1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * icp_multi.c
4 * Comedi driver for Inova ICP_MULTI board
5 *
6 * COMEDI - Linux Control and Measurement Device Interface
7 * Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
8 */
9
10 /*
11 * Driver: icp_multi
12 * Description: Inova ICP_MULTI
13 * Devices: [Inova] ICP_MULTI (icp_multi)
14 * Author: Anne Smorthit <anne.smorthit@sfwte.ch>
15 * Status: works
16 *
17 * Configuration options: not applicable, uses PCI auto config
18 *
19 * The driver works for analog input and output and digital input and
20 * output. It does not work with interrupts or with the counters. Currently
21 * no support for DMA.
22 *
23 * It has 16 single-ended or 8 differential Analogue Input channels with
24 * 12-bit resolution. Ranges : 5V, 10V, +/-5V, +/-10V, 0..20mA and 4..20mA.
25 * Input ranges can be individually programmed for each channel. Voltage or
26 * current measurement is selected by jumper.
27 *
28 * There are 4 x 12-bit Analogue Outputs. Ranges : 5V, 10V, +/-5V, +/-10V
29 *
30 * 16 x Digital Inputs, 24V
31 *
32 * 8 x Digital Outputs, 24V, 1A
33 *
34 * 4 x 16-bit counters - not implemented
35 */
36
37 #include <linux/module.h>
38 #include <linux/delay.h>
39 #include <linux/comedi/comedi_pci.h>
40
41 #define ICP_MULTI_ADC_CSR 0x00 /* R/W: ADC command/status register */
42 #define ICP_MULTI_ADC_CSR_ST BIT(0) /* Start ADC */
43 #define ICP_MULTI_ADC_CSR_BSY BIT(0) /* ADC busy */
44 #define ICP_MULTI_ADC_CSR_BI BIT(4) /* Bipolar input range */
45 #define ICP_MULTI_ADC_CSR_RA BIT(5) /* Input range 0 = 5V, 1 = 10V */
46 #define ICP_MULTI_ADC_CSR_DI BIT(6) /* Input mode 1 = differential */
47 #define ICP_MULTI_ADC_CSR_DI_CHAN(x) (((x) & 0x7) << 9)
48 #define ICP_MULTI_ADC_CSR_SE_CHAN(x) (((x) & 0xf) << 8)
49 #define ICP_MULTI_AI 2 /* R: Analogue input data */
50 #define ICP_MULTI_DAC_CSR 0x04 /* R/W: DAC command/status register */
51 #define ICP_MULTI_DAC_CSR_ST BIT(0) /* Start DAC */
52 #define ICP_MULTI_DAC_CSR_BSY BIT(0) /* DAC busy */
53 #define ICP_MULTI_DAC_CSR_BI BIT(4) /* Bipolar output range */
54 #define ICP_MULTI_DAC_CSR_RA BIT(5) /* Output range 0 = 5V, 1 = 10V */
55 #define ICP_MULTI_DAC_CSR_CHAN(x) (((x) & 0x3) << 8)
56 #define ICP_MULTI_AO 6 /* R/W: Analogue output data */
57 #define ICP_MULTI_DI 8 /* R/W: Digital inputs */
58 #define ICP_MULTI_DO 0x0A /* R/W: Digital outputs */
59 #define ICP_MULTI_INT_EN 0x0c /* R/W: Interrupt enable register */
60 #define ICP_MULTI_INT_STAT 0x0e /* R/W: Interrupt status register */
61 #define ICP_MULTI_INT_ADC_RDY BIT(0) /* A/D conversion ready interrupt */
62 #define ICP_MULTI_INT_DAC_RDY BIT(1) /* D/A conversion ready interrupt */
63 #define ICP_MULTI_INT_DOUT_ERR BIT(2) /* Digital output error interrupt */
64 #define ICP_MULTI_INT_DIN_STAT BIT(3) /* Digital input status change int. */
65 #define ICP_MULTI_INT_CIE0 BIT(4) /* Counter 0 overrun interrupt */
66 #define ICP_MULTI_INT_CIE1 BIT(5) /* Counter 1 overrun interrupt */
67 #define ICP_MULTI_INT_CIE2 BIT(6) /* Counter 2 overrun interrupt */
68 #define ICP_MULTI_INT_CIE3 BIT(7) /* Counter 3 overrun interrupt */
69 #define ICP_MULTI_INT_MASK 0xff /* All interrupts */
70 #define ICP_MULTI_CNTR0 0x10 /* R/W: Counter 0 */
71 #define ICP_MULTI_CNTR1 0x12 /* R/W: counter 1 */
72 #define ICP_MULTI_CNTR2 0x14 /* R/W: Counter 2 */
73 #define ICP_MULTI_CNTR3 0x16 /* R/W: Counter 3 */
74
75 /* analog input and output have the same range options */
76 static const struct comedi_lrange icp_multi_ranges = {
77 4, {
78 UNI_RANGE(5),
79 UNI_RANGE(10),
80 BIP_RANGE(5),
81 BIP_RANGE(10)
82 }
83 };
84
85 static const char range_codes_analog[] = { 0x00, 0x20, 0x10, 0x30 };
86
icp_multi_ai_eoc(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)87 static int icp_multi_ai_eoc(struct comedi_device *dev,
88 struct comedi_subdevice *s,
89 struct comedi_insn *insn,
90 unsigned long context)
91 {
92 unsigned int status;
93
94 status = readw(dev->mmio + ICP_MULTI_ADC_CSR);
95 if ((status & ICP_MULTI_ADC_CSR_BSY) == 0)
96 return 0;
97 return -EBUSY;
98 }
99
icp_multi_ai_insn_read(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)100 static int icp_multi_ai_insn_read(struct comedi_device *dev,
101 struct comedi_subdevice *s,
102 struct comedi_insn *insn,
103 unsigned int *data)
104 {
105 unsigned int chan = CR_CHAN(insn->chanspec);
106 unsigned int range = CR_RANGE(insn->chanspec);
107 unsigned int aref = CR_AREF(insn->chanspec);
108 unsigned int adc_csr;
109 int ret = 0;
110 int n;
111
112 /* Set mode and range data for specified channel */
113 if (aref == AREF_DIFF) {
114 adc_csr = ICP_MULTI_ADC_CSR_DI_CHAN(chan) |
115 ICP_MULTI_ADC_CSR_DI;
116 } else {
117 adc_csr = ICP_MULTI_ADC_CSR_SE_CHAN(chan);
118 }
119 adc_csr |= range_codes_analog[range];
120 writew(adc_csr, dev->mmio + ICP_MULTI_ADC_CSR);
121
122 for (n = 0; n < insn->n; n++) {
123 /* Set start ADC bit */
124 writew(adc_csr | ICP_MULTI_ADC_CSR_ST,
125 dev->mmio + ICP_MULTI_ADC_CSR);
126
127 udelay(1);
128
129 /* Wait for conversion to complete, or get fed up waiting */
130 ret = comedi_timeout(dev, s, insn, icp_multi_ai_eoc, 0);
131 if (ret)
132 break;
133
134 data[n] = (readw(dev->mmio + ICP_MULTI_AI) >> 4) & 0x0fff;
135 }
136
137 return ret ? ret : n;
138 }
139
icp_multi_ao_ready(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned long context)140 static int icp_multi_ao_ready(struct comedi_device *dev,
141 struct comedi_subdevice *s,
142 struct comedi_insn *insn,
143 unsigned long context)
144 {
145 unsigned int status;
146
147 status = readw(dev->mmio + ICP_MULTI_DAC_CSR);
148 if ((status & ICP_MULTI_DAC_CSR_BSY) == 0)
149 return 0;
150 return -EBUSY;
151 }
152
icp_multi_ao_insn_write(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)153 static int icp_multi_ao_insn_write(struct comedi_device *dev,
154 struct comedi_subdevice *s,
155 struct comedi_insn *insn,
156 unsigned int *data)
157 {
158 unsigned int chan = CR_CHAN(insn->chanspec);
159 unsigned int range = CR_RANGE(insn->chanspec);
160 unsigned int dac_csr;
161 int i;
162
163 /* Select channel and range */
164 dac_csr = ICP_MULTI_DAC_CSR_CHAN(chan);
165 dac_csr |= range_codes_analog[range];
166 writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
167
168 for (i = 0; i < insn->n; i++) {
169 unsigned int val = data[i];
170 int ret;
171
172 /* Wait for analog output to be ready for new data */
173 ret = comedi_timeout(dev, s, insn, icp_multi_ao_ready, 0);
174 if (ret)
175 return ret;
176
177 writew(val, dev->mmio + ICP_MULTI_AO);
178
179 /* Set start conversion bit to write data to channel */
180 writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
181 dev->mmio + ICP_MULTI_DAC_CSR);
182
183 s->readback[chan] = val;
184 }
185
186 return insn->n;
187 }
188
icp_multi_di_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)189 static int icp_multi_di_insn_bits(struct comedi_device *dev,
190 struct comedi_subdevice *s,
191 struct comedi_insn *insn,
192 unsigned int *data)
193 {
194 data[1] = readw(dev->mmio + ICP_MULTI_DI);
195
196 return insn->n;
197 }
198
icp_multi_do_insn_bits(struct comedi_device * dev,struct comedi_subdevice * s,struct comedi_insn * insn,unsigned int * data)199 static int icp_multi_do_insn_bits(struct comedi_device *dev,
200 struct comedi_subdevice *s,
201 struct comedi_insn *insn,
202 unsigned int *data)
203 {
204 if (comedi_dio_update_state(s, data))
205 writew(s->state, dev->mmio + ICP_MULTI_DO);
206
207 data[1] = s->state;
208
209 return insn->n;
210 }
211
icp_multi_reset(struct comedi_device * dev)212 static int icp_multi_reset(struct comedi_device *dev)
213 {
214 int i;
215
216 /* Disable all interrupts and clear any requests */
217 writew(0, dev->mmio + ICP_MULTI_INT_EN);
218 writew(ICP_MULTI_INT_MASK, dev->mmio + ICP_MULTI_INT_STAT);
219
220 /* Reset the analog output channels to 0V */
221 for (i = 0; i < 4; i++) {
222 unsigned int dac_csr = ICP_MULTI_DAC_CSR_CHAN(i);
223
224 /* Select channel and 0..5V range */
225 writew(dac_csr, dev->mmio + ICP_MULTI_DAC_CSR);
226
227 /* Output 0V */
228 writew(0, dev->mmio + ICP_MULTI_AO);
229
230 /* Set start conversion bit to write data to channel */
231 writew(dac_csr | ICP_MULTI_DAC_CSR_ST,
232 dev->mmio + ICP_MULTI_DAC_CSR);
233 udelay(1);
234 }
235
236 /* Digital outputs to 0 */
237 writew(0, dev->mmio + ICP_MULTI_DO);
238
239 return 0;
240 }
241
icp_multi_auto_attach(struct comedi_device * dev,unsigned long context_unused)242 static int icp_multi_auto_attach(struct comedi_device *dev,
243 unsigned long context_unused)
244 {
245 struct pci_dev *pcidev = comedi_to_pci_dev(dev);
246 struct comedi_subdevice *s;
247 int ret;
248
249 ret = comedi_pci_enable(dev);
250 if (ret)
251 return ret;
252
253 dev->mmio = pci_ioremap_bar(pcidev, 2);
254 if (!dev->mmio)
255 return -ENOMEM;
256
257 ret = comedi_alloc_subdevices(dev, 4);
258 if (ret)
259 return ret;
260
261 icp_multi_reset(dev);
262
263 /* Analog Input subdevice */
264 s = &dev->subdevices[0];
265 s->type = COMEDI_SUBD_AI;
266 s->subdev_flags = SDF_READABLE | SDF_COMMON | SDF_GROUND | SDF_DIFF;
267 s->n_chan = 16;
268 s->maxdata = 0x0fff;
269 s->range_table = &icp_multi_ranges;
270 s->insn_read = icp_multi_ai_insn_read;
271
272 /* Analog Output subdevice */
273 s = &dev->subdevices[1];
274 s->type = COMEDI_SUBD_AO;
275 s->subdev_flags = SDF_WRITABLE | SDF_GROUND | SDF_COMMON;
276 s->n_chan = 4;
277 s->maxdata = 0x0fff;
278 s->range_table = &icp_multi_ranges;
279 s->insn_write = icp_multi_ao_insn_write;
280
281 ret = comedi_alloc_subdev_readback(s);
282 if (ret)
283 return ret;
284
285 /* Digital Input subdevice */
286 s = &dev->subdevices[2];
287 s->type = COMEDI_SUBD_DI;
288 s->subdev_flags = SDF_READABLE;
289 s->n_chan = 16;
290 s->maxdata = 1;
291 s->range_table = &range_digital;
292 s->insn_bits = icp_multi_di_insn_bits;
293
294 /* Digital Output subdevice */
295 s = &dev->subdevices[3];
296 s->type = COMEDI_SUBD_DO;
297 s->subdev_flags = SDF_WRITABLE;
298 s->n_chan = 8;
299 s->maxdata = 1;
300 s->range_table = &range_digital;
301 s->insn_bits = icp_multi_do_insn_bits;
302
303 return 0;
304 }
305
306 static struct comedi_driver icp_multi_driver = {
307 .driver_name = "icp_multi",
308 .module = THIS_MODULE,
309 .auto_attach = icp_multi_auto_attach,
310 .detach = comedi_pci_detach,
311 };
312
icp_multi_pci_probe(struct pci_dev * dev,const struct pci_device_id * id)313 static int icp_multi_pci_probe(struct pci_dev *dev,
314 const struct pci_device_id *id)
315 {
316 return comedi_pci_auto_config(dev, &icp_multi_driver, id->driver_data);
317 }
318
319 static const struct pci_device_id icp_multi_pci_table[] = {
320 { PCI_DEVICE(PCI_VENDOR_ID_ICP, 0x8000) },
321 { 0 }
322 };
323 MODULE_DEVICE_TABLE(pci, icp_multi_pci_table);
324
325 static struct pci_driver icp_multi_pci_driver = {
326 .name = "icp_multi",
327 .id_table = icp_multi_pci_table,
328 .probe = icp_multi_pci_probe,
329 .remove = comedi_pci_auto_unconfig,
330 };
331 module_comedi_pci_driver(icp_multi_driver, icp_multi_pci_driver);
332
333 MODULE_AUTHOR("Comedi https://www.comedi.org");
334 MODULE_DESCRIPTION("Comedi driver for Inova ICP_MULTI board");
335 MODULE_LICENSE("GPL");
336