
700 
to_edma_chan(struct dma_chan * c)701 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
702 {
703 	return container_of(c, struct edma_chan, vchan.chan);
704 }
705 
to_edma_desc(struct dma_async_tx_descriptor * tx)706 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
707 {
708 	return container_of(tx, struct edma_desc, vdesc.tx);
709 }
710 
edma_desc_free(struct virt_dma_desc * vdesc)711 static void edma_desc_free(struct virt_dma_desc *vdesc)
712 {
713 	kfree(container_of(vdesc, struct edma_desc, vdesc));
714 }
715 
716 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)717 static void edma_execute(struct edma_chan *echan)
718 {
719 	struct edma_cc *ecc = echan->ecc;
720 	struct virt_dma_desc *vdesc;
721 	struct edma_desc *edesc;
722 	struct device *dev = echan->vchan.chan.device->dev;
723 	int i, j, left, nslots;
724 
725 	if (!echan->edesc) {
726 		/* Setup is needed for the first transfer */
727 		vdesc = vchan_next_desc(&echan->vchan);
728 		if (!vdesc)
729 			return;
730 		list_del(&vdesc->node);
731 		echan->edesc = to_edma_desc(&vdesc->tx);
732 	}
733 
734 	edesc = echan->edesc;
735 
736 	/* Find out how many left */
737 	left = edesc->pset_nr - edesc->processed;
738 	nslots = min(MAX_NR_SG, left);
739 	edesc->sg_len = 0;
740 
741 	/* Write descriptor PaRAM set(s) */
742 	for (i = 0; i < nslots; i++) {
743 		j = i + edesc->processed;
744 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
745 		edesc->sg_len += edesc->pset[j].len;
746 		dev_vdbg(dev,
747 			 "\n pset[%d]:\n"
748 			 "  chnum\t%d\n"
749 			 "  slot\t%d\n"
750 			 "  opt\t%08x\n"
751 			 "  src\t%08x\n"
752 			 "  dst\t%08x\n"
753 			 "  abcnt\t%08x\n"
754 			 "  ccnt\t%08x\n"
755 			 "  bidx\t%08x\n"
756 			 "  cidx\t%08x\n"
757 			 "  lkrld\t%08x\n",
758 			 j, echan->ch_num, echan->slot[i],
759 			 edesc->pset[j].param.opt,
760 			 edesc->pset[j].param.src,
761 			 edesc->pset[j].param.dst,
762 			 edesc->pset[j].param.a_b_cnt,
763 			 edesc->pset[j].param.ccnt,
764 			 edesc->pset[j].param.src_dst_bidx,
765 			 edesc->pset[j].param.src_dst_cidx,
766 			 edesc->pset[j].param.link_bcntrld);
767 		/* Link to the previous slot if not the last set */
768 		if (i != (nslots - 1))
769 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
770 	}
771 
772 	edesc->processed += nslots;
773 
774 	/*
775 	 * If this is either the last set in a set of SG-list transactions
776 	 * then setup a link to the dummy slot, this results in all future
777 	 * events being absorbed and that's OK because we're done
778 	 */
779 	if (edesc->processed == edesc->pset_nr) {
780 		if (edesc->cyclic)
781 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
782 		else
783 			edma_link(ecc, echan->slot[nslots - 1],
784 				  echan->ecc->dummy_slot);
785 	}
786 
787 	if (echan->missed) {
788 		/*
789 		 * This happens due to setup times between intermediate
790 		 * transfers in long SG lists which have to be broken up into
791 		 * transfers of MAX_NR_SG
792 		 */
793 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
794 		edma_clean_channel(echan);
795 		edma_stop(echan);
796 		edma_start(echan);
797 		edma_trigger_channel(echan);
798 		echan->missed = 0;
799 	} else if (edesc->processed <= MAX_NR_SG) {
800 		dev_dbg(dev, "first transfer starting on channel %d\n",
801 			echan->ch_num);
802 		edma_start(echan);
803 	} else {
804 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
805 			echan->ch_num, edesc->processed);
806 		edma_resume(echan);
807 	}
808 }
809 
edma_terminate_all(struct dma_chan * chan)810 static int edma_terminate_all(struct dma_chan *chan)
811 {
812 	struct edma_chan *echan = to_edma_chan(chan);
813 	unsigned long flags;
814 	LIST_HEAD(head);
815 
816 	spin_lock_irqsave(&echan->vchan.lock, flags);
817 
818 	/*
819 	 * Stop DMA activity: we assume the callback will not be called
820 	 * after edma_dma() returns (even if it does, it will see
821 	 * echan->edesc is NULL and exit.)
822 	 */
823 	if (echan->edesc) {
824 		edma_stop(echan);
825 		/* Move the cyclic channel back to default queue */
826 		if (!echan->tc && echan->edesc->cyclic)
827 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
828 
829 		vchan_terminate_vdesc(&echan->edesc->vdesc);
830 		echan->edesc = NULL;
831 	}
832 
833 	vchan_get_all_descriptors(&echan->vchan, &head);
834 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
835 	vchan_dma_desc_free_list(&echan->vchan, &head);
836 
837 	return 0;
838 }
839 
edma_synchronize(struct dma_chan * chan)840 static void edma_synchronize(struct dma_chan *chan)
841 {
842 	struct edma_chan *echan = to_edma_chan(chan);
843 
844 	vchan_synchronize(&echan->vchan);
845 }
846 
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)847 static int edma_slave_config(struct dma_chan *chan,
848 	struct dma_slave_config *cfg)
849 {
850 	struct edma_chan *echan = to_edma_chan(chan);
851 
852 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
853 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
854 		return -EINVAL;
855 
856 	if (cfg->src_maxburst > chan->device->max_burst ||
857 	    cfg->dst_maxburst > chan->device->max_burst)
858 		return -EINVAL;
859 
860 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
861 
862 	return 0;
863 }
864 
edma_dma_pause(struct dma_chan * chan)865 static int edma_dma_pause(struct dma_chan *chan)
866 {
867 	struct edma_chan *echan = to_edma_chan(chan);
868 
869 	if (!echan->edesc)
870 		return -EINVAL;
871 
872 	edma_pause(echan);
873 	return 0;
874 }
875 
edma_dma_resume(struct dma_chan * chan)876 static int edma_dma_resume(struct dma_chan *chan)
877 {
878 	struct edma_chan *echan = to_edma_chan(chan);
879 
880 	edma_resume(echan);
881 	return 0;
882 }
883 
884 /*
885  * A PaRAM set configuration abstraction used by other modes
886  * @chan: Channel who's PaRAM set we're configuring
887  * @pset: PaRAM set to initialize and setup.
888  * @src_addr: Source address of the DMA
889  * @dst_addr: Destination address of the DMA
890  * @burst: In units of dev_width, how much to send
891  * @dev_width: How much is the dev_width
892  * @dma_length: Total length of the DMA transfer
893  * @direction: Direction of the transfer
894  */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)895 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
896 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
897 			    unsigned int acnt, unsigned int dma_length,
898 			    enum dma_transfer_direction direction)
899 {
900 	struct edma_chan *echan = to_edma_chan(chan);
901 	struct device *dev = chan->device->dev;
902 	struct edmacc_param *param = &epset->param;
903 	int bcnt, ccnt, cidx;
904 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
905 	int absync;
906 
907 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
908 	if (!burst)
909 		burst = 1;
910 	/*
911 	 * If the maxburst is equal to the fifo width, use
912 	 * A-synced transfers. This allows for large contiguous
913 	 * buffer transfers using only one PaRAM set.
914 	 */
915 	if (burst == 1) {
916 		/*
917 		 * For the A-sync case, bcnt and ccnt are the remainder
918 		 * and quotient respectively of the division of:
919 		 * (dma_length / acnt) by (SZ_64K -1). This is so
920 		 * that in case bcnt over flows, we have ccnt to use.
921 		 * Note: In A-sync transfer only, bcntrld is used, but it
922 		 * only applies for sg_dma_len(sg) >= SZ_64K.
923 		 * In this case, the best way adopted is- bccnt for the
924 		 * first frame will be the remainder below. Then for
925 		 * every successive frame, bcnt will be SZ_64K-1. This
926 		 * is assured as bcntrld = 0xffff in end of function.
927 		 */
928 		absync = false;
929 		ccnt = dma_length / acnt / (SZ_64K - 1);
930 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
931 		/*
932 		 * If bcnt is non-zero, we have a remainder and hence an
933 		 * extra frame to transfer, so increment ccnt.
934 		 */
935 		if (bcnt)
936 			ccnt++;
937 		else
938 			bcnt = SZ_64K - 1;
939 		cidx = acnt;
940 	} else {
941 		/*
942 		 * If maxburst is greater than the fifo address_width,
943 		 * use AB-synced transfers where A count is the fifo
944 		 * address_width and B count is the maxburst. In this
945 		 * case, we are limited to transfers of C count frames
946 		 * of (address_width * maxburst) where C count is limited
947 		 * to SZ_64K-1. This places an upper bound on the length
948 		 * of an SG segment that can be handled.
949 		 */
950 		absync = true;
951 		bcnt = burst;
952 		ccnt = dma_length / (acnt * bcnt);
953 		if (ccnt > (SZ_64K - 1)) {
954 			dev_err(dev, "Exceeded max SG segment size\n");
955 			return -EINVAL;
956 		}
957 		cidx = acnt * bcnt;
958 	}
959 
960 	epset->len = dma_length;
961 
962 	if (direction == DMA_MEM_TO_DEV) {
963 		src_bidx = acnt;
964 		src_cidx = cidx;
965 		dst_bidx = 0;
966 		dst_cidx = 0;
967 		epset->addr = src_addr;
968 	} else if (direction == DMA_DEV_TO_MEM)  {
969 		src_bidx = 0;
970 		src_cidx = 0;
971 		dst_bidx = acnt;
972 		dst_cidx = cidx;
973 		epset->addr = dst_addr;
974 	} else if (direction == DMA_MEM_TO_MEM)  {
975 		src_bidx = acnt;
976 		src_cidx = cidx;
977 		dst_bidx = acnt;
978 		dst_cidx = cidx;
979 		epset->addr = src_addr;
980 	} else {
981 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
982 		return -EINVAL;
983 	}
984 
985 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
986 	/* Configure A or AB synchronized transfers */
987 	if (absync)
988 		param->opt |= SYNCDIM;
989 
990 	param->src = src_addr;
991 	param->dst = dst_addr;
992 
993 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
994 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
995 
996 	param->a_b_cnt = bcnt << 16 | acnt;
997 	param->ccnt = ccnt;
998 	/*
999 	 * Only time when (bcntrld) auto reload is required is for
1000 	 * A-sync case, and in this case, a requirement of reload value
1001 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1002 	 * and then later will be populated by edma_execute.
1003 	 */
1004 	param->link_bcntrld = 0xffffffff;
1005 	return absync;
1006 }
1007 
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1008 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1009 	struct dma_chan *chan, struct scatterlist *sgl,
1010 	unsigned int sg_len, enum dma_transfer_direction direction,
1011 	unsigned long tx_flags, void *context)
1012 {
1013 	struct edma_chan *echan = to_edma_chan(chan);
1014 	struct device *dev = chan->device->dev;
1015 	struct edma_desc *edesc;
1016 	dma_addr_t src_addr = 0, dst_addr = 0;
1017 	enum dma_slave_buswidth dev_width;
1018 	u32 burst;
1019 	struct scatterlist *sg;
1020 	int i, nslots, ret;
1021 
1022 	if (unlikely(!echan || !sgl || !sg_len))
1023 		return NULL;
1024 
1025 	if (direction == DMA_DEV_TO_MEM) {
1026 		src_addr = echan->cfg.src_addr;
1027 		dev_width = echan->cfg.src_addr_width;
1028 		burst = echan->cfg.src_maxburst;
1029 	} else if (direction == DMA_MEM_TO_DEV) {
1030 		dst_addr = echan->cfg.dst_addr;
1031 		dev_width = echan->cfg.dst_addr_width;
1032 		burst = echan->cfg.dst_maxburst;
1033 	} else {
1034 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1035 		return NULL;
1036 	}
1037 
1038 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1039 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1040 		return NULL;
1041 	}
1042 
1043 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1044 	if (!edesc)
1045 		return NULL;
1046 
1047 	edesc->pset_nr = sg_len;
1048 	edesc->residue = 0;
1049 	edesc->direction = direction;
1050 	edesc->echan = echan;
1051 
1052 	/* Allocate a PaRAM slot, if needed */
1053 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1054 
1055 	for (i = 0; i < nslots; i++) {
1056 		if (echan->slot[i] < 0) {
1057 			echan->slot[i] =
1058 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1059 			if (echan->slot[i] < 0) {
1060 				kfree(edesc);
1061 				dev_err(dev, "%s: Failed to allocate slot\n",
1062 					__func__);
1063 				return NULL;
1064 			}
1065 		}
1066 	}
1067 
1068 	/* Configure PaRAM sets for each SG */
1069 	for_each_sg(sgl, sg, sg_len, i) {
1070 		/* Get address for each SG */
1071 		if (direction == DMA_DEV_TO_MEM)
1072 			dst_addr = sg_dma_address(sg);
1073 		else
1074 			src_addr = sg_dma_address(sg);
1075 
1076 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1077 				       dst_addr, burst, dev_width,
1078 				       sg_dma_len(sg), direction);
1079 		if (ret < 0) {
1080 			kfree(edesc);
1081 			return NULL;
1082 		}
1083 
1084 		edesc->absync = ret;
1085 		edesc->residue += sg_dma_len(sg);
1086 
1087 		if (i == sg_len - 1)
1088 			/* Enable completion interrupt */
1089 			edesc->pset[i].param.opt |= TCINTEN;
1090 		else if (!((i+1) % MAX_NR_SG))
1091 			/*
1092 			 * Enable early completion interrupt for the
1093 			 * intermediateset. In this case the driver will be
1094 			 * notified when the paRAM set is submitted to TC. This
1095 			 * will allow more time to set up the next set of slots.
1096 			 */
1097 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1098 	}
1099 	edesc->residue_stat = edesc->residue;
1100 
1101 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1102 }
1103 
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1104 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1105 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1106 	size_t len, unsigned long tx_flags)
1107 {
1108 	int ret, nslots;
1109 	struct edma_desc *edesc;
1110 	struct device *dev = chan->device->dev;
1111 	struct edma_chan *echan = to_edma_chan(chan);
1112 	unsigned int width, pset_len, array_size;
1113 
1114 	if (unlikely(!echan || !len))
1115 		return NULL;
1116 
1117 	/* Align the array size (acnt block) with the transfer properties */
1118 	switch (__ffs((src | dest | len))) {
1119 	case 0:
1120 		array_size = SZ_32K - 1;
1121 		break;
1122 	case 1:
1123 		array_size = SZ_32K - 2;
1124 		break;
1125 	default:
1126 		array_size = SZ_32K - 4;
1127 		break;
1128 	}
1129 
1130 	if (len < SZ_64K) {
1131 		/*
1132 		 * Transfer size less than 64K can be handled with one paRAM
1133 		 * slot and with one burst.
1134 		 * ACNT = length
1135 		 */
1136 		width = len;
1137 		pset_len = len;
1138 		nslots = 1;
1139 	} else {
1140 		/*
1141 		 * Transfer size bigger than 64K will be handled with maximum of
1142 		 * two paRAM slots.
1143 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
1144 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
1145 		 * slot2: the remaining amount of data after slot1.
1146 		 *	  ACNT = full_length - length1, length2 = ACNT
1147 		 *
1148 		 * When the full_length is a multiple of 32767 one slot can be
1149 		 * used to complete the transfer.
1150 		 */
1151 		width = array_size;
1152 		pset_len = rounddown(len, width);
1153 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
1154 		if (unlikely(pset_len == len))
1155 			nslots = 1;
1156 		else
1157 			nslots = 2;
1158 	}
1159 
1160 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1161 	if (!edesc)
1162 		return NULL;
1163 
1164 	edesc->pset_nr = nslots;
1165 	edesc->residue = edesc->residue_stat = len;
1166 	edesc->direction = DMA_MEM_TO_MEM;
1167 	edesc->echan = echan;
1168 
1169 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1170 			       width, pset_len, DMA_MEM_TO_MEM);
1171 	if (ret < 0) {
1172 		kfree(edesc);
1173 		return NULL;
1174 	}
1175 
1176 	edesc->absync = ret;
1177 
1178 	edesc->pset[0].param.opt |= ITCCHEN;
1179 	if (nslots == 1) {
1180 		/* Enable transfer complete interrupt if requested */
1181 		if (tx_flags & DMA_PREP_INTERRUPT)
1182 			edesc->pset[0].param.opt |= TCINTEN;
1183 	} else {
1184 		/* Enable transfer complete chaining for the first slot */
1185 		edesc->pset[0].param.opt |= TCCHEN;
1186 
1187 		if (echan->slot[1] < 0) {
1188 			echan->slot[1] = edma_alloc_slot(echan->ecc,
1189 							 EDMA_SLOT_ANY);
1190 			if (echan->slot[1] < 0) {
1191 				kfree(edesc);
1192 				dev_err(dev, "%s: Failed to allocate slot\n",
1193 					__func__);
1194 				return NULL;
1195 			}
1196 		}
1197 		dest += pset_len;
1198 		src += pset_len;
1199 		pset_len = width = len % array_size;
1200 
1201 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1202 				       width, pset_len, DMA_MEM_TO_MEM);
1203 		if (ret < 0) {
1204 			kfree(edesc);
1205 			return NULL;
1206 		}
1207 
1208 		edesc->pset[1].param.opt |= ITCCHEN;
1209 		/* Enable transfer complete interrupt if requested */
1210 		if (tx_flags & DMA_PREP_INTERRUPT)
1211 			edesc->pset[1].param.opt |= TCINTEN;
1212 	}
1213 
1214 	if (!(tx_flags & DMA_PREP_INTERRUPT))
1215 		edesc->polled = true;
1216 
1217 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1218 }
1219 
1220 static struct dma_async_tx_descriptor *
edma_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long tx_flags)1221 edma_prep_dma_interleaved(struct dma_chan *chan,
1222 			  struct dma_interleaved_template *xt,
1223 			  unsigned long tx_flags)
1224 {
1225 	struct device *dev = chan->device->dev;
1226 	struct edma_chan *echan = to_edma_chan(chan);
1227 	struct edmacc_param *param;
1228 	struct edma_desc *edesc;
1229 	size_t src_icg, dst_icg;
1230 	int src_bidx, dst_bidx;
1231 
1232 	/* Slave mode is not supported */
1233 	if (is_slave_direction(xt->dir))
1234 		return NULL;
1235 
1236 	if (xt->frame_size != 1 || xt->numf == 0)
1237 		return NULL;
1238 
1239 	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1240 		return NULL;
1241 
1242 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1243 	if (src_icg) {
1244 		src_bidx = src_icg + xt->sgl[0].size;
1245 	} else if (xt->src_inc) {
1246 		src_bidx = xt->sgl[0].size;
1247 	} else {
1248 		dev_err(dev, "%s: SRC constant addressing is not supported\n",
1249 			__func__);
1250 		return NULL;
1251 	}
1252 
1253 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1254 	if (dst_icg) {
1255 		dst_bidx = dst_icg + xt->sgl[0].size;
1256 	} else if (xt->dst_inc) {
1257 		dst_bidx = xt->sgl[0].size;
1258 	} else {
1259 		dev_err(dev, "%s: DST constant addressing is not supported\n",
1260 			__func__);
1261 		return NULL;
1262 	}
1263 
1264 	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1265 		return NULL;
1266 
1267 	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1268 	if (!edesc)
1269 		return NULL;
1270 
1271 	edesc->direction = DMA_MEM_TO_MEM;
1272 	edesc->echan = echan;
1273 	edesc->pset_nr = 1;
1274 
1275 	param = &edesc->pset[0].param;
1276 
1277 	param->src = xt->src_start;
1278 	param->dst = xt->dst_start;
1279 	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1280 	param->ccnt = 1;
1281 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1282 	param->src_dst_cidx = 0;
1283 
1284 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1285 	param->opt |= ITCCHEN;
1286 	/* Enable transfer complete interrupt if requested */
1287 	if (tx_flags & DMA_PREP_INTERRUPT)
1288 		param->opt |= TCINTEN;
1289 	else
1290 		edesc->polled = true;
1291 
1292 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1293 }
1294 
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1295 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1296 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1297 	size_t period_len, enum dma_transfer_direction direction,
1298 	unsigned long tx_flags)
1299 {
1300 	struct edma_chan *echan = to_edma_chan(chan);
1301 	struct device *dev = chan->device->dev;
1302 	struct edma_desc *edesc;
1303 	dma_addr_t src_addr, dst_addr;
1304 	enum dma_slave_buswidth dev_width;
1305 	bool use_intermediate = false;
1306 	u32 burst;
1307 	int i, ret, nslots;
1308 
1309 	if (unlikely(!echan || !buf_len || !period_len))
1310 		return NULL;
1311 
1312 	if (direction == DMA_DEV_TO_MEM) {
1313 		src_addr = echan->cfg.src_addr;
1314 		dst_addr = buf_addr;
1315 		dev_width = echan->cfg.src_addr_width;
1316 		burst = echan->cfg.src_maxburst;
1317 	} else if (direction == DMA_MEM_TO_DEV) {
1318 		src_addr = buf_addr;
1319 		dst_addr = echan->cfg.dst_addr;
1320 		dev_width = echan->cfg.dst_addr_width;
1321 		burst = echan->cfg.dst_maxburst;
1322 	} else {
1323 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1324 		return NULL;
1325 	}
1326 
1327 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1328 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1329 		return NULL;
1330 	}
1331 
1332 	if (unlikely(buf_len % period_len)) {
1333 		dev_err(dev, "Period should be multiple of Buffer length\n");
1334 		return NULL;
1335 	}
1336 
1337 	nslots = (buf_len / period_len) + 1;
1338 
1339 	/*
1340 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
1341 	 * by cases where the number of periods is more than the maximum
1342 	 * number of SGs the EDMA driver can handle at a time. For DMA types
1343 	 * such as Slave SGs, such delays are tolerable and synchronized,
1344 	 * but the synchronization is difficult to achieve with Cyclic and
1345 	 * cannot be guaranteed, so we error out early.
1346 	 */
1347 	if (nslots > MAX_NR_SG) {
1348 		/*
1349 		 * If the burst and period sizes are the same, we can put
1350 		 * the full buffer into a single period and activate
1351 		 * intermediate interrupts. This will produce interrupts
1352 		 * after each burst, which is also after each desired period.
1353 		 */
1354 		if (burst == period_len) {
1355 			period_len = buf_len;
1356 			nslots = 2;
1357 			use_intermediate = true;
1358 		} else {
1359 			return NULL;
1360 		}
1361 	}
1362 
1363 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1364 	if (!edesc)
1365 		return NULL;
1366 
1367 	edesc->cyclic = 1;
1368 	edesc->pset_nr = nslots;
1369 	edesc->residue = edesc->residue_stat = buf_len;
1370 	edesc->direction = direction;
1371 	edesc->echan = echan;
1372 
1373 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1374 		__func__, echan->ch_num, nslots, period_len, buf_len);
1375 
1376 	for (i = 0; i < nslots; i++) {
1377 		/* Allocate a PaRAM slot, if needed */
1378 		if (echan->slot[i] < 0) {
1379 			echan->slot[i] =
1380 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1381 			if (echan->slot[i] < 0) {
1382 				kfree(edesc);
1383 				dev_err(dev, "%s: Failed to allocate slot\n",
1384 					__func__);
1385 				return NULL;
1386 			}
1387 		}
1388 
1389 		if (i == nslots - 1) {
1390 			memcpy(&edesc->pset[i], &edesc->pset[0],
1391 			       sizeof(edesc->pset[0]));
1392 			break;
1393 		}
1394 
1395 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1396 				       dst_addr, burst, dev_width, period_len,
1397 				       direction);
1398 		if (ret < 0) {
1399 			kfree(edesc);
1400 			return NULL;
1401 		}
1402 
1403 		if (direction == DMA_DEV_TO_MEM)
1404 			dst_addr += period_len;
1405 		else
1406 			src_addr += period_len;
1407 
1408 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1409 		dev_vdbg(dev,
1410 			"\n pset[%d]:\n"
1411 			"  chnum\t%d\n"
1412 			"  slot\t%d\n"
1413 			"  opt\t%08x\n"
1414 			"  src\t%08x\n"
1415 			"  dst\t%08x\n"
1416 			"  abcnt\t%08x\n"
1417 			"  ccnt\t%08x\n"
1418 			"  bidx\t%08x\n"
1419 			"  cidx\t%08x\n"
1420 			"  lkrld\t%08x\n",
1421 			i, echan->ch_num, echan->slot[i],
1422 			edesc->pset[i].param.opt,
1423 			edesc->pset[i].param.src,
1424 			edesc->pset[i].param.dst,
1425 			edesc->pset[i].param.a_b_cnt,
1426 			edesc->pset[i].param.ccnt,
1427 			edesc->pset[i].param.src_dst_bidx,
1428 			edesc->pset[i].param.src_dst_cidx,
1429 			edesc->pset[i].param.link_bcntrld);
1430 
1431 		edesc->absync = ret;
1432 
1433 		/*
1434 		 * Enable period interrupt only if it is requested
1435 		 */
1436 		if (tx_flags & DMA_PREP_INTERRUPT) {
1437 			edesc->pset[i].param.opt |= TCINTEN;
1438 
1439 			/* Also enable intermediate interrupts if necessary */
1440 			if (use_intermediate)
1441 				edesc->pset[i].param.opt |= ITCINTEN;
1442 		}
1443 	}
1444 
1445 	/* Place the cyclic channel to highest priority queue */
1446 	if (!echan->tc)
1447 		edma_assign_channel_eventq(echan, EVENTQ_0);
1448 
1449 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1450 }
1451 
edma_completion_handler(struct edma_chan * echan)1452 static void edma_completion_handler(struct edma_chan *echan)
1453 {
1454 	struct device *dev = echan->vchan.chan.device->dev;
1455 	struct edma_desc *edesc;
1456 
1457 	spin_lock(&echan->vchan.lock);
1458 	edesc = echan->edesc;
1459 	if (edesc) {
1460 		if (edesc->cyclic) {
1461 			vchan_cyclic_callback(&edesc->vdesc);
1462 			spin_unlock(&echan->vchan.lock);
1463 			return;
1464 		} else if (edesc->processed == edesc->pset_nr) {
1465 			edesc->residue = 0;
1466 			edma_stop(echan);
1467 			vchan_cookie_complete(&edesc->vdesc);
1468 			echan->edesc = NULL;
1469 
1470 			dev_dbg(dev, "Transfer completed on channel %d\n",
1471 				echan->ch_num);
1472 		} else {
1473 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
1474 				echan->ch_num);
1475 
1476 			edma_pause(echan);
1477 
1478 			/* Update statistics for tx_status */
1479 			edesc->residue -= edesc->sg_len;
1480 			edesc->residue_stat = edesc->residue;
1481 			edesc->processed_stat = edesc->processed;
1482 		}
1483 		edma_execute(echan);
1484 	}
1485 
1486 	spin_unlock(&echan->vchan.lock);
1487 }
1488 
1489 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1490 static irqreturn_t dma_irq_handler(int irq, void *data)
1491 {
1492 	struct edma_cc *ecc = data;
1493 	int ctlr;
1494 	u32 sh_ier;
1495 	u32 sh_ipr;
1496 	u32 bank;
1497 
1498 	ctlr = ecc->id;
1499 	if (ctlr < 0)
1500 		return IRQ_NONE;
1501 
1502 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
1503 
1504 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1505 	if (!sh_ipr) {
1506 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1507 		if (!sh_ipr)
1508 			return IRQ_NONE;
1509 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1510 		bank = 1;
1511 	} else {
1512 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1513 		bank = 0;
1514 	}
1515 
1516 	do {
1517 		u32 slot;
1518 		u32 channel;
1519 
1520 		slot = __ffs(sh_ipr);
1521 		sh_ipr &= ~(BIT(slot));
1522 
1523 		if (sh_ier & BIT(slot)) {
1524 			channel = (bank << 5) | slot;
1525 			/* Clear the corresponding IPR bits */
1526 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1527 			edma_completion_handler(&ecc->slave_chans[channel]);
1528 		}
1529 	} while (sh_ipr);
1530 
1531 	edma_shadow0_write(ecc, SH_IEVAL, 1);
1532 	return IRQ_HANDLED;
1533 }
1534 
edma_error_handler(struct edma_chan * echan)1535 static void edma_error_handler(struct edma_chan *echan)
1536 {
1537 	struct edma_cc *ecc = echan->ecc;
1538 	struct device *dev = echan->vchan.chan.device->dev;
1539 	struct edmacc_param p;
1540 	int err;
1541 
1542 	if (!echan->edesc)
1543 		return;
1544 
1545 	spin_lock(&echan->vchan.lock);
1546 
1547 	err = edma_read_slot(ecc, echan->slot[0], &p);
1548 
1549 	/*
1550 	 * Issue later based on missed flag which will be sure
1551 	 * to happen as:
1552 	 * (1) we finished transmitting an intermediate slot and
1553 	 *     edma_execute is coming up.
1554 	 * (2) or we finished current transfer and issue will
1555 	 *     call edma_execute.
1556 	 *
1557 	 * Important note: issuing can be dangerous here and
1558 	 * lead to some nasty recursion when we are in a NULL
1559 	 * slot. So we avoid doing so and set the missed flag.
1560 	 */
1561 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1562 		dev_dbg(dev, "Error on null slot, setting miss\n");
1563 		echan->missed = 1;
1564 	} else {
1565 		/*
1566 		 * The slot is already programmed but the event got
1567 		 * missed, so its safe to issue it here.
1568 		 */
1569 		dev_dbg(dev, "Missed event, TRIGGERING\n");
1570 		edma_clean_channel(echan);
1571 		edma_stop(echan);
1572 		edma_start(echan);
1573 		edma_trigger_channel(echan);
1574 	}
1575 	spin_unlock(&echan->vchan.lock);
1576 }
1577 
edma_error_pending(struct edma_cc * ecc)1578 static inline bool edma_error_pending(struct edma_cc *ecc)
1579 {
1580 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
1581 	    edma_read_array(ecc, EDMA_EMR, 1) ||
1582 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1583 		return true;
1584 
1585 	return false;
1586 }
1587 
1588 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1589 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1590 {
1591 	struct edma_cc *ecc = data;
1592 	int i, j;
1593 	int ctlr;
1594 	unsigned int cnt = 0;
1595 	unsigned int val;
1596 
1597 	ctlr = ecc->id;
1598 	if (ctlr < 0)
1599 		return IRQ_NONE;
1600 
1601 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1602 
1603 	if (!edma_error_pending(ecc)) {
1604 		/*
1605 		 * The registers indicate no pending error event but the irq
1606 		 * handler has been called.
1607 		 * Ask eDMA to re-evaluate the error registers.
1608 		 */
1609 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1610 			__func__);
1611 		edma_write(ecc, EDMA_EEVAL, 1);
1612 		return IRQ_NONE;
1613 	}
1614 
1615 	while (1) {
1616 		/* Event missed register(s) */
1617 		for (j = 0; j < 2; j++) {
1618 			unsigned long emr;
1619 
1620 			val = edma_read_array(ecc, EDMA_EMR, j);
1621 			if (!val)
1622 				continue;
1623 
1624 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1625 			emr = val;
1626 			for_each_set_bit(i, &emr, 32) {
1627 				int k = (j << 5) + i;
1628 
1629 				/* Clear the corresponding EMR bits */
1630 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1631 				/* Clear any SER */
1632 				edma_shadow0_write_array(ecc, SH_SECR, j,
1633 							 BIT(i));
1634 				edma_error_handler(&ecc->slave_chans[k]);
1635 			}
1636 		}
1637 
1638 		val = edma_read(ecc, EDMA_QEMR);
1639 		if (val) {
1640 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1641 			/* Not reported, just clear the interrupt reason. */
1642 			edma_write(ecc, EDMA_QEMCR, val);
1643 			edma_shadow0_write(ecc, SH_QSECR, val);
1644 		}
1645 
1646 		val = edma_read(ecc, EDMA_CCERR);
1647 		if (val) {
1648 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1649 			/* Not reported, just clear the interrupt reason. */
1650 			edma_write(ecc, EDMA_CCERRCLR, val);
1651 		}
1652 
1653 		if (!edma_error_pending(ecc))
1654 			break;
1655 		cnt++;
1656 		if (cnt > 10)
1657 			break;
1658 	}
1659 	edma_write(ecc, EDMA_EEVAL, 1);
1660 	return IRQ_HANDLED;
1661 }
1662 
1663 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1664 static int edma_alloc_chan_resources(struct dma_chan *chan)
1665 {
1666 	struct edma_chan *echan = to_edma_chan(chan);
1667 	struct edma_cc *ecc = echan->ecc;
1668 	struct device *dev = ecc->dev;
1669 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1670 	int ret;
1671 
1672 	if (echan->tc) {
1673 		eventq_no = echan->tc->id;
1674 	} else if (ecc->tc_list) {
1675 		/* memcpy channel */
1676 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
1677 		eventq_no = echan->tc->id;
1678 	}
1679 
1680 	ret = edma_alloc_channel(echan, eventq_no);
1681 	if (ret)
1682 		return ret;
1683 
1684 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1685 	if (echan->slot[0] < 0) {
1686 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
1687 			EDMA_CHAN_SLOT(echan->ch_num));
1688 		ret = echan->slot[0];
1689 		goto err_slot;
1690 	}
1691 
1692 	/* Set up channel -> slot mapping for the entry slot */
1693 	edma_set_chmap(echan, echan->slot[0]);
1694 	echan->alloced = true;
1695 
1696 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1697 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1698 		echan->hw_triggered ? "HW" : "SW");
1699 
1700 	return 0;
1701 
1702 err_slot:
1703 	edma_free_channel(echan);
1704 	return ret;
1705 }
1706 
1707 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1708 static void edma_free_chan_resources(struct dma_chan *chan)
1709 {
1710 	struct edma_chan *echan = to_edma_chan(chan);
1711 	struct device *dev = echan->ecc->dev;
1712 	int i;
1713 
1714 	/* Terminate transfers */
1715 	edma_stop(echan);
1716 
1717 	vchan_free_chan_resources(&echan->vchan);
1718 
1719 	/* Free EDMA PaRAM slots */
1720 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1721 		if (echan->slot[i] >= 0) {
1722 			edma_free_slot(echan->ecc, echan->slot[i]);
1723 			echan->slot[i] = -1;
1724 		}
1725 	}
1726 
1727 	/* Set entry slot to the dummy slot */
1728 	edma_set_chmap(echan, echan->ecc->dummy_slot);
1729 
1730 	/* Free EDMA channel */
1731 	if (echan->alloced) {
1732 		edma_free_channel(echan);
1733 		echan->alloced = false;
1734 	}
1735 
1736 	echan->tc = NULL;
1737 	echan->hw_triggered = false;
1738 
1739 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1740 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1741 }
1742 
1743 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1744 static void edma_issue_pending(struct dma_chan *chan)
1745 {
1746 	struct edma_chan *echan = to_edma_chan(chan);
1747 	unsigned long flags;
1748 
1749 	spin_lock_irqsave(&echan->vchan.lock, flags);
1750 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1751 		edma_execute(echan);
1752 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1753 }
1754 
1755 /*
1756  * This limit exists to avoid a possible infinite loop when waiting for proof
1757  * that a particular transfer is completed. This limit can be hit if there
1758  * are large bursts to/from slow devices or the CPU is never able to catch
1759  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1760  * RX-FIFO, as many as 55 loops have been seen.
1761  */
1762 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1763 
edma_residue(struct edma_desc * edesc)1764 static u32 edma_residue(struct edma_desc *edesc)
1765 {
1766 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
1767 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1768 	struct edma_chan *echan = edesc->echan;
1769 	struct edma_pset *pset = edesc->pset;
1770 	dma_addr_t done, pos, pos_old;
1771 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
1772 	int idx = EDMA_REG_ARRAY_INDEX(channel);
1773 	int ch_bit = EDMA_CHANNEL_BIT(channel);
1774 	int event_reg;
1775 	int i;
1776 
1777 	/*
1778 	 * We always read the dst/src position from the first RamPar
1779 	 * pset. That's the one which is active now.
1780 	 */
1781 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1782 
1783 	/*
1784 	 * "pos" may represent a transfer request that is still being
1785 	 * processed by the EDMACC or EDMATC. We will busy wait until
1786 	 * any one of the situations occurs:
1787 	 *   1. while and event is pending for the channel
1788 	 *   2. a position updated
1789 	 *   3. we hit the loop limit
1790 	 */
1791 	if (is_slave_direction(edesc->direction))
1792 		event_reg = SH_ER;
1793 	else
1794 		event_reg = SH_ESR;
1795 
1796 	pos_old = pos;
1797 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1798 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1799 		if (pos != pos_old)
1800 			break;
1801 
1802 		if (!--loop_count) {
1803 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1804 				"%s: timeout waiting for PaRAM update\n",
1805 				__func__);
1806 			break;
1807 		}
1808 
1809 		cpu_relax();
1810 	}
1811 
1812 	/*
1813 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
1814 	 *
1815 	 * We never update edesc->residue in the cyclic case, so we
1816 	 * can tell the remaining room to the end of the circular
1817 	 * buffer.
1818 	 */
1819 	if (edesc->cyclic) {
1820 		done = pos - pset->addr;
1821 		edesc->residue_stat = edesc->residue - done;
1822 		return edesc->residue_stat;
1823 	}
1824 
1825 	/*
1826 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
1827 	 * transfer is completed
1828 	 */
1829 	if (!pos)
1830 		return 0;
1831 	/*
1832 	 * For SG operation we catch up with the last processed
1833 	 * status.
1834 	 */
1835 	pset += edesc->processed_stat;
1836 
1837 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1838 		/*
1839 		 * If we are inside this pset address range, we know
1840 		 * this is the active one. Get the current delta and
1841 		 * stop walking the psets.
1842 		 */
1843 		if (pos >= pset->addr && pos < pset->addr + pset->len)
1844 			return edesc->residue_stat - (pos - pset->addr);
1845 
1846 		/* Otherwise mark it done and update residue_stat. */
1847 		edesc->processed_stat++;
1848 		edesc->residue_stat -= pset->len;
1849 	}
1850 	return edesc->residue_stat;
1851 }
1852 
1853 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1854 static enum dma_status edma_tx_status(struct dma_chan *chan,
1855 				      dma_cookie_t cookie,
1856 				      struct dma_tx_state *txstate)
1857 {
1858 	struct edma_chan *echan = to_edma_chan(chan);
1859 	struct dma_tx_state txstate_tmp;
1860 	enum dma_status ret;
1861 	unsigned long flags;
1862 
1863 	ret = dma_cookie_status(chan, cookie, txstate);
1864 
1865 	if (ret == DMA_COMPLETE)
1866 		return ret;
1867 
1868 	/* Provide a dummy dma_tx_state for completion checking */
1869 	if (!txstate)
1870 		txstate = &txstate_tmp;
1871 
1872 	spin_lock_irqsave(&echan->vchan.lock, flags);
1873 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1874 		txstate->residue = edma_residue(echan->edesc);
1875 	} else {
1876 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1877 							      cookie);
1878 
1879 		if (vdesc)
1880 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1881 		else
1882 			txstate->residue = 0;
1883 	}
1884 
1885 	/*
1886 	 * Mark the cookie completed if the residue is 0 for non cyclic
1887 	 * transfers
1888 	 */
1889 	if (ret != DMA_COMPLETE && !txstate->residue &&
1890 	    echan->edesc && echan->edesc->polled &&
1891 	    echan->edesc->vdesc.tx.cookie == cookie) {
1892 		edma_stop(echan);
1893 		vchan_cookie_complete(&echan->edesc->vdesc);
1894 		echan->edesc = NULL;
1895 		edma_execute(echan);
1896 		ret = DMA_COMPLETE;
1897 	}
1898 
1899 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
1900 
1901 	return ret;
1902 }
1903 
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1904 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1905 {
1906 	if (!memcpy_channels)
1907 		return false;
1908 	while (*memcpy_channels != -1) {
1909 		if (*memcpy_channels == ch_num)
1910 			return true;
1911 		memcpy_channels++;
1912 	}
1913 	return false;
1914 }
1915 
1916 #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1917 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1918 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1919 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1920 
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1921 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1922 {
1923 	struct dma_device *s_ddev = &ecc->dma_slave;
1924 	struct dma_device *m_ddev = NULL;
1925 	s32 *memcpy_channels = ecc->info->memcpy_channels;
1926 	int i, j;
1927 
1928 	dma_cap_zero(s_ddev->cap_mask);
1929 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1930 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1931 	if (ecc->legacy_mode && !memcpy_channels) {
1932 		dev_warn(ecc->dev,
1933 			 "Legacy memcpy is enabled, things might not work\n");
1934 
1935 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1936 		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1937 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1938 		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1939 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1940 	}
1941 
1942 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1943 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1944 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1945 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
1946 	s_ddev->device_issue_pending = edma_issue_pending;
1947 	s_ddev->device_tx_status = edma_tx_status;
1948 	s_ddev->device_config = edma_slave_config;
1949 	s_ddev->device_pause = edma_dma_pause;
1950 	s_ddev->device_resume = edma_dma_resume;
1951 	s_ddev->device_terminate_all = edma_terminate_all;
1952 	s_ddev->device_synchronize = edma_synchronize;
1953 
1954 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1955 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1956 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1957 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1958 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1959 
1960 	s_ddev->dev = ecc->dev;
1961 	INIT_LIST_HEAD(&s_ddev->channels);
1962 
1963 	if (memcpy_channels) {
1964 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1965 		if (!m_ddev) {
1966 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1967 			memcpy_channels = NULL;
1968 			goto ch_setup;
1969 		}
1970 		ecc->dma_memcpy = m_ddev;
1971 
1972 		dma_cap_zero(m_ddev->cap_mask);
1973 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1974 		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1975 
1976 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1977 		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1978 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1979 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
1980 		m_ddev->device_issue_pending = edma_issue_pending;
1981 		m_ddev->device_tx_status = edma_tx_status;
1982 		m_ddev->device_config = edma_slave_config;
1983 		m_ddev->device_pause = edma_dma_pause;
1984 		m_ddev->device_resume = edma_dma_resume;
1985 		m_ddev->device_terminate_all = edma_terminate_all;
1986 		m_ddev->device_synchronize = edma_synchronize;
1987 
1988 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1989 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1990 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1991 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1992 
1993 		m_ddev->dev = ecc->dev;
1994 		INIT_LIST_HEAD(&m_ddev->channels);
1995 	} else if (!ecc->legacy_mode) {
1996 		dev_info(ecc->dev, "memcpy is disabled\n");
1997 	}
1998 
1999 ch_setup:
2000 	for (i = 0; i < ecc->num_channels; i++) {
2001 		struct edma_chan *echan = &ecc->slave_chans[i];
2002 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2003 		echan->ecc = ecc;
2004 		echan->vchan.desc_free = edma_desc_free;
2005 
2006 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2007 			vchan_init(&echan->vchan, m_ddev);
2008 		else
2009 			vchan_init(&echan->vchan, s_ddev);
2010 
2011 		INIT_LIST_HEAD(&echan->node);
2012 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
2013 			echan->slot[j] = -1;
2014 	}
2015 }
2016 
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)2017 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2018 			      struct edma_cc *ecc)
2019 {
2020 	int i;
2021 	u32 value, cccfg;
2022 	s8 (*queue_priority_map)[2];
2023 
2024 	/* Decode the eDMA3 configuration from CCCFG register */
2025 	cccfg = edma_read(ecc, EDMA_CCCFG);
2026 
2027 	value = GET_NUM_REGN(cccfg);
2028 	ecc->num_region = BIT(value);
2029 
2030 	value = GET_NUM_DMACH(cccfg);
2031 	ecc->num_channels = BIT(value + 1);
2032 
2033 	value = GET_NUM_QDMACH(cccfg);
2034 	ecc->num_qchannels = value * 2;
2035 
2036 	value = GET_NUM_PAENTRY(cccfg);
2037 	ecc->num_slots = BIT(value + 4);
2038 
2039 	value = GET_NUM_EVQUE(cccfg);
2040 	ecc->num_tc = value + 1;
2041 
2042 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2043 
2044 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2045 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2046 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2047 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2048 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2049 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2050 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2051 
2052 	/* Nothing need to be done if queue priority is provided */
2053 	if (pdata->queue_priority_mapping)
2054 		return 0;
2055 
2056 	/*
2057 	 * Configure TC/queue priority as follows:
2058 	 * Q0 - priority 0
2059 	 * Q1 - priority 1
2060 	 * Q2 - priority 2
2061 	 * ...
2062 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
2063 	 * priority. So Q0 is the highest priority queue and the last queue has
2064 	 * the lowest priority.
2065 	 */
2066 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2067 					  GFP_KERNEL);
2068 	if (!queue_priority_map)
2069 		return -ENOMEM;
2070 
2071 	for (i = 0; i < ecc->num_tc; i++) {
2072 		queue_priority_map[i][0] = i;
2073 		queue_priority_map[i][1] = i;
2074 	}
2075 	queue_priority_map[i][0] = -1;
2076 	queue_priority_map[i][1] = -1;
2077 
2078 	pdata->queue_priority_mapping = queue_priority_map;
2079 	/* Default queue has the lowest priority */
2080 	pdata->default_queue = i - 1;
2081 
2082 	return 0;
2083 }
2084 
2085 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)2086 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2087 			       size_t sz)
2088 {
2089 	const char pname[] = "ti,edma-xbar-event-map";
2090 	struct resource res;
2091 	void __iomem *xbar;
2092 	s16 (*xbar_chans)[2];
2093 	size_t nelm = sz / sizeof(s16);
2094 	u32 shift, offset, mux;
2095 	int ret, i;
2096 
2097 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2098 	if (!xbar_chans)
2099 		return -ENOMEM;
2100 
2101 	ret = of_address_to_resource(dev->of_node, 1, &res);
2102 	if (ret)
2103 		return -ENOMEM;
2104 
2105 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
2106 	if (!xbar)
2107 		return -ENOMEM;
2108 
2109 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2110 					 nelm);
2111 	if (ret)
2112 		return -EIO;
2113 
2114 	/* Invalidate last entry for the other user of this mess */
2115 	nelm >>= 1;
2116 	xbar_chans[nelm][0] = -1;
2117 	xbar_chans[nelm][1] = -1;
2118 
2119 	for (i = 0; i < nelm; i++) {
2120 		shift = (xbar_chans[i][1] & 0x03) << 3;
2121 		offset = xbar_chans[i][1] & 0xfffffffc;
2122 		mux = readl(xbar + offset);
2123 		mux &= ~(0xff << shift);
2124 		mux |= xbar_chans[i][0] << shift;
2125 		writel(mux, (xbar + offset));
2126 	}
2127 
2128 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2129 	return 0;
2130 }
2131 
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2132 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2133 						     bool legacy_mode)
2134 {
2135 	struct edma_soc_info *info;
2136 	struct property *prop;
2137 	int sz, ret;
2138 
2139 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2140 	if (!info)
2141 		return ERR_PTR(-ENOMEM);
2142 
2143 	if (legacy_mode) {
2144 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2145 					&sz);
2146 		if (prop) {
2147 			ret = edma_xbar_event_map(dev, info, sz);
2148 			if (ret)
2149 				return ERR_PTR(ret);
2150 		}
2151 		return info;
2152 	}
2153 
2154 	/* Get the list of channels allocated to be used for memcpy */
2155 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2156 	if (prop) {
2157 		const char pname[] = "ti,edma-memcpy-channels";
2158 		size_t nelm = sz / sizeof(s32);
2159 		s32 *memcpy_ch;
2160 
2161 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2162 					 GFP_KERNEL);
2163 		if (!memcpy_ch)
2164 			return ERR_PTR(-ENOMEM);
2165 
2166 		ret = of_property_read_u32_array(dev->of_node, pname,
2167 						 (u32 *)memcpy_ch, nelm);
2168 		if (ret)
2169 			return ERR_PTR(ret);
2170 
2171 		memcpy_ch[nelm] = -1;
2172 		info->memcpy_channels = memcpy_ch;
2173 	}
2174 
2175 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2176 				&sz);
2177 	if (prop) {
2178 		const char pname[] = "ti,edma-reserved-slot-ranges";
2179 		u32 (*tmp)[2];
2180 		s16 (*rsv_slots)[2];
2181 		size_t nelm = sz / sizeof(*tmp);
2182 		struct edma_rsv_info *rsv_info;
2183 		int i;
2184 
2185 		if (!nelm)
2186 			return info;
2187 
2188 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2189 		if (!tmp)
2190 			return ERR_PTR(-ENOMEM);
2191 
2192 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2193 		if (!rsv_info) {
2194 			kfree(tmp);
2195 			return ERR_PTR(-ENOMEM);
2196 		}
2197 
2198 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2199 					 GFP_KERNEL);
2200 		if (!rsv_slots) {
2201 			kfree(tmp);
2202 			return ERR_PTR(-ENOMEM);
2203 		}
2204 
2205 		ret = of_property_read_u32_array(dev->of_node, pname,
2206 						 (u32 *)tmp, nelm * 2);
2207 		if (ret) {
2208 			kfree(tmp);
2209 			return ERR_PTR(ret);
2210 		}
2211 
2212 		for (i = 0; i < nelm; i++) {
2213 			rsv_slots[i][0] = tmp[i][0];
2214 			rsv_slots[i][1] = tmp[i][1];
2215 		}
2216 		rsv_slots[nelm][0] = -1;
2217 		rsv_slots[nelm][1] = -1;
2218 
2219 		info->rsv = rsv_info;
2220 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2221 
2222 		kfree(tmp);
2223 	}
2224 
2225 	return info;
2226 }
2227 
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2228 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2229 				      struct of_dma *ofdma)
2230 {
2231 	struct edma_cc *ecc = ofdma->of_dma_data;
2232 	struct dma_chan *chan = NULL;
2233 	struct edma_chan *echan;
2234 	int i;
2235 
2236 	if (!ecc || dma_spec->args_count < 1)
2237 		return NULL;
2238 
2239 	for (i = 0; i < ecc->num_channels; i++) {
2240 		echan = &ecc->slave_chans[i];
2241 		if (echan->ch_num == dma_spec->args[0]) {
2242 			chan = &echan->vchan.chan;
2243 			break;
2244 		}
2245 	}
2246 
2247 	if (!chan)
2248 		return NULL;
2249 
2250 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2251 		goto out;
2252 
2253 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2254 	    dma_spec->args[1] < echan->ecc->num_tc) {
2255 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2256 		goto out;
2257 	}
2258 
2259 	return NULL;
2260 out:
2261 	/* The channel is going to be used as HW synchronized */
2262 	echan->hw_triggered = true;
2263 	return dma_get_slave_channel(chan);
2264 }
2265 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2266 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2267 						     bool legacy_mode)
2268 {
2269 	return ERR_PTR(-EINVAL);
2270 }
2271 
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2272 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2273 				      struct of_dma *ofdma)
2274 {
2275 	return NULL;
2276 }
2277 #endif
2278 
2279 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2280 
edma_probe(struct platform_device * pdev)2281 static int edma_probe(struct platform_device *pdev)
2282 {
2283 	struct edma_soc_info	*info = pdev->dev.platform_data;
2284 	s8			(*queue_priority_mapping)[2];
2285 	const s16		(*reserved)[2];
2286 	int			i, irq;
2287 	char			*irq_name;
2288 	struct resource		*mem;
2289 	struct device_node	*node = pdev->dev.of_node;
2290 	struct device		*dev = &pdev->dev;
2291 	struct edma_cc		*ecc;
2292 	bool			legacy_mode = true;
2293 	int ret;
2294 
2295 	if (node) {
2296 		const struct of_device_id *match;
2297 
2298 		match = of_match_node(edma_of_ids, node);
2299 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2300 			legacy_mode = false;
2301 
2302 		info = edma_setup_info_from_dt(dev, legacy_mode);
2303 		if (IS_ERR(info)) {
2304 			dev_err(dev, "failed to get DT data\n");
2305 			return PTR_ERR(info);
2306 		}
2307 	}
2308 
2309 	if (!info)
2310 		return -ENODEV;
2311 
2312 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2313 	if (ret)
2314 		return ret;
2315 
2316 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2317 	if (!ecc)
2318 		return -ENOMEM;
2319 
2320 	ecc->dev = dev;
2321 	ecc->id = pdev->id;
2322 	ecc->legacy_mode = legacy_mode;
2323 	/* When booting with DT the pdev->id is -1 */
2324 	if (ecc->id < 0)
2325 		ecc->id = 0;
2326 
2327 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2328 	if (!mem) {
2329 		dev_dbg(dev, "mem resource not found, using index 0\n");
2330 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2331 		if (!mem) {
2332 			dev_err(dev, "no mem resource?\n");
2333 			return -ENODEV;
2334 		}
2335 	}
2336 	ecc->base = devm_ioremap_resource(dev, mem);
2337 	if (IS_ERR(ecc->base))
2338 		return PTR_ERR(ecc->base);
2339 
2340 	platform_set_drvdata(pdev, ecc);
2341 
2342 	pm_runtime_enable(dev);
2343 	ret = pm_runtime_get_sync(dev);
2344 	if (ret < 0) {
2345 		dev_err(dev, "pm_runtime_get_sync() failed\n");
2346 		pm_runtime_disable(dev);
2347 		return ret;
2348 	}
2349 
2350 	/* Get eDMA3 configuration from IP */
2351 	ret = edma_setup_from_hw(dev, info, ecc);
2352 	if (ret)
2353 		goto err_disable_pm;
2354 
2355 	/* Allocate memory based on the information we got from the IP */
2356 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2357 					sizeof(*ecc->slave_chans), GFP_KERNEL);
2358 
2359 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2360 				       sizeof(unsigned long), GFP_KERNEL);
2361 
2362 	ecc->channels_mask = devm_kcalloc(dev,
2363 					   BITS_TO_LONGS(ecc->num_channels),
2364 					   sizeof(unsigned long), GFP_KERNEL);
2365 	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2366 		ret = -ENOMEM;
2367 		goto err_disable_pm;
2368 	}
2369 
2370 	/* Mark all channels available initially */
2371 	bitmap_fill(ecc->channels_mask, ecc->num_channels);
2372 
2373 	ecc->default_queue = info->default_queue;
2374 
2375 	if (info->rsv) {
2376 		/* Set the reserved slots in inuse list */
2377 		reserved = info->rsv->rsv_slots;
2378 		if (reserved) {
2379 			for (i = 0; reserved[i][0] != -1; i++)
2380 				bitmap_set(ecc->slot_inuse, reserved[i][0],
2381 					   reserved[i][1]);
2382 		}
2383 
2384 		/* Clear channels not usable for Linux */
2385 		reserved = info->rsv->rsv_chans;
2386 		if (reserved) {
2387 			for (i = 0; reserved[i][0] != -1; i++)
2388 				bitmap_clear(ecc->channels_mask, reserved[i][0],
2389 					     reserved[i][1]);
2390 		}
2391 	}
2392 
2393 	for (i = 0; i < ecc->num_slots; i++) {
2394 		/* Reset only unused - not reserved - paRAM slots */
2395 		if (!test_bit(i, ecc->slot_inuse))
2396 			edma_write_slot(ecc, i, &dummy_paramset);
2397 	}
2398 
2399 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
2400 	if (irq < 0 && node)
2401 		irq = irq_of_parse_and_map(node, 0);
2402 
2403 	if (irq > 0) {
2404 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2405 					  dev_name(dev));
2406 		if (!irq_name) {
2407 			ret = -ENOMEM;
2408 			goto err_disable_pm;
2409 		}
2410 
2411 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2412 				       ecc);
2413 		if (ret) {
2414 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2415 			goto err_disable_pm;
2416 		}
2417 		ecc->ccint = irq;
2418 	}
2419 
2420 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2421 	if (irq < 0 && node)
2422 		irq = irq_of_parse_and_map(node, 2);
2423 
2424 	if (irq > 0) {
2425 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2426 					  dev_name(dev));
2427 		if (!irq_name) {
2428 			ret = -ENOMEM;
2429 			goto err_disable_pm;
2430 		}
2431 
2432 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2433 				       ecc);
2434 		if (ret) {
2435 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2436 			goto err_disable_pm;
2437 		}
2438 		ecc->ccerrint = irq;
2439 	}
2440 
2441 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2442 	if (ecc->dummy_slot < 0) {
2443 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2444 		ret = ecc->dummy_slot;
2445 		goto err_disable_pm;
2446 	}
2447 
2448 	queue_priority_mapping = info->queue_priority_mapping;
2449 
2450 	if (!ecc->legacy_mode) {
2451 		int lowest_priority = 0;
2452 		unsigned int array_max;
2453 		struct of_phandle_args tc_args;
2454 
2455 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2456 					    sizeof(*ecc->tc_list), GFP_KERNEL);
2457 		if (!ecc->tc_list) {
2458 			ret = -ENOMEM;
2459 			goto err_reg1;
2460 		}
2461 
2462 		for (i = 0;; i++) {
2463 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2464 							       1, i, &tc_args);
2465 			if (ret || i == ecc->num_tc)
2466 				break;
2467 
2468 			ecc->tc_list[i].id = i;
2469 			queue_priority_mapping[i][1] = tc_args.args[0];
2470 			if (queue_priority_mapping[i][1] > lowest_priority) {
2471 				lowest_priority = queue_priority_mapping[i][1];
2472 				info->default_queue = i;
2473 			}
2474 			of_node_put(tc_args.np);
2475 		}
2476 
2477 		/* See if we have optional dma-channel-mask array */
2478 		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2479 		ret = of_property_read_variable_u32_array(node,
2480 						"dma-channel-mask",
2481 						(u32 *)ecc->channels_mask,
2482 						1, array_max);
2483 		if (ret > 0 && ret != array_max)
2484 			dev_warn(dev, "dma-channel-mask is not complete.\n");
2485 		else if (ret == -EOVERFLOW || ret == -ENODATA)
2486 			dev_warn(dev,
2487 				 "dma-channel-mask is out of range or empty\n");
2488 	}
2489 
2490 	/* Event queue priority mapping */
2491 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2492 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2493 					      queue_priority_mapping[i][1]);
2494 
2495 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2496 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2497 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2498 
2499 	ecc->info = info;
2500 
2501 	/* Init the dma device and channels */
2502 	edma_dma_init(ecc, legacy_mode);
2503 
2504 	for (i = 0; i < ecc->num_channels; i++) {
2505 		/* Do not touch reserved channels */
2506 		if (!test_bit(i, ecc->channels_mask))
2507 			continue;
2508 
2509 		/* Assign all channels to the default queue */
2510 		edma_assign_channel_eventq(&ecc->slave_chans[i],
2511 					   info->default_queue);
2512 		/* Set entry slot to the dummy slot */
2513 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2514 	}
2515 
2516 	ecc->dma_slave.filter.map = info->slave_map;
2517 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
2518 	ecc->dma_slave.filter.fn = edma_filter_fn;
2519 
2520 	ret = dma_async_device_register(&ecc->dma_slave);
2521 	if (ret) {
2522 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2523 		goto err_reg1;
2524 	}
2525 
2526 	if (ecc->dma_memcpy) {
2527 		ret = dma_async_device_register(ecc->dma_memcpy);
2528 		if (ret) {
2529 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
2530 				ret);
2531 			dma_async_device_unregister(&ecc->dma_slave);
2532 			goto err_reg1;
2533 		}
2534 	}
2535 
2536 	if (node)
2537 		of_dma_controller_register(node, of_edma_xlate, ecc);
2538 
2539 	dev_info(dev, "TI EDMA DMA engine driver\n");
2540 
2541 	return 0;
2542 
2543 err_reg1:
2544 	edma_free_slot(ecc, ecc->dummy_slot);
2545 err_disable_pm:
2546 	pm_runtime_put_sync(dev);
2547 	pm_runtime_disable(dev);
2548 	return ret;
2549 }
2550 
edma_cleanupp_vchan(struct dma_device * dmadev)2551 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2552 {
2553 	struct edma_chan *echan, *_echan;
2554 
2555 	list_for_each_entry_safe(echan, _echan,
2556 			&dmadev->channels, vchan.chan.device_node) {
2557 		list_del(&echan->vchan.chan.device_node);
2558 		tasklet_kill(&echan->vchan.task);
2559 	}
2560 }
2561 
edma_remove(struct platform_device * pdev)2562 static int edma_remove(struct platform_device *pdev)
2563 {
2564 	struct device *dev = &pdev->dev;
2565 	struct edma_cc *ecc = dev_get_drvdata(dev);
2566 
2567 	devm_free_irq(dev, ecc->ccint, ecc);
2568 	devm_free_irq(dev, ecc->ccerrint, ecc);
2569 
2570 	edma_cleanupp_vchan(&ecc->dma_slave);
2571 
2572 	if (dev->of_node)
2573 		of_dma_controller_free(dev->of_node);
2574 	dma_async_device_unregister(&ecc->dma_slave);
2575 	if (ecc->dma_memcpy)
2576 		dma_async_device_unregister(ecc->dma_memcpy);
2577 	edma_free_slot(ecc, ecc->dummy_slot);
2578 	pm_runtime_put_sync(dev);
2579 	pm_runtime_disable(dev);
2580 
2581 	return 0;
2582 }
2583 
2584 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2585 static int edma_pm_suspend(struct device *dev)
2586 {
2587 	struct edma_cc *ecc = dev_get_drvdata(dev);
2588 	struct edma_chan *echan = ecc->slave_chans;
2589 	int i;
2590 
2591 	for (i = 0; i < ecc->num_channels; i++) {
2592 		if (echan[i].alloced)
2593 			edma_setup_interrupt(&echan[i], false);
2594 	}
2595 
2596 	return 0;
2597 }
2598 
edma_pm_resume(struct device * dev)2599 static int edma_pm_resume(struct device *dev)
2600 {
2601 	struct edma_cc *ecc = dev_get_drvdata(dev);
2602 	struct edma_chan *echan = ecc->slave_chans;
2603 	int i;
2604 	s8 (*queue_priority_mapping)[2];
2605 
2606 	/* re initialize dummy slot to dummy param set */
2607 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2608 
2609 	queue_priority_mapping = ecc->info->queue_priority_mapping;
2610 
2611 	/* Event queue priority mapping */
2612 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2613 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2614 					      queue_priority_mapping[i][1]);
2615 
2616 	for (i = 0; i < ecc->num_channels; i++) {
2617 		if (echan[i].alloced) {
2618 			/* ensure access through shadow region 0 */
2619 			edma_or_array2(ecc, EDMA_DRAE, 0,
2620 				       EDMA_REG_ARRAY_INDEX(i),
2621 				       EDMA_CHANNEL_BIT(i));
2622 
2623 			edma_setup_interrupt(&echan[i], true);
2624 
2625 			/* Set up channel -> slot mapping for the entry slot */
2626 			edma_set_chmap(&echan[i], echan[i].slot[0]);
2627 		}
2628 	}
2629 
2630 	return 0;
2631 }
2632 #endif
2633 
2634 static const struct dev_pm_ops edma_pm_ops = {
2635 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2636 };
2637 
2638 static struct platform_driver edma_driver = {
2639 	.probe		= edma_probe,
2640 	.remove		= edma_remove,
2641 	.driver = {
2642 		.name	= "edma",
2643 		.pm	= &edma_pm_ops,
2644 		.of_match_table = edma_of_ids,
2645 	},
2646 };
2647 
edma_tptc_probe(struct platform_device * pdev)2648 static int edma_tptc_probe(struct platform_device *pdev)
2649 {
2650 	pm_runtime_enable(&pdev->dev);
2651 	return pm_runtime_get_sync(&pdev->dev);
2652 }
2653 
2654 static struct platform_driver edma_tptc_driver = {
2655 	.probe		= edma_tptc_probe,
2656 	.driver = {
2657 		.name	= "edma3-tptc",
2658 		.of_match_table = edma_tptc_of_ids,
2659 	},
2660 };
2661 
edma_filter_fn(struct dma_chan * chan,void * param)2662 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2663 {
2664 	bool match = false;
2665 
2666 	if (chan->device->dev->driver == &edma_driver.driver) {
2667 		struct edma_chan *echan = to_edma_chan(chan);
2668 		unsigned ch_req = *(unsigned *)param;
2669 		if (ch_req == echan->ch_num) {
2670 			/* The channel is going to be used as HW synchronized */
2671 			echan->hw_triggered = true;
2672 			match = true;
2673 		}
2674 	}
2675 	return match;
2676 }
2677 
edma_init(void)2678 static int edma_init(void)
2679 {
2680 	int ret;
2681 
2682 	ret = platform_driver_register(&edma_tptc_driver);
2683 	if (ret)
2684 		return ret;
2685 
2686 	return platform_driver_register(&edma_driver);
2687 }
2688 subsys_initcall(edma_init);
2689 
edma_exit(void)2690 static void __exit edma_exit(void)
2691 {
2692 	platform_driver_unregister(&edma_driver);
2693 	platform_driver_unregister(&edma_tptc_driver);
2694 }
2695 module_exit(edma_exit);
2696 
2697 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2698 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2699 MODULE_LICENSE("GPL v2");
2700