1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2002
4 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5 */
6
7 #include <common.h>
8 #include <malloc.h>
9 #include <net.h>
10 #include <netdev.h>
11 #include <asm/io.h>
12 #include <pci.h>
13 #include <miiphy.h>
14
15 #undef DEBUG
16
17 /* Ethernet chip registers.
18 */
19 #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
20 #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
21 #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
22 #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
23 #define SCBPointer 4 /* General purpose pointer. */
24 #define SCBPort 8 /* Misc. commands and operands. */
25 #define SCBflash 12 /* Flash memory control. */
26 #define SCBeeprom 14 /* EEPROM memory control. */
27 #define SCBCtrlMDI 16 /* MDI interface control. */
28 #define SCBEarlyRx 20 /* Early receive byte count. */
29 #define SCBGenControl 28 /* 82559 General Control Register */
30 #define SCBGenStatus 29 /* 82559 General Status register */
31
32 /* 82559 SCB status word defnitions
33 */
34 #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
35 #define SCB_STATUS_FR 0x4000 /* frame received */
36 #define SCB_STATUS_CNA 0x2000 /* CU left active state */
37 #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
38 #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
39 #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
40 #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
41
42 #define SCB_INTACK_MASK 0xFD00 /* all the above */
43
44 #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
45 #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
46
47 /* System control block commands
48 */
49 /* CU Commands */
50 #define CU_NOP 0x0000
51 #define CU_START 0x0010
52 #define CU_RESUME 0x0020
53 #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
54 #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
55 #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
56 #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
57
58 /* RUC Commands */
59 #define RUC_NOP 0x0000
60 #define RUC_START 0x0001
61 #define RUC_RESUME 0x0002
62 #define RUC_ABORT 0x0004
63 #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
64 #define RUC_RESUMENR 0x0007
65
66 #define CU_CMD_MASK 0x00f0
67 #define RU_CMD_MASK 0x0007
68
69 #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
70 #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
71
72 #define CU_STATUS_MASK 0x00C0
73 #define RU_STATUS_MASK 0x003C
74
75 #define RU_STATUS_IDLE (0<<2)
76 #define RU_STATUS_SUS (1<<2)
77 #define RU_STATUS_NORES (2<<2)
78 #define RU_STATUS_READY (4<<2)
79 #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
80 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
81 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
82
83 /* 82559 Port interface commands.
84 */
85 #define I82559_RESET 0x00000000 /* Software reset */
86 #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
87 #define I82559_SELECTIVE_RESET 0x00000002
88 #define I82559_DUMP 0x00000003
89 #define I82559_DUMP_WAKEUP 0x00000007
90
91 /* 82559 Eeprom interface.
92 */
93 #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
94 #define EE_CS 0x02 /* EEPROM chip select. */
95 #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
96 #define EE_WRITE_0 0x01
97 #define EE_WRITE_1 0x05
98 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
99 #define EE_ENB (0x4800 | EE_CS)
100 #define EE_CMD_BITS 3
101 #define EE_DATA_BITS 16
102
103 /* The EEPROM commands include the alway-set leading bit.
104 */
105 #define EE_EWENB_CMD (4 << addr_len)
106 #define EE_WRITE_CMD (5 << addr_len)
107 #define EE_READ_CMD (6 << addr_len)
108 #define EE_ERASE_CMD (7 << addr_len)
109
110 /* Receive frame descriptors.
111 */
112 struct RxFD {
113 volatile u16 status;
114 volatile u16 control;
115 volatile u32 link; /* struct RxFD * */
116 volatile u32 rx_buf_addr; /* void * */
117 volatile u32 count;
118
119 volatile u8 data[PKTSIZE_ALIGN];
120 };
121
122 #define RFD_STATUS_C 0x8000 /* completion of received frame */
123 #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
124
125 #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
126 #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
127 #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
128 #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
129
130 #define RFD_COUNT_MASK 0x3fff
131 #define RFD_COUNT_F 0x4000
132 #define RFD_COUNT_EOF 0x8000
133
134 #define RFD_RX_CRC 0x0800 /* crc error */
135 #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
136 #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
137 #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
138 #define RFD_RX_SHORT 0x0080 /* short frame error */
139 #define RFD_RX_LENGTH 0x0020
140 #define RFD_RX_ERROR 0x0010 /* receive error */
141 #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
142 #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
143 #define RFD_RX_TCO 0x0001 /* TCO indication */
144
145 /* Transmit frame descriptors
146 */
147 struct TxFD { /* Transmit frame descriptor set. */
148 volatile u16 status;
149 volatile u16 command;
150 volatile u32 link; /* void * */
151 volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
152 volatile s32 count;
153
154 volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
155 volatile s32 tx_buf_size0; /* Length of Tx frame. */
156 volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
157 volatile s32 tx_buf_size1; /* Length of Tx frame. */
158 };
159
160 #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
161 #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
162 #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
163 #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
164 #define TxCB_CMD_S 0x4000 /* suspend on completion */
165 #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
166
167 #define TxCB_COUNT_MASK 0x3fff
168 #define TxCB_COUNT_EOF 0x8000
169
170 /* The Speedo3 Rx and Tx frame/buffer descriptors.
171 */
172 struct descriptor { /* A generic descriptor. */
173 volatile u16 status;
174 volatile u16 command;
175 volatile u32 link; /* struct descriptor * */
176
177 unsigned char params[0];
178 };
179
180 #define CONFIG_SYS_CMD_EL 0x8000
181 #define CONFIG_SYS_CMD_SUSPEND 0x4000
182 #define CONFIG_SYS_CMD_INT 0x2000
183 #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
184 #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
185
186 #define CONFIG_SYS_STATUS_C 0x8000
187 #define CONFIG_SYS_STATUS_OK 0x2000
188
189 /* Misc.
190 */
191 #define NUM_RX_DESC PKTBUFSRX
192 #define NUM_TX_DESC 1 /* Number of TX descriptors */
193
194 #define TOUT_LOOP 1000000
195
196 static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
197 static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
198 static int rx_next; /* RX descriptor ring pointer */
199 static int tx_next; /* TX descriptor ring pointer */
200 static int tx_threshold;
201
202 /*
203 * The parameters for a CmdConfigure operation.
204 * There are so many options that it would be difficult to document
205 * each bit. We mostly use the default or recommended settings.
206 */
207 static const char i82558_config_cmd[] = {
208 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
209 0, 0x2E, 0, 0x60, 0x08, 0x88,
210 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
211 0x31, 0x05,
212 };
213
214 static void init_rx_ring (struct eth_device *dev);
215 static void purge_tx_ring (struct eth_device *dev);
216
217 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
218
219 static int eepro100_init (struct eth_device *dev, bd_t * bis);
220 static int eepro100_send(struct eth_device *dev, void *packet, int length);
221 static int eepro100_recv (struct eth_device *dev);
222 static void eepro100_halt (struct eth_device *dev);
223
224 #if defined(CONFIG_E500)
225 #define bus_to_phys(a) (a)
226 #define phys_to_bus(a) (a)
227 #else
228 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
229 #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
230 #endif
231
INW(struct eth_device * dev,u_long addr)232 static inline int INW (struct eth_device *dev, u_long addr)
233 {
234 return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase));
235 }
236
OUTW(struct eth_device * dev,int command,u_long addr)237 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
238 {
239 *(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command);
240 }
241
OUTL(struct eth_device * dev,int command,u_long addr)242 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
243 {
244 *(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command);
245 }
246
247 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
INL(struct eth_device * dev,u_long addr)248 static inline int INL (struct eth_device *dev, u_long addr)
249 {
250 return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase));
251 }
252
get_phyreg(struct eth_device * dev,unsigned char addr,unsigned char reg,unsigned short * value)253 static int get_phyreg (struct eth_device *dev, unsigned char addr,
254 unsigned char reg, unsigned short *value)
255 {
256 int cmd;
257 int timeout = 50;
258
259 /* read requested data */
260 cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
261 OUTL (dev, cmd, SCBCtrlMDI);
262
263 do {
264 udelay(1000);
265 cmd = INL (dev, SCBCtrlMDI);
266 } while (!(cmd & (1 << 28)) && (--timeout));
267
268 if (timeout == 0)
269 return -1;
270
271 *value = (unsigned short) (cmd & 0xffff);
272
273 return 0;
274 }
275
set_phyreg(struct eth_device * dev,unsigned char addr,unsigned char reg,unsigned short value)276 static int set_phyreg (struct eth_device *dev, unsigned char addr,
277 unsigned char reg, unsigned short value)
278 {
279 int cmd;
280 int timeout = 50;
281
282 /* write requested data */
283 cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
284 OUTL (dev, cmd | value, SCBCtrlMDI);
285
286 while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
287 udelay(1000);
288
289 if (timeout == 0)
290 return -1;
291
292 return 0;
293 }
294
295 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
296 * Do this by checking model value field from ID2 register.
297 */
verify_phyaddr(const char * devname,unsigned char addr)298 static struct eth_device* verify_phyaddr (const char *devname,
299 unsigned char addr)
300 {
301 struct eth_device *dev;
302 unsigned short value;
303 unsigned char model;
304
305 dev = eth_get_dev_by_name(devname);
306 if (dev == NULL) {
307 printf("%s: no such device\n", devname);
308 return NULL;
309 }
310
311 /* read id2 register */
312 if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
313 printf("%s: mii read timeout!\n", devname);
314 return NULL;
315 }
316
317 /* get model */
318 model = (unsigned char)((value >> 4) & 0x003f);
319
320 if (model == 0) {
321 printf("%s: no PHY at address %d\n", devname, addr);
322 return NULL;
323 }
324
325 return dev;
326 }
327
eepro100_miiphy_read(struct mii_dev * bus,int addr,int devad,int reg)328 static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
329 int reg)
330 {
331 unsigned short value = 0;
332 struct eth_device *dev;
333
334 dev = verify_phyaddr(bus->name, addr);
335 if (dev == NULL)
336 return -1;
337
338 if (get_phyreg(dev, addr, reg, &value) != 0) {
339 printf("%s: mii read timeout!\n", bus->name);
340 return -1;
341 }
342
343 return value;
344 }
345
eepro100_miiphy_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)346 static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
347 int reg, u16 value)
348 {
349 struct eth_device *dev;
350
351 dev = verify_phyaddr(bus->name, addr);
352 if (dev == NULL)
353 return -1;
354
355 if (set_phyreg(dev, addr, reg, value) != 0) {
356 printf("%s: mii write timeout!\n", bus->name);
357 return -1;
358 }
359
360 return 0;
361 }
362
363 #endif
364
365 /* Wait for the chip get the command.
366 */
wait_for_eepro100(struct eth_device * dev)367 static int wait_for_eepro100 (struct eth_device *dev)
368 {
369 int i;
370
371 for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
372 if (i >= TOUT_LOOP) {
373 return 0;
374 }
375 }
376
377 return 1;
378 }
379
380 static struct pci_device_id supported[] = {
381 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
382 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
383 {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
384 {}
385 };
386
eepro100_initialize(bd_t * bis)387 int eepro100_initialize (bd_t * bis)
388 {
389 pci_dev_t devno;
390 int card_number = 0;
391 struct eth_device *dev;
392 u32 iobase, status;
393 int idx = 0;
394
395 while (1) {
396 /* Find PCI device
397 */
398 if ((devno = pci_find_devices (supported, idx++)) < 0) {
399 break;
400 }
401
402 pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
403 iobase &= ~0xf;
404
405 #ifdef DEBUG
406 printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
407 iobase);
408 #endif
409
410 pci_write_config_dword (devno,
411 PCI_COMMAND,
412 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
413
414 /* Check if I/O accesses and Bus Mastering are enabled.
415 */
416 pci_read_config_dword (devno, PCI_COMMAND, &status);
417 if (!(status & PCI_COMMAND_MEMORY)) {
418 printf ("Error: Can not enable MEM access.\n");
419 continue;
420 }
421
422 if (!(status & PCI_COMMAND_MASTER)) {
423 printf ("Error: Can not enable Bus Mastering.\n");
424 continue;
425 }
426
427 dev = (struct eth_device *) malloc (sizeof *dev);
428 if (!dev) {
429 printf("eepro100: Can not allocate memory\n");
430 break;
431 }
432 memset(dev, 0, sizeof(*dev));
433
434 sprintf (dev->name, "i82559#%d", card_number);
435 dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
436 dev->iobase = bus_to_phys (iobase);
437 dev->init = eepro100_init;
438 dev->halt = eepro100_halt;
439 dev->send = eepro100_send;
440 dev->recv = eepro100_recv;
441
442 eth_register (dev);
443
444 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
445 /* register mii command access routines */
446 int retval;
447 struct mii_dev *mdiodev = mdio_alloc();
448 if (!mdiodev)
449 return -ENOMEM;
450 strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
451 mdiodev->read = eepro100_miiphy_read;
452 mdiodev->write = eepro100_miiphy_write;
453
454 retval = mdio_register(mdiodev);
455 if (retval < 0)
456 return retval;
457 #endif
458
459 card_number++;
460
461 /* Set the latency timer for value.
462 */
463 pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
464
465 udelay (10 * 1000);
466
467 read_hw_addr (dev, bis);
468 }
469
470 return card_number;
471 }
472
473
eepro100_init(struct eth_device * dev,bd_t * bis)474 static int eepro100_init (struct eth_device *dev, bd_t * bis)
475 {
476 int i, status = -1;
477 int tx_cur;
478 struct descriptor *ias_cmd, *cfg_cmd;
479
480 /* Reset the ethernet controller
481 */
482 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
483 udelay (20);
484
485 OUTL (dev, I82559_RESET, SCBPort);
486 udelay (20);
487
488 if (!wait_for_eepro100 (dev)) {
489 printf ("Error: Can not reset ethernet controller.\n");
490 goto Done;
491 }
492 OUTL (dev, 0, SCBPointer);
493 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
494
495 if (!wait_for_eepro100 (dev)) {
496 printf ("Error: Can not reset ethernet controller.\n");
497 goto Done;
498 }
499 OUTL (dev, 0, SCBPointer);
500 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
501
502 /* Initialize Rx and Tx rings.
503 */
504 init_rx_ring (dev);
505 purge_tx_ring (dev);
506
507 /* Tell the adapter where the RX ring is located.
508 */
509 if (!wait_for_eepro100 (dev)) {
510 printf ("Error: Can not reset ethernet controller.\n");
511 goto Done;
512 }
513
514 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
515 OUTW (dev, SCB_M | RUC_START, SCBCmd);
516
517 /* Send the Configure frame */
518 tx_cur = tx_next;
519 tx_next = ((tx_next + 1) % NUM_TX_DESC);
520
521 cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
522 cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
523 cfg_cmd->status = 0;
524 cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
525
526 memcpy (cfg_cmd->params, i82558_config_cmd,
527 sizeof (i82558_config_cmd));
528
529 if (!wait_for_eepro100 (dev)) {
530 printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
531 goto Done;
532 }
533
534 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
535 OUTW (dev, SCB_M | CU_START, SCBCmd);
536
537 for (i = 0;
538 !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
539 i++) {
540 if (i >= TOUT_LOOP) {
541 printf ("%s: Tx error buffer not ready\n", dev->name);
542 goto Done;
543 }
544 }
545
546 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
547 printf ("TX error status = 0x%08X\n",
548 le16_to_cpu (tx_ring[tx_cur].status));
549 goto Done;
550 }
551
552 /* Send the Individual Address Setup frame
553 */
554 tx_cur = tx_next;
555 tx_next = ((tx_next + 1) % NUM_TX_DESC);
556
557 ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
558 ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
559 ias_cmd->status = 0;
560 ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
561
562 memcpy (ias_cmd->params, dev->enetaddr, 6);
563
564 /* Tell the adapter where the TX ring is located.
565 */
566 if (!wait_for_eepro100 (dev)) {
567 printf ("Error: Can not reset ethernet controller.\n");
568 goto Done;
569 }
570
571 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
572 OUTW (dev, SCB_M | CU_START, SCBCmd);
573
574 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
575 i++) {
576 if (i >= TOUT_LOOP) {
577 printf ("%s: Tx error buffer not ready\n",
578 dev->name);
579 goto Done;
580 }
581 }
582
583 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
584 printf ("TX error status = 0x%08X\n",
585 le16_to_cpu (tx_ring[tx_cur].status));
586 goto Done;
587 }
588
589 status = 0;
590
591 Done:
592 return status;
593 }
594
eepro100_send(struct eth_device * dev,void * packet,int length)595 static int eepro100_send(struct eth_device *dev, void *packet, int length)
596 {
597 int i, status = -1;
598 int tx_cur;
599
600 if (length <= 0) {
601 printf ("%s: bad packet size: %d\n", dev->name, length);
602 goto Done;
603 }
604
605 tx_cur = tx_next;
606 tx_next = (tx_next + 1) % NUM_TX_DESC;
607
608 tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
609 TxCB_CMD_SF |
610 TxCB_CMD_S |
611 TxCB_CMD_EL );
612 tx_ring[tx_cur].status = 0;
613 tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
614 tx_ring[tx_cur].link =
615 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
616 tx_ring[tx_cur].tx_desc_addr =
617 cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
618 tx_ring[tx_cur].tx_buf_addr0 =
619 cpu_to_le32 (phys_to_bus ((u_long) packet));
620 tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
621
622 if (!wait_for_eepro100 (dev)) {
623 printf ("%s: Tx error ethernet controller not ready.\n",
624 dev->name);
625 goto Done;
626 }
627
628 /* Send the packet.
629 */
630 OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
631 OUTW (dev, SCB_M | CU_START, SCBCmd);
632
633 for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
634 i++) {
635 if (i >= TOUT_LOOP) {
636 printf ("%s: Tx error buffer not ready\n", dev->name);
637 goto Done;
638 }
639 }
640
641 if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
642 printf ("TX error status = 0x%08X\n",
643 le16_to_cpu (tx_ring[tx_cur].status));
644 goto Done;
645 }
646
647 status = length;
648
649 Done:
650 return status;
651 }
652
eepro100_recv(struct eth_device * dev)653 static int eepro100_recv (struct eth_device *dev)
654 {
655 u16 status, stat;
656 int rx_prev, length = 0;
657
658 stat = INW (dev, SCBStatus);
659 OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
660
661 for (;;) {
662 status = le16_to_cpu (rx_ring[rx_next].status);
663
664 if (!(status & RFD_STATUS_C)) {
665 break;
666 }
667
668 /* Valid frame status.
669 */
670 if ((status & RFD_STATUS_OK)) {
671 /* A valid frame received.
672 */
673 length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
674
675 /* Pass the packet up to the protocol
676 * layers.
677 */
678 net_process_received_packet((u8 *)rx_ring[rx_next].data,
679 length);
680 } else {
681 /* There was an error.
682 */
683 printf ("RX error status = 0x%08X\n", status);
684 }
685
686 rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
687 rx_ring[rx_next].status = 0;
688 rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
689
690 rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
691 rx_ring[rx_prev].control = 0;
692
693 /* Update entry information.
694 */
695 rx_next = (rx_next + 1) % NUM_RX_DESC;
696 }
697
698 if (stat & SCB_STATUS_RNR) {
699
700 printf ("%s: Receiver is not ready, restart it !\n", dev->name);
701
702 /* Reinitialize Rx ring.
703 */
704 init_rx_ring (dev);
705
706 if (!wait_for_eepro100 (dev)) {
707 printf ("Error: Can not restart ethernet controller.\n");
708 goto Done;
709 }
710
711 OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
712 OUTW (dev, SCB_M | RUC_START, SCBCmd);
713 }
714
715 Done:
716 return length;
717 }
718
eepro100_halt(struct eth_device * dev)719 static void eepro100_halt (struct eth_device *dev)
720 {
721 /* Reset the ethernet controller
722 */
723 OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
724 udelay (20);
725
726 OUTL (dev, I82559_RESET, SCBPort);
727 udelay (20);
728
729 if (!wait_for_eepro100 (dev)) {
730 printf ("Error: Can not reset ethernet controller.\n");
731 goto Done;
732 }
733 OUTL (dev, 0, SCBPointer);
734 OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
735
736 if (!wait_for_eepro100 (dev)) {
737 printf ("Error: Can not reset ethernet controller.\n");
738 goto Done;
739 }
740 OUTL (dev, 0, SCBPointer);
741 OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
742
743 Done:
744 return;
745 }
746
747 /* SROM Read.
748 */
read_eeprom(struct eth_device * dev,int location,int addr_len)749 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
750 {
751 unsigned short retval = 0;
752 int read_cmd = location | EE_READ_CMD;
753 int i;
754
755 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
756 OUTW (dev, EE_ENB, SCBeeprom);
757
758 /* Shift the read command bits out. */
759 for (i = 12; i >= 0; i--) {
760 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
761
762 OUTW (dev, EE_ENB | dataval, SCBeeprom);
763 udelay (1);
764 OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
765 udelay (1);
766 }
767 OUTW (dev, EE_ENB, SCBeeprom);
768
769 for (i = 15; i >= 0; i--) {
770 OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
771 udelay (1);
772 retval = (retval << 1) |
773 ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
774 OUTW (dev, EE_ENB, SCBeeprom);
775 udelay (1);
776 }
777
778 /* Terminate the EEPROM access. */
779 OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
780 return retval;
781 }
782
783 #ifdef CONFIG_EEPRO100_SROM_WRITE
eepro100_write_eeprom(struct eth_device * dev,int location,int addr_len,unsigned short data)784 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
785 {
786 unsigned short dataval;
787 int enable_cmd = 0x3f | EE_EWENB_CMD;
788 int write_cmd = location | EE_WRITE_CMD;
789 int i;
790 unsigned long datalong, tmplong;
791
792 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
793 udelay(1);
794 OUTW(dev, EE_ENB, SCBeeprom);
795
796 /* Shift the enable command bits out. */
797 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
798 {
799 dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
800 OUTW(dev, EE_ENB | dataval, SCBeeprom);
801 udelay(1);
802 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
803 udelay(1);
804 }
805
806 OUTW(dev, EE_ENB, SCBeeprom);
807 udelay(1);
808 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
809 udelay(1);
810 OUTW(dev, EE_ENB, SCBeeprom);
811
812
813 /* Shift the write command bits out. */
814 for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
815 {
816 dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
817 OUTW(dev, EE_ENB | dataval, SCBeeprom);
818 udelay(1);
819 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
820 udelay(1);
821 }
822
823 /* Write the data */
824 datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
825
826 for (i = 0; i< EE_DATA_BITS; i++)
827 {
828 /* Extract and move data bit to bit DI */
829 dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
830
831 OUTW(dev, EE_ENB | dataval, SCBeeprom);
832 udelay(1);
833 OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
834 udelay(1);
835 OUTW(dev, EE_ENB | dataval, SCBeeprom);
836 udelay(1);
837
838 datalong = datalong << 1; /* Adjust significant data bit*/
839 }
840
841 /* Finish up command (toggle CS) */
842 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
843 udelay(1); /* delay for more than 250 ns */
844 OUTW(dev, EE_ENB, SCBeeprom);
845
846 /* Wait for programming ready (D0 = 1) */
847 tmplong = 10;
848 do
849 {
850 dataval = INW(dev, SCBeeprom);
851 if (dataval & EE_DATA_READ)
852 break;
853 udelay(10000);
854 }
855 while (-- tmplong);
856
857 if (tmplong == 0)
858 {
859 printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
860 return -1;
861 }
862
863 /* Terminate the EEPROM access. */
864 OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
865
866 return 0;
867 }
868 #endif
869
init_rx_ring(struct eth_device * dev)870 static void init_rx_ring (struct eth_device *dev)
871 {
872 int i;
873
874 for (i = 0; i < NUM_RX_DESC; i++) {
875 rx_ring[i].status = 0;
876 rx_ring[i].control =
877 (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
878 rx_ring[i].link =
879 cpu_to_le32 (phys_to_bus
880 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
881 rx_ring[i].rx_buf_addr = 0xffffffff;
882 rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
883 }
884
885 rx_next = 0;
886 }
887
purge_tx_ring(struct eth_device * dev)888 static void purge_tx_ring (struct eth_device *dev)
889 {
890 int i;
891
892 tx_next = 0;
893 tx_threshold = 0x01208000;
894
895 for (i = 0; i < NUM_TX_DESC; i++) {
896 tx_ring[i].status = 0;
897 tx_ring[i].command = 0;
898 tx_ring[i].link = 0;
899 tx_ring[i].tx_desc_addr = 0;
900 tx_ring[i].count = 0;
901
902 tx_ring[i].tx_buf_addr0 = 0;
903 tx_ring[i].tx_buf_size0 = 0;
904 tx_ring[i].tx_buf_addr1 = 0;
905 tx_ring[i].tx_buf_size1 = 0;
906 }
907 }
908
read_hw_addr(struct eth_device * dev,bd_t * bis)909 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
910 {
911 u16 sum = 0;
912 int i, j;
913 int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
914
915 for (j = 0, i = 0; i < 0x40; i++) {
916 u16 value = read_eeprom (dev, i, addr_len);
917
918 sum += value;
919 if (i < 3) {
920 dev->enetaddr[j++] = value;
921 dev->enetaddr[j++] = value >> 8;
922 }
923 }
924
925 if (sum != 0xBABA) {
926 memset (dev->enetaddr, 0, ETH_ALEN);
927 #ifdef DEBUG
928 printf ("%s: Invalid EEPROM checksum %#4.4x, "
929 "check settings before activating this device!\n",
930 dev->name, sum);
931 #endif
932 }
933 }
934