1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cs_dsp.c -- Cirrus Logic DSP firmware support
4 *
5 * Based on sound/soc/codecs/wm_adsp.c
6 *
7 * Copyright 2012 Wolfson Microelectronics plc
8 * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9 * Cirrus Logic International Semiconductor Ltd.
10 */
11
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32
33 #define ADSP1_CONTROL_1 0x00
34 #define ADSP1_CONTROL_2 0x02
35 #define ADSP1_CONTROL_3 0x03
36 #define ADSP1_CONTROL_4 0x04
37 #define ADSP1_CONTROL_5 0x06
38 #define ADSP1_CONTROL_6 0x07
39 #define ADSP1_CONTROL_7 0x08
40 #define ADSP1_CONTROL_8 0x09
41 #define ADSP1_CONTROL_9 0x0A
42 #define ADSP1_CONTROL_10 0x0B
43 #define ADSP1_CONTROL_11 0x0C
44 #define ADSP1_CONTROL_12 0x0D
45 #define ADSP1_CONTROL_13 0x0F
46 #define ADSP1_CONTROL_14 0x10
47 #define ADSP1_CONTROL_15 0x11
48 #define ADSP1_CONTROL_16 0x12
49 #define ADSP1_CONTROL_17 0x13
50 #define ADSP1_CONTROL_18 0x14
51 #define ADSP1_CONTROL_19 0x16
52 #define ADSP1_CONTROL_20 0x17
53 #define ADSP1_CONTROL_21 0x18
54 #define ADSP1_CONTROL_22 0x1A
55 #define ADSP1_CONTROL_23 0x1B
56 #define ADSP1_CONTROL_24 0x1C
57 #define ADSP1_CONTROL_25 0x1E
58 #define ADSP1_CONTROL_26 0x20
59 #define ADSP1_CONTROL_27 0x21
60 #define ADSP1_CONTROL_28 0x22
61 #define ADSP1_CONTROL_29 0x23
62 #define ADSP1_CONTROL_30 0x24
63 #define ADSP1_CONTROL_31 0x26
64
65 /*
66 * ADSP1 Control 19
67 */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71
72 /*
73 * ADSP1 Control 30
74 */
75 #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
87 #define ADSP1_START 0x0001 /* DSP1_START */
88 #define ADSP1_START_MASK 0x0001 /* DSP1_START */
89 #define ADSP1_START_SHIFT 0 /* DSP1_START */
90 #define ADSP1_START_WIDTH 1 /* DSP1_START */
91
92 /*
93 * ADSP1 Control 31
94 */
95 #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
98
99 #define ADSP2_CONTROL 0x0
100 #define ADSP2_CLOCKING 0x1
101 #define ADSP2V2_CLOCKING 0x2
102 #define ADSP2_STATUS1 0x4
103 #define ADSP2_WDMA_CONFIG_1 0x30
104 #define ADSP2_WDMA_CONFIG_2 0x31
105 #define ADSP2V2_WDMA_CONFIG_2 0x32
106 #define ADSP2_RDMA_CONFIG_1 0x34
107
108 #define ADSP2_SCRATCH0 0x40
109 #define ADSP2_SCRATCH1 0x41
110 #define ADSP2_SCRATCH2 0x42
111 #define ADSP2_SCRATCH3 0x43
112
113 #define ADSP2V2_SCRATCH0_1 0x40
114 #define ADSP2V2_SCRATCH2_3 0x42
115
116 /*
117 * ADSP2 Control
118 */
119 #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
131 #define ADSP2_START 0x0001 /* DSP1_START */
132 #define ADSP2_START_MASK 0x0001 /* DSP1_START */
133 #define ADSP2_START_SHIFT 0 /* DSP1_START */
134 #define ADSP2_START_WIDTH 1 /* DSP1_START */
135
136 /*
137 * ADSP2 clocking
138 */
139 #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
142
143 /*
144 * ADSP2V2 clocking
145 */
146 #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
149
150 #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
153
154 /*
155 * ADSP2 Status 1
156 */
157 #define ADSP2_RAM_RDY 0x0001
158 #define ADSP2_RAM_RDY_MASK 0x0001
159 #define ADSP2_RAM_RDY_SHIFT 0
160 #define ADSP2_RAM_RDY_WIDTH 1
161
162 /*
163 * ADSP2 Lock support
164 */
165 #define ADSP2_LOCK_CODE_0 0x5555
166 #define ADSP2_LOCK_CODE_1 0xAAAA
167
168 #define ADSP2_WATCHDOG 0x0A
169 #define ADSP2_BUS_ERR_ADDR 0x52
170 #define ADSP2_REGION_LOCK_STATUS 0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
176 #define ADSP2_LOCK_REGION_CTRL 0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
178
179 #define ADSP2_REGION_LOCK_ERR_MASK 0x8000
180 #define ADSP2_ADDR_ERR_MASK 0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
183 #define ADSP2_CTRL_ERR_EINT 0x0001
184
185 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16
189 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
190
191 #define ADSP2_LOCK_REGION_SHIFT 16
192
193 /*
194 * Event control messages
195 */
196 #define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
197
198 /*
199 * HALO system info
200 */
201 #define HALO_AHBM_WINDOW_DEBUG_0 0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044
203
204 /*
205 * HALO core
206 */
207 #define HALO_SCRATCH1 0x005c0
208 #define HALO_SCRATCH2 0x005c8
209 #define HALO_SCRATCH3 0x005d0
210 #define HALO_SCRATCH4 0x005d8
211 #define HALO_CCM_CORE_CONTROL 0x41000
212 #define HALO_CORE_SOFT_RESET 0x00010
213 #define HALO_WDT_CONTROL 0x47000
214
215 /*
216 * HALO MPU banks
217 */
218 #define HALO_MPU_XMEM_ACCESS_0 0x43000
219 #define HALO_MPU_YMEM_ACCESS_0 0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0 0x43008
221 #define HALO_MPU_XREG_ACCESS_0 0x4300C
222 #define HALO_MPU_YREG_ACCESS_0 0x43014
223 #define HALO_MPU_XMEM_ACCESS_1 0x43018
224 #define HALO_MPU_YMEM_ACCESS_1 0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1 0x43020
226 #define HALO_MPU_XREG_ACCESS_1 0x43024
227 #define HALO_MPU_YREG_ACCESS_1 0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2 0x43030
229 #define HALO_MPU_YMEM_ACCESS_2 0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2 0x43038
231 #define HALO_MPU_XREG_ACCESS_2 0x4303C
232 #define HALO_MPU_YREG_ACCESS_2 0x43044
233 #define HALO_MPU_XMEM_ACCESS_3 0x43048
234 #define HALO_MPU_YMEM_ACCESS_3 0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3 0x43050
236 #define HALO_MPU_XREG_ACCESS_3 0x43054
237 #define HALO_MPU_YREG_ACCESS_3 0x4305C
238 #define HALO_MPU_XM_VIO_ADDR 0x43100
239 #define HALO_MPU_XM_VIO_STATUS 0x43104
240 #define HALO_MPU_YM_VIO_ADDR 0x43108
241 #define HALO_MPU_YM_VIO_STATUS 0x4310C
242 #define HALO_MPU_PM_VIO_ADDR 0x43110
243 #define HALO_MPU_PM_VIO_STATUS 0x43114
244 #define HALO_MPU_LOCK_CONFIG 0x43140
245
246 /*
247 * HALO_AHBM_WINDOW_DEBUG_1
248 */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
251 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
252
253 /*
254 * HALO_CCM_CORE_CONTROL
255 */
256 #define HALO_CORE_RESET 0x00000200
257 #define HALO_CORE_EN 0x00000001
258
259 /*
260 * HALO_CORE_SOFT_RESET
261 */
262 #define HALO_CORE_SOFT_RESET_MASK 0x00000001
263
264 /*
265 * HALO_WDT_CONTROL
266 */
267 #define HALO_WDT_EN_MASK 0x00000001
268
269 /*
270 * HALO_MPU_?M_VIO_STATUS
271 */
272 #define HALO_MPU_VIO_STS_MASK 0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT 17
274 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT 0
277
278 struct cs_dsp_ops {
279 bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 const char * const file,
282 unsigned int pos,
283 const struct firmware *firmware);
284 int (*setup_algs)(struct cs_dsp *dsp);
285 unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 unsigned int offset);
287
288 void (*show_fw_status)(struct cs_dsp *dsp);
289 void (*stop_watchdog)(struct cs_dsp *dsp);
290
291 int (*enable_memory)(struct cs_dsp *dsp);
292 void (*disable_memory)(struct cs_dsp *dsp);
293 int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294
295 int (*enable_core)(struct cs_dsp *dsp);
296 void (*disable_core)(struct cs_dsp *dsp);
297
298 int (*start_core)(struct cs_dsp *dsp);
299 void (*stop_core)(struct cs_dsp *dsp);
300 };
301
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306
307 struct cs_dsp_buf {
308 struct list_head list;
309 void *buf;
310 };
311
cs_dsp_buf_alloc(const void * src,size_t len,struct list_head * list)312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 struct list_head *list)
314 {
315 struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316
317 if (buf == NULL)
318 return NULL;
319
320 buf->buf = vmalloc(len);
321 if (!buf->buf) {
322 kfree(buf);
323 return NULL;
324 }
325 memcpy(buf->buf, src, len);
326
327 if (list)
328 list_add_tail(&buf->list, list);
329
330 return buf;
331 }
332
cs_dsp_buf_free(struct list_head * list)333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 while (!list_empty(list)) {
336 struct cs_dsp_buf *buf = list_first_entry(list,
337 struct cs_dsp_buf,
338 list);
339 list_del(&buf->list);
340 vfree(buf->buf);
341 kfree(buf);
342 }
343 }
344
345 /**
346 * cs_dsp_mem_region_name() - Return a name string for a memory type
347 * @type: the memory type to match
348 *
349 * Return: A const string identifying the memory region.
350 */
cs_dsp_mem_region_name(unsigned int type)351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 switch (type) {
354 case WMFW_ADSP1_PM:
355 return "PM";
356 case WMFW_HALO_PM_PACKED:
357 return "PM_PACKED";
358 case WMFW_ADSP1_DM:
359 return "DM";
360 case WMFW_ADSP2_XM:
361 return "XM";
362 case WMFW_HALO_XM_PACKED:
363 return "XM_PACKED";
364 case WMFW_ADSP2_YM:
365 return "YM";
366 case WMFW_HALO_YM_PACKED:
367 return "YM_PACKED";
368 case WMFW_ADSP1_ZM:
369 return "ZM";
370 default:
371 return NULL;
372 }
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375
376 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380
381 kfree(dsp->wmfw_file_name);
382 dsp->wmfw_file_name = tmp;
383 }
384
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388
389 kfree(dsp->bin_file_name);
390 dsp->bin_file_name = tmp;
391 }
392
cs_dsp_debugfs_clear(struct cs_dsp * dsp)393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 kfree(dsp->wmfw_file_name);
396 kfree(dsp->bin_file_name);
397 dsp->wmfw_file_name = NULL;
398 dsp->bin_file_name = NULL;
399 }
400
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 char __user *user_buf,
403 size_t count, loff_t *ppos)
404 {
405 struct cs_dsp *dsp = file->private_data;
406 ssize_t ret;
407
408 mutex_lock(&dsp->pwr_lock);
409
410 if (!dsp->wmfw_file_name || !dsp->booted)
411 ret = 0;
412 else
413 ret = simple_read_from_buffer(user_buf, count, ppos,
414 dsp->wmfw_file_name,
415 strlen(dsp->wmfw_file_name));
416
417 mutex_unlock(&dsp->pwr_lock);
418 return ret;
419 }
420
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 char __user *user_buf,
423 size_t count, loff_t *ppos)
424 {
425 struct cs_dsp *dsp = file->private_data;
426 ssize_t ret;
427
428 mutex_lock(&dsp->pwr_lock);
429
430 if (!dsp->bin_file_name || !dsp->booted)
431 ret = 0;
432 else
433 ret = simple_read_from_buffer(user_buf, count, ppos,
434 dsp->bin_file_name,
435 strlen(dsp->bin_file_name));
436
437 mutex_unlock(&dsp->pwr_lock);
438 return ret;
439 }
440
441 static const struct {
442 const char *name;
443 const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 {
446 .name = "wmfw_file_name",
447 .fops = {
448 .open = simple_open,
449 .read = cs_dsp_debugfs_wmfw_read,
450 },
451 },
452 {
453 .name = "bin_file_name",
454 .fops = {
455 .open = simple_open,
456 .read = cs_dsp_debugfs_bin_read,
457 },
458 },
459 };
460
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 unsigned int off);
463
cs_dsp_debugfs_read_controls_show(struct seq_file * s,void * ignored)464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 struct cs_dsp *dsp = s->private;
467 struct cs_dsp_coeff_ctl *ctl;
468 unsigned int reg;
469
470 list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 cs_dsp_coeff_base_reg(ctl, ®, 0);
472 seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 ctl->subname_len, ctl->subname, ctl->len,
474 cs_dsp_mem_region_name(ctl->alg_region.type),
475 ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 ctl->enabled ? "enabled" : "disabled",
481 ctl->set ? "dirty" : "clean");
482 }
483
484 return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487
488 /**
489 * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490 * @dsp: pointer to DSP structure
491 * @debugfs_root: pointer to debugfs directory in which to create this DSP
492 * representation
493 */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 struct dentry *root = NULL;
497 int i;
498
499 root = debugfs_create_dir(dsp->name, debugfs_root);
500
501 debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 debugfs_create_bool("running", 0444, root, &dsp->running);
503 debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505
506 for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 dsp, &cs_dsp_debugfs_fops[i].fops);
509
510 debugfs_create_file("controls", 0444, root, dsp,
511 &cs_dsp_debugfs_read_controls_fops);
512
513 dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516
517 /**
518 * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519 * @dsp: pointer to DSP structure
520 */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 cs_dsp_debugfs_clear(dsp);
524 debugfs_remove_recursive(dsp->debugfs_root);
525 dsp->debugfs_root = ERR_PTR(-ENODEV);
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 const char *s)
541 {
542 }
543
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 const char *s)
546 {
547 }
548
cs_dsp_debugfs_clear(struct cs_dsp * dsp)549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553
cs_dsp_find_region(struct cs_dsp * dsp,int type)554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 int type)
556 {
557 int i;
558
559 for (i = 0; i < dsp->num_mems; i++)
560 if (dsp->mem[i].type == type)
561 return &dsp->mem[i];
562
563 return NULL;
564 }
565
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 unsigned int offset)
568 {
569 switch (mem->type) {
570 case WMFW_ADSP1_PM:
571 return mem->base + (offset * 3);
572 case WMFW_ADSP1_DM:
573 case WMFW_ADSP2_XM:
574 case WMFW_ADSP2_YM:
575 case WMFW_ADSP1_ZM:
576 return mem->base + (offset * 2);
577 default:
578 WARN(1, "Unknown memory region type");
579 return offset;
580 }
581 }
582
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 unsigned int offset)
585 {
586 switch (mem->type) {
587 case WMFW_ADSP2_XM:
588 case WMFW_ADSP2_YM:
589 return mem->base + (offset * 4);
590 case WMFW_HALO_XM_PACKED:
591 case WMFW_HALO_YM_PACKED:
592 return (mem->base + (offset * 3)) & ~0x3;
593 case WMFW_HALO_PM_PACKED:
594 return mem->base + (offset * 5);
595 default:
596 WARN(1, "Unknown memory region type");
597 return offset;
598 }
599 }
600
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 int noffs, unsigned int *offs)
603 {
604 unsigned int i;
605 int ret;
606
607 for (i = 0; i < noffs; ++i) {
608 ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 if (ret) {
610 cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 return;
612 }
613 }
614 }
615
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 unsigned int offs[] = {
619 ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 };
621
622 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623
624 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 offs[0], offs[1], offs[2], offs[3]);
626 }
627
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631
632 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633
634 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 offs[0] & 0xFFFF, offs[0] >> 16,
636 offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 unsigned int offs[] = {
642 HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 };
644
645 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646
647 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 offs[0], offs[1], offs[2], offs[3]);
649 }
650
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 unsigned int off)
653 {
654 const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 struct cs_dsp *dsp = ctl->dsp;
656 const struct cs_dsp_region *mem;
657
658 mem = cs_dsp_find_region(dsp, alg_region->type);
659 if (!mem) {
660 cs_dsp_err(dsp, "No base for region %x\n",
661 alg_region->type);
662 return -EINVAL;
663 }
664
665 *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666
667 return 0;
668 }
669
670 /**
671 * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672 * @ctl: pointer to acked coefficient control
673 * @event_id: the value to write to the given acked control
674 *
675 * Once the value has been written to the control the function shall block
676 * until the running firmware acknowledges the write or timeout is exceeded.
677 *
678 * Must be called with pwr_lock held.
679 *
680 * Return: Zero for success, a negative number on error.
681 */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 struct cs_dsp *dsp = ctl->dsp;
685 __be32 val = cpu_to_be32(event_id);
686 unsigned int reg;
687 int i, ret;
688
689 lockdep_assert_held(&dsp->pwr_lock);
690
691 if (!dsp->running)
692 return -EPERM;
693
694 ret = cs_dsp_coeff_base_reg(ctl, ®, 0);
695 if (ret)
696 return ret;
697
698 cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 event_id, ctl->alg_region.alg,
700 cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701
702 ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 if (ret) {
704 cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 return ret;
706 }
707
708 /*
709 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 * to ack instantly so we do the first 1ms delay before reading the
712 * control to avoid a pointless bus transaction
713 */
714 for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 switch (i) {
716 case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 usleep_range(1000, 2000);
718 i++;
719 break;
720 default:
721 usleep_range(10000, 20000);
722 i += 10;
723 break;
724 }
725
726 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 if (ret) {
728 cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 return ret;
730 }
731
732 if (val == 0) {
733 cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 return 0;
735 }
736 }
737
738 cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 reg, ctl->alg_region.alg,
740 cs_dsp_mem_region_name(ctl->alg_region.type),
741 ctl->offset);
742
743 return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 unsigned int off, const void *buf, size_t len)
749 {
750 struct cs_dsp *dsp = ctl->dsp;
751 void *scratch;
752 int ret;
753 unsigned int reg;
754
755 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
756 if (ret)
757 return ret;
758
759 scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 if (!scratch)
761 return -ENOMEM;
762
763 ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 len);
765 if (ret) {
766 cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 len, reg, ret);
768 kfree(scratch);
769 return ret;
770 }
771 cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772
773 kfree(scratch);
774
775 return 0;
776 }
777
778 /**
779 * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780 * @ctl: pointer to coefficient control
781 * @off: word offset at which data should be written
782 * @buf: the buffer to write to the given control
783 * @len: the length of the buffer in bytes
784 *
785 * Must be called with pwr_lock held.
786 *
787 * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788 */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 unsigned int off, const void *buf, size_t len)
791 {
792 int ret = 0;
793
794 if (!ctl)
795 return -ENOENT;
796
797 lockdep_assert_held(&ctl->dsp->pwr_lock);
798
799 if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
800 return -EPERM;
801
802 if (len + off * sizeof(u32) > ctl->len)
803 return -EINVAL;
804
805 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
806 ret = -EPERM;
807 } else if (buf != ctl->cache) {
808 if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
809 memcpy(ctl->cache + off * sizeof(u32), buf, len);
810 else
811 return 0;
812 }
813
814 ctl->set = 1;
815 if (ctl->enabled && ctl->dsp->running)
816 ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
817
818 if (ret < 0)
819 return ret;
820
821 return 1;
822 }
823 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
824
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)825 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
826 unsigned int off, void *buf, size_t len)
827 {
828 struct cs_dsp *dsp = ctl->dsp;
829 void *scratch;
830 int ret;
831 unsigned int reg;
832
833 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
834 if (ret)
835 return ret;
836
837 scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
838 if (!scratch)
839 return -ENOMEM;
840
841 ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
842 if (ret) {
843 cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
844 len, reg, ret);
845 kfree(scratch);
846 return ret;
847 }
848 cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
849
850 memcpy(buf, scratch, len);
851 kfree(scratch);
852
853 return 0;
854 }
855
856 /**
857 * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
858 * @ctl: pointer to coefficient control
859 * @off: word offset at which data should be read
860 * @buf: the buffer to store to the given control
861 * @len: the length of the buffer in bytes
862 *
863 * Must be called with pwr_lock held.
864 *
865 * Return: Zero for success, a negative number on error.
866 */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)867 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
868 unsigned int off, void *buf, size_t len)
869 {
870 int ret = 0;
871
872 if (!ctl)
873 return -ENOENT;
874
875 lockdep_assert_held(&ctl->dsp->pwr_lock);
876
877 if (len + off * sizeof(u32) > ctl->len)
878 return -EINVAL;
879
880 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
881 if (ctl->enabled && ctl->dsp->running)
882 return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
883 else
884 return -EPERM;
885 } else {
886 if (!ctl->flags && ctl->enabled && ctl->dsp->running)
887 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
888
889 if (buf != ctl->cache)
890 memcpy(buf, ctl->cache + off * sizeof(u32), len);
891 }
892
893 return ret;
894 }
895 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
896
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)897 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
898 {
899 struct cs_dsp_coeff_ctl *ctl;
900 int ret;
901
902 list_for_each_entry(ctl, &dsp->ctl_list, list) {
903 if (!ctl->enabled || ctl->set)
904 continue;
905 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
906 continue;
907
908 /*
909 * For readable controls populate the cache from the DSP memory.
910 * For non-readable controls the cache was zero-filled when
911 * created so we don't need to do anything.
912 */
913 if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
914 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
915 if (ret < 0)
916 return ret;
917 }
918 }
919
920 return 0;
921 }
922
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)923 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
924 {
925 struct cs_dsp_coeff_ctl *ctl;
926 int ret;
927
928 list_for_each_entry(ctl, &dsp->ctl_list, list) {
929 if (!ctl->enabled)
930 continue;
931 if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
932 ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
933 ctl->len);
934 if (ret < 0)
935 return ret;
936 }
937 }
938
939 return 0;
940 }
941
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)942 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
943 unsigned int event)
944 {
945 struct cs_dsp_coeff_ctl *ctl;
946 int ret;
947
948 list_for_each_entry(ctl, &dsp->ctl_list, list) {
949 if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
950 continue;
951
952 if (!ctl->enabled)
953 continue;
954
955 ret = cs_dsp_coeff_write_acked_control(ctl, event);
956 if (ret)
957 cs_dsp_warn(dsp,
958 "Failed to send 0x%x event to alg 0x%x (%d)\n",
959 event, ctl->alg_region.alg, ret);
960 }
961 }
962
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)963 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
964 {
965 kfree(ctl->cache);
966 kfree(ctl->subname);
967 kfree(ctl);
968 }
969
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)970 static int cs_dsp_create_control(struct cs_dsp *dsp,
971 const struct cs_dsp_alg_region *alg_region,
972 unsigned int offset, unsigned int len,
973 const char *subname, unsigned int subname_len,
974 unsigned int flags, unsigned int type)
975 {
976 struct cs_dsp_coeff_ctl *ctl;
977 int ret;
978
979 list_for_each_entry(ctl, &dsp->ctl_list, list) {
980 if (ctl->fw_name == dsp->fw_name &&
981 ctl->alg_region.alg == alg_region->alg &&
982 ctl->alg_region.type == alg_region->type) {
983 if ((!subname && !ctl->subname) ||
984 (subname && (ctl->subname_len == subname_len) &&
985 !strncmp(ctl->subname, subname, ctl->subname_len))) {
986 if (!ctl->enabled)
987 ctl->enabled = 1;
988 return 0;
989 }
990 }
991 }
992
993 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
994 if (!ctl)
995 return -ENOMEM;
996
997 ctl->fw_name = dsp->fw_name;
998 ctl->alg_region = *alg_region;
999 if (subname && dsp->fw_ver >= 2) {
1000 ctl->subname_len = subname_len;
1001 ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1002 if (!ctl->subname) {
1003 ret = -ENOMEM;
1004 goto err_ctl;
1005 }
1006 }
1007 ctl->enabled = 1;
1008 ctl->set = 0;
1009 ctl->dsp = dsp;
1010
1011 ctl->flags = flags;
1012 ctl->type = type;
1013 ctl->offset = offset;
1014 ctl->len = len;
1015 ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1016 if (!ctl->cache) {
1017 ret = -ENOMEM;
1018 goto err_ctl_subname;
1019 }
1020
1021 list_add(&ctl->list, &dsp->ctl_list);
1022
1023 if (dsp->client_ops->control_add) {
1024 ret = dsp->client_ops->control_add(ctl);
1025 if (ret)
1026 goto err_list_del;
1027 }
1028
1029 return 0;
1030
1031 err_list_del:
1032 list_del(&ctl->list);
1033 kfree(ctl->cache);
1034 err_ctl_subname:
1035 kfree(ctl->subname);
1036 err_ctl:
1037 kfree(ctl);
1038
1039 return ret;
1040 }
1041
1042 struct cs_dsp_coeff_parsed_alg {
1043 int id;
1044 const u8 *name;
1045 int name_len;
1046 int ncoeff;
1047 };
1048
1049 struct cs_dsp_coeff_parsed_coeff {
1050 int offset;
1051 int mem_type;
1052 const u8 *name;
1053 int name_len;
1054 unsigned int ctl_type;
1055 int flags;
1056 int len;
1057 };
1058
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,unsigned int avail,const u8 ** str)1059 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1060 const u8 **str)
1061 {
1062 int length, total_field_len;
1063
1064 /* String fields are at least one __le32 */
1065 if (sizeof(__le32) > avail) {
1066 *pos = NULL;
1067 return 0;
1068 }
1069
1070 switch (bytes) {
1071 case 1:
1072 length = **pos;
1073 break;
1074 case 2:
1075 length = le16_to_cpu(*((__le16 *)*pos));
1076 break;
1077 default:
1078 return 0;
1079 }
1080
1081 total_field_len = ((length + bytes) + 3) & ~0x03;
1082 if ((unsigned int)total_field_len > avail) {
1083 *pos = NULL;
1084 return 0;
1085 }
1086
1087 if (str)
1088 *str = *pos + bytes;
1089
1090 *pos += total_field_len;
1091
1092 return length;
1093 }
1094
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1095 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1096 {
1097 int val = 0;
1098
1099 switch (bytes) {
1100 case 2:
1101 val = le16_to_cpu(*((__le16 *)*pos));
1102 break;
1103 case 4:
1104 val = le32_to_cpu(*((__le32 *)*pos));
1105 break;
1106 default:
1107 break;
1108 }
1109
1110 *pos += bytes;
1111
1112 return val;
1113 }
1114
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const struct wmfw_region * region,struct cs_dsp_coeff_parsed_alg * blk)1115 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1116 const struct wmfw_region *region,
1117 struct cs_dsp_coeff_parsed_alg *blk)
1118 {
1119 const struct wmfw_adsp_alg_data *raw;
1120 unsigned int data_len = le32_to_cpu(region->len);
1121 unsigned int pos;
1122 const u8 *tmp;
1123
1124 raw = (const struct wmfw_adsp_alg_data *)region->data;
1125
1126 switch (dsp->fw_ver) {
1127 case 0:
1128 case 1:
1129 if (sizeof(*raw) > data_len)
1130 return -EOVERFLOW;
1131
1132 blk->id = le32_to_cpu(raw->id);
1133 blk->name = raw->name;
1134 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1135 blk->ncoeff = le32_to_cpu(raw->ncoeff);
1136
1137 pos = sizeof(*raw);
1138 break;
1139 default:
1140 if (sizeof(raw->id) > data_len)
1141 return -EOVERFLOW;
1142
1143 tmp = region->data;
1144 blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1145 pos = tmp - region->data;
1146
1147 tmp = ®ion->data[pos];
1148 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1149 &blk->name);
1150 if (!tmp)
1151 return -EOVERFLOW;
1152
1153 pos = tmp - region->data;
1154 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1155 if (!tmp)
1156 return -EOVERFLOW;
1157
1158 pos = tmp - region->data;
1159 if (sizeof(raw->ncoeff) > (data_len - pos))
1160 return -EOVERFLOW;
1161
1162 blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1163 pos += sizeof(raw->ncoeff);
1164 break;
1165 }
1166
1167 if ((int)blk->ncoeff < 0)
1168 return -EOVERFLOW;
1169
1170 cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1171 cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1172 cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1173
1174 return pos;
1175 }
1176
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region,unsigned int pos,struct cs_dsp_coeff_parsed_coeff * blk)1177 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1178 const struct wmfw_region *region,
1179 unsigned int pos,
1180 struct cs_dsp_coeff_parsed_coeff *blk)
1181 {
1182 const struct wmfw_adsp_coeff_data *raw;
1183 unsigned int data_len = le32_to_cpu(region->len);
1184 unsigned int blk_len, blk_end_pos;
1185 const u8 *tmp;
1186
1187 raw = (const struct wmfw_adsp_coeff_data *)®ion->data[pos];
1188 if (sizeof(raw->hdr) > (data_len - pos))
1189 return -EOVERFLOW;
1190
1191 blk_len = le32_to_cpu(raw->hdr.size);
1192 if (blk_len > S32_MAX)
1193 return -EOVERFLOW;
1194
1195 if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1196 return -EOVERFLOW;
1197
1198 blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1199
1200 blk->offset = le16_to_cpu(raw->hdr.offset);
1201 blk->mem_type = le16_to_cpu(raw->hdr.type);
1202
1203 switch (dsp->fw_ver) {
1204 case 0:
1205 case 1:
1206 if (sizeof(*raw) > (data_len - pos))
1207 return -EOVERFLOW;
1208
1209 blk->name = raw->name;
1210 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1211 blk->ctl_type = le16_to_cpu(raw->ctl_type);
1212 blk->flags = le16_to_cpu(raw->flags);
1213 blk->len = le32_to_cpu(raw->len);
1214 break;
1215 default:
1216 pos += sizeof(raw->hdr);
1217 tmp = ®ion->data[pos];
1218 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1219 &blk->name);
1220 if (!tmp)
1221 return -EOVERFLOW;
1222
1223 pos = tmp - region->data;
1224 cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1225 if (!tmp)
1226 return -EOVERFLOW;
1227
1228 pos = tmp - region->data;
1229 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1230 if (!tmp)
1231 return -EOVERFLOW;
1232
1233 pos = tmp - region->data;
1234 if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1235 (data_len - pos))
1236 return -EOVERFLOW;
1237
1238 blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1239 pos += sizeof(raw->ctl_type);
1240 blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1241 pos += sizeof(raw->flags);
1242 blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1243 break;
1244 }
1245
1246 cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1247 cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1248 cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1249 cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1250 cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1251 cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1252
1253 return blk_end_pos;
1254 }
1255
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1256 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1257 const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1258 unsigned int f_required,
1259 unsigned int f_illegal)
1260 {
1261 if ((coeff_blk->flags & f_illegal) ||
1262 ((coeff_blk->flags & f_required) != f_required)) {
1263 cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1264 coeff_blk->flags, coeff_blk->ctl_type);
1265 return -EINVAL;
1266 }
1267
1268 return 0;
1269 }
1270
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1271 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1272 const struct wmfw_region *region)
1273 {
1274 struct cs_dsp_alg_region alg_region = {};
1275 struct cs_dsp_coeff_parsed_alg alg_blk;
1276 struct cs_dsp_coeff_parsed_coeff coeff_blk;
1277 int i, pos, ret;
1278
1279 pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1280 if (pos < 0)
1281 return pos;
1282
1283 for (i = 0; i < alg_blk.ncoeff; i++) {
1284 pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1285 if (pos < 0)
1286 return pos;
1287
1288 switch (coeff_blk.ctl_type) {
1289 case WMFW_CTL_TYPE_BYTES:
1290 break;
1291 case WMFW_CTL_TYPE_ACKED:
1292 if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1293 continue; /* ignore */
1294
1295 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1296 WMFW_CTL_FLAG_VOLATILE |
1297 WMFW_CTL_FLAG_WRITEABLE |
1298 WMFW_CTL_FLAG_READABLE,
1299 0);
1300 if (ret)
1301 return -EINVAL;
1302 break;
1303 case WMFW_CTL_TYPE_HOSTEVENT:
1304 case WMFW_CTL_TYPE_FWEVENT:
1305 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1306 WMFW_CTL_FLAG_SYS |
1307 WMFW_CTL_FLAG_VOLATILE |
1308 WMFW_CTL_FLAG_WRITEABLE |
1309 WMFW_CTL_FLAG_READABLE,
1310 0);
1311 if (ret)
1312 return -EINVAL;
1313 break;
1314 case WMFW_CTL_TYPE_HOST_BUFFER:
1315 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1316 WMFW_CTL_FLAG_SYS |
1317 WMFW_CTL_FLAG_VOLATILE |
1318 WMFW_CTL_FLAG_READABLE,
1319 0);
1320 if (ret)
1321 return -EINVAL;
1322 break;
1323 default:
1324 cs_dsp_err(dsp, "Unknown control type: %d\n",
1325 coeff_blk.ctl_type);
1326 return -EINVAL;
1327 }
1328
1329 alg_region.type = coeff_blk.mem_type;
1330 alg_region.alg = alg_blk.id;
1331
1332 ret = cs_dsp_create_control(dsp, &alg_region,
1333 coeff_blk.offset,
1334 coeff_blk.len,
1335 coeff_blk.name,
1336 coeff_blk.name_len,
1337 coeff_blk.flags,
1338 coeff_blk.ctl_type);
1339 if (ret < 0)
1340 cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1341 coeff_blk.name_len, coeff_blk.name, ret);
1342 }
1343
1344 return 0;
1345 }
1346
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1347 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1348 const char * const file,
1349 unsigned int pos,
1350 const struct firmware *firmware)
1351 {
1352 const struct wmfw_adsp1_sizes *adsp1_sizes;
1353
1354 adsp1_sizes = (void *)&firmware->data[pos];
1355 if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1356 cs_dsp_err(dsp, "%s: file truncated\n", file);
1357 return 0;
1358 }
1359
1360 cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1361 le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1362 le32_to_cpu(adsp1_sizes->zm));
1363
1364 return pos + sizeof(*adsp1_sizes);
1365 }
1366
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1367 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1368 const char * const file,
1369 unsigned int pos,
1370 const struct firmware *firmware)
1371 {
1372 const struct wmfw_adsp2_sizes *adsp2_sizes;
1373
1374 adsp2_sizes = (void *)&firmware->data[pos];
1375 if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1376 cs_dsp_err(dsp, "%s: file truncated\n", file);
1377 return 0;
1378 }
1379
1380 cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1381 le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1382 le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1383
1384 return pos + sizeof(*adsp2_sizes);
1385 }
1386
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1387 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1388 {
1389 switch (version) {
1390 case 0:
1391 cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1392 return true;
1393 case 1:
1394 case 2:
1395 return true;
1396 default:
1397 return false;
1398 }
1399 }
1400
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1401 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1402 {
1403 switch (version) {
1404 case 3:
1405 return true;
1406 default:
1407 return false;
1408 }
1409 }
1410
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1411 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1412 const char *file)
1413 {
1414 LIST_HEAD(buf_list);
1415 struct regmap *regmap = dsp->regmap;
1416 unsigned int pos = 0;
1417 const struct wmfw_header *header;
1418 const struct wmfw_footer *footer;
1419 const struct wmfw_region *region;
1420 const struct cs_dsp_region *mem;
1421 const char *region_name;
1422 char *text = NULL;
1423 struct cs_dsp_buf *buf;
1424 unsigned int reg;
1425 int regions = 0;
1426 int ret, offset, type;
1427
1428 if (!firmware)
1429 return 0;
1430
1431 ret = -EINVAL;
1432
1433 if (sizeof(*header) >= firmware->size) {
1434 ret = -EOVERFLOW;
1435 goto out_fw;
1436 }
1437
1438 header = (void *)&firmware->data[0];
1439
1440 if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1441 cs_dsp_err(dsp, "%s: invalid magic\n", file);
1442 goto out_fw;
1443 }
1444
1445 if (!dsp->ops->validate_version(dsp, header->ver)) {
1446 cs_dsp_err(dsp, "%s: unknown file format %d\n",
1447 file, header->ver);
1448 goto out_fw;
1449 }
1450
1451 cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1452 dsp->fw_ver = header->ver;
1453
1454 if (header->core != dsp->type) {
1455 cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1456 file, header->core, dsp->type);
1457 goto out_fw;
1458 }
1459
1460 pos = sizeof(*header);
1461 pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1462 if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1463 ret = -EOVERFLOW;
1464 goto out_fw;
1465 }
1466
1467 footer = (void *)&firmware->data[pos];
1468 pos += sizeof(*footer);
1469
1470 if (le32_to_cpu(header->len) != pos) {
1471 ret = -EOVERFLOW;
1472 goto out_fw;
1473 }
1474
1475 cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1476 le64_to_cpu(footer->timestamp));
1477
1478 while (pos < firmware->size) {
1479 /* Is there enough data for a complete block header? */
1480 if (sizeof(*region) > firmware->size - pos) {
1481 ret = -EOVERFLOW;
1482 goto out_fw;
1483 }
1484
1485 region = (void *)&(firmware->data[pos]);
1486
1487 if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1488 ret = -EOVERFLOW;
1489 goto out_fw;
1490 }
1491
1492 region_name = "Unknown";
1493 reg = 0;
1494 text = NULL;
1495 offset = le32_to_cpu(region->offset) & 0xffffff;
1496 type = be32_to_cpu(region->type) & 0xff;
1497
1498 switch (type) {
1499 case WMFW_NAME_TEXT:
1500 region_name = "Firmware name";
1501 text = kzalloc(le32_to_cpu(region->len) + 1,
1502 GFP_KERNEL);
1503 break;
1504 case WMFW_ALGORITHM_DATA:
1505 region_name = "Algorithm";
1506 ret = cs_dsp_parse_coeff(dsp, region);
1507 if (ret != 0)
1508 goto out_fw;
1509 break;
1510 case WMFW_INFO_TEXT:
1511 region_name = "Information";
1512 text = kzalloc(le32_to_cpu(region->len) + 1,
1513 GFP_KERNEL);
1514 break;
1515 case WMFW_ABSOLUTE:
1516 region_name = "Absolute";
1517 reg = offset;
1518 break;
1519 case WMFW_ADSP1_PM:
1520 case WMFW_ADSP1_DM:
1521 case WMFW_ADSP2_XM:
1522 case WMFW_ADSP2_YM:
1523 case WMFW_ADSP1_ZM:
1524 case WMFW_HALO_PM_PACKED:
1525 case WMFW_HALO_XM_PACKED:
1526 case WMFW_HALO_YM_PACKED:
1527 mem = cs_dsp_find_region(dsp, type);
1528 if (!mem) {
1529 cs_dsp_err(dsp, "No region of type: %x\n", type);
1530 ret = -EINVAL;
1531 goto out_fw;
1532 }
1533
1534 region_name = cs_dsp_mem_region_name(type);
1535 reg = dsp->ops->region_to_reg(mem, offset);
1536 break;
1537 default:
1538 cs_dsp_warn(dsp,
1539 "%s.%d: Unknown region type %x at %d(%x)\n",
1540 file, regions, type, pos, pos);
1541 break;
1542 }
1543
1544 cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1545 regions, le32_to_cpu(region->len), offset,
1546 region_name);
1547
1548 if (text) {
1549 memcpy(text, region->data, le32_to_cpu(region->len));
1550 cs_dsp_info(dsp, "%s: %s\n", file, text);
1551 kfree(text);
1552 text = NULL;
1553 }
1554
1555 if (reg) {
1556 buf = cs_dsp_buf_alloc(region->data,
1557 le32_to_cpu(region->len),
1558 &buf_list);
1559 if (!buf) {
1560 cs_dsp_err(dsp, "Out of memory\n");
1561 ret = -ENOMEM;
1562 goto out_fw;
1563 }
1564
1565 ret = regmap_raw_write(regmap, reg, buf->buf,
1566 le32_to_cpu(region->len));
1567 if (ret != 0) {
1568 cs_dsp_err(dsp,
1569 "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1570 file, regions,
1571 le32_to_cpu(region->len), offset,
1572 region_name, ret);
1573 goto out_fw;
1574 }
1575 }
1576
1577 pos += le32_to_cpu(region->len) + sizeof(*region);
1578 regions++;
1579 }
1580
1581 if (pos > firmware->size)
1582 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1583 file, regions, pos - firmware->size);
1584
1585 cs_dsp_debugfs_save_wmfwname(dsp, file);
1586
1587 ret = 0;
1588 out_fw:
1589 cs_dsp_buf_free(&buf_list);
1590 kfree(text);
1591
1592 if (ret == -EOVERFLOW)
1593 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1594
1595 return ret;
1596 }
1597
1598 /**
1599 * cs_dsp_get_ctl() - Finds a matching coefficient control
1600 * @dsp: pointer to DSP structure
1601 * @name: pointer to string to match with a control's subname
1602 * @type: the algorithm type to match
1603 * @alg: the algorithm id to match
1604 *
1605 * Find cs_dsp_coeff_ctl with input name as its subname
1606 *
1607 * Return: pointer to the control on success, NULL if not found
1608 */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1609 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1610 unsigned int alg)
1611 {
1612 struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1613
1614 lockdep_assert_held(&dsp->pwr_lock);
1615
1616 list_for_each_entry(pos, &dsp->ctl_list, list) {
1617 if (!pos->subname)
1618 continue;
1619 if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1620 pos->fw_name == dsp->fw_name &&
1621 pos->alg_region.alg == alg &&
1622 pos->alg_region.type == type) {
1623 rslt = pos;
1624 break;
1625 }
1626 }
1627
1628 return rslt;
1629 }
1630 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1631
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1632 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1633 const struct cs_dsp_alg_region *alg_region)
1634 {
1635 struct cs_dsp_coeff_ctl *ctl;
1636
1637 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1638 if (ctl->fw_name == dsp->fw_name &&
1639 alg_region->alg == ctl->alg_region.alg &&
1640 alg_region->type == ctl->alg_region.type) {
1641 ctl->alg_region.base = alg_region->base;
1642 }
1643 }
1644 }
1645
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1646 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1647 const struct cs_dsp_region *mem,
1648 unsigned int pos, unsigned int len)
1649 {
1650 void *alg;
1651 unsigned int reg;
1652 int ret;
1653 __be32 val;
1654
1655 if (n_algs == 0) {
1656 cs_dsp_err(dsp, "No algorithms\n");
1657 return ERR_PTR(-EINVAL);
1658 }
1659
1660 if (n_algs > 1024) {
1661 cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1662 return ERR_PTR(-EINVAL);
1663 }
1664
1665 /* Read the terminator first to validate the length */
1666 reg = dsp->ops->region_to_reg(mem, pos + len);
1667
1668 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1669 if (ret != 0) {
1670 cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1671 ret);
1672 return ERR_PTR(ret);
1673 }
1674
1675 if (be32_to_cpu(val) != 0xbedead)
1676 cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1677 reg, be32_to_cpu(val));
1678
1679 /* Convert length from DSP words to bytes */
1680 len *= sizeof(u32);
1681
1682 alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1683 if (!alg)
1684 return ERR_PTR(-ENOMEM);
1685
1686 reg = dsp->ops->region_to_reg(mem, pos);
1687
1688 ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1689 if (ret != 0) {
1690 cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1691 kfree(alg);
1692 return ERR_PTR(ret);
1693 }
1694
1695 return alg;
1696 }
1697
1698 /**
1699 * cs_dsp_find_alg_region() - Finds a matching algorithm region
1700 * @dsp: pointer to DSP structure
1701 * @type: the algorithm type to match
1702 * @id: the algorithm id to match
1703 *
1704 * Return: Pointer to matching algorithm region, or NULL if not found.
1705 */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1706 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1707 int type, unsigned int id)
1708 {
1709 struct cs_dsp_alg_region *alg_region;
1710
1711 lockdep_assert_held(&dsp->pwr_lock);
1712
1713 list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1714 if (id == alg_region->alg && type == alg_region->type)
1715 return alg_region;
1716 }
1717
1718 return NULL;
1719 }
1720 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1721
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1722 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1723 int type, __be32 id,
1724 __be32 ver, __be32 base)
1725 {
1726 struct cs_dsp_alg_region *alg_region;
1727
1728 alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1729 if (!alg_region)
1730 return ERR_PTR(-ENOMEM);
1731
1732 alg_region->type = type;
1733 alg_region->alg = be32_to_cpu(id);
1734 alg_region->ver = be32_to_cpu(ver);
1735 alg_region->base = be32_to_cpu(base);
1736
1737 list_add_tail(&alg_region->list, &dsp->alg_regions);
1738
1739 if (dsp->fw_ver > 0)
1740 cs_dsp_ctl_fixup_base(dsp, alg_region);
1741
1742 return alg_region;
1743 }
1744
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1745 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1746 {
1747 struct cs_dsp_alg_region *alg_region;
1748
1749 while (!list_empty(&dsp->alg_regions)) {
1750 alg_region = list_first_entry(&dsp->alg_regions,
1751 struct cs_dsp_alg_region,
1752 list);
1753 list_del(&alg_region->list);
1754 kfree(alg_region);
1755 }
1756 }
1757
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1758 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1759 struct wmfw_id_hdr *fw, int nalgs)
1760 {
1761 dsp->fw_id = be32_to_cpu(fw->id);
1762 dsp->fw_id_version = be32_to_cpu(fw->ver);
1763
1764 cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1765 dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1766 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1767 nalgs);
1768 }
1769
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1770 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1771 struct wmfw_v3_id_hdr *fw, int nalgs)
1772 {
1773 dsp->fw_id = be32_to_cpu(fw->id);
1774 dsp->fw_id_version = be32_to_cpu(fw->ver);
1775 dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1776
1777 cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1778 dsp->fw_id, dsp->fw_vendor_id,
1779 (dsp->fw_id_version & 0xff0000) >> 16,
1780 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1781 nalgs);
1782 }
1783
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1784 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1785 int nregions, const int *type, __be32 *base)
1786 {
1787 struct cs_dsp_alg_region *alg_region;
1788 int i;
1789
1790 for (i = 0; i < nregions; i++) {
1791 alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1792 if (IS_ERR(alg_region))
1793 return PTR_ERR(alg_region);
1794 }
1795
1796 return 0;
1797 }
1798
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1799 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1800 {
1801 struct wmfw_adsp1_id_hdr adsp1_id;
1802 struct wmfw_adsp1_alg_hdr *adsp1_alg;
1803 struct cs_dsp_alg_region *alg_region;
1804 const struct cs_dsp_region *mem;
1805 unsigned int pos, len;
1806 size_t n_algs;
1807 int i, ret;
1808
1809 mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1810 if (WARN_ON(!mem))
1811 return -EINVAL;
1812
1813 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1814 sizeof(adsp1_id));
1815 if (ret != 0) {
1816 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1817 ret);
1818 return ret;
1819 }
1820
1821 n_algs = be32_to_cpu(adsp1_id.n_algs);
1822
1823 cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1824
1825 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1826 adsp1_id.fw.id, adsp1_id.fw.ver,
1827 adsp1_id.zm);
1828 if (IS_ERR(alg_region))
1829 return PTR_ERR(alg_region);
1830
1831 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1832 adsp1_id.fw.id, adsp1_id.fw.ver,
1833 adsp1_id.dm);
1834 if (IS_ERR(alg_region))
1835 return PTR_ERR(alg_region);
1836
1837 /* Calculate offset and length in DSP words */
1838 pos = sizeof(adsp1_id) / sizeof(u32);
1839 len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1840
1841 adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1842 if (IS_ERR(adsp1_alg))
1843 return PTR_ERR(adsp1_alg);
1844
1845 for (i = 0; i < n_algs; i++) {
1846 cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1847 i, be32_to_cpu(adsp1_alg[i].alg.id),
1848 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1849 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1850 be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1851 be32_to_cpu(adsp1_alg[i].dm),
1852 be32_to_cpu(adsp1_alg[i].zm));
1853
1854 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1855 adsp1_alg[i].alg.id,
1856 adsp1_alg[i].alg.ver,
1857 adsp1_alg[i].dm);
1858 if (IS_ERR(alg_region)) {
1859 ret = PTR_ERR(alg_region);
1860 goto out;
1861 }
1862 if (dsp->fw_ver == 0) {
1863 if (i + 1 < n_algs) {
1864 len = be32_to_cpu(adsp1_alg[i + 1].dm);
1865 len -= be32_to_cpu(adsp1_alg[i].dm);
1866 len *= 4;
1867 cs_dsp_create_control(dsp, alg_region, 0,
1868 len, NULL, 0, 0,
1869 WMFW_CTL_TYPE_BYTES);
1870 } else {
1871 cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1872 be32_to_cpu(adsp1_alg[i].alg.id));
1873 }
1874 }
1875
1876 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1877 adsp1_alg[i].alg.id,
1878 adsp1_alg[i].alg.ver,
1879 adsp1_alg[i].zm);
1880 if (IS_ERR(alg_region)) {
1881 ret = PTR_ERR(alg_region);
1882 goto out;
1883 }
1884 if (dsp->fw_ver == 0) {
1885 if (i + 1 < n_algs) {
1886 len = be32_to_cpu(adsp1_alg[i + 1].zm);
1887 len -= be32_to_cpu(adsp1_alg[i].zm);
1888 len *= 4;
1889 cs_dsp_create_control(dsp, alg_region, 0,
1890 len, NULL, 0, 0,
1891 WMFW_CTL_TYPE_BYTES);
1892 } else {
1893 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1894 be32_to_cpu(adsp1_alg[i].alg.id));
1895 }
1896 }
1897 }
1898
1899 out:
1900 kfree(adsp1_alg);
1901 return ret;
1902 }
1903
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1904 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1905 {
1906 struct wmfw_adsp2_id_hdr adsp2_id;
1907 struct wmfw_adsp2_alg_hdr *adsp2_alg;
1908 struct cs_dsp_alg_region *alg_region;
1909 const struct cs_dsp_region *mem;
1910 unsigned int pos, len;
1911 size_t n_algs;
1912 int i, ret;
1913
1914 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1915 if (WARN_ON(!mem))
1916 return -EINVAL;
1917
1918 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1919 sizeof(adsp2_id));
1920 if (ret != 0) {
1921 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1922 ret);
1923 return ret;
1924 }
1925
1926 n_algs = be32_to_cpu(adsp2_id.n_algs);
1927
1928 cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1929
1930 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1931 adsp2_id.fw.id, adsp2_id.fw.ver,
1932 adsp2_id.xm);
1933 if (IS_ERR(alg_region))
1934 return PTR_ERR(alg_region);
1935
1936 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1937 adsp2_id.fw.id, adsp2_id.fw.ver,
1938 adsp2_id.ym);
1939 if (IS_ERR(alg_region))
1940 return PTR_ERR(alg_region);
1941
1942 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1943 adsp2_id.fw.id, adsp2_id.fw.ver,
1944 adsp2_id.zm);
1945 if (IS_ERR(alg_region))
1946 return PTR_ERR(alg_region);
1947
1948 /* Calculate offset and length in DSP words */
1949 pos = sizeof(adsp2_id) / sizeof(u32);
1950 len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1951
1952 adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1953 if (IS_ERR(adsp2_alg))
1954 return PTR_ERR(adsp2_alg);
1955
1956 for (i = 0; i < n_algs; i++) {
1957 cs_dsp_dbg(dsp,
1958 "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1959 i, be32_to_cpu(adsp2_alg[i].alg.id),
1960 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1961 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1962 be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1963 be32_to_cpu(adsp2_alg[i].xm),
1964 be32_to_cpu(adsp2_alg[i].ym),
1965 be32_to_cpu(adsp2_alg[i].zm));
1966
1967 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1968 adsp2_alg[i].alg.id,
1969 adsp2_alg[i].alg.ver,
1970 adsp2_alg[i].xm);
1971 if (IS_ERR(alg_region)) {
1972 ret = PTR_ERR(alg_region);
1973 goto out;
1974 }
1975 if (dsp->fw_ver == 0) {
1976 if (i + 1 < n_algs) {
1977 len = be32_to_cpu(adsp2_alg[i + 1].xm);
1978 len -= be32_to_cpu(adsp2_alg[i].xm);
1979 len *= 4;
1980 cs_dsp_create_control(dsp, alg_region, 0,
1981 len, NULL, 0, 0,
1982 WMFW_CTL_TYPE_BYTES);
1983 } else {
1984 cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1985 be32_to_cpu(adsp2_alg[i].alg.id));
1986 }
1987 }
1988
1989 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1990 adsp2_alg[i].alg.id,
1991 adsp2_alg[i].alg.ver,
1992 adsp2_alg[i].ym);
1993 if (IS_ERR(alg_region)) {
1994 ret = PTR_ERR(alg_region);
1995 goto out;
1996 }
1997 if (dsp->fw_ver == 0) {
1998 if (i + 1 < n_algs) {
1999 len = be32_to_cpu(adsp2_alg[i + 1].ym);
2000 len -= be32_to_cpu(adsp2_alg[i].ym);
2001 len *= 4;
2002 cs_dsp_create_control(dsp, alg_region, 0,
2003 len, NULL, 0, 0,
2004 WMFW_CTL_TYPE_BYTES);
2005 } else {
2006 cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2007 be32_to_cpu(adsp2_alg[i].alg.id));
2008 }
2009 }
2010
2011 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2012 adsp2_alg[i].alg.id,
2013 adsp2_alg[i].alg.ver,
2014 adsp2_alg[i].zm);
2015 if (IS_ERR(alg_region)) {
2016 ret = PTR_ERR(alg_region);
2017 goto out;
2018 }
2019 if (dsp->fw_ver == 0) {
2020 if (i + 1 < n_algs) {
2021 len = be32_to_cpu(adsp2_alg[i + 1].zm);
2022 len -= be32_to_cpu(adsp2_alg[i].zm);
2023 len *= 4;
2024 cs_dsp_create_control(dsp, alg_region, 0,
2025 len, NULL, 0, 0,
2026 WMFW_CTL_TYPE_BYTES);
2027 } else {
2028 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2029 be32_to_cpu(adsp2_alg[i].alg.id));
2030 }
2031 }
2032 }
2033
2034 out:
2035 kfree(adsp2_alg);
2036 return ret;
2037 }
2038
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)2039 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2040 __be32 xm_base, __be32 ym_base)
2041 {
2042 static const int types[] = {
2043 WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2044 WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2045 };
2046 __be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2047
2048 return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2049 }
2050
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)2051 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2052 {
2053 struct wmfw_halo_id_hdr halo_id;
2054 struct wmfw_halo_alg_hdr *halo_alg;
2055 const struct cs_dsp_region *mem;
2056 unsigned int pos, len;
2057 size_t n_algs;
2058 int i, ret;
2059
2060 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2061 if (WARN_ON(!mem))
2062 return -EINVAL;
2063
2064 ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2065 sizeof(halo_id));
2066 if (ret != 0) {
2067 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2068 ret);
2069 return ret;
2070 }
2071
2072 n_algs = be32_to_cpu(halo_id.n_algs);
2073
2074 cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2075
2076 ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2077 halo_id.xm_base, halo_id.ym_base);
2078 if (ret)
2079 return ret;
2080
2081 /* Calculate offset and length in DSP words */
2082 pos = sizeof(halo_id) / sizeof(u32);
2083 len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2084
2085 halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2086 if (IS_ERR(halo_alg))
2087 return PTR_ERR(halo_alg);
2088
2089 for (i = 0; i < n_algs; i++) {
2090 cs_dsp_dbg(dsp,
2091 "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2092 i, be32_to_cpu(halo_alg[i].alg.id),
2093 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2094 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2095 be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2096 be32_to_cpu(halo_alg[i].xm_base),
2097 be32_to_cpu(halo_alg[i].ym_base));
2098
2099 ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2100 halo_alg[i].alg.ver,
2101 halo_alg[i].xm_base,
2102 halo_alg[i].ym_base);
2103 if (ret)
2104 goto out;
2105 }
2106
2107 out:
2108 kfree(halo_alg);
2109 return ret;
2110 }
2111
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)2112 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2113 const char *file)
2114 {
2115 LIST_HEAD(buf_list);
2116 struct regmap *regmap = dsp->regmap;
2117 struct wmfw_coeff_hdr *hdr;
2118 struct wmfw_coeff_item *blk;
2119 const struct cs_dsp_region *mem;
2120 struct cs_dsp_alg_region *alg_region;
2121 const char *region_name;
2122 int ret, pos, blocks, type, offset, reg, version;
2123 char *text = NULL;
2124 struct cs_dsp_buf *buf;
2125
2126 if (!firmware)
2127 return 0;
2128
2129 ret = -EINVAL;
2130
2131 if (sizeof(*hdr) >= firmware->size) {
2132 cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2133 file, firmware->size);
2134 goto out_fw;
2135 }
2136
2137 hdr = (void *)&firmware->data[0];
2138 if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2139 cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2140 goto out_fw;
2141 }
2142
2143 switch (be32_to_cpu(hdr->rev) & 0xff) {
2144 case 1:
2145 case 2:
2146 break;
2147 default:
2148 cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2149 file, be32_to_cpu(hdr->rev) & 0xff);
2150 ret = -EINVAL;
2151 goto out_fw;
2152 }
2153
2154 cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2155 (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2156 (le32_to_cpu(hdr->ver) >> 8) & 0xff,
2157 le32_to_cpu(hdr->ver) & 0xff);
2158
2159 pos = le32_to_cpu(hdr->len);
2160
2161 blocks = 0;
2162 while (pos < firmware->size) {
2163 /* Is there enough data for a complete block header? */
2164 if (sizeof(*blk) > firmware->size - pos) {
2165 ret = -EOVERFLOW;
2166 goto out_fw;
2167 }
2168
2169 blk = (void *)(&firmware->data[pos]);
2170
2171 if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2172 ret = -EOVERFLOW;
2173 goto out_fw;
2174 }
2175
2176 type = le16_to_cpu(blk->type);
2177 offset = le16_to_cpu(blk->offset);
2178 version = le32_to_cpu(blk->ver) >> 8;
2179
2180 cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2181 file, blocks, le32_to_cpu(blk->id),
2182 (le32_to_cpu(blk->ver) >> 16) & 0xff,
2183 (le32_to_cpu(blk->ver) >> 8) & 0xff,
2184 le32_to_cpu(blk->ver) & 0xff);
2185 cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2186 file, blocks, le32_to_cpu(blk->len), offset, type);
2187
2188 reg = 0;
2189 region_name = "Unknown";
2190 switch (type) {
2191 case (WMFW_NAME_TEXT << 8):
2192 text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2193 break;
2194 case (WMFW_INFO_TEXT << 8):
2195 case (WMFW_METADATA << 8):
2196 break;
2197 case (WMFW_ABSOLUTE << 8):
2198 /*
2199 * Old files may use this for global
2200 * coefficients.
2201 */
2202 if (le32_to_cpu(blk->id) == dsp->fw_id &&
2203 offset == 0) {
2204 region_name = "global coefficients";
2205 mem = cs_dsp_find_region(dsp, type);
2206 if (!mem) {
2207 cs_dsp_err(dsp, "No ZM\n");
2208 break;
2209 }
2210 reg = dsp->ops->region_to_reg(mem, 0);
2211
2212 } else {
2213 region_name = "register";
2214 reg = offset;
2215 }
2216 break;
2217
2218 case WMFW_ADSP1_DM:
2219 case WMFW_ADSP1_ZM:
2220 case WMFW_ADSP2_XM:
2221 case WMFW_ADSP2_YM:
2222 case WMFW_HALO_XM_PACKED:
2223 case WMFW_HALO_YM_PACKED:
2224 case WMFW_HALO_PM_PACKED:
2225 cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2226 file, blocks, le32_to_cpu(blk->len),
2227 type, le32_to_cpu(blk->id));
2228
2229 region_name = cs_dsp_mem_region_name(type);
2230 mem = cs_dsp_find_region(dsp, type);
2231 if (!mem) {
2232 cs_dsp_err(dsp, "No base for region %x\n", type);
2233 break;
2234 }
2235
2236 alg_region = cs_dsp_find_alg_region(dsp, type,
2237 le32_to_cpu(blk->id));
2238 if (alg_region) {
2239 if (version != alg_region->ver)
2240 cs_dsp_warn(dsp,
2241 "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2242 (version >> 16) & 0xFF,
2243 (version >> 8) & 0xFF,
2244 version & 0xFF,
2245 (alg_region->ver >> 16) & 0xFF,
2246 (alg_region->ver >> 8) & 0xFF,
2247 alg_region->ver & 0xFF);
2248
2249 reg = alg_region->base;
2250 reg = dsp->ops->region_to_reg(mem, reg);
2251 reg += offset;
2252 } else {
2253 cs_dsp_err(dsp, "No %s for algorithm %x\n",
2254 region_name, le32_to_cpu(blk->id));
2255 }
2256 break;
2257
2258 default:
2259 cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2260 file, blocks, type, pos);
2261 break;
2262 }
2263
2264 if (text) {
2265 memcpy(text, blk->data, le32_to_cpu(blk->len));
2266 cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2267 kfree(text);
2268 text = NULL;
2269 }
2270
2271 if (reg) {
2272 buf = cs_dsp_buf_alloc(blk->data,
2273 le32_to_cpu(blk->len),
2274 &buf_list);
2275 if (!buf) {
2276 cs_dsp_err(dsp, "Out of memory\n");
2277 ret = -ENOMEM;
2278 goto out_fw;
2279 }
2280
2281 cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2282 file, blocks, le32_to_cpu(blk->len),
2283 reg);
2284 ret = regmap_raw_write(regmap, reg, buf->buf,
2285 le32_to_cpu(blk->len));
2286 if (ret != 0) {
2287 cs_dsp_err(dsp,
2288 "%s.%d: Failed to write to %x in %s: %d\n",
2289 file, blocks, reg, region_name, ret);
2290 }
2291 }
2292
2293 pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2294 blocks++;
2295 }
2296
2297 if (pos > firmware->size)
2298 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2299 file, blocks, pos - firmware->size);
2300
2301 cs_dsp_debugfs_save_binname(dsp, file);
2302
2303 ret = 0;
2304 out_fw:
2305 cs_dsp_buf_free(&buf_list);
2306 kfree(text);
2307
2308 if (ret == -EOVERFLOW)
2309 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2310
2311 return ret;
2312 }
2313
cs_dsp_create_name(struct cs_dsp * dsp)2314 static int cs_dsp_create_name(struct cs_dsp *dsp)
2315 {
2316 if (!dsp->name) {
2317 dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2318 dsp->num);
2319 if (!dsp->name)
2320 return -ENOMEM;
2321 }
2322
2323 return 0;
2324 }
2325
cs_dsp_common_init(struct cs_dsp * dsp)2326 static int cs_dsp_common_init(struct cs_dsp *dsp)
2327 {
2328 int ret;
2329
2330 ret = cs_dsp_create_name(dsp);
2331 if (ret)
2332 return ret;
2333
2334 INIT_LIST_HEAD(&dsp->alg_regions);
2335 INIT_LIST_HEAD(&dsp->ctl_list);
2336
2337 mutex_init(&dsp->pwr_lock);
2338
2339 #ifdef CONFIG_DEBUG_FS
2340 /* Ensure this is invalid if client never provides a debugfs root */
2341 dsp->debugfs_root = ERR_PTR(-ENODEV);
2342 #endif
2343
2344 return 0;
2345 }
2346
2347 /**
2348 * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2349 * @dsp: pointer to DSP structure
2350 *
2351 * Return: Zero for success, a negative number on error.
2352 */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2353 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2354 {
2355 dsp->ops = &cs_dsp_adsp1_ops;
2356
2357 return cs_dsp_common_init(dsp);
2358 }
2359 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2360
2361 /**
2362 * cs_dsp_adsp1_power_up() - Load and start the named firmware
2363 * @dsp: pointer to DSP structure
2364 * @wmfw_firmware: the firmware to be sent
2365 * @wmfw_filename: file name of firmware to be sent
2366 * @coeff_firmware: the coefficient data to be sent
2367 * @coeff_filename: file name of coefficient to data be sent
2368 * @fw_name: the user-friendly firmware name
2369 *
2370 * Return: Zero for success, a negative number on error.
2371 */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,char * wmfw_filename,const struct firmware * coeff_firmware,char * coeff_filename,const char * fw_name)2372 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2373 const struct firmware *wmfw_firmware, char *wmfw_filename,
2374 const struct firmware *coeff_firmware, char *coeff_filename,
2375 const char *fw_name)
2376 {
2377 unsigned int val;
2378 int ret;
2379
2380 mutex_lock(&dsp->pwr_lock);
2381
2382 dsp->fw_name = fw_name;
2383
2384 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2385 ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2386
2387 /*
2388 * For simplicity set the DSP clock rate to be the
2389 * SYSCLK rate rather than making it configurable.
2390 */
2391 if (dsp->sysclk_reg) {
2392 ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2393 if (ret != 0) {
2394 cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2395 goto err_mutex;
2396 }
2397
2398 val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2399
2400 ret = regmap_update_bits(dsp->regmap,
2401 dsp->base + ADSP1_CONTROL_31,
2402 ADSP1_CLK_SEL_MASK, val);
2403 if (ret != 0) {
2404 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2405 goto err_mutex;
2406 }
2407 }
2408
2409 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2410 if (ret != 0)
2411 goto err_ena;
2412
2413 ret = cs_dsp_adsp1_setup_algs(dsp);
2414 if (ret != 0)
2415 goto err_ena;
2416
2417 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2418 if (ret != 0)
2419 goto err_ena;
2420
2421 /* Initialize caches for enabled and unset controls */
2422 ret = cs_dsp_coeff_init_control_caches(dsp);
2423 if (ret != 0)
2424 goto err_ena;
2425
2426 /* Sync set controls */
2427 ret = cs_dsp_coeff_sync_controls(dsp);
2428 if (ret != 0)
2429 goto err_ena;
2430
2431 dsp->booted = true;
2432
2433 /* Start the core running */
2434 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2435 ADSP1_CORE_ENA | ADSP1_START,
2436 ADSP1_CORE_ENA | ADSP1_START);
2437
2438 dsp->running = true;
2439
2440 mutex_unlock(&dsp->pwr_lock);
2441
2442 return 0;
2443
2444 err_ena:
2445 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2446 ADSP1_SYS_ENA, 0);
2447 err_mutex:
2448 mutex_unlock(&dsp->pwr_lock);
2449 return ret;
2450 }
2451 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2452
2453 /**
2454 * cs_dsp_adsp1_power_down() - Halts the DSP
2455 * @dsp: pointer to DSP structure
2456 */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2457 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2458 {
2459 struct cs_dsp_coeff_ctl *ctl;
2460
2461 mutex_lock(&dsp->pwr_lock);
2462
2463 dsp->running = false;
2464 dsp->booted = false;
2465
2466 /* Halt the core */
2467 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2468 ADSP1_CORE_ENA | ADSP1_START, 0);
2469
2470 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2471 ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2472
2473 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2474 ADSP1_SYS_ENA, 0);
2475
2476 list_for_each_entry(ctl, &dsp->ctl_list, list)
2477 ctl->enabled = 0;
2478
2479 cs_dsp_free_alg_regions(dsp);
2480
2481 mutex_unlock(&dsp->pwr_lock);
2482 }
2483 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2484
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2485 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2486 {
2487 unsigned int val;
2488 int ret, count;
2489
2490 /* Wait for the RAM to start, should be near instantaneous */
2491 for (count = 0; count < 10; ++count) {
2492 ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2493 if (ret != 0)
2494 return ret;
2495
2496 if (val & ADSP2_RAM_RDY)
2497 break;
2498
2499 usleep_range(250, 500);
2500 }
2501
2502 if (!(val & ADSP2_RAM_RDY)) {
2503 cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2504 return -EBUSY;
2505 }
2506
2507 cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2508
2509 return 0;
2510 }
2511
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2512 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2513 {
2514 int ret;
2515
2516 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2517 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2518 if (ret != 0)
2519 return ret;
2520
2521 return cs_dsp_adsp2v2_enable_core(dsp);
2522 }
2523
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2524 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2525 {
2526 struct regmap *regmap = dsp->regmap;
2527 unsigned int code0, code1, lock_reg;
2528
2529 if (!(lock_regions & CS_ADSP2_REGION_ALL))
2530 return 0;
2531
2532 lock_regions &= CS_ADSP2_REGION_ALL;
2533 lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2534
2535 while (lock_regions) {
2536 code0 = code1 = 0;
2537 if (lock_regions & BIT(0)) {
2538 code0 = ADSP2_LOCK_CODE_0;
2539 code1 = ADSP2_LOCK_CODE_1;
2540 }
2541 if (lock_regions & BIT(1)) {
2542 code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2543 code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2544 }
2545 regmap_write(regmap, lock_reg, code0);
2546 regmap_write(regmap, lock_reg, code1);
2547 lock_regions >>= 2;
2548 lock_reg += 2;
2549 }
2550
2551 return 0;
2552 }
2553
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2554 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2555 {
2556 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2557 ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2558 }
2559
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2560 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2561 {
2562 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2563 ADSP2_MEM_ENA, 0);
2564 }
2565
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2566 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2567 {
2568 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2569 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2570 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2571
2572 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2573 ADSP2_SYS_ENA, 0);
2574 }
2575
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2576 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2577 {
2578 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2579 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2580 regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2581 }
2582
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2583 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2584 {
2585 struct reg_sequence config[] = {
2586 { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
2587 { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
2588 { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
2589 { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
2590 { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2591 { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
2592 { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
2593 { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
2594 { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
2595 { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2596 { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
2597 { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
2598 { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
2599 { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
2600 { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2601 { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
2602 { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
2603 { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
2604 { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
2605 { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2606 { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
2607 { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
2608 { dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
2609 };
2610
2611 return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2612 }
2613
2614 /**
2615 * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2616 * @dsp: pointer to DSP structure
2617 * @freq: clock rate to set
2618 *
2619 * This is only for use on ADSP2 cores.
2620 *
2621 * Return: Zero for success, a negative number on error.
2622 */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2623 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2624 {
2625 int ret;
2626
2627 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2628 ADSP2_CLK_SEL_MASK,
2629 freq << ADSP2_CLK_SEL_SHIFT);
2630 if (ret)
2631 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2632
2633 return ret;
2634 }
2635 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2636
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2637 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2638 {
2639 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2640 ADSP2_WDT_ENA_MASK, 0);
2641 }
2642
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2643 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2644 {
2645 regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2646 HALO_WDT_EN_MASK, 0);
2647 }
2648
2649 /**
2650 * cs_dsp_power_up() - Downloads firmware to the DSP
2651 * @dsp: pointer to DSP structure
2652 * @wmfw_firmware: the firmware to be sent
2653 * @wmfw_filename: file name of firmware to be sent
2654 * @coeff_firmware: the coefficient data to be sent
2655 * @coeff_filename: file name of coefficient to data be sent
2656 * @fw_name: the user-friendly firmware name
2657 *
2658 * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2659 * and downloads the firmware but does not start the firmware running. The
2660 * cs_dsp booted flag will be set once completed and if the core has a low-power
2661 * memory retention mode it will be put into this state after the firmware is
2662 * downloaded.
2663 *
2664 * Return: Zero for success, a negative number on error.
2665 */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,char * wmfw_filename,const struct firmware * coeff_firmware,char * coeff_filename,const char * fw_name)2666 int cs_dsp_power_up(struct cs_dsp *dsp,
2667 const struct firmware *wmfw_firmware, char *wmfw_filename,
2668 const struct firmware *coeff_firmware, char *coeff_filename,
2669 const char *fw_name)
2670 {
2671 int ret;
2672
2673 mutex_lock(&dsp->pwr_lock);
2674
2675 dsp->fw_name = fw_name;
2676
2677 if (dsp->ops->enable_memory) {
2678 ret = dsp->ops->enable_memory(dsp);
2679 if (ret != 0)
2680 goto err_mutex;
2681 }
2682
2683 if (dsp->ops->enable_core) {
2684 ret = dsp->ops->enable_core(dsp);
2685 if (ret != 0)
2686 goto err_mem;
2687 }
2688
2689 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2690 if (ret != 0)
2691 goto err_ena;
2692
2693 ret = dsp->ops->setup_algs(dsp);
2694 if (ret != 0)
2695 goto err_ena;
2696
2697 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2698 if (ret != 0)
2699 goto err_ena;
2700
2701 /* Initialize caches for enabled and unset controls */
2702 ret = cs_dsp_coeff_init_control_caches(dsp);
2703 if (ret != 0)
2704 goto err_ena;
2705
2706 if (dsp->ops->disable_core)
2707 dsp->ops->disable_core(dsp);
2708
2709 dsp->booted = true;
2710
2711 mutex_unlock(&dsp->pwr_lock);
2712
2713 return 0;
2714 err_ena:
2715 if (dsp->ops->disable_core)
2716 dsp->ops->disable_core(dsp);
2717 err_mem:
2718 if (dsp->ops->disable_memory)
2719 dsp->ops->disable_memory(dsp);
2720 err_mutex:
2721 mutex_unlock(&dsp->pwr_lock);
2722
2723 return ret;
2724 }
2725 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2726
2727 /**
2728 * cs_dsp_power_down() - Powers-down the DSP
2729 * @dsp: pointer to DSP structure
2730 *
2731 * cs_dsp_stop() must have been called before this function. The core will be
2732 * fully powered down and so the memory will not be retained.
2733 */
cs_dsp_power_down(struct cs_dsp * dsp)2734 void cs_dsp_power_down(struct cs_dsp *dsp)
2735 {
2736 struct cs_dsp_coeff_ctl *ctl;
2737
2738 mutex_lock(&dsp->pwr_lock);
2739
2740 cs_dsp_debugfs_clear(dsp);
2741
2742 dsp->fw_id = 0;
2743 dsp->fw_id_version = 0;
2744
2745 dsp->booted = false;
2746
2747 if (dsp->ops->disable_memory)
2748 dsp->ops->disable_memory(dsp);
2749
2750 list_for_each_entry(ctl, &dsp->ctl_list, list)
2751 ctl->enabled = 0;
2752
2753 cs_dsp_free_alg_regions(dsp);
2754
2755 mutex_unlock(&dsp->pwr_lock);
2756
2757 cs_dsp_dbg(dsp, "Shutdown complete\n");
2758 }
2759 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2760
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2761 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2762 {
2763 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2764 ADSP2_CORE_ENA | ADSP2_START,
2765 ADSP2_CORE_ENA | ADSP2_START);
2766 }
2767
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2768 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2769 {
2770 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2771 ADSP2_CORE_ENA | ADSP2_START, 0);
2772 }
2773
2774 /**
2775 * cs_dsp_run() - Starts the firmware running
2776 * @dsp: pointer to DSP structure
2777 *
2778 * cs_dsp_power_up() must have previously been called successfully.
2779 *
2780 * Return: Zero for success, a negative number on error.
2781 */
cs_dsp_run(struct cs_dsp * dsp)2782 int cs_dsp_run(struct cs_dsp *dsp)
2783 {
2784 int ret;
2785
2786 mutex_lock(&dsp->pwr_lock);
2787
2788 if (!dsp->booted) {
2789 ret = -EIO;
2790 goto err;
2791 }
2792
2793 if (dsp->ops->enable_core) {
2794 ret = dsp->ops->enable_core(dsp);
2795 if (ret != 0)
2796 goto err;
2797 }
2798
2799 if (dsp->client_ops->pre_run) {
2800 ret = dsp->client_ops->pre_run(dsp);
2801 if (ret)
2802 goto err;
2803 }
2804
2805 /* Sync set controls */
2806 ret = cs_dsp_coeff_sync_controls(dsp);
2807 if (ret != 0)
2808 goto err;
2809
2810 if (dsp->ops->lock_memory) {
2811 ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2812 if (ret != 0) {
2813 cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2814 goto err;
2815 }
2816 }
2817
2818 if (dsp->ops->start_core) {
2819 ret = dsp->ops->start_core(dsp);
2820 if (ret != 0)
2821 goto err;
2822 }
2823
2824 dsp->running = true;
2825
2826 if (dsp->client_ops->post_run) {
2827 ret = dsp->client_ops->post_run(dsp);
2828 if (ret)
2829 goto err;
2830 }
2831
2832 mutex_unlock(&dsp->pwr_lock);
2833
2834 return 0;
2835
2836 err:
2837 if (dsp->ops->stop_core)
2838 dsp->ops->stop_core(dsp);
2839 if (dsp->ops->disable_core)
2840 dsp->ops->disable_core(dsp);
2841 mutex_unlock(&dsp->pwr_lock);
2842
2843 return ret;
2844 }
2845 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2846
2847 /**
2848 * cs_dsp_stop() - Stops the firmware
2849 * @dsp: pointer to DSP structure
2850 *
2851 * Memory will not be disabled so firmware will remain loaded.
2852 */
cs_dsp_stop(struct cs_dsp * dsp)2853 void cs_dsp_stop(struct cs_dsp *dsp)
2854 {
2855 /* Tell the firmware to cleanup */
2856 cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2857
2858 if (dsp->ops->stop_watchdog)
2859 dsp->ops->stop_watchdog(dsp);
2860
2861 /* Log firmware state, it can be useful for analysis */
2862 if (dsp->ops->show_fw_status)
2863 dsp->ops->show_fw_status(dsp);
2864
2865 mutex_lock(&dsp->pwr_lock);
2866
2867 if (dsp->client_ops->pre_stop)
2868 dsp->client_ops->pre_stop(dsp);
2869
2870 dsp->running = false;
2871
2872 if (dsp->ops->stop_core)
2873 dsp->ops->stop_core(dsp);
2874 if (dsp->ops->disable_core)
2875 dsp->ops->disable_core(dsp);
2876
2877 if (dsp->client_ops->post_stop)
2878 dsp->client_ops->post_stop(dsp);
2879
2880 mutex_unlock(&dsp->pwr_lock);
2881
2882 cs_dsp_dbg(dsp, "Execution stopped\n");
2883 }
2884 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2885
cs_dsp_halo_start_core(struct cs_dsp * dsp)2886 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2887 {
2888 int ret;
2889
2890 ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2891 HALO_CORE_RESET | HALO_CORE_EN,
2892 HALO_CORE_RESET | HALO_CORE_EN);
2893 if (ret)
2894 return ret;
2895
2896 return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2897 HALO_CORE_RESET, 0);
2898 }
2899
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2900 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2901 {
2902 regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2903 HALO_CORE_EN, 0);
2904
2905 /* reset halo core with CORE_SOFT_RESET */
2906 regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2907 HALO_CORE_SOFT_RESET_MASK, 1);
2908 }
2909
2910 /**
2911 * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2912 * @dsp: pointer to DSP structure
2913 *
2914 * Return: Zero for success, a negative number on error.
2915 */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2916 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2917 {
2918 int ret;
2919
2920 switch (dsp->rev) {
2921 case 0:
2922 /*
2923 * Disable the DSP memory by default when in reset for a small
2924 * power saving.
2925 */
2926 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2927 ADSP2_MEM_ENA, 0);
2928 if (ret) {
2929 cs_dsp_err(dsp,
2930 "Failed to clear memory retention: %d\n", ret);
2931 return ret;
2932 }
2933
2934 dsp->ops = &cs_dsp_adsp2_ops[0];
2935 break;
2936 case 1:
2937 dsp->ops = &cs_dsp_adsp2_ops[1];
2938 break;
2939 default:
2940 dsp->ops = &cs_dsp_adsp2_ops[2];
2941 break;
2942 }
2943
2944 return cs_dsp_common_init(dsp);
2945 }
2946 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2947
2948 /**
2949 * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2950 * @dsp: pointer to DSP structure
2951 *
2952 * Return: Zero for success, a negative number on error.
2953 */
cs_dsp_halo_init(struct cs_dsp * dsp)2954 int cs_dsp_halo_init(struct cs_dsp *dsp)
2955 {
2956 if (dsp->no_core_startstop)
2957 dsp->ops = &cs_dsp_halo_ao_ops;
2958 else
2959 dsp->ops = &cs_dsp_halo_ops;
2960
2961 return cs_dsp_common_init(dsp);
2962 }
2963 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2964
2965 /**
2966 * cs_dsp_remove() - Clean a cs_dsp before deletion
2967 * @dsp: pointer to DSP structure
2968 */
cs_dsp_remove(struct cs_dsp * dsp)2969 void cs_dsp_remove(struct cs_dsp *dsp)
2970 {
2971 struct cs_dsp_coeff_ctl *ctl;
2972
2973 while (!list_empty(&dsp->ctl_list)) {
2974 ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2975
2976 if (dsp->client_ops->control_remove)
2977 dsp->client_ops->control_remove(ctl);
2978
2979 list_del(&ctl->list);
2980 cs_dsp_free_ctl_blk(ctl);
2981 }
2982 }
2983 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2984
2985 /**
2986 * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2987 * @dsp: pointer to DSP structure
2988 * @mem_type: the type of DSP memory containing the data to be read
2989 * @mem_addr: the address of the data within the memory region
2990 * @num_words: the length of the data to read
2991 * @data: a buffer to store the fetched data
2992 *
2993 * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2994 * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2995 * cs_dsp_remove_padding()
2996 *
2997 * Return: Zero for success, a negative number on error.
2998 */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)2999 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3000 unsigned int num_words, __be32 *data)
3001 {
3002 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3003 unsigned int reg;
3004 int ret;
3005
3006 lockdep_assert_held(&dsp->pwr_lock);
3007
3008 if (!mem)
3009 return -EINVAL;
3010
3011 reg = dsp->ops->region_to_reg(mem, mem_addr);
3012
3013 ret = regmap_raw_read(dsp->regmap, reg, data,
3014 sizeof(*data) * num_words);
3015 if (ret < 0)
3016 return ret;
3017
3018 return 0;
3019 }
3020 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3021
3022 /**
3023 * cs_dsp_read_data_word() - Reads a word from DSP memory
3024 * @dsp: pointer to DSP structure
3025 * @mem_type: the type of DSP memory containing the data to be read
3026 * @mem_addr: the address of the data within the memory region
3027 * @data: a buffer to store the fetched data
3028 *
3029 * Return: Zero for success, a negative number on error.
3030 */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)3031 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3032 {
3033 __be32 raw;
3034 int ret;
3035
3036 ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3037 if (ret < 0)
3038 return ret;
3039
3040 *data = be32_to_cpu(raw) & 0x00ffffffu;
3041
3042 return 0;
3043 }
3044 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3045
3046 /**
3047 * cs_dsp_write_data_word() - Writes a word to DSP memory
3048 * @dsp: pointer to DSP structure
3049 * @mem_type: the type of DSP memory containing the data to be written
3050 * @mem_addr: the address of the data within the memory region
3051 * @data: the data to be written
3052 *
3053 * Return: Zero for success, a negative number on error.
3054 */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)3055 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3056 {
3057 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3058 __be32 val = cpu_to_be32(data & 0x00ffffffu);
3059 unsigned int reg;
3060
3061 lockdep_assert_held(&dsp->pwr_lock);
3062
3063 if (!mem)
3064 return -EINVAL;
3065
3066 reg = dsp->ops->region_to_reg(mem, mem_addr);
3067
3068 return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3069 }
3070 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3071
3072 /**
3073 * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3074 * @buf: buffer containing DSP words read from DSP memory
3075 * @nwords: number of words to convert
3076 *
3077 * DSP words from the register map have pad bytes and the data bytes
3078 * are in swapped order. This swaps to the native endian order and
3079 * strips the pad bytes.
3080 */
cs_dsp_remove_padding(u32 * buf,int nwords)3081 void cs_dsp_remove_padding(u32 *buf, int nwords)
3082 {
3083 const __be32 *pack_in = (__be32 *)buf;
3084 u8 *pack_out = (u8 *)buf;
3085 int i;
3086
3087 for (i = 0; i < nwords; i++) {
3088 u32 word = be32_to_cpu(*pack_in++);
3089 *pack_out++ = (u8)word;
3090 *pack_out++ = (u8)(word >> 8);
3091 *pack_out++ = (u8)(word >> 16);
3092 }
3093 }
3094 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3095
3096 /**
3097 * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3098 * @dsp: pointer to DSP structure
3099 *
3100 * The firmware and DSP state will be logged for future analysis.
3101 */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)3102 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3103 {
3104 unsigned int val;
3105 struct regmap *regmap = dsp->regmap;
3106 int ret = 0;
3107
3108 mutex_lock(&dsp->pwr_lock);
3109
3110 ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3111 if (ret) {
3112 cs_dsp_err(dsp,
3113 "Failed to read Region Lock Ctrl register: %d\n", ret);
3114 goto error;
3115 }
3116
3117 if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3118 cs_dsp_err(dsp, "watchdog timeout error\n");
3119 dsp->ops->stop_watchdog(dsp);
3120 if (dsp->client_ops->watchdog_expired)
3121 dsp->client_ops->watchdog_expired(dsp);
3122 }
3123
3124 if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3125 if (val & ADSP2_ADDR_ERR_MASK)
3126 cs_dsp_err(dsp, "bus error: address error\n");
3127 else
3128 cs_dsp_err(dsp, "bus error: region lock error\n");
3129
3130 ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3131 if (ret) {
3132 cs_dsp_err(dsp,
3133 "Failed to read Bus Err Addr register: %d\n",
3134 ret);
3135 goto error;
3136 }
3137
3138 cs_dsp_err(dsp, "bus error address = 0x%x\n",
3139 val & ADSP2_BUS_ERR_ADDR_MASK);
3140
3141 ret = regmap_read(regmap,
3142 dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3143 &val);
3144 if (ret) {
3145 cs_dsp_err(dsp,
3146 "Failed to read Pmem Xmem Err Addr register: %d\n",
3147 ret);
3148 goto error;
3149 }
3150
3151 cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3152 val & ADSP2_XMEM_ERR_ADDR_MASK);
3153 cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3154 (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3155 ADSP2_PMEM_ERR_ADDR_SHIFT);
3156 }
3157
3158 regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3159 ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3160
3161 error:
3162 mutex_unlock(&dsp->pwr_lock);
3163 }
3164 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3165
3166 /**
3167 * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3168 * @dsp: pointer to DSP structure
3169 *
3170 * The firmware and DSP state will be logged for future analysis.
3171 */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3172 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3173 {
3174 struct regmap *regmap = dsp->regmap;
3175 unsigned int fault[6];
3176 struct reg_sequence clear[] = {
3177 { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
3178 { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
3179 { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
3180 };
3181 int ret;
3182
3183 mutex_lock(&dsp->pwr_lock);
3184
3185 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3186 fault);
3187 if (ret) {
3188 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3189 goto exit_unlock;
3190 }
3191
3192 cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3193 *fault & HALO_AHBM_FLAGS_ERR_MASK,
3194 (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3195 HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3196
3197 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3198 fault);
3199 if (ret) {
3200 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3201 goto exit_unlock;
3202 }
3203
3204 cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3205
3206 ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3207 fault, ARRAY_SIZE(fault));
3208 if (ret) {
3209 cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3210 goto exit_unlock;
3211 }
3212
3213 cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3214 cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3215 cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3216
3217 ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3218 if (ret)
3219 cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3220
3221 exit_unlock:
3222 mutex_unlock(&dsp->pwr_lock);
3223 }
3224 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3225
3226 /**
3227 * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3228 * @dsp: pointer to DSP structure
3229 *
3230 * This is logged for future analysis.
3231 */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3232 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3233 {
3234 mutex_lock(&dsp->pwr_lock);
3235
3236 cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3237
3238 dsp->ops->stop_watchdog(dsp);
3239 if (dsp->client_ops->watchdog_expired)
3240 dsp->client_ops->watchdog_expired(dsp);
3241
3242 mutex_unlock(&dsp->pwr_lock);
3243 }
3244 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3245
3246 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3247 .validate_version = cs_dsp_validate_version,
3248 .parse_sizes = cs_dsp_adsp1_parse_sizes,
3249 .region_to_reg = cs_dsp_region_to_reg,
3250 };
3251
3252 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3253 {
3254 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3255 .validate_version = cs_dsp_validate_version,
3256 .setup_algs = cs_dsp_adsp2_setup_algs,
3257 .region_to_reg = cs_dsp_region_to_reg,
3258
3259 .show_fw_status = cs_dsp_adsp2_show_fw_status,
3260
3261 .enable_memory = cs_dsp_adsp2_enable_memory,
3262 .disable_memory = cs_dsp_adsp2_disable_memory,
3263
3264 .enable_core = cs_dsp_adsp2_enable_core,
3265 .disable_core = cs_dsp_adsp2_disable_core,
3266
3267 .start_core = cs_dsp_adsp2_start_core,
3268 .stop_core = cs_dsp_adsp2_stop_core,
3269
3270 },
3271 {
3272 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3273 .validate_version = cs_dsp_validate_version,
3274 .setup_algs = cs_dsp_adsp2_setup_algs,
3275 .region_to_reg = cs_dsp_region_to_reg,
3276
3277 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3278
3279 .enable_memory = cs_dsp_adsp2_enable_memory,
3280 .disable_memory = cs_dsp_adsp2_disable_memory,
3281 .lock_memory = cs_dsp_adsp2_lock,
3282
3283 .enable_core = cs_dsp_adsp2v2_enable_core,
3284 .disable_core = cs_dsp_adsp2v2_disable_core,
3285
3286 .start_core = cs_dsp_adsp2_start_core,
3287 .stop_core = cs_dsp_adsp2_stop_core,
3288 },
3289 {
3290 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3291 .validate_version = cs_dsp_validate_version,
3292 .setup_algs = cs_dsp_adsp2_setup_algs,
3293 .region_to_reg = cs_dsp_region_to_reg,
3294
3295 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3296 .stop_watchdog = cs_dsp_stop_watchdog,
3297
3298 .enable_memory = cs_dsp_adsp2_enable_memory,
3299 .disable_memory = cs_dsp_adsp2_disable_memory,
3300 .lock_memory = cs_dsp_adsp2_lock,
3301
3302 .enable_core = cs_dsp_adsp2v2_enable_core,
3303 .disable_core = cs_dsp_adsp2v2_disable_core,
3304
3305 .start_core = cs_dsp_adsp2_start_core,
3306 .stop_core = cs_dsp_adsp2_stop_core,
3307 },
3308 };
3309
3310 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3311 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3312 .validate_version = cs_dsp_halo_validate_version,
3313 .setup_algs = cs_dsp_halo_setup_algs,
3314 .region_to_reg = cs_dsp_halo_region_to_reg,
3315
3316 .show_fw_status = cs_dsp_halo_show_fw_status,
3317 .stop_watchdog = cs_dsp_halo_stop_watchdog,
3318
3319 .lock_memory = cs_dsp_halo_configure_mpu,
3320
3321 .start_core = cs_dsp_halo_start_core,
3322 .stop_core = cs_dsp_halo_stop_core,
3323 };
3324
3325 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3326 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3327 .validate_version = cs_dsp_halo_validate_version,
3328 .setup_algs = cs_dsp_halo_setup_algs,
3329 .region_to_reg = cs_dsp_halo_region_to_reg,
3330 .show_fw_status = cs_dsp_halo_show_fw_status,
3331 };
3332
3333 /**
3334 * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3335 * @ch: Pointer to the chunk structure
3336 * @nbits: Number of bits to write
3337 * @val: Value to write
3338 *
3339 * This function sequentially writes values into the format required for DSP
3340 * memory, it handles both inserting of the padding bytes and converting to
3341 * big endian. Note that data is only committed to the chunk when a whole DSP
3342 * words worth of data is available.
3343 *
3344 * Return: Zero for success, a negative number on error.
3345 */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3346 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3347 {
3348 int nwrite, i;
3349
3350 nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3351
3352 ch->cache <<= nwrite;
3353 ch->cache |= val >> (nbits - nwrite);
3354 ch->cachebits += nwrite;
3355 nbits -= nwrite;
3356
3357 if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3358 if (cs_dsp_chunk_end(ch))
3359 return -ENOSPC;
3360
3361 ch->cache &= 0xFFFFFF;
3362 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3363 *ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3364
3365 ch->bytes += sizeof(ch->cache);
3366 ch->cachebits = 0;
3367 }
3368
3369 if (nbits)
3370 return cs_dsp_chunk_write(ch, nbits, val);
3371
3372 return 0;
3373 }
3374 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3375
3376 /**
3377 * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3378 * @ch: Pointer to the chunk structure
3379 *
3380 * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3381 * be written out it is possible that some data will remain in the cache, this
3382 * function will pad that data with zeros upto a whole DSP word and write out.
3383 *
3384 * Return: Zero for success, a negative number on error.
3385 */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3386 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3387 {
3388 if (!ch->cachebits)
3389 return 0;
3390
3391 return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3392 }
3393 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3394
3395 /**
3396 * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3397 * @ch: Pointer to the chunk structure
3398 * @nbits: Number of bits to read
3399 *
3400 * This function sequentially reads values from a DSP memory formatted buffer,
3401 * it handles both removing of the padding bytes and converting from big endian.
3402 *
3403 * Return: A negative number is returned on error, otherwise the read value.
3404 */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3405 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3406 {
3407 int nread, i;
3408 u32 result;
3409
3410 if (!ch->cachebits) {
3411 if (cs_dsp_chunk_end(ch))
3412 return -ENOSPC;
3413
3414 ch->cache = 0;
3415 ch->cachebits = CS_DSP_DATA_WORD_BITS;
3416
3417 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3418 ch->cache |= *ch->data++;
3419
3420 ch->bytes += sizeof(ch->cache);
3421 }
3422
3423 nread = min(ch->cachebits, nbits);
3424 nbits -= nread;
3425
3426 result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3427 ch->cache <<= nread;
3428 ch->cachebits -= nread;
3429
3430 if (nbits)
3431 result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3432
3433 return result;
3434 }
3435 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3436
3437 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3438 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3439 MODULE_LICENSE("GPL v2");
3440