1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2000 Tilmann Bitterberg
4 * (tilmann@bitterberg.de)
5 *
6 * RTAS (Runtime Abstraction Services) stuff
7 * Intention is to provide a clean user interface
8 * to use the RTAS.
9 *
10 * TODO:
11 * Split off a header file and maybe move it to a different
12 * location. Write Documentation on what the /proc/rtas/ entries
13 * actually do.
14 */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 #include <linux/of.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/processor.h>
31 #include <asm/io.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35
36 /* Token for Sensors */
37 #define KEY_SWITCH 0x0001
38 #define ENCLOSURE_SWITCH 0x0002
39 #define THERMAL_SENSOR 0x0003
40 #define LID_STATUS 0x0004
41 #define POWER_SOURCE 0x0005
42 #define BATTERY_VOLTAGE 0x0006
43 #define BATTERY_REMAINING 0x0007
44 #define BATTERY_PERCENTAGE 0x0008
45 #define EPOW_SENSOR 0x0009
46 #define BATTERY_CYCLESTATE 0x000a
47 #define BATTERY_CHARGING 0x000b
48
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE 0x2328 /* 9000 */
51 #define IBM_FANRPM 0x2329 /* 9001 */
52 #define IBM_VOLTAGE 0x232a /* 9002 */
53 #define IBM_DRCONNECTOR 0x232b /* 9003 */
54 #define IBM_POWERSUPPLY 0x232c /* 9004 */
55
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH 13
58 #define SENSOR_WARNING_HIGH 12
59 #define SENSOR_NORMAL 11
60 #define SENSOR_WARNING_LOW 10
61 #define SENSOR_CRITICAL_LOW 9
62 #define SENSOR_SUCCESS 0
63 #define SENSOR_HW_ERROR -1
64 #define SENSOR_BUSY -2
65 #define SENSOR_NOT_EXIST -3
66 #define SENSOR_DR_ENTITY -9000
67
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR 'A'
70 #define LOC_SCSI_DEV_LOC 'B'
71 #define LOC_CPU 'C'
72 #define LOC_DISKETTE 'D'
73 #define LOC_ETHERNET 'E'
74 #define LOC_FAN 'F'
75 #define LOC_GRAPHICS 'G'
76 /* reserved / not used 'H' */
77 #define LOC_IO_ADAPTER 'I'
78 /* reserved / not used 'J' */
79 #define LOC_KEYBOARD 'K'
80 #define LOC_LCD 'L'
81 #define LOC_MEMORY 'M'
82 #define LOC_NV_MEMORY 'N'
83 #define LOC_MOUSE 'O'
84 #define LOC_PLANAR 'P'
85 #define LOC_OTHER_IO 'Q'
86 #define LOC_PARALLEL 'R'
87 #define LOC_SERIAL 'S'
88 #define LOC_DEAD_RING 'T'
89 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE 'V'
91 #define LOC_SWITCH_ADAPTER 'W'
92 #define LOC_OTHER 'X'
93 #define LOC_FIRMWARE 'Y'
94 #define LOC_SCSI 'Z'
95
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE 0x0003
100 #define WARNING_LIGHT 0x0004
101 #define DISK_ACTIVITY_LIGHT 0x0005
102 #define HEX_DISPLAY_UNIT 0x0006
103 #define BATTERY_WARNING_TIME 0x0007
104 #define CONDITION_CYCLE_REQUEST 0x0008
105 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
106 #define DR_ACTION 0x2329 /* 9001 */
107 #define DR_INDICATOR 0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110
111 /* other */
112 #define MAX_SENSORS 17 /* I only know of 17 sensors */
113 #define MAX_LINELENGTH 256
114 #define SENSOR_PREFIX "ibm,sensor-"
115 #define cel_to_fahr(x) ((x*9/5)+32)
116
117 struct individual_sensor {
118 unsigned int token;
119 unsigned int quant;
120 };
121
122 struct rtas_sensors {
123 struct individual_sensor sensor[MAX_SENSORS];
124 unsigned int quant;
125 };
126
127 /* Globals */
128 static struct rtas_sensors sensors;
129 static struct device_node *rtas_node = NULL;
130 static unsigned long power_on_time = 0; /* Save the time the user set */
131 static char progress_led[MAX_LINELENGTH];
132
133 static unsigned long rtas_tone_frequency = 1000;
134 static unsigned long rtas_tone_volume = 0;
135
136 /* ****************************************************************** */
137 /* Declarations */
138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140 static ssize_t ppc_rtas_clock_write(struct file *file,
141 const char __user *buf, size_t count, loff_t *ppos);
142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_progress_write(struct file *file,
144 const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_poweron_write(struct file *file,
147 const char __user *buf, size_t count, loff_t *ppos);
148
149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150 const char __user *buf, size_t count, loff_t *ppos);
151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153 const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156
poweron_open(struct inode * inode,struct file * file)157 static int poweron_open(struct inode *inode, struct file *file)
158 {
159 return single_open(file, ppc_rtas_poweron_show, NULL);
160 }
161
162 static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163 .proc_open = poweron_open,
164 .proc_read = seq_read,
165 .proc_lseek = seq_lseek,
166 .proc_write = ppc_rtas_poweron_write,
167 .proc_release = single_release,
168 };
169
progress_open(struct inode * inode,struct file * file)170 static int progress_open(struct inode *inode, struct file *file)
171 {
172 return single_open(file, ppc_rtas_progress_show, NULL);
173 }
174
175 static const struct proc_ops ppc_rtas_progress_proc_ops = {
176 .proc_open = progress_open,
177 .proc_read = seq_read,
178 .proc_lseek = seq_lseek,
179 .proc_write = ppc_rtas_progress_write,
180 .proc_release = single_release,
181 };
182
clock_open(struct inode * inode,struct file * file)183 static int clock_open(struct inode *inode, struct file *file)
184 {
185 return single_open(file, ppc_rtas_clock_show, NULL);
186 }
187
188 static const struct proc_ops ppc_rtas_clock_proc_ops = {
189 .proc_open = clock_open,
190 .proc_read = seq_read,
191 .proc_lseek = seq_lseek,
192 .proc_write = ppc_rtas_clock_write,
193 .proc_release = single_release,
194 };
195
tone_freq_open(struct inode * inode,struct file * file)196 static int tone_freq_open(struct inode *inode, struct file *file)
197 {
198 return single_open(file, ppc_rtas_tone_freq_show, NULL);
199 }
200
201 static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202 .proc_open = tone_freq_open,
203 .proc_read = seq_read,
204 .proc_lseek = seq_lseek,
205 .proc_write = ppc_rtas_tone_freq_write,
206 .proc_release = single_release,
207 };
208
tone_volume_open(struct inode * inode,struct file * file)209 static int tone_volume_open(struct inode *inode, struct file *file)
210 {
211 return single_open(file, ppc_rtas_tone_volume_show, NULL);
212 }
213
214 static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215 .proc_open = tone_volume_open,
216 .proc_read = seq_read,
217 .proc_lseek = seq_lseek,
218 .proc_write = ppc_rtas_tone_volume_write,
219 .proc_release = single_release,
220 };
221
222 static int ppc_rtas_find_all_sensors(void);
223 static void ppc_rtas_process_sensor(struct seq_file *m,
224 struct individual_sensor *s, int state, int error, const char *loc);
225 static char *ppc_rtas_process_error(int error);
226 static void get_location_code(struct seq_file *m,
227 struct individual_sensor *s, const char *loc);
228 static void check_location_string(struct seq_file *m, const char *c);
229 static void check_location(struct seq_file *m, const char *c);
230
proc_rtas_init(void)231 static int __init proc_rtas_init(void)
232 {
233 if (!machine_is(pseries))
234 return -ENODEV;
235
236 rtas_node = of_find_node_by_name(NULL, "rtas");
237 if (rtas_node == NULL)
238 return -ENODEV;
239
240 proc_create("powerpc/rtas/progress", 0644, NULL,
241 &ppc_rtas_progress_proc_ops);
242 proc_create("powerpc/rtas/clock", 0644, NULL,
243 &ppc_rtas_clock_proc_ops);
244 proc_create("powerpc/rtas/poweron", 0644, NULL,
245 &ppc_rtas_poweron_proc_ops);
246 proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247 ppc_rtas_sensors_show);
248 proc_create("powerpc/rtas/frequency", 0644, NULL,
249 &ppc_rtas_tone_freq_proc_ops);
250 proc_create("powerpc/rtas/volume", 0644, NULL,
251 &ppc_rtas_tone_volume_proc_ops);
252 proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253 ppc_rtas_rmo_buf_show);
254 return 0;
255 }
256
257 __initcall(proc_rtas_init);
258
parse_number(const char __user * p,size_t count,u64 * val)259 static int parse_number(const char __user *p, size_t count, u64 *val)
260 {
261 char buf[40];
262
263 if (count > 39)
264 return -EINVAL;
265
266 if (copy_from_user(buf, p, count))
267 return -EFAULT;
268
269 buf[count] = 0;
270
271 return kstrtoull(buf, 10, val);
272 }
273
274 /* ****************************************************************** */
275 /* POWER-ON-TIME */
276 /* ****************************************************************** */
ppc_rtas_poweron_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)277 static ssize_t ppc_rtas_poweron_write(struct file *file,
278 const char __user *buf, size_t count, loff_t *ppos)
279 {
280 struct rtc_time tm;
281 time64_t nowtime;
282 int error = parse_number(buf, count, &nowtime);
283 if (error)
284 return error;
285
286 power_on_time = nowtime; /* save the time */
287
288 rtc_time64_to_tm(nowtime, &tm);
289
290 error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_FOR_POWER_ON), 7, 1, NULL,
291 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
292 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
293 if (error)
294 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
295 ppc_rtas_process_error(error));
296 return count;
297 }
298 /* ****************************************************************** */
ppc_rtas_poweron_show(struct seq_file * m,void * v)299 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
300 {
301 if (power_on_time == 0)
302 seq_printf(m, "Power on time not set\n");
303 else
304 seq_printf(m, "%lu\n",power_on_time);
305 return 0;
306 }
307
308 /* ****************************************************************** */
309 /* PROGRESS */
310 /* ****************************************************************** */
ppc_rtas_progress_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)311 static ssize_t ppc_rtas_progress_write(struct file *file,
312 const char __user *buf, size_t count, loff_t *ppos)
313 {
314 unsigned long hex;
315
316 if (count >= MAX_LINELENGTH)
317 count = MAX_LINELENGTH -1;
318 if (copy_from_user(progress_led, buf, count)) { /* save the string */
319 return -EFAULT;
320 }
321 progress_led[count] = 0;
322
323 /* Lets see if the user passed hexdigits */
324 hex = simple_strtoul(progress_led, NULL, 10);
325
326 rtas_progress ((char *)progress_led, hex);
327 return count;
328
329 /* clear the line */
330 /* rtas_progress(" ", 0xffff);*/
331 }
332 /* ****************************************************************** */
ppc_rtas_progress_show(struct seq_file * m,void * v)333 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
334 {
335 if (progress_led[0])
336 seq_printf(m, "%s\n", progress_led);
337 return 0;
338 }
339
340 /* ****************************************************************** */
341 /* CLOCK */
342 /* ****************************************************************** */
ppc_rtas_clock_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)343 static ssize_t ppc_rtas_clock_write(struct file *file,
344 const char __user *buf, size_t count, loff_t *ppos)
345 {
346 struct rtc_time tm;
347 time64_t nowtime;
348 int error = parse_number(buf, count, &nowtime);
349 if (error)
350 return error;
351
352 rtc_time64_to_tm(nowtime, &tm);
353 error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_OF_DAY), 7, 1, NULL,
354 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
355 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
356 if (error)
357 printk(KERN_WARNING "error: setting the clock returned: %s\n",
358 ppc_rtas_process_error(error));
359 return count;
360 }
361 /* ****************************************************************** */
ppc_rtas_clock_show(struct seq_file * m,void * v)362 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
363 {
364 int ret[8];
365 int error = rtas_call(rtas_function_token(RTAS_FN_GET_TIME_OF_DAY), 0, 8, ret);
366
367 if (error) {
368 printk(KERN_WARNING "error: reading the clock returned: %s\n",
369 ppc_rtas_process_error(error));
370 seq_printf(m, "0");
371 } else {
372 unsigned int year, mon, day, hour, min, sec;
373 year = ret[0]; mon = ret[1]; day = ret[2];
374 hour = ret[3]; min = ret[4]; sec = ret[5];
375 seq_printf(m, "%lld\n",
376 mktime64(year, mon, day, hour, min, sec));
377 }
378 return 0;
379 }
380
381 /* ****************************************************************** */
382 /* SENSOR STUFF */
383 /* ****************************************************************** */
ppc_rtas_sensors_show(struct seq_file * m,void * v)384 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
385 {
386 int i,j;
387 int state, error;
388 int get_sensor_state = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
389
390 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
391 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
392 seq_printf(m, "********************************************************\n");
393
394 if (ppc_rtas_find_all_sensors() != 0) {
395 seq_printf(m, "\nNo sensors are available\n");
396 return 0;
397 }
398
399 for (i=0; i<sensors.quant; i++) {
400 struct individual_sensor *p = &sensors.sensor[i];
401 char rstr[64];
402 const char *loc;
403 int llen, offs;
404
405 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
406 loc = of_get_property(rtas_node, rstr, &llen);
407
408 /* A sensor may have multiple instances */
409 for (j = 0, offs = 0; j <= p->quant; j++) {
410 error = rtas_call(get_sensor_state, 2, 2, &state,
411 p->token, j);
412
413 ppc_rtas_process_sensor(m, p, state, error, loc);
414 seq_putc(m, '\n');
415 if (loc) {
416 offs += strlen(loc) + 1;
417 loc += strlen(loc) + 1;
418 if (offs >= llen)
419 loc = NULL;
420 }
421 }
422 }
423 return 0;
424 }
425
426 /* ****************************************************************** */
427
ppc_rtas_find_all_sensors(void)428 static int ppc_rtas_find_all_sensors(void)
429 {
430 const unsigned int *utmp;
431 int len, i;
432
433 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
434 if (utmp == NULL) {
435 printk (KERN_ERR "error: could not get rtas-sensors\n");
436 return 1;
437 }
438
439 sensors.quant = len / 8; /* int + int */
440
441 for (i=0; i<sensors.quant; i++) {
442 sensors.sensor[i].token = *utmp++;
443 sensors.sensor[i].quant = *utmp++;
444 }
445 return 0;
446 }
447
448 /* ****************************************************************** */
449 /*
450 * Builds a string of what rtas returned
451 */
ppc_rtas_process_error(int error)452 static char *ppc_rtas_process_error(int error)
453 {
454 switch (error) {
455 case SENSOR_CRITICAL_HIGH:
456 return "(critical high)";
457 case SENSOR_WARNING_HIGH:
458 return "(warning high)";
459 case SENSOR_NORMAL:
460 return "(normal)";
461 case SENSOR_WARNING_LOW:
462 return "(warning low)";
463 case SENSOR_CRITICAL_LOW:
464 return "(critical low)";
465 case SENSOR_SUCCESS:
466 return "(read ok)";
467 case SENSOR_HW_ERROR:
468 return "(hardware error)";
469 case SENSOR_BUSY:
470 return "(busy)";
471 case SENSOR_NOT_EXIST:
472 return "(non existent)";
473 case SENSOR_DR_ENTITY:
474 return "(dr entity removed)";
475 default:
476 return "(UNKNOWN)";
477 }
478 }
479
480 /* ****************************************************************** */
481 /*
482 * Builds a string out of what the sensor said
483 */
484
ppc_rtas_process_sensor(struct seq_file * m,struct individual_sensor * s,int state,int error,const char * loc)485 static void ppc_rtas_process_sensor(struct seq_file *m,
486 struct individual_sensor *s, int state, int error, const char *loc)
487 {
488 /* Defined return vales */
489 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
490 "Maintenance" };
491 const char * enclosure_switch[] = { "Closed", "Open" };
492 const char * lid_status[] = { " ", "Open", "Closed" };
493 const char * power_source[] = { "AC\t", "Battery",
494 "AC & Battery" };
495 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
496 const char * epow_sensor[] = {
497 "EPOW Reset", "Cooling warning", "Power warning",
498 "System shutdown", "System halt", "EPOW main enclosure",
499 "EPOW power off" };
500 const char * battery_cyclestate[] = { "None", "In progress",
501 "Requested" };
502 const char * battery_charging[] = { "Charging", "Discharging",
503 "No current flow" };
504 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
505 "Exchange" };
506
507 int have_strings = 0;
508 int num_states = 0;
509 int temperature = 0;
510 int unknown = 0;
511
512 /* What kind of sensor do we have here? */
513
514 switch (s->token) {
515 case KEY_SWITCH:
516 seq_printf(m, "Key switch:\t");
517 num_states = sizeof(key_switch) / sizeof(char *);
518 if (state < num_states) {
519 seq_printf(m, "%s\t", key_switch[state]);
520 have_strings = 1;
521 }
522 break;
523 case ENCLOSURE_SWITCH:
524 seq_printf(m, "Enclosure switch:\t");
525 num_states = sizeof(enclosure_switch) / sizeof(char *);
526 if (state < num_states) {
527 seq_printf(m, "%s\t",
528 enclosure_switch[state]);
529 have_strings = 1;
530 }
531 break;
532 case THERMAL_SENSOR:
533 seq_printf(m, "Temp. (C/F):\t");
534 temperature = 1;
535 break;
536 case LID_STATUS:
537 seq_printf(m, "Lid status:\t");
538 num_states = sizeof(lid_status) / sizeof(char *);
539 if (state < num_states) {
540 seq_printf(m, "%s\t", lid_status[state]);
541 have_strings = 1;
542 }
543 break;
544 case POWER_SOURCE:
545 seq_printf(m, "Power source:\t");
546 num_states = sizeof(power_source) / sizeof(char *);
547 if (state < num_states) {
548 seq_printf(m, "%s\t",
549 power_source[state]);
550 have_strings = 1;
551 }
552 break;
553 case BATTERY_VOLTAGE:
554 seq_printf(m, "Battery voltage:\t");
555 break;
556 case BATTERY_REMAINING:
557 seq_printf(m, "Battery remaining:\t");
558 num_states = sizeof(battery_remaining) / sizeof(char *);
559 if (state < num_states)
560 {
561 seq_printf(m, "%s\t",
562 battery_remaining[state]);
563 have_strings = 1;
564 }
565 break;
566 case BATTERY_PERCENTAGE:
567 seq_printf(m, "Battery percentage:\t");
568 break;
569 case EPOW_SENSOR:
570 seq_printf(m, "EPOW Sensor:\t");
571 num_states = sizeof(epow_sensor) / sizeof(char *);
572 if (state < num_states) {
573 seq_printf(m, "%s\t", epow_sensor[state]);
574 have_strings = 1;
575 }
576 break;
577 case BATTERY_CYCLESTATE:
578 seq_printf(m, "Battery cyclestate:\t");
579 num_states = sizeof(battery_cyclestate) /
580 sizeof(char *);
581 if (state < num_states) {
582 seq_printf(m, "%s\t",
583 battery_cyclestate[state]);
584 have_strings = 1;
585 }
586 break;
587 case BATTERY_CHARGING:
588 seq_printf(m, "Battery Charging:\t");
589 num_states = sizeof(battery_charging) / sizeof(char *);
590 if (state < num_states) {
591 seq_printf(m, "%s\t",
592 battery_charging[state]);
593 have_strings = 1;
594 }
595 break;
596 case IBM_SURVEILLANCE:
597 seq_printf(m, "Surveillance:\t");
598 break;
599 case IBM_FANRPM:
600 seq_printf(m, "Fan (rpm):\t");
601 break;
602 case IBM_VOLTAGE:
603 seq_printf(m, "Voltage (mv):\t");
604 break;
605 case IBM_DRCONNECTOR:
606 seq_printf(m, "DR connector:\t");
607 num_states = sizeof(ibm_drconnector) / sizeof(char *);
608 if (state < num_states) {
609 seq_printf(m, "%s\t",
610 ibm_drconnector[state]);
611 have_strings = 1;
612 }
613 break;
614 case IBM_POWERSUPPLY:
615 seq_printf(m, "Powersupply:\t");
616 break;
617 default:
618 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
619 s->token);
620 unknown = 1;
621 have_strings = 1;
622 break;
623 }
624 if (have_strings == 0) {
625 if (temperature) {
626 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
627 } else
628 seq_printf(m, "%10d\t", state);
629 }
630 if (unknown == 0) {
631 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
632 get_location_code(m, s, loc);
633 }
634 }
635
636 /* ****************************************************************** */
637
check_location(struct seq_file * m,const char * c)638 static void check_location(struct seq_file *m, const char *c)
639 {
640 switch (c[0]) {
641 case LOC_PLANAR:
642 seq_printf(m, "Planar #%c", c[1]);
643 break;
644 case LOC_CPU:
645 seq_printf(m, "CPU #%c", c[1]);
646 break;
647 case LOC_FAN:
648 seq_printf(m, "Fan #%c", c[1]);
649 break;
650 case LOC_RACKMOUNTED:
651 seq_printf(m, "Rack #%c", c[1]);
652 break;
653 case LOC_VOLTAGE:
654 seq_printf(m, "Voltage #%c", c[1]);
655 break;
656 case LOC_LCD:
657 seq_printf(m, "LCD #%c", c[1]);
658 break;
659 case '.':
660 seq_printf(m, "- %c", c[1]);
661 break;
662 default:
663 seq_printf(m, "Unknown location");
664 break;
665 }
666 }
667
668
669 /* ****************************************************************** */
670 /*
671 * Format:
672 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
673 * the '.' may be an abbreviation
674 */
check_location_string(struct seq_file * m,const char * c)675 static void check_location_string(struct seq_file *m, const char *c)
676 {
677 while (*c) {
678 if (isalpha(*c) || *c == '.')
679 check_location(m, c);
680 else if (*c == '/' || *c == '-')
681 seq_printf(m, " at ");
682 c++;
683 }
684 }
685
686
687 /* ****************************************************************** */
688
get_location_code(struct seq_file * m,struct individual_sensor * s,const char * loc)689 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
690 const char *loc)
691 {
692 if (!loc || !*loc) {
693 seq_printf(m, "---");/* does not have a location */
694 } else {
695 check_location_string(m, loc);
696 }
697 seq_putc(m, ' ');
698 }
699 /* ****************************************************************** */
700 /* INDICATORS - Tone Frequency */
701 /* ****************************************************************** */
ppc_rtas_tone_freq_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)702 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
703 const char __user *buf, size_t count, loff_t *ppos)
704 {
705 u64 freq;
706 int error = parse_number(buf, count, &freq);
707 if (error)
708 return error;
709
710 rtas_tone_frequency = freq; /* save it for later */
711 error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL,
712 TONE_FREQUENCY, 0, freq);
713 if (error)
714 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
715 ppc_rtas_process_error(error));
716 return count;
717 }
718 /* ****************************************************************** */
ppc_rtas_tone_freq_show(struct seq_file * m,void * v)719 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
720 {
721 seq_printf(m, "%lu\n", rtas_tone_frequency);
722 return 0;
723 }
724 /* ****************************************************************** */
725 /* INDICATORS - Tone Volume */
726 /* ****************************************************************** */
ppc_rtas_tone_volume_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)727 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
728 const char __user *buf, size_t count, loff_t *ppos)
729 {
730 u64 volume;
731 int error = parse_number(buf, count, &volume);
732 if (error)
733 return error;
734
735 if (volume > 100)
736 volume = 100;
737
738 rtas_tone_volume = volume; /* save it for later */
739 error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL,
740 TONE_VOLUME, 0, volume);
741 if (error)
742 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
743 ppc_rtas_process_error(error));
744 return count;
745 }
746 /* ****************************************************************** */
ppc_rtas_tone_volume_show(struct seq_file * m,void * v)747 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
748 {
749 seq_printf(m, "%lu\n", rtas_tone_volume);
750 return 0;
751 }
752
753 /**
754 * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space.
755 *
756 * Base + size description of a range of RTAS-addressable memory set
757 * aside for user space to use as work area(s) for certain RTAS
758 * functions. User space accesses this region via /dev/mem. Apart from
759 * security policies, the kernel does not arbitrate or serialize
760 * access to this region, and user space must ensure that concurrent
761 * users do not interfere with each other.
762 */
ppc_rtas_rmo_buf_show(struct seq_file * m,void * v)763 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
764 {
765 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE);
766 return 0;
767 }
768