xref: /openbmc/qemu/target/arm/internals.h (revision 6d62f309)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "exec/breakpoint.h"
29 #include "hw/registerfields.h"
30 #include "tcg/tcg-gvec-desc.h"
31 #include "syndrome.h"
32 #include "cpu-features.h"
33 
34 /* register banks for CPU modes */
35 #define BANK_USRSYS 0
36 #define BANK_SVC    1
37 #define BANK_ABT    2
38 #define BANK_UND    3
39 #define BANK_IRQ    4
40 #define BANK_FIQ    5
41 #define BANK_HYP    6
42 #define BANK_MON    7
43 
arm_env_mmu_index(CPUARMState * env)44 static inline int arm_env_mmu_index(CPUARMState *env)
45 {
46     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
47 }
48 
excp_is_internal(int excp)49 static inline bool excp_is_internal(int excp)
50 {
51     /* Return true if this exception number represents a QEMU-internal
52      * exception that will not be passed to the guest.
53      */
54     return excp == EXCP_INTERRUPT
55         || excp == EXCP_HLT
56         || excp == EXCP_DEBUG
57         || excp == EXCP_HALTED
58         || excp == EXCP_EXCEPTION_EXIT
59         || excp == EXCP_KERNEL_TRAP
60         || excp == EXCP_SEMIHOST;
61 }
62 
63 /*
64  * Default frequency for the generic timer, in Hz.
65  * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
66  * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
67  * which gives a 16ns tick period.
68  *
69  * We will use the back-compat value:
70  *  - for QEMU CPU types added before we standardized on 1GHz
71  *  - for versioned machine types with a version of 9.0 or earlier
72  * In any case, the machine model may override via the cntfrq property.
73  */
74 #define GTIMER_DEFAULT_HZ 1000000000
75 #define GTIMER_BACKCOMPAT_HZ 62500000
76 
77 /* Bit definitions for the v7M CONTROL register */
78 FIELD(V7M_CONTROL, NPRIV, 0, 1)
79 FIELD(V7M_CONTROL, SPSEL, 1, 1)
80 FIELD(V7M_CONTROL, FPCA, 2, 1)
81 FIELD(V7M_CONTROL, SFPA, 3, 1)
82 
83 /* Bit definitions for v7M exception return payload */
84 FIELD(V7M_EXCRET, ES, 0, 1)
85 FIELD(V7M_EXCRET, RES0, 1, 1)
86 FIELD(V7M_EXCRET, SPSEL, 2, 1)
87 FIELD(V7M_EXCRET, MODE, 3, 1)
88 FIELD(V7M_EXCRET, FTYPE, 4, 1)
89 FIELD(V7M_EXCRET, DCRS, 5, 1)
90 FIELD(V7M_EXCRET, S, 6, 1)
91 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
92 
93 /* Minimum value which is a magic number for exception return */
94 #define EXC_RETURN_MIN_MAGIC 0xff000000
95 /* Minimum number which is a magic number for function or exception return
96  * when using v8M security extension
97  */
98 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
99 
100 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
101 FIELD(DBGWCR, E, 0, 1)
102 FIELD(DBGWCR, PAC, 1, 2)
103 FIELD(DBGWCR, LSC, 3, 2)
104 FIELD(DBGWCR, BAS, 5, 8)
105 FIELD(DBGWCR, HMC, 13, 1)
106 FIELD(DBGWCR, SSC, 14, 2)
107 FIELD(DBGWCR, LBN, 16, 4)
108 FIELD(DBGWCR, WT, 20, 1)
109 FIELD(DBGWCR, MASK, 24, 5)
110 FIELD(DBGWCR, SSCE, 29, 1)
111 
112 #define VTCR_NSW (1u << 29)
113 #define VTCR_NSA (1u << 30)
114 #define VSTCR_SW VTCR_NSW
115 #define VSTCR_SA VTCR_NSA
116 
117 /* Bit definitions for CPACR (AArch32 only) */
118 FIELD(CPACR, CP10, 20, 2)
119 FIELD(CPACR, CP11, 22, 2)
120 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
121 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
122 FIELD(CPACR, ASEDIS, 31, 1)
123 
124 /* Bit definitions for CPACR_EL1 (AArch64 only) */
125 FIELD(CPACR_EL1, ZEN, 16, 2)
126 FIELD(CPACR_EL1, FPEN, 20, 2)
127 FIELD(CPACR_EL1, SMEN, 24, 2)
128 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
129 
130 /* Bit definitions for HCPTR (AArch32 only) */
131 FIELD(HCPTR, TCP10, 10, 1)
132 FIELD(HCPTR, TCP11, 11, 1)
133 FIELD(HCPTR, TASE, 15, 1)
134 FIELD(HCPTR, TTA, 20, 1)
135 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
136 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
137 
138 /* Bit definitions for CPTR_EL2 (AArch64 only) */
139 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
140 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
141 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
142 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
143 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
144 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
145 FIELD(CPTR_EL2, TTA, 28, 1)
146 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
147 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
148 
149 /* Bit definitions for CPTR_EL3 (AArch64 only) */
150 FIELD(CPTR_EL3, EZ, 8, 1)
151 FIELD(CPTR_EL3, TFP, 10, 1)
152 FIELD(CPTR_EL3, ESM, 12, 1)
153 FIELD(CPTR_EL3, TTA, 20, 1)
154 FIELD(CPTR_EL3, TAM, 30, 1)
155 FIELD(CPTR_EL3, TCPAC, 31, 1)
156 
157 #define MDCR_MTPME    (1U << 28)
158 #define MDCR_TDCC     (1U << 27)
159 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
160 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
161 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
162 #define MDCR_EPMAD    (1U << 21)
163 #define MDCR_EDAD     (1U << 20)
164 #define MDCR_TTRF     (1U << 19)
165 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
166 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
167 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
168 #define MDCR_SDD      (1U << 16)
169 #define MDCR_SPD      (3U << 14)
170 #define MDCR_TDRA     (1U << 11)
171 #define MDCR_TDOSA    (1U << 10)
172 #define MDCR_TDA      (1U << 9)
173 #define MDCR_TDE      (1U << 8)
174 #define MDCR_HPME     (1U << 7)
175 #define MDCR_TPM      (1U << 6)
176 #define MDCR_TPMCR    (1U << 5)
177 #define MDCR_HPMN     (0x1fU)
178 
179 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
180 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
181                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
182                          MDCR_STE | MDCR_SPME | MDCR_SPD)
183 
184 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
185 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
186 #define TTBCR_PD0    (1U << 4)
187 #define TTBCR_PD1    (1U << 5)
188 #define TTBCR_EPD0   (1U << 7)
189 #define TTBCR_IRGN0  (3U << 8)
190 #define TTBCR_ORGN0  (3U << 10)
191 #define TTBCR_SH0    (3U << 12)
192 #define TTBCR_T1SZ   (3U << 16)
193 #define TTBCR_A1     (1U << 22)
194 #define TTBCR_EPD1   (1U << 23)
195 #define TTBCR_IRGN1  (3U << 24)
196 #define TTBCR_ORGN1  (3U << 26)
197 #define TTBCR_SH1    (1U << 28)
198 #define TTBCR_EAE    (1U << 31)
199 
200 FIELD(VTCR, T0SZ, 0, 6)
201 FIELD(VTCR, SL0, 6, 2)
202 FIELD(VTCR, IRGN0, 8, 2)
203 FIELD(VTCR, ORGN0, 10, 2)
204 FIELD(VTCR, SH0, 12, 2)
205 FIELD(VTCR, TG0, 14, 2)
206 FIELD(VTCR, PS, 16, 3)
207 FIELD(VTCR, VS, 19, 1)
208 FIELD(VTCR, HA, 21, 1)
209 FIELD(VTCR, HD, 22, 1)
210 FIELD(VTCR, HWU59, 25, 1)
211 FIELD(VTCR, HWU60, 26, 1)
212 FIELD(VTCR, HWU61, 27, 1)
213 FIELD(VTCR, HWU62, 28, 1)
214 FIELD(VTCR, NSW, 29, 1)
215 FIELD(VTCR, NSA, 30, 1)
216 FIELD(VTCR, DS, 32, 1)
217 FIELD(VTCR, SL2, 33, 1)
218 
219 #define HCRX_ENAS0    (1ULL << 0)
220 #define HCRX_ENALS    (1ULL << 1)
221 #define HCRX_ENASR    (1ULL << 2)
222 #define HCRX_FNXS     (1ULL << 3)
223 #define HCRX_FGTNXS   (1ULL << 4)
224 #define HCRX_SMPME    (1ULL << 5)
225 #define HCRX_TALLINT  (1ULL << 6)
226 #define HCRX_VINMI    (1ULL << 7)
227 #define HCRX_VFNMI    (1ULL << 8)
228 #define HCRX_CMOW     (1ULL << 9)
229 #define HCRX_MCE2     (1ULL << 10)
230 #define HCRX_MSCEN    (1ULL << 11)
231 
232 #define HPFAR_NS      (1ULL << 63)
233 
234 #define HSTR_TTEE (1 << 16)
235 #define HSTR_TJDBX (1 << 17)
236 
237 /*
238  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
239  * have different bit definitions, and EL1PCTEN might be
240  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
241  * disambiguate if necessary.
242  */
243 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
244 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
245 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
246 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
247 FIELD(CNTHCTL, EVNTEN, 2, 1)
248 FIELD(CNTHCTL, EVNTDIR, 3, 1)
249 FIELD(CNTHCTL, EVNTI, 4, 4)
250 FIELD(CNTHCTL, EL0VTEN, 8, 1)
251 FIELD(CNTHCTL, EL0PTEN, 9, 1)
252 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
253 FIELD(CNTHCTL, EL1PTEN, 11, 1)
254 FIELD(CNTHCTL, ECV, 12, 1)
255 FIELD(CNTHCTL, EL1TVT, 13, 1)
256 FIELD(CNTHCTL, EL1TVCT, 14, 1)
257 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
258 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
259 FIELD(CNTHCTL, EVNTIS, 17, 1)
260 FIELD(CNTHCTL, CNTVMASK, 18, 1)
261 FIELD(CNTHCTL, CNTPMASK, 19, 1)
262 
263 /* We use a few fake FSR values for internal purposes in M profile.
264  * M profile cores don't have A/R format FSRs, but currently our
265  * get_phys_addr() code assumes A/R profile and reports failures via
266  * an A/R format FSR value. We then translate that into the proper
267  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
268  * Mostly the FSR values we use for this are those defined for v7PMSA,
269  * since we share some of that codepath. A few kinds of fault are
270  * only for M profile and have no A/R equivalent, though, so we have
271  * to pick a value from the reserved range (which we never otherwise
272  * generate) to use for these.
273  * These values will never be visible to the guest.
274  */
275 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
276 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
277 
278 /**
279  * raise_exception: Raise the specified exception.
280  * Raise a guest exception with the specified value, syndrome register
281  * and target exception level. This should be called from helper functions,
282  * and never returns because we will longjump back up to the CPU main loop.
283  */
284 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
285                                 uint32_t syndrome, uint32_t target_el);
286 
287 /*
288  * Similarly, but also use unwinding to restore cpu state.
289  */
290 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
291                                       uint32_t syndrome, uint32_t target_el,
292                                       uintptr_t ra);
293 
294 /*
295  * For AArch64, map a given EL to an index in the banked_spsr array.
296  * Note that this mapping and the AArch32 mapping defined in bank_number()
297  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
298  * mandated mapping between each other.
299  */
aarch64_banked_spsr_index(unsigned int el)300 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
301 {
302     static const unsigned int map[4] = {
303         [1] = BANK_SVC, /* EL1.  */
304         [2] = BANK_HYP, /* EL2.  */
305         [3] = BANK_MON, /* EL3.  */
306     };
307     assert(el >= 1 && el <= 3);
308     return map[el];
309 }
310 
311 /* Map CPU modes onto saved register banks.  */
bank_number(int mode)312 static inline int bank_number(int mode)
313 {
314     switch (mode) {
315     case ARM_CPU_MODE_USR:
316     case ARM_CPU_MODE_SYS:
317         return BANK_USRSYS;
318     case ARM_CPU_MODE_SVC:
319         return BANK_SVC;
320     case ARM_CPU_MODE_ABT:
321         return BANK_ABT;
322     case ARM_CPU_MODE_UND:
323         return BANK_UND;
324     case ARM_CPU_MODE_IRQ:
325         return BANK_IRQ;
326     case ARM_CPU_MODE_FIQ:
327         return BANK_FIQ;
328     case ARM_CPU_MODE_HYP:
329         return BANK_HYP;
330     case ARM_CPU_MODE_MON:
331         return BANK_MON;
332     }
333     g_assert_not_reached();
334 }
335 
336 /**
337  * r14_bank_number: Map CPU mode onto register bank for r14
338  *
339  * Given an AArch32 CPU mode, return the index into the saved register
340  * banks to use for the R14 (LR) in that mode. This is the same as
341  * bank_number(), except for the special case of Hyp mode, where
342  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
343  * This should be used as the index into env->banked_r14[], and
344  * bank_number() used for the index into env->banked_r13[] and
345  * env->banked_spsr[].
346  */
r14_bank_number(int mode)347 static inline int r14_bank_number(int mode)
348 {
349     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
350 }
351 
352 void arm_cpu_register(const ARMCPUInfo *info);
353 void aarch64_cpu_register(const ARMCPUInfo *info);
354 
355 void register_cp_regs_for_features(ARMCPU *cpu);
356 void init_cpreg_list(ARMCPU *cpu);
357 
358 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
359 void arm_translate_init(void);
360 
361 void arm_cpu_register_gdb_commands(ARMCPU *cpu);
362 void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
363                                        GPtrArray *, GPtrArray *);
364 
365 void arm_restore_state_to_opc(CPUState *cs,
366                               const TranslationBlock *tb,
367                               const uint64_t *data);
368 
369 #ifdef CONFIG_TCG
370 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
371 
372 /* Our implementation of TCGCPUOps::cpu_exec_halt */
373 bool arm_cpu_exec_halt(CPUState *cs);
374 #endif /* CONFIG_TCG */
375 
376 typedef enum ARMFPRounding {
377     FPROUNDING_TIEEVEN,
378     FPROUNDING_POSINF,
379     FPROUNDING_NEGINF,
380     FPROUNDING_ZERO,
381     FPROUNDING_TIEAWAY,
382     FPROUNDING_ODD
383 } ARMFPRounding;
384 
385 extern const FloatRoundMode arm_rmode_to_sf_map[6];
386 
arm_rmode_to_sf(ARMFPRounding rmode)387 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
388 {
389     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
390     return arm_rmode_to_sf_map[rmode];
391 }
392 
aarch64_save_sp(CPUARMState * env,int el)393 static inline void aarch64_save_sp(CPUARMState *env, int el)
394 {
395     if (env->pstate & PSTATE_SP) {
396         env->sp_el[el] = env->xregs[31];
397     } else {
398         env->sp_el[0] = env->xregs[31];
399     }
400 }
401 
aarch64_restore_sp(CPUARMState * env,int el)402 static inline void aarch64_restore_sp(CPUARMState *env, int el)
403 {
404     if (env->pstate & PSTATE_SP) {
405         env->xregs[31] = env->sp_el[el];
406     } else {
407         env->xregs[31] = env->sp_el[0];
408     }
409 }
410 
update_spsel(CPUARMState * env,uint32_t imm)411 static inline void update_spsel(CPUARMState *env, uint32_t imm)
412 {
413     unsigned int cur_el = arm_current_el(env);
414     /* Update PSTATE SPSel bit; this requires us to update the
415      * working stack pointer in xregs[31].
416      */
417     if (!((imm ^ env->pstate) & PSTATE_SP)) {
418         return;
419     }
420     aarch64_save_sp(env, cur_el);
421     env->pstate = deposit32(env->pstate, 0, 1, imm);
422 
423     /* We rely on illegal updates to SPsel from EL0 to get trapped
424      * at translation time.
425      */
426     assert(cur_el >= 1 && cur_el <= 3);
427     aarch64_restore_sp(env, cur_el);
428 }
429 
430 /*
431  * arm_pamax
432  * @cpu: ARMCPU
433  *
434  * Returns the implementation defined bit-width of physical addresses.
435  * The ARMv8 reference manuals refer to this as PAMax().
436  */
437 unsigned int arm_pamax(ARMCPU *cpu);
438 
439 /* Return true if extended addresses are enabled.
440  * This is always the case if our translation regime is 64 bit,
441  * but depends on TTBCR.EAE for 32 bit.
442  */
extended_addresses_enabled(CPUARMState * env)443 static inline bool extended_addresses_enabled(CPUARMState *env)
444 {
445     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
446     if (arm_feature(env, ARM_FEATURE_PMSA) &&
447         arm_feature(env, ARM_FEATURE_V8)) {
448         return true;
449     }
450     return arm_el_is_aa64(env, 1) ||
451            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
452 }
453 
454 /* Update a QEMU watchpoint based on the information the guest has set in the
455  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
456  */
457 void hw_watchpoint_update(ARMCPU *cpu, int n);
458 /* Update the QEMU watchpoints for every guest watchpoint. This does a
459  * complete delete-and-reinstate of the QEMU watchpoint list and so is
460  * suitable for use after migration or on reset.
461  */
462 void hw_watchpoint_update_all(ARMCPU *cpu);
463 /* Update a QEMU breakpoint based on the information the guest has set in the
464  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
465  */
466 void hw_breakpoint_update(ARMCPU *cpu, int n);
467 /* Update the QEMU breakpoints for every guest breakpoint. This does a
468  * complete delete-and-reinstate of the QEMU breakpoint list and so is
469  * suitable for use after migration or on reset.
470  */
471 void hw_breakpoint_update_all(ARMCPU *cpu);
472 
473 /* Callback function for checking if a breakpoint should trigger. */
474 bool arm_debug_check_breakpoint(CPUState *cs);
475 
476 /* Callback function for checking if a watchpoint should trigger. */
477 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
478 
479 /* Adjust addresses (in BE32 mode) before testing against watchpoint
480  * addresses.
481  */
482 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
483 
484 /* Callback function for when a watchpoint or breakpoint triggers. */
485 void arm_debug_excp_handler(CPUState *cs);
486 
487 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
arm_is_psci_call(ARMCPU * cpu,int excp_type)488 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
489 {
490     return false;
491 }
arm_handle_psci_call(ARMCPU * cpu)492 static inline void arm_handle_psci_call(ARMCPU *cpu)
493 {
494     g_assert_not_reached();
495 }
496 #else
497 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
498 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
499 /* Actually handle a PSCI call */
500 void arm_handle_psci_call(ARMCPU *cpu);
501 #endif
502 
503 /**
504  * arm_clear_exclusive: clear the exclusive monitor
505  * @env: CPU env
506  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
507  */
arm_clear_exclusive(CPUARMState * env)508 static inline void arm_clear_exclusive(CPUARMState *env)
509 {
510     env->exclusive_addr = -1;
511 }
512 
513 /**
514  * ARMFaultType: type of an ARM MMU fault
515  * This corresponds to the v8A pseudocode's Fault enumeration,
516  * with extensions for QEMU internal conditions.
517  */
518 typedef enum ARMFaultType {
519     ARMFault_None,
520     ARMFault_AccessFlag,
521     ARMFault_Alignment,
522     ARMFault_Background,
523     ARMFault_Domain,
524     ARMFault_Permission,
525     ARMFault_Translation,
526     ARMFault_AddressSize,
527     ARMFault_SyncExternal,
528     ARMFault_SyncExternalOnWalk,
529     ARMFault_SyncParity,
530     ARMFault_SyncParityOnWalk,
531     ARMFault_AsyncParity,
532     ARMFault_AsyncExternal,
533     ARMFault_Debug,
534     ARMFault_TLBConflict,
535     ARMFault_UnsuppAtomicUpdate,
536     ARMFault_Lockdown,
537     ARMFault_Exclusive,
538     ARMFault_ICacheMaint,
539     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
540     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
541     ARMFault_GPCFOnWalk,
542     ARMFault_GPCFOnOutput,
543 } ARMFaultType;
544 
545 typedef enum ARMGPCF {
546     GPCF_None,
547     GPCF_AddressSize,
548     GPCF_Walk,
549     GPCF_EABT,
550     GPCF_Fail,
551 } ARMGPCF;
552 
553 /**
554  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
555  * @type: Type of fault
556  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
557  * @level: Table walk level (for translation, access flag and permission faults)
558  * @domain: Domain of the fault address (for non-LPAE CPUs only)
559  * @s2addr: Address that caused a fault at stage 2
560  * @paddr: physical address that caused a fault for gpc
561  * @paddr_space: physical address space that caused a fault for gpc
562  * @stage2: True if we faulted at stage 2
563  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
564  * @s1ns: True if we faulted on a non-secure IPA while in secure state
565  * @ea: True if we should set the EA (external abort type) bit in syndrome
566  */
567 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
568 struct ARMMMUFaultInfo {
569     ARMFaultType type;
570     ARMGPCF gpcf;
571     target_ulong s2addr;
572     target_ulong paddr;
573     ARMSecuritySpace paddr_space;
574     int level;
575     int domain;
576     bool stage2;
577     bool s1ptw;
578     bool s1ns;
579     bool ea;
580 };
581 
582 /**
583  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
584  * Compare pseudocode EncodeSDFSC(), though unlike that function
585  * we set up a whole FSR-format code including domain field and
586  * putting the high bit of the FSC into bit 10.
587  */
arm_fi_to_sfsc(ARMMMUFaultInfo * fi)588 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
589 {
590     uint32_t fsc;
591 
592     switch (fi->type) {
593     case ARMFault_None:
594         return 0;
595     case ARMFault_AccessFlag:
596         fsc = fi->level == 1 ? 0x3 : 0x6;
597         break;
598     case ARMFault_Alignment:
599         fsc = 0x1;
600         break;
601     case ARMFault_Permission:
602         fsc = fi->level == 1 ? 0xd : 0xf;
603         break;
604     case ARMFault_Domain:
605         fsc = fi->level == 1 ? 0x9 : 0xb;
606         break;
607     case ARMFault_Translation:
608         fsc = fi->level == 1 ? 0x5 : 0x7;
609         break;
610     case ARMFault_SyncExternal:
611         fsc = 0x8 | (fi->ea << 12);
612         break;
613     case ARMFault_SyncExternalOnWalk:
614         fsc = fi->level == 1 ? 0xc : 0xe;
615         fsc |= (fi->ea << 12);
616         break;
617     case ARMFault_SyncParity:
618         fsc = 0x409;
619         break;
620     case ARMFault_SyncParityOnWalk:
621         fsc = fi->level == 1 ? 0x40c : 0x40e;
622         break;
623     case ARMFault_AsyncParity:
624         fsc = 0x408;
625         break;
626     case ARMFault_AsyncExternal:
627         fsc = 0x406 | (fi->ea << 12);
628         break;
629     case ARMFault_Debug:
630         fsc = 0x2;
631         break;
632     case ARMFault_TLBConflict:
633         fsc = 0x400;
634         break;
635     case ARMFault_Lockdown:
636         fsc = 0x404;
637         break;
638     case ARMFault_Exclusive:
639         fsc = 0x405;
640         break;
641     case ARMFault_ICacheMaint:
642         fsc = 0x4;
643         break;
644     case ARMFault_Background:
645         fsc = 0x0;
646         break;
647     case ARMFault_QEMU_NSCExec:
648         fsc = M_FAKE_FSR_NSC_EXEC;
649         break;
650     case ARMFault_QEMU_SFault:
651         fsc = M_FAKE_FSR_SFAULT;
652         break;
653     default:
654         /* Other faults can't occur in a context that requires a
655          * short-format status code.
656          */
657         g_assert_not_reached();
658     }
659 
660     fsc |= (fi->domain << 4);
661     return fsc;
662 }
663 
664 /**
665  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
666  * Compare pseudocode EncodeLDFSC(), though unlike that function
667  * we fill in also the LPAE bit 9 of a DFSR format.
668  */
arm_fi_to_lfsc(ARMMMUFaultInfo * fi)669 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
670 {
671     uint32_t fsc;
672 
673     switch (fi->type) {
674     case ARMFault_None:
675         return 0;
676     case ARMFault_AddressSize:
677         assert(fi->level >= -1 && fi->level <= 3);
678         if (fi->level < 0) {
679             fsc = 0b101001;
680         } else {
681             fsc = fi->level;
682         }
683         break;
684     case ARMFault_AccessFlag:
685         assert(fi->level >= 0 && fi->level <= 3);
686         fsc = 0b001000 | fi->level;
687         break;
688     case ARMFault_Permission:
689         assert(fi->level >= 0 && fi->level <= 3);
690         fsc = 0b001100 | fi->level;
691         break;
692     case ARMFault_Translation:
693         assert(fi->level >= -1 && fi->level <= 3);
694         if (fi->level < 0) {
695             fsc = 0b101011;
696         } else {
697             fsc = 0b000100 | fi->level;
698         }
699         break;
700     case ARMFault_SyncExternal:
701         fsc = 0x10 | (fi->ea << 12);
702         break;
703     case ARMFault_SyncExternalOnWalk:
704         assert(fi->level >= -1 && fi->level <= 3);
705         if (fi->level < 0) {
706             fsc = 0b010011;
707         } else {
708             fsc = 0b010100 | fi->level;
709         }
710         fsc |= fi->ea << 12;
711         break;
712     case ARMFault_SyncParity:
713         fsc = 0x18;
714         break;
715     case ARMFault_SyncParityOnWalk:
716         assert(fi->level >= -1 && fi->level <= 3);
717         if (fi->level < 0) {
718             fsc = 0b011011;
719         } else {
720             fsc = 0b011100 | fi->level;
721         }
722         break;
723     case ARMFault_AsyncParity:
724         fsc = 0x19;
725         break;
726     case ARMFault_AsyncExternal:
727         fsc = 0x11 | (fi->ea << 12);
728         break;
729     case ARMFault_Alignment:
730         fsc = 0x21;
731         break;
732     case ARMFault_Debug:
733         fsc = 0x22;
734         break;
735     case ARMFault_TLBConflict:
736         fsc = 0x30;
737         break;
738     case ARMFault_UnsuppAtomicUpdate:
739         fsc = 0x31;
740         break;
741     case ARMFault_Lockdown:
742         fsc = 0x34;
743         break;
744     case ARMFault_Exclusive:
745         fsc = 0x35;
746         break;
747     case ARMFault_GPCFOnWalk:
748         assert(fi->level >= -1 && fi->level <= 3);
749         if (fi->level < 0) {
750             fsc = 0b100011;
751         } else {
752             fsc = 0b100100 | fi->level;
753         }
754         break;
755     case ARMFault_GPCFOnOutput:
756         fsc = 0b101000;
757         break;
758     default:
759         /* Other faults can't occur in a context that requires a
760          * long-format status code.
761          */
762         g_assert_not_reached();
763     }
764 
765     fsc |= 1 << 9;
766     return fsc;
767 }
768 
arm_extabort_type(MemTxResult result)769 static inline bool arm_extabort_type(MemTxResult result)
770 {
771     /* The EA bit in syndromes and fault status registers is an
772      * IMPDEF classification of external aborts. ARM implementations
773      * usually use this to indicate AXI bus Decode error (0) or
774      * Slave error (1); in QEMU we follow that.
775      */
776     return result != MEMTX_DECODE_ERROR;
777 }
778 
779 #ifdef CONFIG_USER_ONLY
780 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
781                             MMUAccessType access_type,
782                             bool maperr, uintptr_t ra);
783 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
784                            MMUAccessType access_type, uintptr_t ra);
785 #else
786 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
787                       MMUAccessType access_type, int mmu_idx,
788                       bool probe, uintptr_t retaddr);
789 #endif
790 
arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)791 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
792 {
793     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
794 }
795 
core_to_arm_mmu_idx(CPUARMState * env,int mmu_idx)796 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
797 {
798     if (arm_feature(env, ARM_FEATURE_M)) {
799         return mmu_idx | ARM_MMU_IDX_M;
800     } else {
801         return mmu_idx | ARM_MMU_IDX_A;
802     }
803 }
804 
core_to_aa64_mmu_idx(int mmu_idx)805 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
806 {
807     /* AArch64 is always a-profile. */
808     return mmu_idx | ARM_MMU_IDX_A;
809 }
810 
811 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
812 
813 /* Return the MMU index for a v7M CPU in the specified security state */
814 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
815 
816 /*
817  * Return true if the stage 1 translation regime is using LPAE
818  * format page tables
819  */
820 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
821 
822 /* Raise a data fault alignment exception for the specified virtual address */
823 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
824                                             MMUAccessType access_type,
825                                             int mmu_idx, uintptr_t retaddr);
826 
827 #ifndef CONFIG_USER_ONLY
828 /* arm_cpu_do_transaction_failed: handle a memory system error response
829  * (eg "no device/memory present at address") by raising an external abort
830  * exception
831  */
832 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
833                                    vaddr addr, unsigned size,
834                                    MMUAccessType access_type,
835                                    int mmu_idx, MemTxAttrs attrs,
836                                    MemTxResult response, uintptr_t retaddr);
837 #endif
838 
839 /* Call any registered EL change hooks */
arm_call_pre_el_change_hook(ARMCPU * cpu)840 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
841 {
842     ARMELChangeHook *hook, *next;
843     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
844         hook->hook(cpu, hook->opaque);
845     }
846 }
arm_call_el_change_hook(ARMCPU * cpu)847 static inline void arm_call_el_change_hook(ARMCPU *cpu)
848 {
849     ARMELChangeHook *hook, *next;
850     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
851         hook->hook(cpu, hook->opaque);
852     }
853 }
854 
855 /*
856  * Return true if this address translation regime has two ranges.
857  * Note that this will not return the correct answer for AArch32
858  * Secure PL1&0 (i.e. mmu indexes E3, E30_0, E30_3_PAN), but it is
859  * never called from a context where EL3 can be AArch32. (The
860  * correct return value for ARMMMUIdx_E3 would be different for
861  * that case, so we can't just make the function return the
862  * correct value anyway; we would need an extra "bool e3_is_aarch32"
863  * argument which all the current callsites would pass as 'false'.)
864  */
regime_has_2_ranges(ARMMMUIdx mmu_idx)865 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
866 {
867     switch (mmu_idx) {
868     case ARMMMUIdx_Stage1_E0:
869     case ARMMMUIdx_Stage1_E1:
870     case ARMMMUIdx_Stage1_E1_PAN:
871     case ARMMMUIdx_E10_0:
872     case ARMMMUIdx_E10_1:
873     case ARMMMUIdx_E10_1_PAN:
874     case ARMMMUIdx_E20_0:
875     case ARMMMUIdx_E20_2:
876     case ARMMMUIdx_E20_2_PAN:
877         return true;
878     default:
879         return false;
880     }
881 }
882 
regime_is_pan(CPUARMState * env,ARMMMUIdx mmu_idx)883 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
884 {
885     switch (mmu_idx) {
886     case ARMMMUIdx_Stage1_E1_PAN:
887     case ARMMMUIdx_E10_1_PAN:
888     case ARMMMUIdx_E20_2_PAN:
889     case ARMMMUIdx_E30_3_PAN:
890         return true;
891     default:
892         return false;
893     }
894 }
895 
regime_is_stage2(ARMMMUIdx mmu_idx)896 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
897 {
898     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
899 }
900 
901 /* Return the exception level which controls this address translation regime */
regime_el(CPUARMState * env,ARMMMUIdx mmu_idx)902 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
903 {
904     switch (mmu_idx) {
905     case ARMMMUIdx_E20_0:
906     case ARMMMUIdx_E20_2:
907     case ARMMMUIdx_E20_2_PAN:
908     case ARMMMUIdx_Stage2:
909     case ARMMMUIdx_Stage2_S:
910     case ARMMMUIdx_E2:
911         return 2;
912     case ARMMMUIdx_E3:
913     case ARMMMUIdx_E30_0:
914     case ARMMMUIdx_E30_3_PAN:
915         return 3;
916     case ARMMMUIdx_E10_0:
917     case ARMMMUIdx_Stage1_E0:
918     case ARMMMUIdx_Stage1_E1:
919     case ARMMMUIdx_Stage1_E1_PAN:
920     case ARMMMUIdx_E10_1:
921     case ARMMMUIdx_E10_1_PAN:
922     case ARMMMUIdx_MPrivNegPri:
923     case ARMMMUIdx_MUserNegPri:
924     case ARMMMUIdx_MPriv:
925     case ARMMMUIdx_MUser:
926     case ARMMMUIdx_MSPrivNegPri:
927     case ARMMMUIdx_MSUserNegPri:
928     case ARMMMUIdx_MSPriv:
929     case ARMMMUIdx_MSUser:
930         return 1;
931     default:
932         g_assert_not_reached();
933     }
934 }
935 
regime_is_user(CPUARMState * env,ARMMMUIdx mmu_idx)936 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
937 {
938     switch (mmu_idx) {
939     case ARMMMUIdx_E10_0:
940     case ARMMMUIdx_E20_0:
941     case ARMMMUIdx_E30_0:
942     case ARMMMUIdx_Stage1_E0:
943     case ARMMMUIdx_MUser:
944     case ARMMMUIdx_MSUser:
945     case ARMMMUIdx_MUserNegPri:
946     case ARMMMUIdx_MSUserNegPri:
947         return true;
948     default:
949         return false;
950     }
951 }
952 
953 /* Return the SCTLR value which controls this address translation regime */
regime_sctlr(CPUARMState * env,ARMMMUIdx mmu_idx)954 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
955 {
956     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
957 }
958 
959 /*
960  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
961  * and the Non-Secure stage 2 translation regimes (and hence which are
962  * not present in VSTCR_EL2).
963  */
964 #define VTCR_SHARED_FIELD_MASK \
965     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
966      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
967      R_VTCR_DS_MASK)
968 
969 /* Return the value of the TCR controlling this translation regime */
regime_tcr(CPUARMState * env,ARMMMUIdx mmu_idx)970 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
971 {
972     if (mmu_idx == ARMMMUIdx_Stage2) {
973         return env->cp15.vtcr_el2;
974     }
975     if (mmu_idx == ARMMMUIdx_Stage2_S) {
976         /*
977          * Secure stage 2 shares fields from VTCR_EL2. We merge those
978          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
979          * value so the callers don't need to special case this.
980          *
981          * If a future architecture change defines bits in VSTCR_EL2 that
982          * overlap with these VTCR_EL2 fields we may need to revisit this.
983          */
984         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
985         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
986         return v;
987     }
988     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
989 }
990 
991 /* Return true if the translation regime is using LPAE format page tables */
regime_using_lpae_format(CPUARMState * env,ARMMMUIdx mmu_idx)992 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
993 {
994     int el = regime_el(env, mmu_idx);
995     if (el == 2 || arm_el_is_aa64(env, el)) {
996         return true;
997     }
998     if (arm_feature(env, ARM_FEATURE_PMSA) &&
999         arm_feature(env, ARM_FEATURE_V8)) {
1000         return true;
1001     }
1002     if (arm_feature(env, ARM_FEATURE_LPAE)
1003         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
1004         return true;
1005     }
1006     return false;
1007 }
1008 
1009 /**
1010  * arm_num_brps: Return number of implemented breakpoints.
1011  * Note that the ID register BRPS field is "number of bps - 1",
1012  * and we return the actual number of breakpoints.
1013  */
arm_num_brps(ARMCPU * cpu)1014 static inline int arm_num_brps(ARMCPU *cpu)
1015 {
1016     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1017         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
1018     } else {
1019         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
1020     }
1021 }
1022 
1023 /**
1024  * arm_num_wrps: Return number of implemented watchpoints.
1025  * Note that the ID register WRPS field is "number of wps - 1",
1026  * and we return the actual number of watchpoints.
1027  */
arm_num_wrps(ARMCPU * cpu)1028 static inline int arm_num_wrps(ARMCPU *cpu)
1029 {
1030     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1031         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1032     } else {
1033         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1034     }
1035 }
1036 
1037 /**
1038  * arm_num_ctx_cmps: Return number of implemented context comparators.
1039  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1040  * and we return the actual number of comparators.
1041  */
arm_num_ctx_cmps(ARMCPU * cpu)1042 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1043 {
1044     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1045         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1046     } else {
1047         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1048     }
1049 }
1050 
1051 /**
1052  * v7m_using_psp: Return true if using process stack pointer
1053  * Return true if the CPU is currently using the process stack
1054  * pointer, or false if it is using the main stack pointer.
1055  */
v7m_using_psp(CPUARMState * env)1056 static inline bool v7m_using_psp(CPUARMState *env)
1057 {
1058     /* Handler mode always uses the main stack; for thread mode
1059      * the CONTROL.SPSEL bit determines the answer.
1060      * Note that in v7M it is not possible to be in Handler mode with
1061      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1062      */
1063     return !arm_v7m_is_handler_mode(env) &&
1064         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1065 }
1066 
1067 /**
1068  * v7m_sp_limit: Return SP limit for current CPU state
1069  * Return the SP limit value for the current CPU security state
1070  * and stack pointer.
1071  */
v7m_sp_limit(CPUARMState * env)1072 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1073 {
1074     if (v7m_using_psp(env)) {
1075         return env->v7m.psplim[env->v7m.secure];
1076     } else {
1077         return env->v7m.msplim[env->v7m.secure];
1078     }
1079 }
1080 
1081 /**
1082  * v7m_cpacr_pass:
1083  * Return true if the v7M CPACR permits access to the FPU for the specified
1084  * security state and privilege level.
1085  */
v7m_cpacr_pass(CPUARMState * env,bool is_secure,bool is_priv)1086 static inline bool v7m_cpacr_pass(CPUARMState *env,
1087                                   bool is_secure, bool is_priv)
1088 {
1089     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1090     case 0:
1091     case 2: /* UNPREDICTABLE: we treat like 0 */
1092         return false;
1093     case 1:
1094         return is_priv;
1095     case 3:
1096         return true;
1097     default:
1098         g_assert_not_reached();
1099     }
1100 }
1101 
1102 /**
1103  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1104  * @psr: Program Status Register indicating CPU mode
1105  *
1106  * Returns, for debug logging purposes, a printable representation
1107  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1108  * the low bits of the specified PSR.
1109  */
aarch32_mode_name(uint32_t psr)1110 static inline const char *aarch32_mode_name(uint32_t psr)
1111 {
1112     static const char cpu_mode_names[16][4] = {
1113         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1114         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1115     };
1116 
1117     return cpu_mode_names[psr & 0xf];
1118 }
1119 
1120 /**
1121  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1122  *
1123  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1124  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1125  * Must be called with the BQL held.
1126  */
1127 void arm_cpu_update_virq(ARMCPU *cpu);
1128 
1129 /**
1130  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1131  *
1132  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1133  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1134  * Must be called with the BQL held.
1135  */
1136 void arm_cpu_update_vfiq(ARMCPU *cpu);
1137 
1138 /**
1139  * arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
1140  *
1141  * Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
1142  * a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
1143  * Must be called with the BQL held.
1144  */
1145 void arm_cpu_update_vinmi(ARMCPU *cpu);
1146 
1147 /**
1148  * arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
1149  *
1150  * Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
1151  * a change to the HCRX_EL2.VFNMI.
1152  * Must be called with the BQL held.
1153  */
1154 void arm_cpu_update_vfnmi(ARMCPU *cpu);
1155 
1156 /**
1157  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1158  *
1159  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1160  * following a change to the HCR_EL2.VSE bit.
1161  */
1162 void arm_cpu_update_vserr(ARMCPU *cpu);
1163 
1164 /**
1165  * arm_mmu_idx_el:
1166  * @env: The cpu environment
1167  * @el: The EL to use.
1168  *
1169  * Return the full ARMMMUIdx for the translation regime for EL.
1170  */
1171 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1172 
1173 /**
1174  * arm_mmu_idx:
1175  * @env: The cpu environment
1176  *
1177  * Return the full ARMMMUIdx for the current translation regime.
1178  */
1179 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1180 
1181 /**
1182  * arm_stage1_mmu_idx:
1183  * @env: The cpu environment
1184  *
1185  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1186  */
1187 #ifdef CONFIG_USER_ONLY
stage_1_mmu_idx(ARMMMUIdx mmu_idx)1188 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1189 {
1190     return ARMMMUIdx_Stage1_E0;
1191 }
arm_stage1_mmu_idx(CPUARMState * env)1192 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1193 {
1194     return ARMMMUIdx_Stage1_E0;
1195 }
1196 #else
1197 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1198 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1199 #endif
1200 
1201 /**
1202  * arm_mmu_idx_is_stage1_of_2:
1203  * @mmu_idx: The ARMMMUIdx to test
1204  *
1205  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1206  * first stage of a two stage regime.
1207  */
arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)1208 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1209 {
1210     switch (mmu_idx) {
1211     case ARMMMUIdx_Stage1_E0:
1212     case ARMMMUIdx_Stage1_E1:
1213     case ARMMMUIdx_Stage1_E1_PAN:
1214         return true;
1215     default:
1216         return false;
1217     }
1218 }
1219 
aarch32_cpsr_valid_mask(uint64_t features,const ARMISARegisters * id)1220 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1221                                                const ARMISARegisters *id)
1222 {
1223     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1224 
1225     if ((features >> ARM_FEATURE_V4T) & 1) {
1226         valid |= CPSR_T;
1227     }
1228     if ((features >> ARM_FEATURE_V5) & 1) {
1229         valid |= CPSR_Q; /* V5TE in reality*/
1230     }
1231     if ((features >> ARM_FEATURE_V6) & 1) {
1232         valid |= CPSR_E | CPSR_GE;
1233     }
1234     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1235         valid |= CPSR_IT;
1236     }
1237     if (isar_feature_aa32_jazelle(id)) {
1238         valid |= CPSR_J;
1239     }
1240     if (isar_feature_aa32_pan(id)) {
1241         valid |= CPSR_PAN;
1242     }
1243     if (isar_feature_aa32_dit(id)) {
1244         valid |= CPSR_DIT;
1245     }
1246     if (isar_feature_aa32_ssbs(id)) {
1247         valid |= CPSR_SSBS;
1248     }
1249 
1250     return valid;
1251 }
1252 
aarch64_pstate_valid_mask(const ARMISARegisters * id)1253 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1254 {
1255     uint32_t valid;
1256 
1257     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1258     if (isar_feature_aa64_bti(id)) {
1259         valid |= PSTATE_BTYPE;
1260     }
1261     if (isar_feature_aa64_pan(id)) {
1262         valid |= PSTATE_PAN;
1263     }
1264     if (isar_feature_aa64_uao(id)) {
1265         valid |= PSTATE_UAO;
1266     }
1267     if (isar_feature_aa64_dit(id)) {
1268         valid |= PSTATE_DIT;
1269     }
1270     if (isar_feature_aa64_ssbs(id)) {
1271         valid |= PSTATE_SSBS;
1272     }
1273     if (isar_feature_aa64_mte(id)) {
1274         valid |= PSTATE_TCO;
1275     }
1276     if (isar_feature_aa64_nmi(id)) {
1277         valid |= PSTATE_ALLINT;
1278     }
1279 
1280     return valid;
1281 }
1282 
1283 /* Granule size (i.e. page size) */
1284 typedef enum ARMGranuleSize {
1285     /* Same order as TG0 encoding */
1286     Gran4K,
1287     Gran64K,
1288     Gran16K,
1289     GranInvalid,
1290 } ARMGranuleSize;
1291 
1292 /**
1293  * arm_granule_bits: Return address size of the granule in bits
1294  *
1295  * Return the address size of the granule in bits. This corresponds
1296  * to the pseudocode TGxGranuleBits().
1297  */
arm_granule_bits(ARMGranuleSize gran)1298 static inline int arm_granule_bits(ARMGranuleSize gran)
1299 {
1300     switch (gran) {
1301     case Gran64K:
1302         return 16;
1303     case Gran16K:
1304         return 14;
1305     case Gran4K:
1306         return 12;
1307     default:
1308         g_assert_not_reached();
1309     }
1310 }
1311 
1312 /*
1313  * Parameters of a given virtual address, as extracted from the
1314  * translation control register (TCR) for a given regime.
1315  */
1316 typedef struct ARMVAParameters {
1317     unsigned tsz    : 8;
1318     unsigned ps     : 3;
1319     unsigned sh     : 2;
1320     unsigned select : 1;
1321     bool tbi        : 1;
1322     bool epd        : 1;
1323     bool hpd        : 1;
1324     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1325     bool ds         : 1;
1326     bool ha         : 1;
1327     bool hd         : 1;
1328     ARMGranuleSize gran : 2;
1329 } ARMVAParameters;
1330 
1331 /**
1332  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1333  * @env: CPU
1334  * @va: virtual address to look up
1335  * @mmu_idx: determines translation regime to use
1336  * @data: true if this is a data access
1337  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1338  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1339  */
1340 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1341                                    ARMMMUIdx mmu_idx, bool data,
1342                                    bool el1_is_aa32);
1343 
1344 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1345 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1346 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1347 
1348 /* Determine if allocation tags are available.  */
allocation_tag_access_enabled(CPUARMState * env,int el,uint64_t sctlr)1349 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1350                                                  uint64_t sctlr)
1351 {
1352     if (el < 3
1353         && arm_feature(env, ARM_FEATURE_EL3)
1354         && !(env->cp15.scr_el3 & SCR_ATA)) {
1355         return false;
1356     }
1357     if (el < 2 && arm_is_el2_enabled(env)) {
1358         uint64_t hcr = arm_hcr_el2_eff(env);
1359         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1360             return false;
1361         }
1362     }
1363     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1364     return sctlr != 0;
1365 }
1366 
1367 #ifndef CONFIG_USER_ONLY
1368 
1369 /* Security attributes for an address, as returned by v8m_security_lookup. */
1370 typedef struct V8M_SAttributes {
1371     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1372     bool ns;
1373     bool nsc;
1374     uint8_t sregion;
1375     bool srvalid;
1376     uint8_t iregion;
1377     bool irvalid;
1378 } V8M_SAttributes;
1379 
1380 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1381                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1382                          bool secure, V8M_SAttributes *sattrs);
1383 
1384 /* Cacheability and shareability attributes for a memory access */
1385 typedef struct ARMCacheAttrs {
1386     /*
1387      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1388      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1389      */
1390     unsigned int attrs:8;
1391     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1392     bool is_s2_format:1;
1393 } ARMCacheAttrs;
1394 
1395 /* Fields that are valid upon success. */
1396 typedef struct GetPhysAddrResult {
1397     CPUTLBEntryFull f;
1398     ARMCacheAttrs cacheattrs;
1399 } GetPhysAddrResult;
1400 
1401 /**
1402  * get_phys_addr: get the physical address for a virtual address
1403  * @env: CPUARMState
1404  * @address: virtual address to get physical address for
1405  * @access_type: 0 for read, 1 for write, 2 for execute
1406  * @mmu_idx: MMU index indicating required translation regime
1407  * @result: set on translation success.
1408  * @fi: set to fault info if the translation fails
1409  *
1410  * Find the physical address corresponding to the given virtual address,
1411  * by doing a translation table walk on MMU based systems or using the
1412  * MPU state on MPU based systems.
1413  *
1414  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1415  * prot and page_size may not be filled in, and the populated fsr value provides
1416  * information on why the translation aborted, in the format of a
1417  * DFSR/IFSR fault register, with the following caveats:
1418  *  * we honour the short vs long DFSR format differences.
1419  *  * the WnR bit is never set (the caller must do this).
1420  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1421  *    value.
1422  */
1423 bool get_phys_addr(CPUARMState *env, vaddr address,
1424                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1425                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1426     __attribute__((nonnull));
1427 
1428 /**
1429  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1430  *                                 address
1431  * @env: CPUARMState
1432  * @address: virtual address to get physical address for
1433  * @access_type: 0 for read, 1 for write, 2 for execute
1434  * @mmu_idx: MMU index indicating required translation regime
1435  * @space: security space for the access
1436  * @result: set on translation success.
1437  * @fi: set to fault info if the translation fails
1438  *
1439  * Similar to get_phys_addr, but use the given security space and don't perform
1440  * a Granule Protection Check on the resulting address.
1441  */
1442 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
1443                                     MMUAccessType access_type,
1444                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1445                                     GetPhysAddrResult *result,
1446                                     ARMMMUFaultInfo *fi)
1447     __attribute__((nonnull));
1448 
1449 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1450                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1451                        bool is_secure, GetPhysAddrResult *result,
1452                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1453 
1454 void arm_log_exception(CPUState *cs);
1455 
1456 #endif /* !CONFIG_USER_ONLY */
1457 
1458 /*
1459  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1460  * the same simd_desc() encoding due to restrictions on size.
1461  * Use these instead.
1462  */
1463 FIELD(PREDDESC, OPRSZ, 0, 6)
1464 FIELD(PREDDESC, ESZ, 6, 2)
1465 FIELD(PREDDESC, DATA, 8, 24)
1466 
1467 /*
1468  * The SVE simd_data field, for memory ops, contains either
1469  * rd (5 bits) or a shift count (2 bits).
1470  */
1471 #define SVE_MTEDESC_SHIFT 5
1472 
1473 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1474 FIELD(MTEDESC, MIDX,  0, 4)
1475 FIELD(MTEDESC, TBI,   4, 2)
1476 FIELD(MTEDESC, TCMA,  6, 2)
1477 FIELD(MTEDESC, WRITE, 8, 1)
1478 FIELD(MTEDESC, ALIGN, 9, 3)
1479 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1480 
1481 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1482 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1483 
1484 /**
1485  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1486  * @env: CPU env
1487  * @ptr: start address of memory region (dirty pointer)
1488  * @size: length of region (guaranteed not to cross a page boundary)
1489  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1490  * Returns: the size of the region that can be copied without hitting
1491  *          an MTE tag failure
1492  *
1493  * Note that we assume that the caller has already checked the TBI
1494  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1495  * required.
1496  */
1497 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1498                         uint32_t desc);
1499 
1500 /**
1501  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1502  *                     operation going in the reverse direction
1503  * @env: CPU env
1504  * @ptr: *end* address of memory region (dirty pointer)
1505  * @size: length of region (guaranteed not to cross a page boundary)
1506  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1507  * Returns: the size of the region that can be copied without hitting
1508  *          an MTE tag failure
1509  *
1510  * Note that we assume that the caller has already checked the TBI
1511  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1512  * required.
1513  */
1514 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1515                             uint32_t desc);
1516 
1517 /**
1518  * mte_check_fail: Record an MTE tag check failure
1519  * @env: CPU env
1520  * @desc: MTEDESC descriptor word
1521  * @dirty_ptr: Failing dirty address
1522  * @ra: TCG retaddr
1523  *
1524  * This may never return (if the MTE tag checks are configured to fault).
1525  */
1526 void mte_check_fail(CPUARMState *env, uint32_t desc,
1527                     uint64_t dirty_ptr, uintptr_t ra);
1528 
1529 /**
1530  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1531  * @env: CPU env
1532  * @dirty_ptr: Start address of memory region (dirty pointer)
1533  * @size: length of region (guaranteed not to cross page boundary)
1534  * @desc: MTEDESC descriptor word
1535  */
1536 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1537                        uint32_t desc);
1538 
allocation_tag_from_addr(uint64_t ptr)1539 static inline int allocation_tag_from_addr(uint64_t ptr)
1540 {
1541     return extract64(ptr, 56, 4);
1542 }
1543 
address_with_allocation_tag(uint64_t ptr,int rtag)1544 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1545 {
1546     return deposit64(ptr, 56, 4, rtag);
1547 }
1548 
1549 /* Return true if tbi bits mean that the access is checked.  */
tbi_check(uint32_t desc,int bit55)1550 static inline bool tbi_check(uint32_t desc, int bit55)
1551 {
1552     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1553 }
1554 
1555 /* Return true if tcma bits mean that the access is unchecked.  */
tcma_check(uint32_t desc,int bit55,int ptr_tag)1556 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1557 {
1558     /*
1559      * We had extracted bit55 and ptr_tag for other reasons, so fold
1560      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1561      */
1562     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1563     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1564     return tcma && match;
1565 }
1566 
1567 /*
1568  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1569  * for the tag to be present in the FAR_ELx register.  But for user-only
1570  * mode, we do not have a TLB with which to implement this, so we must
1571  * remove the top byte.
1572  */
useronly_clean_ptr(uint64_t ptr)1573 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1574 {
1575 #ifdef CONFIG_USER_ONLY
1576     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1577     ptr &= sextract64(ptr, 0, 56);
1578 #endif
1579     return ptr;
1580 }
1581 
useronly_maybe_clean_ptr(uint32_t desc,uint64_t ptr)1582 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1583 {
1584 #ifdef CONFIG_USER_ONLY
1585     int64_t clean_ptr = sextract64(ptr, 0, 56);
1586     if (tbi_check(desc, clean_ptr < 0)) {
1587         ptr = clean_ptr;
1588     }
1589 #endif
1590     return ptr;
1591 }
1592 
1593 /* Values for M-profile PSR.ECI for MVE insns */
1594 enum MVEECIState {
1595     ECI_NONE = 0, /* No completed beats */
1596     ECI_A0 = 1, /* Completed: A0 */
1597     ECI_A0A1 = 2, /* Completed: A0, A1 */
1598     /* 3 is reserved */
1599     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1600     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1601     /* All other values reserved */
1602 };
1603 
1604 /* Definitions for the PMU registers */
1605 #define PMCRN_MASK  0xf800
1606 #define PMCRN_SHIFT 11
1607 #define PMCRLP  0x80
1608 #define PMCRLC  0x40
1609 #define PMCRDP  0x20
1610 #define PMCRX   0x10
1611 #define PMCRD   0x8
1612 #define PMCRC   0x4
1613 #define PMCRP   0x2
1614 #define PMCRE   0x1
1615 /*
1616  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1617  * which can be written as 1 to trigger behaviour but which stay RAZ).
1618  */
1619 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1620 
1621 #define PMXEVTYPER_P          0x80000000
1622 #define PMXEVTYPER_U          0x40000000
1623 #define PMXEVTYPER_NSK        0x20000000
1624 #define PMXEVTYPER_NSU        0x10000000
1625 #define PMXEVTYPER_NSH        0x08000000
1626 #define PMXEVTYPER_M          0x04000000
1627 #define PMXEVTYPER_MT         0x02000000
1628 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1629 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1630                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1631                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1632                                PMXEVTYPER_EVTCOUNT)
1633 
1634 #define PMCCFILTR             0xf8000000
1635 #define PMCCFILTR_M           PMXEVTYPER_M
1636 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1637 
pmu_num_counters(CPUARMState * env)1638 static inline uint32_t pmu_num_counters(CPUARMState *env)
1639 {
1640     ARMCPU *cpu = env_archcpu(env);
1641 
1642     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1643 }
1644 
1645 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
pmu_counter_mask(CPUARMState * env)1646 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1647 {
1648   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1649 }
1650 
1651 #ifdef TARGET_AARCH64
1652 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1653 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1654 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1655 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1656 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1657 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1658 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1659 int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
1660 int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
1661 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1662 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1663 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1664 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1665 void aarch64_max_tcg_initfn(Object *obj);
1666 void aarch64_add_pauth_properties(Object *obj);
1667 void aarch64_add_sve_properties(Object *obj);
1668 void aarch64_add_sme_properties(Object *obj);
1669 #endif
1670 
1671 /* Read the CONTROL register as the MRS instruction would. */
1672 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1673 
1674 /*
1675  * Return a pointer to the location where we currently store the
1676  * stack pointer for the requested security state and thread mode.
1677  * This pointer will become invalid if the CPU state is updated
1678  * such that the stack pointers are switched around (eg changing
1679  * the SPSEL control bit).
1680  */
1681 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1682                              bool threadmode, bool spsel);
1683 
1684 bool el_is_in_host(CPUARMState *env, int el);
1685 
1686 void aa32_max_features(ARMCPU *cpu);
1687 int exception_target_el(CPUARMState *env);
1688 bool arm_singlestep_active(CPUARMState *env);
1689 bool arm_generate_debug_exceptions(CPUARMState *env);
1690 
1691 /**
1692  * pauth_ptr_mask:
1693  * @param: parameters defining the MMU setup
1694  *
1695  * Return a mask of the address bits that contain the authentication code,
1696  * given the MMU config defined by @param.
1697  */
pauth_ptr_mask(ARMVAParameters param)1698 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1699 {
1700     int bot_pac_bit = 64 - param.tsz;
1701     int top_pac_bit = 64 - 8 * param.tbi;
1702 
1703     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1704 }
1705 
1706 /* Add the cpreg definitions for debug related system registers */
1707 void define_debug_regs(ARMCPU *cpu);
1708 
1709 /* Effective value of MDCR_EL2 */
arm_mdcr_el2_eff(CPUARMState * env)1710 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1711 {
1712     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1713 }
1714 
1715 /* Powers of 2 for sve_vq_map et al. */
1716 #define SVE_VQ_POW2_MAP                                 \
1717     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1718      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1719 
1720 /*
1721  * Return true if it is possible to take a fine-grained-trap to EL2.
1722  */
arm_fgt_active(CPUARMState * env,int el)1723 static inline bool arm_fgt_active(CPUARMState *env, int el)
1724 {
1725     /*
1726      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1727      * that can affect EL0, but it is harmless to do the test also for
1728      * traps on registers that are only accessible at EL1 because if the test
1729      * returns true then we can't be executing at EL1 anyway.
1730      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1731      * traps from AArch32 only happen for the EL0 is AArch32 case.
1732      */
1733     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1734         el < 2 && arm_is_el2_enabled(env) &&
1735         arm_el_is_aa64(env, 1) &&
1736         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1737         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1738 }
1739 
1740 void assert_hflags_rebuild_correctly(CPUARMState *env);
1741 
1742 /*
1743  * Although the ARM implementation of hardware assisted debugging
1744  * allows for different breakpoints per-core, the current GDB
1745  * interface treats them as a global pool of registers (which seems to
1746  * be the case for x86, ppc and s390). As a result we store one copy
1747  * of registers which is used for all active cores.
1748  *
1749  * Write access is serialised by virtue of the GDB protocol which
1750  * updates things. Read access (i.e. when the values are copied to the
1751  * vCPU) is also gated by GDB's run control.
1752  *
1753  * This is not unreasonable as most of the time debugging kernels you
1754  * never know which core will eventually execute your function.
1755  */
1756 
1757 typedef struct {
1758     uint64_t bcr;
1759     uint64_t bvr;
1760 } HWBreakpoint;
1761 
1762 /*
1763  * The watchpoint registers can cover more area than the requested
1764  * watchpoint so we need to store the additional information
1765  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1766  * when the watchpoint is hit.
1767  */
1768 typedef struct {
1769     uint64_t wcr;
1770     uint64_t wvr;
1771     CPUWatchpoint details;
1772 } HWWatchpoint;
1773 
1774 /* Maximum and current break/watch point counts */
1775 extern int max_hw_bps, max_hw_wps;
1776 extern GArray *hw_breakpoints, *hw_watchpoints;
1777 
1778 #define cur_hw_wps      (hw_watchpoints->len)
1779 #define cur_hw_bps      (hw_breakpoints->len)
1780 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1781 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1782 
1783 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1784 int insert_hw_breakpoint(target_ulong pc);
1785 int delete_hw_breakpoint(target_ulong pc);
1786 
1787 bool check_watchpoint_in_range(int i, target_ulong addr);
1788 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1789 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1790 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1791 
1792 /* Return the current value of the system counter in ticks */
1793 uint64_t gt_get_countervalue(CPUARMState *env);
1794 /*
1795  * Return the currently applicable offset between the system counter
1796  * and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2).
1797  */
1798 uint64_t gt_virt_cnt_offset(CPUARMState *env);
1799 #endif
1800