xref: /openbmc/linux/drivers/rtc/rtc-sh.c (revision cdd38c5f1ce4398ec58fec95904b75824daab7b5)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * SuperH On-Chip RTC Support
4   *
5   * Copyright (C) 2006 - 2009  Paul Mundt
6   * Copyright (C) 2006  Jamie Lenehan
7   * Copyright (C) 2008  Angelo Castello
8   *
9   * Based on the old arch/sh/kernel/cpu/rtc.c by:
10   *
11   *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
12   *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
13   */
14  #include <linux/module.h>
15  #include <linux/mod_devicetable.h>
16  #include <linux/kernel.h>
17  #include <linux/bcd.h>
18  #include <linux/rtc.h>
19  #include <linux/init.h>
20  #include <linux/platform_device.h>
21  #include <linux/seq_file.h>
22  #include <linux/interrupt.h>
23  #include <linux/spinlock.h>
24  #include <linux/io.h>
25  #include <linux/log2.h>
26  #include <linux/clk.h>
27  #include <linux/slab.h>
28  #ifdef CONFIG_SUPERH
29  #include <asm/rtc.h>
30  #else
31  /* Default values for RZ/A RTC */
32  #define rtc_reg_size		sizeof(u16)
33  #define RTC_BIT_INVERTED        0	/* no chip bugs */
34  #define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
35  #define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
36  #endif
37  
38  #define DRV_NAME	"sh-rtc"
39  
40  #define RTC_REG(r)	((r) * rtc_reg_size)
41  
42  #define R64CNT		RTC_REG(0)
43  
44  #define RSECCNT		RTC_REG(1)	/* RTC sec */
45  #define RMINCNT		RTC_REG(2)	/* RTC min */
46  #define RHRCNT		RTC_REG(3)	/* RTC hour */
47  #define RWKCNT		RTC_REG(4)	/* RTC week */
48  #define RDAYCNT		RTC_REG(5)	/* RTC day */
49  #define RMONCNT		RTC_REG(6)	/* RTC month */
50  #define RYRCNT		RTC_REG(7)	/* RTC year */
51  #define RSECAR		RTC_REG(8)	/* ALARM sec */
52  #define RMINAR		RTC_REG(9)	/* ALARM min */
53  #define RHRAR		RTC_REG(10)	/* ALARM hour */
54  #define RWKAR		RTC_REG(11)	/* ALARM week */
55  #define RDAYAR		RTC_REG(12)	/* ALARM day */
56  #define RMONAR		RTC_REG(13)	/* ALARM month */
57  #define RCR1		RTC_REG(14)	/* Control */
58  #define RCR2		RTC_REG(15)	/* Control */
59  
60  /*
61   * Note on RYRAR and RCR3: Up until this point most of the register
62   * definitions are consistent across all of the available parts. However,
63   * the placement of the optional RYRAR and RCR3 (the RYRAR control
64   * register used to control RYRCNT/RYRAR compare) varies considerably
65   * across various parts, occasionally being mapped in to a completely
66   * unrelated address space. For proper RYRAR support a separate resource
67   * would have to be handed off, but as this is purely optional in
68   * practice, we simply opt not to support it, thereby keeping the code
69   * quite a bit more simplified.
70   */
71  
72  /* ALARM Bits - or with BCD encoded value */
73  #define AR_ENB		0x80	/* Enable for alarm cmp   */
74  
75  /* Period Bits */
76  #define PF_HP		0x100	/* Enable Half Period to support 8,32,128Hz */
77  #define PF_COUNT	0x200	/* Half periodic counter */
78  #define PF_OXS		0x400	/* Periodic One x Second */
79  #define PF_KOU		0x800	/* Kernel or User periodic request 1=kernel */
80  #define PF_MASK		0xf00
81  
82  /* RCR1 Bits */
83  #define RCR1_CF		0x80	/* Carry Flag             */
84  #define RCR1_CIE	0x10	/* Carry Interrupt Enable */
85  #define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
86  #define RCR1_AF		0x01	/* Alarm Flag             */
87  
88  /* RCR2 Bits */
89  #define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
90  #define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
91  #define RCR2_RTCEN	0x08	/* ENable RTC              */
92  #define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
93  #define RCR2_RESET	0x02	/* Reset bit               */
94  #define RCR2_START	0x01	/* Start bit               */
95  
96  struct sh_rtc {
97  	void __iomem		*regbase;
98  	unsigned long		regsize;
99  	struct resource		*res;
100  	int			alarm_irq;
101  	int			periodic_irq;
102  	int			carry_irq;
103  	struct clk		*clk;
104  	struct rtc_device	*rtc_dev;
105  	spinlock_t		lock;
106  	unsigned long		capabilities;	/* See asm/rtc.h for cap bits */
107  	unsigned short		periodic_freq;
108  };
109  
__sh_rtc_interrupt(struct sh_rtc * rtc)110  static int __sh_rtc_interrupt(struct sh_rtc *rtc)
111  {
112  	unsigned int tmp, pending;
113  
114  	tmp = readb(rtc->regbase + RCR1);
115  	pending = tmp & RCR1_CF;
116  	tmp &= ~RCR1_CF;
117  	writeb(tmp, rtc->regbase + RCR1);
118  
119  	/* Users have requested One x Second IRQ */
120  	if (pending && rtc->periodic_freq & PF_OXS)
121  		rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
122  
123  	return pending;
124  }
125  
__sh_rtc_alarm(struct sh_rtc * rtc)126  static int __sh_rtc_alarm(struct sh_rtc *rtc)
127  {
128  	unsigned int tmp, pending;
129  
130  	tmp = readb(rtc->regbase + RCR1);
131  	pending = tmp & RCR1_AF;
132  	tmp &= ~(RCR1_AF | RCR1_AIE);
133  	writeb(tmp, rtc->regbase + RCR1);
134  
135  	if (pending)
136  		rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
137  
138  	return pending;
139  }
140  
__sh_rtc_periodic(struct sh_rtc * rtc)141  static int __sh_rtc_periodic(struct sh_rtc *rtc)
142  {
143  	unsigned int tmp, pending;
144  
145  	tmp = readb(rtc->regbase + RCR2);
146  	pending = tmp & RCR2_PEF;
147  	tmp &= ~RCR2_PEF;
148  	writeb(tmp, rtc->regbase + RCR2);
149  
150  	if (!pending)
151  		return 0;
152  
153  	/* Half period enabled than one skipped and the next notified */
154  	if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
155  		rtc->periodic_freq &= ~PF_COUNT;
156  	else {
157  		if (rtc->periodic_freq & PF_HP)
158  			rtc->periodic_freq |= PF_COUNT;
159  		rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
160  	}
161  
162  	return pending;
163  }
164  
sh_rtc_interrupt(int irq,void * dev_id)165  static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
166  {
167  	struct sh_rtc *rtc = dev_id;
168  	int ret;
169  
170  	spin_lock(&rtc->lock);
171  	ret = __sh_rtc_interrupt(rtc);
172  	spin_unlock(&rtc->lock);
173  
174  	return IRQ_RETVAL(ret);
175  }
176  
sh_rtc_alarm(int irq,void * dev_id)177  static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
178  {
179  	struct sh_rtc *rtc = dev_id;
180  	int ret;
181  
182  	spin_lock(&rtc->lock);
183  	ret = __sh_rtc_alarm(rtc);
184  	spin_unlock(&rtc->lock);
185  
186  	return IRQ_RETVAL(ret);
187  }
188  
sh_rtc_periodic(int irq,void * dev_id)189  static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
190  {
191  	struct sh_rtc *rtc = dev_id;
192  	int ret;
193  
194  	spin_lock(&rtc->lock);
195  	ret = __sh_rtc_periodic(rtc);
196  	spin_unlock(&rtc->lock);
197  
198  	return IRQ_RETVAL(ret);
199  }
200  
sh_rtc_shared(int irq,void * dev_id)201  static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
202  {
203  	struct sh_rtc *rtc = dev_id;
204  	int ret;
205  
206  	spin_lock(&rtc->lock);
207  	ret = __sh_rtc_interrupt(rtc);
208  	ret |= __sh_rtc_alarm(rtc);
209  	ret |= __sh_rtc_periodic(rtc);
210  	spin_unlock(&rtc->lock);
211  
212  	return IRQ_RETVAL(ret);
213  }
214  
sh_rtc_setaie(struct device * dev,unsigned int enable)215  static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
216  {
217  	struct sh_rtc *rtc = dev_get_drvdata(dev);
218  	unsigned int tmp;
219  
220  	spin_lock_irq(&rtc->lock);
221  
222  	tmp = readb(rtc->regbase + RCR1);
223  
224  	if (enable)
225  		tmp |= RCR1_AIE;
226  	else
227  		tmp &= ~RCR1_AIE;
228  
229  	writeb(tmp, rtc->regbase + RCR1);
230  
231  	spin_unlock_irq(&rtc->lock);
232  }
233  
sh_rtc_proc(struct device * dev,struct seq_file * seq)234  static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
235  {
236  	struct sh_rtc *rtc = dev_get_drvdata(dev);
237  	unsigned int tmp;
238  
239  	tmp = readb(rtc->regbase + RCR1);
240  	seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
241  
242  	tmp = readb(rtc->regbase + RCR2);
243  	seq_printf(seq, "periodic_IRQ\t: %s\n",
244  		   (tmp & RCR2_PESMASK) ? "yes" : "no");
245  
246  	return 0;
247  }
248  
sh_rtc_setcie(struct device * dev,unsigned int enable)249  static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
250  {
251  	struct sh_rtc *rtc = dev_get_drvdata(dev);
252  	unsigned int tmp;
253  
254  	spin_lock_irq(&rtc->lock);
255  
256  	tmp = readb(rtc->regbase + RCR1);
257  
258  	if (!enable)
259  		tmp &= ~RCR1_CIE;
260  	else
261  		tmp |= RCR1_CIE;
262  
263  	writeb(tmp, rtc->regbase + RCR1);
264  
265  	spin_unlock_irq(&rtc->lock);
266  }
267  
sh_rtc_alarm_irq_enable(struct device * dev,unsigned int enabled)268  static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
269  {
270  	sh_rtc_setaie(dev, enabled);
271  	return 0;
272  }
273  
sh_rtc_read_time(struct device * dev,struct rtc_time * tm)274  static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
275  {
276  	struct sh_rtc *rtc = dev_get_drvdata(dev);
277  	unsigned int sec128, sec2, yr, yr100, cf_bit;
278  
279  	if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN))
280  		return -EINVAL;
281  
282  	do {
283  		unsigned int tmp;
284  
285  		spin_lock_irq(&rtc->lock);
286  
287  		tmp = readb(rtc->regbase + RCR1);
288  		tmp &= ~RCR1_CF; /* Clear CF-bit */
289  		tmp |= RCR1_CIE;
290  		writeb(tmp, rtc->regbase + RCR1);
291  
292  		sec128 = readb(rtc->regbase + R64CNT);
293  
294  		tm->tm_sec	= bcd2bin(readb(rtc->regbase + RSECCNT));
295  		tm->tm_min	= bcd2bin(readb(rtc->regbase + RMINCNT));
296  		tm->tm_hour	= bcd2bin(readb(rtc->regbase + RHRCNT));
297  		tm->tm_wday	= bcd2bin(readb(rtc->regbase + RWKCNT));
298  		tm->tm_mday	= bcd2bin(readb(rtc->regbase + RDAYCNT));
299  		tm->tm_mon	= bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
300  
301  		if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
302  			yr  = readw(rtc->regbase + RYRCNT);
303  			yr100 = bcd2bin(yr >> 8);
304  			yr &= 0xff;
305  		} else {
306  			yr  = readb(rtc->regbase + RYRCNT);
307  			yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
308  		}
309  
310  		tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
311  
312  		sec2 = readb(rtc->regbase + R64CNT);
313  		cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
314  
315  		spin_unlock_irq(&rtc->lock);
316  	} while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
317  
318  #if RTC_BIT_INVERTED != 0
319  	if ((sec128 & RTC_BIT_INVERTED))
320  		tm->tm_sec--;
321  #endif
322  
323  	/* only keep the carry interrupt enabled if UIE is on */
324  	if (!(rtc->periodic_freq & PF_OXS))
325  		sh_rtc_setcie(dev, 0);
326  
327  	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
328  		"mday=%d, mon=%d, year=%d, wday=%d\n",
329  		__func__,
330  		tm->tm_sec, tm->tm_min, tm->tm_hour,
331  		tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
332  
333  	return 0;
334  }
335  
sh_rtc_set_time(struct device * dev,struct rtc_time * tm)336  static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
337  {
338  	struct sh_rtc *rtc = dev_get_drvdata(dev);
339  	unsigned int tmp;
340  	int year;
341  
342  	spin_lock_irq(&rtc->lock);
343  
344  	/* Reset pre-scaler & stop RTC */
345  	tmp = readb(rtc->regbase + RCR2);
346  	tmp |= RCR2_RESET;
347  	tmp &= ~RCR2_START;
348  	writeb(tmp, rtc->regbase + RCR2);
349  
350  	writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
351  	writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
352  	writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
353  	writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
354  	writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
355  	writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
356  
357  	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
358  		year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
359  			bin2bcd(tm->tm_year % 100);
360  		writew(year, rtc->regbase + RYRCNT);
361  	} else {
362  		year = tm->tm_year % 100;
363  		writeb(bin2bcd(year), rtc->regbase + RYRCNT);
364  	}
365  
366  	/* Start RTC */
367  	tmp = readb(rtc->regbase + RCR2);
368  	tmp &= ~RCR2_RESET;
369  	tmp |= RCR2_RTCEN | RCR2_START;
370  	writeb(tmp, rtc->regbase + RCR2);
371  
372  	spin_unlock_irq(&rtc->lock);
373  
374  	return 0;
375  }
376  
sh_rtc_read_alarm_value(struct sh_rtc * rtc,int reg_off)377  static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
378  {
379  	unsigned int byte;
380  	int value = -1;			/* return -1 for ignored values */
381  
382  	byte = readb(rtc->regbase + reg_off);
383  	if (byte & AR_ENB) {
384  		byte &= ~AR_ENB;	/* strip the enable bit */
385  		value = bcd2bin(byte);
386  	}
387  
388  	return value;
389  }
390  
sh_rtc_read_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)391  static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
392  {
393  	struct sh_rtc *rtc = dev_get_drvdata(dev);
394  	struct rtc_time *tm = &wkalrm->time;
395  
396  	spin_lock_irq(&rtc->lock);
397  
398  	tm->tm_sec	= sh_rtc_read_alarm_value(rtc, RSECAR);
399  	tm->tm_min	= sh_rtc_read_alarm_value(rtc, RMINAR);
400  	tm->tm_hour	= sh_rtc_read_alarm_value(rtc, RHRAR);
401  	tm->tm_wday	= sh_rtc_read_alarm_value(rtc, RWKAR);
402  	tm->tm_mday	= sh_rtc_read_alarm_value(rtc, RDAYAR);
403  	tm->tm_mon	= sh_rtc_read_alarm_value(rtc, RMONAR);
404  	if (tm->tm_mon > 0)
405  		tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
406  
407  	wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
408  
409  	spin_unlock_irq(&rtc->lock);
410  
411  	return 0;
412  }
413  
sh_rtc_write_alarm_value(struct sh_rtc * rtc,int value,int reg_off)414  static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
415  					    int value, int reg_off)
416  {
417  	/* < 0 for a value that is ignored */
418  	if (value < 0)
419  		writeb(0, rtc->regbase + reg_off);
420  	else
421  		writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
422  }
423  
sh_rtc_set_alarm(struct device * dev,struct rtc_wkalrm * wkalrm)424  static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
425  {
426  	struct sh_rtc *rtc = dev_get_drvdata(dev);
427  	unsigned int rcr1;
428  	struct rtc_time *tm = &wkalrm->time;
429  	int mon;
430  
431  	spin_lock_irq(&rtc->lock);
432  
433  	/* disable alarm interrupt and clear the alarm flag */
434  	rcr1 = readb(rtc->regbase + RCR1);
435  	rcr1 &= ~(RCR1_AF | RCR1_AIE);
436  	writeb(rcr1, rtc->regbase + RCR1);
437  
438  	/* set alarm time */
439  	sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
440  	sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
441  	sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
442  	sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
443  	sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
444  	mon = tm->tm_mon;
445  	if (mon >= 0)
446  		mon += 1;
447  	sh_rtc_write_alarm_value(rtc, mon, RMONAR);
448  
449  	if (wkalrm->enabled) {
450  		rcr1 |= RCR1_AIE;
451  		writeb(rcr1, rtc->regbase + RCR1);
452  	}
453  
454  	spin_unlock_irq(&rtc->lock);
455  
456  	return 0;
457  }
458  
459  static const struct rtc_class_ops sh_rtc_ops = {
460  	.read_time	= sh_rtc_read_time,
461  	.set_time	= sh_rtc_set_time,
462  	.read_alarm	= sh_rtc_read_alarm,
463  	.set_alarm	= sh_rtc_set_alarm,
464  	.proc		= sh_rtc_proc,
465  	.alarm_irq_enable = sh_rtc_alarm_irq_enable,
466  };
467  
sh_rtc_probe(struct platform_device * pdev)468  static int __init sh_rtc_probe(struct platform_device *pdev)
469  {
470  	struct sh_rtc *rtc;
471  	struct resource *res;
472  	char clk_name[6];
473  	int clk_id, ret;
474  
475  	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
476  	if (unlikely(!rtc))
477  		return -ENOMEM;
478  
479  	spin_lock_init(&rtc->lock);
480  
481  	/* get periodic/carry/alarm irqs */
482  	ret = platform_get_irq(pdev, 0);
483  	if (unlikely(ret <= 0)) {
484  		dev_err(&pdev->dev, "No IRQ resource\n");
485  		return -ENOENT;
486  	}
487  
488  	rtc->periodic_irq = ret;
489  	rtc->carry_irq = platform_get_irq(pdev, 1);
490  	rtc->alarm_irq = platform_get_irq(pdev, 2);
491  
492  	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
493  	if (!res)
494  		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495  	if (unlikely(res == NULL)) {
496  		dev_err(&pdev->dev, "No IO resource\n");
497  		return -ENOENT;
498  	}
499  
500  	rtc->regsize = resource_size(res);
501  
502  	rtc->res = devm_request_mem_region(&pdev->dev, res->start,
503  					rtc->regsize, pdev->name);
504  	if (unlikely(!rtc->res))
505  		return -EBUSY;
506  
507  	rtc->regbase = devm_ioremap(&pdev->dev, rtc->res->start, rtc->regsize);
508  	if (unlikely(!rtc->regbase))
509  		return -EINVAL;
510  
511  	if (!pdev->dev.of_node) {
512  		clk_id = pdev->id;
513  		/* With a single device, the clock id is still "rtc0" */
514  		if (clk_id < 0)
515  			clk_id = 0;
516  
517  		snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
518  	} else
519  		snprintf(clk_name, sizeof(clk_name), "fck");
520  
521  	rtc->clk = devm_clk_get(&pdev->dev, clk_name);
522  	if (IS_ERR(rtc->clk)) {
523  		/*
524  		 * No error handling for rtc->clk intentionally, not all
525  		 * platforms will have a unique clock for the RTC, and
526  		 * the clk API can handle the struct clk pointer being
527  		 * NULL.
528  		 */
529  		rtc->clk = NULL;
530  	}
531  
532  	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
533  	if (IS_ERR(rtc->rtc_dev))
534  		return PTR_ERR(rtc->rtc_dev);
535  
536  	clk_enable(rtc->clk);
537  
538  	rtc->capabilities = RTC_DEF_CAPABILITIES;
539  
540  #ifdef CONFIG_SUPERH
541  	if (dev_get_platdata(&pdev->dev)) {
542  		struct sh_rtc_platform_info *pinfo =
543  			dev_get_platdata(&pdev->dev);
544  
545  		/*
546  		 * Some CPUs have special capabilities in addition to the
547  		 * default set. Add those in here.
548  		 */
549  		rtc->capabilities |= pinfo->capabilities;
550  	}
551  #endif
552  
553  	if (rtc->carry_irq <= 0) {
554  		/* register shared periodic/carry/alarm irq */
555  		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
556  				sh_rtc_shared, 0, "sh-rtc", rtc);
557  		if (unlikely(ret)) {
558  			dev_err(&pdev->dev,
559  				"request IRQ failed with %d, IRQ %d\n", ret,
560  				rtc->periodic_irq);
561  			goto err_unmap;
562  		}
563  	} else {
564  		/* register periodic/carry/alarm irqs */
565  		ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
566  				sh_rtc_periodic, 0, "sh-rtc period", rtc);
567  		if (unlikely(ret)) {
568  			dev_err(&pdev->dev,
569  				"request period IRQ failed with %d, IRQ %d\n",
570  				ret, rtc->periodic_irq);
571  			goto err_unmap;
572  		}
573  
574  		ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
575  				sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
576  		if (unlikely(ret)) {
577  			dev_err(&pdev->dev,
578  				"request carry IRQ failed with %d, IRQ %d\n",
579  				ret, rtc->carry_irq);
580  			goto err_unmap;
581  		}
582  
583  		ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
584  				sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
585  		if (unlikely(ret)) {
586  			dev_err(&pdev->dev,
587  				"request alarm IRQ failed with %d, IRQ %d\n",
588  				ret, rtc->alarm_irq);
589  			goto err_unmap;
590  		}
591  	}
592  
593  	platform_set_drvdata(pdev, rtc);
594  
595  	/* everything disabled by default */
596  	sh_rtc_setaie(&pdev->dev, 0);
597  	sh_rtc_setcie(&pdev->dev, 0);
598  
599  	rtc->rtc_dev->ops = &sh_rtc_ops;
600  	rtc->rtc_dev->max_user_freq = 256;
601  
602  	if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
603  		rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
604  		rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
605  	} else {
606  		rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0);
607  		rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59);
608  	}
609  
610  	ret = devm_rtc_register_device(rtc->rtc_dev);
611  	if (ret)
612  		goto err_unmap;
613  
614  	device_init_wakeup(&pdev->dev, 1);
615  	return 0;
616  
617  err_unmap:
618  	clk_disable(rtc->clk);
619  
620  	return ret;
621  }
622  
sh_rtc_remove(struct platform_device * pdev)623  static int __exit sh_rtc_remove(struct platform_device *pdev)
624  {
625  	struct sh_rtc *rtc = platform_get_drvdata(pdev);
626  
627  	sh_rtc_setaie(&pdev->dev, 0);
628  	sh_rtc_setcie(&pdev->dev, 0);
629  
630  	clk_disable(rtc->clk);
631  
632  	return 0;
633  }
634  
sh_rtc_set_irq_wake(struct device * dev,int enabled)635  static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
636  {
637  	struct sh_rtc *rtc = dev_get_drvdata(dev);
638  
639  	irq_set_irq_wake(rtc->periodic_irq, enabled);
640  
641  	if (rtc->carry_irq > 0) {
642  		irq_set_irq_wake(rtc->carry_irq, enabled);
643  		irq_set_irq_wake(rtc->alarm_irq, enabled);
644  	}
645  }
646  
sh_rtc_suspend(struct device * dev)647  static int __maybe_unused sh_rtc_suspend(struct device *dev)
648  {
649  	if (device_may_wakeup(dev))
650  		sh_rtc_set_irq_wake(dev, 1);
651  
652  	return 0;
653  }
654  
sh_rtc_resume(struct device * dev)655  static int __maybe_unused sh_rtc_resume(struct device *dev)
656  {
657  	if (device_may_wakeup(dev))
658  		sh_rtc_set_irq_wake(dev, 0);
659  
660  	return 0;
661  }
662  
663  static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
664  
665  static const struct of_device_id sh_rtc_of_match[] = {
666  	{ .compatible = "renesas,sh-rtc", },
667  	{ /* sentinel */ }
668  };
669  MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
670  
671  static struct platform_driver sh_rtc_platform_driver = {
672  	.driver		= {
673  		.name	= DRV_NAME,
674  		.pm	= &sh_rtc_pm_ops,
675  		.of_match_table = sh_rtc_of_match,
676  	},
677  	.remove		= __exit_p(sh_rtc_remove),
678  };
679  
680  module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
681  
682  MODULE_DESCRIPTION("SuperH on-chip RTC driver");
683  MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
684  	      "Jamie Lenehan <lenehan@twibble.org>, "
685  	      "Angelo Castello <angelo.castello@st.com>");
686  MODULE_LICENSE("GPL v2");
687  MODULE_ALIAS("platform:" DRV_NAME);
688