1 /*
2 * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 /* The controller can support a variety of different displays, but we only
11 implement one. Most of the commands relating to brightness and geometry
12 setup are ignored. */
13
14 #include "qemu/osdep.h"
15 #include "hw/ssi/ssi.h"
16 #include "migration/vmstate.h"
17 #include "qemu/module.h"
18 #include "ui/console.h"
19 #include "qom/object.h"
20
21 //#define DEBUG_SSD0323 1
22
23 #ifdef DEBUG_SSD0323
24 #define DPRINTF(fmt, ...) \
25 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { \
28 fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
29 } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #define BADF(fmt, ...) \
33 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
34 #endif
35
36 /* Scaling factor for pixels. */
37 #define MAGNIFY 4
38
39 #define REMAP_SWAP_COLUMN 0x01
40 #define REMAP_SWAP_NYBBLE 0x02
41 #define REMAP_VERTICAL 0x04
42 #define REMAP_SWAP_COM 0x10
43 #define REMAP_SPLIT_COM 0x40
44
45 enum ssd0323_mode
46 {
47 SSD0323_CMD,
48 SSD0323_DATA
49 };
50
51 struct ssd0323_state {
52 SSIPeripheral ssidev;
53 QemuConsole *con;
54
55 uint32_t cmd_len;
56 int32_t cmd;
57 int32_t cmd_data[8];
58 int32_t row;
59 int32_t row_start;
60 int32_t row_end;
61 int32_t col;
62 int32_t col_start;
63 int32_t col_end;
64 int32_t redraw;
65 int32_t remap;
66 uint32_t mode;
67 uint8_t framebuffer[128 * 80 / 2];
68 };
69
70 #define TYPE_SSD0323 "ssd0323"
OBJECT_DECLARE_SIMPLE_TYPE(ssd0323_state,SSD0323)71 OBJECT_DECLARE_SIMPLE_TYPE(ssd0323_state, SSD0323)
72
73
74 static uint32_t ssd0323_transfer(SSIPeripheral *dev, uint32_t data)
75 {
76 ssd0323_state *s = SSD0323(dev);
77
78 switch (s->mode) {
79 case SSD0323_DATA:
80 DPRINTF("data 0x%02x\n", data);
81 s->framebuffer[s->col + s->row * 64] = data;
82 if (s->remap & REMAP_VERTICAL) {
83 s->row++;
84 if (s->row > s->row_end) {
85 s->row = s->row_start;
86 s->col++;
87 }
88 if (s->col > s->col_end) {
89 s->col = s->col_start;
90 }
91 } else {
92 s->col++;
93 if (s->col > s->col_end) {
94 s->row++;
95 s->col = s->col_start;
96 }
97 if (s->row > s->row_end) {
98 s->row = s->row_start;
99 }
100 }
101 s->redraw = 1;
102 break;
103 case SSD0323_CMD:
104 DPRINTF("cmd 0x%02x\n", data);
105 if (s->cmd_len == 0) {
106 s->cmd = data;
107 } else {
108 s->cmd_data[s->cmd_len - 1] = data;
109 }
110 s->cmd_len++;
111 switch (s->cmd) {
112 #define DATA(x) if (s->cmd_len <= (x)) return 0
113 case 0x15: /* Set column. */
114 DATA(2);
115 s->col = s->col_start = s->cmd_data[0] % 64;
116 s->col_end = s->cmd_data[1] % 64;
117 break;
118 case 0x75: /* Set row. */
119 DATA(2);
120 s->row = s->row_start = s->cmd_data[0] % 80;
121 s->row_end = s->cmd_data[1] % 80;
122 break;
123 case 0x81: /* Set contrast */
124 DATA(1);
125 break;
126 case 0x84: case 0x85: case 0x86: /* Max current. */
127 DATA(0);
128 break;
129 case 0xa0: /* Set remapping. */
130 /* FIXME: Implement this. */
131 DATA(1);
132 s->remap = s->cmd_data[0];
133 break;
134 case 0xa1: /* Set display start line. */
135 case 0xa2: /* Set display offset. */
136 /* FIXME: Implement these. */
137 DATA(1);
138 break;
139 case 0xa4: /* Normal mode. */
140 case 0xa5: /* All on. */
141 case 0xa6: /* All off. */
142 case 0xa7: /* Inverse. */
143 /* FIXME: Implement these. */
144 DATA(0);
145 break;
146 case 0xa8: /* Set multiplex ratio. */
147 case 0xad: /* Set DC-DC converter. */
148 DATA(1);
149 /* Ignored. Don't care. */
150 break;
151 case 0xae: /* Display off. */
152 case 0xaf: /* Display on. */
153 DATA(0);
154 /* TODO: Implement power control. */
155 break;
156 case 0xb1: /* Set phase length. */
157 case 0xb2: /* Set row period. */
158 case 0xb3: /* Set clock rate. */
159 case 0xbc: /* Set precharge. */
160 case 0xbe: /* Set VCOMH. */
161 case 0xbf: /* Set segment low. */
162 DATA(1);
163 /* Ignored. Don't care. */
164 break;
165 case 0xb8: /* Set grey scale table. */
166 /* FIXME: Implement this. */
167 DATA(8);
168 break;
169 case 0xe3: /* NOP. */
170 DATA(0);
171 break;
172 case 0xff: /* Nasty hack because we don't handle chip selects
173 properly. */
174 break;
175 default:
176 BADF("Unknown command: 0x%x\n", data);
177 }
178 s->cmd_len = 0;
179 return 0;
180 }
181 return 0;
182 }
183
ssd0323_update_display(void * opaque)184 static void ssd0323_update_display(void *opaque)
185 {
186 ssd0323_state *s = (ssd0323_state *)opaque;
187 DisplaySurface *surface = qemu_console_surface(s->con);
188 uint8_t *dest;
189 uint8_t *src;
190 int x;
191 int y;
192 int i;
193 int line;
194 char *colors[16];
195 char colortab[MAGNIFY * 64];
196 char *p;
197 int dest_width;
198
199 if (!s->redraw)
200 return;
201
202 switch (surface_bits_per_pixel(surface)) {
203 case 0:
204 return;
205 case 15:
206 dest_width = 2;
207 break;
208 case 16:
209 dest_width = 2;
210 break;
211 case 24:
212 dest_width = 3;
213 break;
214 case 32:
215 dest_width = 4;
216 break;
217 default:
218 BADF("Bad color depth\n");
219 return;
220 }
221 p = colortab;
222 for (i = 0; i < 16; i++) {
223 int n;
224 colors[i] = p;
225 switch (surface_bits_per_pixel(surface)) {
226 case 15:
227 n = i * 2 + (i >> 3);
228 p[0] = n | (n << 5);
229 p[1] = (n << 2) | (n >> 3);
230 break;
231 case 16:
232 n = i * 2 + (i >> 3);
233 p[0] = n | (n << 6) | ((n << 1) & 0x20);
234 p[1] = (n << 3) | (n >> 2);
235 break;
236 case 24:
237 case 32:
238 n = (i << 4) | i;
239 p[0] = p[1] = p[2] = n;
240 break;
241 default:
242 BADF("Bad color depth\n");
243 return;
244 }
245 p += dest_width;
246 }
247 /* TODO: Implement row/column remapping. */
248 dest = surface_data(surface);
249 for (y = 0; y < 64; y++) {
250 line = y;
251 src = s->framebuffer + 64 * line;
252 for (x = 0; x < 64; x++) {
253 int val;
254 val = *src >> 4;
255 for (i = 0; i < MAGNIFY; i++) {
256 memcpy(dest, colors[val], dest_width);
257 dest += dest_width;
258 }
259 val = *src & 0xf;
260 for (i = 0; i < MAGNIFY; i++) {
261 memcpy(dest, colors[val], dest_width);
262 dest += dest_width;
263 }
264 src++;
265 }
266 for (i = 1; i < MAGNIFY; i++) {
267 memcpy(dest, dest - dest_width * MAGNIFY * 128,
268 dest_width * 128 * MAGNIFY);
269 dest += dest_width * 128 * MAGNIFY;
270 }
271 }
272 s->redraw = 0;
273 dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
274 }
275
ssd0323_invalidate_display(void * opaque)276 static void ssd0323_invalidate_display(void * opaque)
277 {
278 ssd0323_state *s = (ssd0323_state *)opaque;
279 s->redraw = 1;
280 }
281
282 /* Command/data input. */
ssd0323_cd(void * opaque,int n,int level)283 static void ssd0323_cd(void *opaque, int n, int level)
284 {
285 ssd0323_state *s = (ssd0323_state *)opaque;
286 DPRINTF("%s mode\n", level ? "Data" : "Command");
287 s->mode = level ? SSD0323_DATA : SSD0323_CMD;
288 }
289
ssd0323_post_load(void * opaque,int version_id)290 static int ssd0323_post_load(void *opaque, int version_id)
291 {
292 ssd0323_state *s = (ssd0323_state *)opaque;
293
294 if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
295 return -EINVAL;
296 }
297 if (s->row < 0 || s->row >= 80) {
298 return -EINVAL;
299 }
300 if (s->row_start < 0 || s->row_start >= 80) {
301 return -EINVAL;
302 }
303 if (s->row_end < 0 || s->row_end >= 80) {
304 return -EINVAL;
305 }
306 if (s->col < 0 || s->col >= 64) {
307 return -EINVAL;
308 }
309 if (s->col_start < 0 || s->col_start >= 64) {
310 return -EINVAL;
311 }
312 if (s->col_end < 0 || s->col_end >= 64) {
313 return -EINVAL;
314 }
315 if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
316 return -EINVAL;
317 }
318
319 return 0;
320 }
321
322 static const VMStateDescription vmstate_ssd0323 = {
323 .name = "ssd0323_oled",
324 .version_id = 2,
325 .minimum_version_id = 2,
326 .post_load = ssd0323_post_load,
327 .fields = (const VMStateField []) {
328 VMSTATE_UINT32(cmd_len, ssd0323_state),
329 VMSTATE_INT32(cmd, ssd0323_state),
330 VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
331 VMSTATE_INT32(row, ssd0323_state),
332 VMSTATE_INT32(row_start, ssd0323_state),
333 VMSTATE_INT32(row_end, ssd0323_state),
334 VMSTATE_INT32(col, ssd0323_state),
335 VMSTATE_INT32(col_start, ssd0323_state),
336 VMSTATE_INT32(col_end, ssd0323_state),
337 VMSTATE_INT32(redraw, ssd0323_state),
338 VMSTATE_INT32(remap, ssd0323_state),
339 VMSTATE_UINT32(mode, ssd0323_state),
340 VMSTATE_BUFFER(framebuffer, ssd0323_state),
341 VMSTATE_SSI_PERIPHERAL(ssidev, ssd0323_state),
342 VMSTATE_END_OF_LIST()
343 }
344 };
345
346 static const GraphicHwOps ssd0323_ops = {
347 .invalidate = ssd0323_invalidate_display,
348 .gfx_update = ssd0323_update_display,
349 };
350
ssd0323_realize(SSIPeripheral * d,Error ** errp)351 static void ssd0323_realize(SSIPeripheral *d, Error **errp)
352 {
353 DeviceState *dev = DEVICE(d);
354 ssd0323_state *s = SSD0323(d);
355
356 s->col_end = 63;
357 s->row_end = 79;
358 s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
359 qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
360
361 qdev_init_gpio_in(dev, ssd0323_cd, 1);
362 }
363
ssd0323_class_init(ObjectClass * klass,void * data)364 static void ssd0323_class_init(ObjectClass *klass, void *data)
365 {
366 DeviceClass *dc = DEVICE_CLASS(klass);
367 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
368
369 k->realize = ssd0323_realize;
370 k->transfer = ssd0323_transfer;
371 k->cs_polarity = SSI_CS_HIGH;
372 dc->vmsd = &vmstate_ssd0323;
373 set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories);
374 }
375
376 static const TypeInfo ssd0323_info = {
377 .name = TYPE_SSD0323,
378 .parent = TYPE_SSI_PERIPHERAL,
379 .instance_size = sizeof(ssd0323_state),
380 .class_init = ssd0323_class_init,
381 };
382
ssd03232_register_types(void)383 static void ssd03232_register_types(void)
384 {
385 type_register_static(&ssd0323_info);
386 }
387
388 type_init(ssd03232_register_types)
389