1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/page_pool/helpers.h>
42 #include <net/selftests.h>
43 #include <net/tso.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/icmp.h>
47 #include <linux/spinlock.h>
48 #include <linux/workqueue.h>
49 #include <linux/bitops.h>
50 #include <linux/io.h>
51 #include <linux/irq.h>
52 #include <linux/clk.h>
53 #include <linux/crc32.h>
54 #include <linux/platform_device.h>
55 #include <linux/mdio.h>
56 #include <linux/phy.h>
57 #include <linux/fec.h>
58 #include <linux/of.h>
59 #include <linux/of_device.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/gpio/consumer.h>
66 #include <linux/prefetch.h>
67 #include <linux/mfd/syscon.h>
68 #include <linux/regmap.h>
69 #include <soc/imx/cpuidle.h>
70 #include <linux/filter.h>
71 #include <linux/bpf.h>
72 #include <linux/bpf_trace.h>
73 
74 #include <asm/cacheflush.h>
75 
76 #include "fec.h"
77 
78 static void set_multicast_list(struct net_device *ndev);
79 static void fec_enet_itr_coal_set(struct net_device *ndev);
80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
81 				int cpu, struct xdp_buff *xdp,
82 				u32 dma_sync_len);
83 
84 #define DRIVER_NAME	"fec"
85 
86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
87 
88 /* Pause frame feild and FIFO threshold */
89 #define FEC_ENET_FCE	(1 << 5)
90 #define FEC_ENET_RSEM_V	0x84
91 #define FEC_ENET_RSFL_V	16
92 #define FEC_ENET_RAEM_V	0x8
93 #define FEC_ENET_RAFL_V	0x8
94 #define FEC_ENET_OPD_V	0xFFF0
95 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
96 
97 #define FEC_ENET_XDP_PASS          0
98 #define FEC_ENET_XDP_CONSUMED      BIT(0)
99 #define FEC_ENET_XDP_TX            BIT(1)
100 #define FEC_ENET_XDP_REDIR         BIT(2)
101 
102 struct fec_devinfo {
103 	u32 quirks;
104 };
105 
106 static const struct fec_devinfo fec_imx25_info = {
107 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
108 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx27_info = {
112 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
113 		  FEC_QUIRK_HAS_MDIO_C45,
114 };
115 
116 static const struct fec_devinfo fec_imx28_info = {
117 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
118 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
119 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
120 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
121 };
122 
123 static const struct fec_devinfo fec_imx6q_info = {
124 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
128 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_mvf600_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_MDIO_C45,
134 };
135 
136 static const struct fec_devinfo fec_imx6x_info = {
137 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
138 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
139 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
140 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
141 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
142 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
143 		  FEC_QUIRK_HAS_MDIO_C45,
144 };
145 
146 static const struct fec_devinfo fec_imx6ul_info = {
147 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
148 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
149 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
150 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
151 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
152 		  FEC_QUIRK_HAS_MDIO_C45,
153 };
154 
155 static const struct fec_devinfo fec_imx8mq_info = {
156 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
157 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
158 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
159 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
160 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
161 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
162 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
163 		  FEC_QUIRK_HAS_MDIO_C45,
164 };
165 
166 static const struct fec_devinfo fec_imx8qm_info = {
167 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
168 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
169 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
170 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
171 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
172 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
173 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
174 };
175 
176 static const struct fec_devinfo fec_s32v234_info = {
177 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
178 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
179 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
180 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
181 		  FEC_QUIRK_HAS_MDIO_C45,
182 };
183 
184 static struct platform_device_id fec_devtype[] = {
185 	{
186 		/* keep it for coldfire */
187 		.name = DRIVER_NAME,
188 		.driver_data = 0,
189 	}, {
190 		.name = "imx25-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
192 	}, {
193 		.name = "imx27-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
195 	}, {
196 		.name = "imx28-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
198 	}, {
199 		.name = "imx6q-fec",
200 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
201 	}, {
202 		.name = "mvf600-fec",
203 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
204 	}, {
205 		.name = "imx6sx-fec",
206 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
207 	}, {
208 		.name = "imx6ul-fec",
209 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
210 	}, {
211 		.name = "imx8mq-fec",
212 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
213 	}, {
214 		.name = "imx8qm-fec",
215 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
216 	}, {
217 		.name = "s32v234-fec",
218 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
219 	}, {
220 		/* sentinel */
221 	}
222 };
223 MODULE_DEVICE_TABLE(platform, fec_devtype);
224 
225 enum imx_fec_type {
226 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
227 	IMX27_FEC,	/* runs on i.mx27/35/51 */
228 	IMX28_FEC,
229 	IMX6Q_FEC,
230 	MVF600_FEC,
231 	IMX6SX_FEC,
232 	IMX6UL_FEC,
233 	IMX8MQ_FEC,
234 	IMX8QM_FEC,
235 	S32V234_FEC,
236 };
237 
238 static const struct of_device_id fec_dt_ids[] = {
239 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
240 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
241 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
242 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
243 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
244 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
245 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
246 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
247 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
248 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
249 	{ /* sentinel */ }
250 };
251 MODULE_DEVICE_TABLE(of, fec_dt_ids);
252 
253 static unsigned char macaddr[ETH_ALEN];
254 module_param_array(macaddr, byte, NULL, 0);
255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
256 
257 #if defined(CONFIG_M5272)
258 /*
259  * Some hardware gets it MAC address out of local flash memory.
260  * if this is non-zero then assume it is the address to get MAC from.
261  */
262 #if defined(CONFIG_NETtel)
263 #define	FEC_FLASHMAC	0xf0006006
264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
265 #define	FEC_FLASHMAC	0xf0006000
266 #elif defined(CONFIG_CANCam)
267 #define	FEC_FLASHMAC	0xf0020000
268 #elif defined (CONFIG_M5272C3)
269 #define	FEC_FLASHMAC	(0xffe04000 + 4)
270 #elif defined(CONFIG_MOD5272)
271 #define FEC_FLASHMAC	0xffc0406b
272 #else
273 #define	FEC_FLASHMAC	0
274 #endif
275 #endif /* CONFIG_M5272 */
276 
277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
278  *
279  * 2048 byte skbufs are allocated. However, alignment requirements
280  * varies between FEC variants. Worst case is 64, so round down by 64.
281  */
282 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
283 #define PKT_MINBUF_SIZE		64
284 
285 /* FEC receive acceleration */
286 #define FEC_RACC_IPDIS		BIT(1)
287 #define FEC_RACC_PRODIS		BIT(2)
288 #define FEC_RACC_SHIFT16	BIT(7)
289 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
290 
291 /* MIB Control Register */
292 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
293 
294 /*
295  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
296  * size bits. Other FEC hardware does not, so we need to take that into
297  * account when setting it.
298  */
299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
300     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
301     defined(CONFIG_ARM64)
302 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
303 #else
304 #define	OPT_FRAME_SIZE	0
305 #endif
306 
307 /* FEC MII MMFR bits definition */
308 #define FEC_MMFR_ST		(1 << 30)
309 #define FEC_MMFR_ST_C45		(0)
310 #define FEC_MMFR_OP_READ	(2 << 28)
311 #define FEC_MMFR_OP_READ_C45	(3 << 28)
312 #define FEC_MMFR_OP_WRITE	(1 << 28)
313 #define FEC_MMFR_OP_ADDR_WRITE	(0)
314 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
315 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
316 #define FEC_MMFR_TA		(2 << 16)
317 #define FEC_MMFR_DATA(v)	(v & 0xffff)
318 /* FEC ECR bits definition */
319 #define FEC_ECR_RESET           BIT(0)
320 #define FEC_ECR_ETHEREN         BIT(1)
321 #define FEC_ECR_MAGICEN         BIT(2)
322 #define FEC_ECR_SLEEP           BIT(3)
323 #define FEC_ECR_EN1588          BIT(4)
324 #define FEC_ECR_BYTESWP         BIT(8)
325 /* FEC RCR bits definition */
326 #define FEC_RCR_LOOP            BIT(0)
327 #define FEC_RCR_HALFDPX         BIT(1)
328 #define FEC_RCR_MII             BIT(2)
329 #define FEC_RCR_PROMISC         BIT(3)
330 #define FEC_RCR_BC_REJ          BIT(4)
331 #define FEC_RCR_FLOWCTL         BIT(5)
332 #define FEC_RCR_RMII            BIT(8)
333 #define FEC_RCR_10BASET         BIT(9)
334 /* TX WMARK bits */
335 #define FEC_TXWMRK_STRFWD       BIT(8)
336 
337 #define FEC_MII_TIMEOUT		30000 /* us */
338 
339 /* Transmitter timeout */
340 #define TX_TIMEOUT (2 * HZ)
341 
342 #define FEC_PAUSE_FLAG_AUTONEG	0x1
343 #define FEC_PAUSE_FLAG_ENABLE	0x2
344 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
345 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
346 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
347 
348 /* Max number of allowed TCP segments for software TSO */
349 #define FEC_MAX_TSO_SEGS	100
350 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
351 
352 #define IS_TSO_HEADER(txq, addr) \
353 	((addr >= txq->tso_hdrs_dma) && \
354 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
355 
356 static int mii_cnt;
357 
fec_enet_get_nextdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)358 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
359 					     struct bufdesc_prop *bd)
360 {
361 	return (bdp >= bd->last) ? bd->base
362 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
363 }
364 
fec_enet_get_prevdesc(struct bufdesc * bdp,struct bufdesc_prop * bd)365 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
366 					     struct bufdesc_prop *bd)
367 {
368 	return (bdp <= bd->base) ? bd->last
369 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
370 }
371 
fec_enet_get_bd_index(struct bufdesc * bdp,struct bufdesc_prop * bd)372 static int fec_enet_get_bd_index(struct bufdesc *bdp,
373 				 struct bufdesc_prop *bd)
374 {
375 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
376 }
377 
fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q * txq)378 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
379 {
380 	int entries;
381 
382 	entries = (((const char *)txq->dirty_tx -
383 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
384 
385 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
386 }
387 
swap_buffer(void * bufaddr,int len)388 static void swap_buffer(void *bufaddr, int len)
389 {
390 	int i;
391 	unsigned int *buf = bufaddr;
392 
393 	for (i = 0; i < len; i += 4, buf++)
394 		swab32s(buf);
395 }
396 
fec_dump(struct net_device * ndev)397 static void fec_dump(struct net_device *ndev)
398 {
399 	struct fec_enet_private *fep = netdev_priv(ndev);
400 	struct bufdesc *bdp;
401 	struct fec_enet_priv_tx_q *txq;
402 	int index = 0;
403 
404 	netdev_info(ndev, "TX ring dump\n");
405 	pr_info("Nr     SC     addr       len  SKB\n");
406 
407 	txq = fep->tx_queue[0];
408 	bdp = txq->bd.base;
409 
410 	do {
411 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
412 			index,
413 			bdp == txq->bd.cur ? 'S' : ' ',
414 			bdp == txq->dirty_tx ? 'H' : ' ',
415 			fec16_to_cpu(bdp->cbd_sc),
416 			fec32_to_cpu(bdp->cbd_bufaddr),
417 			fec16_to_cpu(bdp->cbd_datlen),
418 			txq->tx_buf[index].buf_p);
419 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 		index++;
421 	} while (bdp != txq->bd.base);
422 }
423 
is_ipv4_pkt(struct sk_buff * skb)424 static inline bool is_ipv4_pkt(struct sk_buff *skb)
425 {
426 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
427 }
428 
429 static int
fec_enet_clear_csum(struct sk_buff * skb,struct net_device * ndev)430 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
431 {
432 	/* Only run for packets requiring a checksum. */
433 	if (skb->ip_summed != CHECKSUM_PARTIAL)
434 		return 0;
435 
436 	if (unlikely(skb_cow_head(skb, 0)))
437 		return -1;
438 
439 	if (is_ipv4_pkt(skb))
440 		ip_hdr(skb)->check = 0;
441 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
442 
443 	return 0;
444 }
445 
446 static int
fec_enet_create_page_pool(struct fec_enet_private * fep,struct fec_enet_priv_rx_q * rxq,int size)447 fec_enet_create_page_pool(struct fec_enet_private *fep,
448 			  struct fec_enet_priv_rx_q *rxq, int size)
449 {
450 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
451 	struct page_pool_params pp_params = {
452 		.order = 0,
453 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
454 		.pool_size = size,
455 		.nid = dev_to_node(&fep->pdev->dev),
456 		.dev = &fep->pdev->dev,
457 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
458 		.offset = FEC_ENET_XDP_HEADROOM,
459 		.max_len = FEC_ENET_RX_FRSIZE,
460 	};
461 	int err;
462 
463 	rxq->page_pool = page_pool_create(&pp_params);
464 	if (IS_ERR(rxq->page_pool)) {
465 		err = PTR_ERR(rxq->page_pool);
466 		rxq->page_pool = NULL;
467 		return err;
468 	}
469 
470 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
471 	if (err < 0)
472 		goto err_free_pp;
473 
474 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
475 					 rxq->page_pool);
476 	if (err)
477 		goto err_unregister_rxq;
478 
479 	return 0;
480 
481 err_unregister_rxq:
482 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
483 err_free_pp:
484 	page_pool_destroy(rxq->page_pool);
485 	rxq->page_pool = NULL;
486 	return err;
487 }
488 
489 static struct bufdesc *
fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)490 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
491 			     struct sk_buff *skb,
492 			     struct net_device *ndev)
493 {
494 	struct fec_enet_private *fep = netdev_priv(ndev);
495 	struct bufdesc *bdp = txq->bd.cur;
496 	struct bufdesc_ex *ebdp;
497 	int nr_frags = skb_shinfo(skb)->nr_frags;
498 	int frag, frag_len;
499 	unsigned short status;
500 	unsigned int estatus = 0;
501 	skb_frag_t *this_frag;
502 	unsigned int index;
503 	void *bufaddr;
504 	dma_addr_t addr;
505 	int i;
506 
507 	for (frag = 0; frag < nr_frags; frag++) {
508 		this_frag = &skb_shinfo(skb)->frags[frag];
509 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
510 		ebdp = (struct bufdesc_ex *)bdp;
511 
512 		status = fec16_to_cpu(bdp->cbd_sc);
513 		status &= ~BD_ENET_TX_STATS;
514 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
515 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
516 
517 		/* Handle the last BD specially */
518 		if (frag == nr_frags - 1) {
519 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
520 			if (fep->bufdesc_ex) {
521 				estatus |= BD_ENET_TX_INT;
522 				if (unlikely(skb_shinfo(skb)->tx_flags &
523 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
524 					estatus |= BD_ENET_TX_TS;
525 			}
526 		}
527 
528 		if (fep->bufdesc_ex) {
529 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
530 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
531 			if (skb->ip_summed == CHECKSUM_PARTIAL)
532 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
533 
534 			ebdp->cbd_bdu = 0;
535 			ebdp->cbd_esc = cpu_to_fec32(estatus);
536 		}
537 
538 		bufaddr = skb_frag_address(this_frag);
539 
540 		index = fec_enet_get_bd_index(bdp, &txq->bd);
541 		if (((unsigned long) bufaddr) & fep->tx_align ||
542 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
544 			bufaddr = txq->tx_bounce[index];
545 
546 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 				swap_buffer(bufaddr, frag_len);
548 		}
549 
550 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
551 				      DMA_TO_DEVICE);
552 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 			if (net_ratelimit())
554 				netdev_err(ndev, "Tx DMA memory map failed\n");
555 			goto dma_mapping_error;
556 		}
557 
558 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
559 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
560 		/* Make sure the updates to rest of the descriptor are
561 		 * performed before transferring ownership.
562 		 */
563 		wmb();
564 		bdp->cbd_sc = cpu_to_fec16(status);
565 	}
566 
567 	return bdp;
568 dma_mapping_error:
569 	bdp = txq->bd.cur;
570 	for (i = 0; i < frag; i++) {
571 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
572 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
573 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
574 	}
575 	return ERR_PTR(-ENOMEM);
576 }
577 
fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)578 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
579 				   struct sk_buff *skb, struct net_device *ndev)
580 {
581 	struct fec_enet_private *fep = netdev_priv(ndev);
582 	int nr_frags = skb_shinfo(skb)->nr_frags;
583 	struct bufdesc *bdp, *last_bdp;
584 	void *bufaddr;
585 	dma_addr_t addr;
586 	unsigned short status;
587 	unsigned short buflen;
588 	unsigned int estatus = 0;
589 	unsigned int index;
590 	int entries_free;
591 
592 	entries_free = fec_enet_get_free_txdesc_num(txq);
593 	if (entries_free < MAX_SKB_FRAGS + 1) {
594 		dev_kfree_skb_any(skb);
595 		if (net_ratelimit())
596 			netdev_err(ndev, "NOT enough BD for SG!\n");
597 		return NETDEV_TX_OK;
598 	}
599 
600 	/* Protocol checksum off-load for TCP and UDP. */
601 	if (fec_enet_clear_csum(skb, ndev)) {
602 		dev_kfree_skb_any(skb);
603 		return NETDEV_TX_OK;
604 	}
605 
606 	/* Fill in a Tx ring entry */
607 	bdp = txq->bd.cur;
608 	last_bdp = bdp;
609 	status = fec16_to_cpu(bdp->cbd_sc);
610 	status &= ~BD_ENET_TX_STATS;
611 
612 	/* Set buffer length and buffer pointer */
613 	bufaddr = skb->data;
614 	buflen = skb_headlen(skb);
615 
616 	index = fec_enet_get_bd_index(bdp, &txq->bd);
617 	if (((unsigned long) bufaddr) & fep->tx_align ||
618 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 		memcpy(txq->tx_bounce[index], skb->data, buflen);
620 		bufaddr = txq->tx_bounce[index];
621 
622 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 			swap_buffer(bufaddr, buflen);
624 	}
625 
626 	/* Push the data cache so the CPM does not get stale memory data. */
627 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
628 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
629 		dev_kfree_skb_any(skb);
630 		if (net_ratelimit())
631 			netdev_err(ndev, "Tx DMA memory map failed\n");
632 		return NETDEV_TX_OK;
633 	}
634 
635 	if (nr_frags) {
636 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
637 		if (IS_ERR(last_bdp)) {
638 			dma_unmap_single(&fep->pdev->dev, addr,
639 					 buflen, DMA_TO_DEVICE);
640 			dev_kfree_skb_any(skb);
641 			return NETDEV_TX_OK;
642 		}
643 	} else {
644 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
645 		if (fep->bufdesc_ex) {
646 			estatus = BD_ENET_TX_INT;
647 			if (unlikely(skb_shinfo(skb)->tx_flags &
648 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
649 				estatus |= BD_ENET_TX_TS;
650 		}
651 	}
652 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
653 	bdp->cbd_datlen = cpu_to_fec16(buflen);
654 
655 	if (fep->bufdesc_ex) {
656 
657 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
658 
659 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
660 			fep->hwts_tx_en))
661 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
662 
663 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
664 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
665 
666 		if (skb->ip_summed == CHECKSUM_PARTIAL)
667 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
668 
669 		ebdp->cbd_bdu = 0;
670 		ebdp->cbd_esc = cpu_to_fec32(estatus);
671 	}
672 
673 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
674 	/* Save skb pointer */
675 	txq->tx_buf[index].buf_p = skb;
676 
677 	/* Make sure the updates to rest of the descriptor are performed before
678 	 * transferring ownership.
679 	 */
680 	wmb();
681 
682 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
683 	 * it's the last BD of the frame, and to put the CRC on the end.
684 	 */
685 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
686 	bdp->cbd_sc = cpu_to_fec16(status);
687 
688 	/* If this was the last BD in the ring, start at the beginning again. */
689 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
690 
691 	skb_tx_timestamp(skb);
692 
693 	/* Make sure the update to bdp is performed before txq->bd.cur. */
694 	wmb();
695 	txq->bd.cur = bdp;
696 
697 	/* Trigger transmission start */
698 	writel(0, txq->bd.reg_desc_active);
699 
700 	return 0;
701 }
702 
703 static int
fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index,char * data,int size,bool last_tcp,bool is_last)704 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
705 			  struct net_device *ndev,
706 			  struct bufdesc *bdp, int index, char *data,
707 			  int size, bool last_tcp, bool is_last)
708 {
709 	struct fec_enet_private *fep = netdev_priv(ndev);
710 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
711 	unsigned short status;
712 	unsigned int estatus = 0;
713 	dma_addr_t addr;
714 
715 	status = fec16_to_cpu(bdp->cbd_sc);
716 	status &= ~BD_ENET_TX_STATS;
717 
718 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
719 
720 	if (((unsigned long) data) & fep->tx_align ||
721 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
722 		memcpy(txq->tx_bounce[index], data, size);
723 		data = txq->tx_bounce[index];
724 
725 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
726 			swap_buffer(data, size);
727 	}
728 
729 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
730 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
731 		dev_kfree_skb_any(skb);
732 		if (net_ratelimit())
733 			netdev_err(ndev, "Tx DMA memory map failed\n");
734 		return NETDEV_TX_OK;
735 	}
736 
737 	bdp->cbd_datlen = cpu_to_fec16(size);
738 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
739 
740 	if (fep->bufdesc_ex) {
741 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
742 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
743 		if (skb->ip_summed == CHECKSUM_PARTIAL)
744 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
745 		ebdp->cbd_bdu = 0;
746 		ebdp->cbd_esc = cpu_to_fec32(estatus);
747 	}
748 
749 	/* Handle the last BD specially */
750 	if (last_tcp)
751 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
752 	if (is_last) {
753 		status |= BD_ENET_TX_INTR;
754 		if (fep->bufdesc_ex)
755 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
756 	}
757 
758 	bdp->cbd_sc = cpu_to_fec16(status);
759 
760 	return 0;
761 }
762 
763 static int
fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev,struct bufdesc * bdp,int index)764 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
765 			 struct sk_buff *skb, struct net_device *ndev,
766 			 struct bufdesc *bdp, int index)
767 {
768 	struct fec_enet_private *fep = netdev_priv(ndev);
769 	int hdr_len = skb_tcp_all_headers(skb);
770 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
771 	void *bufaddr;
772 	unsigned long dmabuf;
773 	unsigned short status;
774 	unsigned int estatus = 0;
775 
776 	status = fec16_to_cpu(bdp->cbd_sc);
777 	status &= ~BD_ENET_TX_STATS;
778 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
779 
780 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
781 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
782 	if (((unsigned long)bufaddr) & fep->tx_align ||
783 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
784 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
785 		bufaddr = txq->tx_bounce[index];
786 
787 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
788 			swap_buffer(bufaddr, hdr_len);
789 
790 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
791 					hdr_len, DMA_TO_DEVICE);
792 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
793 			dev_kfree_skb_any(skb);
794 			if (net_ratelimit())
795 				netdev_err(ndev, "Tx DMA memory map failed\n");
796 			return NETDEV_TX_OK;
797 		}
798 	}
799 
800 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
801 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
802 
803 	if (fep->bufdesc_ex) {
804 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
805 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
806 		if (skb->ip_summed == CHECKSUM_PARTIAL)
807 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
808 		ebdp->cbd_bdu = 0;
809 		ebdp->cbd_esc = cpu_to_fec32(estatus);
810 	}
811 
812 	bdp->cbd_sc = cpu_to_fec16(status);
813 
814 	return 0;
815 }
816 
fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q * txq,struct sk_buff * skb,struct net_device * ndev)817 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
818 				   struct sk_buff *skb,
819 				   struct net_device *ndev)
820 {
821 	struct fec_enet_private *fep = netdev_priv(ndev);
822 	int hdr_len, total_len, data_left;
823 	struct bufdesc *bdp = txq->bd.cur;
824 	struct tso_t tso;
825 	unsigned int index = 0;
826 	int ret;
827 
828 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
829 		dev_kfree_skb_any(skb);
830 		if (net_ratelimit())
831 			netdev_err(ndev, "NOT enough BD for TSO!\n");
832 		return NETDEV_TX_OK;
833 	}
834 
835 	/* Protocol checksum off-load for TCP and UDP. */
836 	if (fec_enet_clear_csum(skb, ndev)) {
837 		dev_kfree_skb_any(skb);
838 		return NETDEV_TX_OK;
839 	}
840 
841 	/* Initialize the TSO handler, and prepare the first payload */
842 	hdr_len = tso_start(skb, &tso);
843 
844 	total_len = skb->len - hdr_len;
845 	while (total_len > 0) {
846 		char *hdr;
847 
848 		index = fec_enet_get_bd_index(bdp, &txq->bd);
849 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
850 		total_len -= data_left;
851 
852 		/* prepare packet headers: MAC + IP + TCP */
853 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
854 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
855 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
856 		if (ret)
857 			goto err_release;
858 
859 		while (data_left > 0) {
860 			int size;
861 
862 			size = min_t(int, tso.size, data_left);
863 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
864 			index = fec_enet_get_bd_index(bdp, &txq->bd);
865 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
866 							bdp, index,
867 							tso.data, size,
868 							size == data_left,
869 							total_len == 0);
870 			if (ret)
871 				goto err_release;
872 
873 			data_left -= size;
874 			tso_build_data(skb, &tso, size);
875 		}
876 
877 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
878 	}
879 
880 	/* Save skb pointer */
881 	txq->tx_buf[index].buf_p = skb;
882 
883 	skb_tx_timestamp(skb);
884 	txq->bd.cur = bdp;
885 
886 	/* Trigger transmission start */
887 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
888 	    !readl(txq->bd.reg_desc_active) ||
889 	    !readl(txq->bd.reg_desc_active) ||
890 	    !readl(txq->bd.reg_desc_active) ||
891 	    !readl(txq->bd.reg_desc_active))
892 		writel(0, txq->bd.reg_desc_active);
893 
894 	return 0;
895 
896 err_release:
897 	/* TODO: Release all used data descriptors for TSO */
898 	return ret;
899 }
900 
901 static netdev_tx_t
fec_enet_start_xmit(struct sk_buff * skb,struct net_device * ndev)902 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
903 {
904 	struct fec_enet_private *fep = netdev_priv(ndev);
905 	int entries_free;
906 	unsigned short queue;
907 	struct fec_enet_priv_tx_q *txq;
908 	struct netdev_queue *nq;
909 	int ret;
910 
911 	queue = skb_get_queue_mapping(skb);
912 	txq = fep->tx_queue[queue];
913 	nq = netdev_get_tx_queue(ndev, queue);
914 
915 	if (skb_is_gso(skb))
916 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
917 	else
918 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
919 	if (ret)
920 		return ret;
921 
922 	entries_free = fec_enet_get_free_txdesc_num(txq);
923 	if (entries_free <= txq->tx_stop_threshold)
924 		netif_tx_stop_queue(nq);
925 
926 	return NETDEV_TX_OK;
927 }
928 
929 /* Init RX & TX buffer descriptors
930  */
fec_enet_bd_init(struct net_device * dev)931 static void fec_enet_bd_init(struct net_device *dev)
932 {
933 	struct fec_enet_private *fep = netdev_priv(dev);
934 	struct fec_enet_priv_tx_q *txq;
935 	struct fec_enet_priv_rx_q *rxq;
936 	struct bufdesc *bdp;
937 	unsigned int i;
938 	unsigned int q;
939 
940 	for (q = 0; q < fep->num_rx_queues; q++) {
941 		/* Initialize the receive buffer descriptors. */
942 		rxq = fep->rx_queue[q];
943 		bdp = rxq->bd.base;
944 
945 		for (i = 0; i < rxq->bd.ring_size; i++) {
946 
947 			/* Initialize the BD for every fragment in the page. */
948 			if (bdp->cbd_bufaddr)
949 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
950 			else
951 				bdp->cbd_sc = cpu_to_fec16(0);
952 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
953 		}
954 
955 		/* Set the last buffer to wrap */
956 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
957 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
958 
959 		rxq->bd.cur = rxq->bd.base;
960 	}
961 
962 	for (q = 0; q < fep->num_tx_queues; q++) {
963 		/* ...and the same for transmit */
964 		txq = fep->tx_queue[q];
965 		bdp = txq->bd.base;
966 		txq->bd.cur = bdp;
967 
968 		for (i = 0; i < txq->bd.ring_size; i++) {
969 			/* Initialize the BD for every fragment in the page. */
970 			bdp->cbd_sc = cpu_to_fec16(0);
971 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
972 				if (bdp->cbd_bufaddr &&
973 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
974 					dma_unmap_single(&fep->pdev->dev,
975 							 fec32_to_cpu(bdp->cbd_bufaddr),
976 							 fec16_to_cpu(bdp->cbd_datlen),
977 							 DMA_TO_DEVICE);
978 				if (txq->tx_buf[i].buf_p)
979 					dev_kfree_skb_any(txq->tx_buf[i].buf_p);
980 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
981 				if (bdp->cbd_bufaddr)
982 					dma_unmap_single(&fep->pdev->dev,
983 							 fec32_to_cpu(bdp->cbd_bufaddr),
984 							 fec16_to_cpu(bdp->cbd_datlen),
985 							 DMA_TO_DEVICE);
986 
987 				if (txq->tx_buf[i].buf_p)
988 					xdp_return_frame(txq->tx_buf[i].buf_p);
989 			} else {
990 				struct page *page = txq->tx_buf[i].buf_p;
991 
992 				if (page)
993 					page_pool_put_page(page->pp, page, 0, false);
994 			}
995 
996 			txq->tx_buf[i].buf_p = NULL;
997 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
998 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
999 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1000 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1001 		}
1002 
1003 		/* Set the last buffer to wrap */
1004 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
1005 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
1006 		txq->dirty_tx = bdp;
1007 	}
1008 }
1009 
fec_enet_active_rxring(struct net_device * ndev)1010 static void fec_enet_active_rxring(struct net_device *ndev)
1011 {
1012 	struct fec_enet_private *fep = netdev_priv(ndev);
1013 	int i;
1014 
1015 	for (i = 0; i < fep->num_rx_queues; i++)
1016 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
1017 }
1018 
fec_enet_enable_ring(struct net_device * ndev)1019 static void fec_enet_enable_ring(struct net_device *ndev)
1020 {
1021 	struct fec_enet_private *fep = netdev_priv(ndev);
1022 	struct fec_enet_priv_tx_q *txq;
1023 	struct fec_enet_priv_rx_q *rxq;
1024 	int i;
1025 
1026 	for (i = 0; i < fep->num_rx_queues; i++) {
1027 		rxq = fep->rx_queue[i];
1028 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1029 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1030 
1031 		/* enable DMA1/2 */
1032 		if (i)
1033 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1034 			       fep->hwp + FEC_RCMR(i));
1035 	}
1036 
1037 	for (i = 0; i < fep->num_tx_queues; i++) {
1038 		txq = fep->tx_queue[i];
1039 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1040 
1041 		/* enable DMA1/2 */
1042 		if (i)
1043 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1044 			       fep->hwp + FEC_DMA_CFG(i));
1045 	}
1046 }
1047 
1048 /*
1049  * This function is called to start or restart the FEC during a link
1050  * change, transmit timeout, or to reconfigure the FEC.  The network
1051  * packet processing for this device must be stopped before this call.
1052  */
1053 static void
fec_restart(struct net_device * ndev)1054 fec_restart(struct net_device *ndev)
1055 {
1056 	struct fec_enet_private *fep = netdev_priv(ndev);
1057 	u32 temp_mac[2];
1058 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1059 	u32 ecntl = FEC_ECR_ETHEREN;
1060 
1061 	if (fep->bufdesc_ex)
1062 		fec_ptp_save_state(fep);
1063 
1064 	/* Whack a reset.  We should wait for this.
1065 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1066 	 * instead of reset MAC itself.
1067 	 */
1068 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1069 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1070 		writel(0, fep->hwp + FEC_ECNTRL);
1071 	} else {
1072 		writel(1, fep->hwp + FEC_ECNTRL);
1073 		udelay(10);
1074 	}
1075 
1076 	/*
1077 	 * enet-mac reset will reset mac address registers too,
1078 	 * so need to reconfigure it.
1079 	 */
1080 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1081 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1082 	       fep->hwp + FEC_ADDR_LOW);
1083 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1084 	       fep->hwp + FEC_ADDR_HIGH);
1085 
1086 	/* Clear any outstanding interrupt, except MDIO. */
1087 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1088 
1089 	fec_enet_bd_init(ndev);
1090 
1091 	fec_enet_enable_ring(ndev);
1092 
1093 	/* Enable MII mode */
1094 	if (fep->full_duplex == DUPLEX_FULL) {
1095 		/* FD enable */
1096 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1097 	} else {
1098 		/* No Rcv on Xmit */
1099 		rcntl |= 0x02;
1100 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1101 	}
1102 
1103 	/* Set MII speed */
1104 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1105 
1106 #if !defined(CONFIG_M5272)
1107 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1108 		u32 val = readl(fep->hwp + FEC_RACC);
1109 
1110 		/* align IP header */
1111 		val |= FEC_RACC_SHIFT16;
1112 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1113 			/* set RX checksum */
1114 			val |= FEC_RACC_OPTIONS;
1115 		else
1116 			val &= ~FEC_RACC_OPTIONS;
1117 		writel(val, fep->hwp + FEC_RACC);
1118 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1119 	}
1120 #endif
1121 
1122 	/*
1123 	 * The phy interface and speed need to get configured
1124 	 * differently on enet-mac.
1125 	 */
1126 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1127 		/* Enable flow control and length check */
1128 		rcntl |= 0x40000000 | 0x00000020;
1129 
1130 		/* RGMII, RMII or MII */
1131 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1132 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1133 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1134 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1135 			rcntl |= (1 << 6);
1136 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1137 			rcntl |= FEC_RCR_RMII;
1138 		else
1139 			rcntl &= ~FEC_RCR_RMII;
1140 
1141 		/* 1G, 100M or 10M */
1142 		if (ndev->phydev) {
1143 			if (ndev->phydev->speed == SPEED_1000)
1144 				ecntl |= (1 << 5);
1145 			else if (ndev->phydev->speed == SPEED_100)
1146 				rcntl &= ~FEC_RCR_10BASET;
1147 			else
1148 				rcntl |= FEC_RCR_10BASET;
1149 		}
1150 	} else {
1151 #ifdef FEC_MIIGSK_ENR
1152 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1153 			u32 cfgr;
1154 			/* disable the gasket and wait */
1155 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1156 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1157 				udelay(1);
1158 
1159 			/*
1160 			 * configure the gasket:
1161 			 *   RMII, 50 MHz, no loopback, no echo
1162 			 *   MII, 25 MHz, no loopback, no echo
1163 			 */
1164 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1165 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1166 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1167 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1168 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1169 
1170 			/* re-enable the gasket */
1171 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1172 		}
1173 #endif
1174 	}
1175 
1176 #if !defined(CONFIG_M5272)
1177 	/* enable pause frame*/
1178 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1179 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1180 	     ndev->phydev && ndev->phydev->pause)) {
1181 		rcntl |= FEC_ENET_FCE;
1182 
1183 		/* set FIFO threshold parameter to reduce overrun */
1184 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1185 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1186 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1187 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1188 
1189 		/* OPD */
1190 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1191 	} else {
1192 		rcntl &= ~FEC_ENET_FCE;
1193 	}
1194 #endif /* !defined(CONFIG_M5272) */
1195 
1196 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1197 
1198 	/* Setup multicast filter. */
1199 	set_multicast_list(ndev);
1200 #ifndef CONFIG_M5272
1201 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1202 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1203 #endif
1204 
1205 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1206 		/* enable ENET endian swap */
1207 		ecntl |= FEC_ECR_BYTESWP;
1208 		/* enable ENET store and forward mode */
1209 		writel(FEC_TXWMRK_STRFWD, fep->hwp + FEC_X_WMRK);
1210 	}
1211 
1212 	if (fep->bufdesc_ex)
1213 		ecntl |= FEC_ECR_EN1588;
1214 
1215 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1216 	    fep->rgmii_txc_dly)
1217 		ecntl |= FEC_ENET_TXC_DLY;
1218 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1219 	    fep->rgmii_rxc_dly)
1220 		ecntl |= FEC_ENET_RXC_DLY;
1221 
1222 #ifndef CONFIG_M5272
1223 	/* Enable the MIB statistic event counters */
1224 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1225 #endif
1226 
1227 	/* And last, enable the transmit and receive processing */
1228 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1229 	fec_enet_active_rxring(ndev);
1230 
1231 	if (fep->bufdesc_ex) {
1232 		fec_ptp_start_cyclecounter(ndev);
1233 		fec_ptp_restore_state(fep);
1234 	}
1235 
1236 	/* Enable interrupts we wish to service */
1237 	if (fep->link)
1238 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1239 	else
1240 		writel(0, fep->hwp + FEC_IMASK);
1241 
1242 	/* Init the interrupt coalescing */
1243 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1244 		fec_enet_itr_coal_set(ndev);
1245 }
1246 
fec_enet_ipc_handle_init(struct fec_enet_private * fep)1247 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1248 {
1249 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1250 	      of_machine_is_compatible("fsl,imx8qxp") ||
1251 	      of_machine_is_compatible("fsl,imx8dxl")))
1252 		return 0;
1253 
1254 	return imx_scu_get_handle(&fep->ipc_handle);
1255 }
1256 
fec_enet_ipg_stop_set(struct fec_enet_private * fep,bool enabled)1257 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1258 {
1259 	struct device_node *np = fep->pdev->dev.of_node;
1260 	u32 rsrc_id, val;
1261 	int idx;
1262 
1263 	if (!np || !fep->ipc_handle)
1264 		return;
1265 
1266 	idx = of_alias_get_id(np, "ethernet");
1267 	if (idx < 0)
1268 		idx = 0;
1269 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1270 
1271 	val = enabled ? 1 : 0;
1272 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1273 }
1274 
fec_enet_stop_mode(struct fec_enet_private * fep,bool enabled)1275 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1276 {
1277 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1278 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1279 
1280 	if (stop_gpr->gpr) {
1281 		if (enabled)
1282 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1283 					   BIT(stop_gpr->bit),
1284 					   BIT(stop_gpr->bit));
1285 		else
1286 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1287 					   BIT(stop_gpr->bit), 0);
1288 	} else if (pdata && pdata->sleep_mode_enable) {
1289 		pdata->sleep_mode_enable(enabled);
1290 	} else {
1291 		fec_enet_ipg_stop_set(fep, enabled);
1292 	}
1293 }
1294 
fec_irqs_disable(struct net_device * ndev)1295 static void fec_irqs_disable(struct net_device *ndev)
1296 {
1297 	struct fec_enet_private *fep = netdev_priv(ndev);
1298 
1299 	writel(0, fep->hwp + FEC_IMASK);
1300 }
1301 
fec_irqs_disable_except_wakeup(struct net_device * ndev)1302 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1303 {
1304 	struct fec_enet_private *fep = netdev_priv(ndev);
1305 
1306 	writel(0, fep->hwp + FEC_IMASK);
1307 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1308 }
1309 
1310 static void
fec_stop(struct net_device * ndev)1311 fec_stop(struct net_device *ndev)
1312 {
1313 	struct fec_enet_private *fep = netdev_priv(ndev);
1314 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & FEC_RCR_RMII;
1315 	u32 val;
1316 
1317 	/* We cannot expect a graceful transmit stop without link !!! */
1318 	if (fep->link) {
1319 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1320 		udelay(10);
1321 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1322 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1323 	}
1324 
1325 	if (fep->bufdesc_ex)
1326 		fec_ptp_save_state(fep);
1327 
1328 	/* Whack a reset.  We should wait for this.
1329 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1330 	 * instead of reset MAC itself.
1331 	 */
1332 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1333 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1334 			writel(0, fep->hwp + FEC_ECNTRL);
1335 		} else {
1336 			writel(FEC_ECR_RESET, fep->hwp + FEC_ECNTRL);
1337 			udelay(10);
1338 		}
1339 	} else {
1340 		val = readl(fep->hwp + FEC_ECNTRL);
1341 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1342 		writel(val, fep->hwp + FEC_ECNTRL);
1343 	}
1344 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1345 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1346 
1347 	/* We have to keep ENET enabled to have MII interrupt stay working */
1348 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1349 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1350 		writel(FEC_ECR_ETHEREN, fep->hwp + FEC_ECNTRL);
1351 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1352 	}
1353 
1354 	if (fep->bufdesc_ex) {
1355 		val = readl(fep->hwp + FEC_ECNTRL);
1356 		val |= FEC_ECR_EN1588;
1357 		writel(val, fep->hwp + FEC_ECNTRL);
1358 
1359 		fec_ptp_start_cyclecounter(ndev);
1360 		fec_ptp_restore_state(fep);
1361 	}
1362 }
1363 
1364 static void
fec_timeout(struct net_device * ndev,unsigned int txqueue)1365 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1366 {
1367 	struct fec_enet_private *fep = netdev_priv(ndev);
1368 
1369 	fec_dump(ndev);
1370 
1371 	ndev->stats.tx_errors++;
1372 
1373 	schedule_work(&fep->tx_timeout_work);
1374 }
1375 
fec_enet_timeout_work(struct work_struct * work)1376 static void fec_enet_timeout_work(struct work_struct *work)
1377 {
1378 	struct fec_enet_private *fep =
1379 		container_of(work, struct fec_enet_private, tx_timeout_work);
1380 	struct net_device *ndev = fep->netdev;
1381 
1382 	rtnl_lock();
1383 	if (netif_device_present(ndev) || netif_running(ndev)) {
1384 		napi_disable(&fep->napi);
1385 		netif_tx_lock_bh(ndev);
1386 		fec_restart(ndev);
1387 		netif_tx_wake_all_queues(ndev);
1388 		netif_tx_unlock_bh(ndev);
1389 		napi_enable(&fep->napi);
1390 	}
1391 	rtnl_unlock();
1392 }
1393 
1394 static void
fec_enet_hwtstamp(struct fec_enet_private * fep,unsigned ts,struct skb_shared_hwtstamps * hwtstamps)1395 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1396 	struct skb_shared_hwtstamps *hwtstamps)
1397 {
1398 	unsigned long flags;
1399 	u64 ns;
1400 
1401 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1402 	ns = timecounter_cyc2time(&fep->tc, ts);
1403 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1404 
1405 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1406 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1407 }
1408 
1409 static void
fec_enet_tx_queue(struct net_device * ndev,u16 queue_id,int budget)1410 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget)
1411 {
1412 	struct	fec_enet_private *fep;
1413 	struct xdp_frame *xdpf;
1414 	struct bufdesc *bdp;
1415 	unsigned short status;
1416 	struct	sk_buff	*skb;
1417 	struct fec_enet_priv_tx_q *txq;
1418 	struct netdev_queue *nq;
1419 	int	index = 0;
1420 	int	entries_free;
1421 	struct page *page;
1422 	int frame_len;
1423 
1424 	fep = netdev_priv(ndev);
1425 
1426 	txq = fep->tx_queue[queue_id];
1427 	/* get next bdp of dirty_tx */
1428 	nq = netdev_get_tx_queue(ndev, queue_id);
1429 	bdp = txq->dirty_tx;
1430 
1431 	/* get next bdp of dirty_tx */
1432 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1433 
1434 	while (bdp != READ_ONCE(txq->bd.cur)) {
1435 		/* Order the load of bd.cur and cbd_sc */
1436 		rmb();
1437 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1438 		if (status & BD_ENET_TX_READY)
1439 			break;
1440 
1441 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1442 
1443 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1444 			skb = txq->tx_buf[index].buf_p;
1445 			if (bdp->cbd_bufaddr &&
1446 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1447 				dma_unmap_single(&fep->pdev->dev,
1448 						 fec32_to_cpu(bdp->cbd_bufaddr),
1449 						 fec16_to_cpu(bdp->cbd_datlen),
1450 						 DMA_TO_DEVICE);
1451 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1452 			if (!skb)
1453 				goto tx_buf_done;
1454 		} else {
1455 			/* Tx processing cannot call any XDP (or page pool) APIs if
1456 			 * the "budget" is 0. Because NAPI is called with budget of
1457 			 * 0 (such as netpoll) indicates we may be in an IRQ context,
1458 			 * however, we can't use the page pool from IRQ context.
1459 			 */
1460 			if (unlikely(!budget))
1461 				break;
1462 
1463 			if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1464 				xdpf = txq->tx_buf[index].buf_p;
1465 				if (bdp->cbd_bufaddr)
1466 					dma_unmap_single(&fep->pdev->dev,
1467 							 fec32_to_cpu(bdp->cbd_bufaddr),
1468 							 fec16_to_cpu(bdp->cbd_datlen),
1469 							 DMA_TO_DEVICE);
1470 			} else {
1471 				page = txq->tx_buf[index].buf_p;
1472 			}
1473 
1474 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1475 			if (unlikely(!txq->tx_buf[index].buf_p)) {
1476 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1477 				goto tx_buf_done;
1478 			}
1479 
1480 			frame_len = fec16_to_cpu(bdp->cbd_datlen);
1481 		}
1482 
1483 		/* Check for errors. */
1484 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1485 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1486 				   BD_ENET_TX_CSL)) {
1487 			ndev->stats.tx_errors++;
1488 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1489 				ndev->stats.tx_heartbeat_errors++;
1490 			if (status & BD_ENET_TX_LC)  /* Late collision */
1491 				ndev->stats.tx_window_errors++;
1492 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1493 				ndev->stats.tx_aborted_errors++;
1494 			if (status & BD_ENET_TX_UN)  /* Underrun */
1495 				ndev->stats.tx_fifo_errors++;
1496 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1497 				ndev->stats.tx_carrier_errors++;
1498 		} else {
1499 			ndev->stats.tx_packets++;
1500 
1501 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1502 				ndev->stats.tx_bytes += skb->len;
1503 			else
1504 				ndev->stats.tx_bytes += frame_len;
1505 		}
1506 
1507 		/* Deferred means some collisions occurred during transmit,
1508 		 * but we eventually sent the packet OK.
1509 		 */
1510 		if (status & BD_ENET_TX_DEF)
1511 			ndev->stats.collisions++;
1512 
1513 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1514 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1515 			 * are to time stamp the packet, so we still need to check time
1516 			 * stamping enabled flag.
1517 			 */
1518 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1519 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1520 				struct skb_shared_hwtstamps shhwtstamps;
1521 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1522 
1523 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1524 				skb_tstamp_tx(skb, &shhwtstamps);
1525 			}
1526 
1527 			/* Free the sk buffer associated with this last transmit */
1528 			napi_consume_skb(skb, budget);
1529 		} else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) {
1530 			xdp_return_frame_rx_napi(xdpf);
1531 		} else { /* recycle pages of XDP_TX frames */
1532 			/* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */
1533 			page_pool_put_page(page->pp, page, 0, true);
1534 		}
1535 
1536 		txq->tx_buf[index].buf_p = NULL;
1537 		/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1538 		txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1539 
1540 tx_buf_done:
1541 		/* Make sure the update to bdp and tx_buf are performed
1542 		 * before dirty_tx
1543 		 */
1544 		wmb();
1545 		txq->dirty_tx = bdp;
1546 
1547 		/* Update pointer to next buffer descriptor to be transmitted */
1548 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1549 
1550 		/* Since we have freed up a buffer, the ring is no longer full
1551 		 */
1552 		if (netif_tx_queue_stopped(nq)) {
1553 			entries_free = fec_enet_get_free_txdesc_num(txq);
1554 			if (entries_free >= txq->tx_wake_threshold)
1555 				netif_tx_wake_queue(nq);
1556 		}
1557 	}
1558 
1559 	/* ERR006358: Keep the transmitter going */
1560 	if (bdp != txq->bd.cur &&
1561 	    readl(txq->bd.reg_desc_active) == 0)
1562 		writel(0, txq->bd.reg_desc_active);
1563 }
1564 
fec_enet_tx(struct net_device * ndev,int budget)1565 static void fec_enet_tx(struct net_device *ndev, int budget)
1566 {
1567 	struct fec_enet_private *fep = netdev_priv(ndev);
1568 	int i;
1569 
1570 	/* Make sure that AVB queues are processed first. */
1571 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1572 		fec_enet_tx_queue(ndev, i, budget);
1573 }
1574 
fec_enet_update_cbd(struct fec_enet_priv_rx_q * rxq,struct bufdesc * bdp,int index)1575 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1576 				struct bufdesc *bdp, int index)
1577 {
1578 	struct page *new_page;
1579 	dma_addr_t phys_addr;
1580 
1581 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1582 	WARN_ON(!new_page);
1583 	rxq->rx_skb_info[index].page = new_page;
1584 
1585 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1586 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1587 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1588 }
1589 
1590 static u32
fec_enet_run_xdp(struct fec_enet_private * fep,struct bpf_prog * prog,struct xdp_buff * xdp,struct fec_enet_priv_rx_q * rxq,int cpu)1591 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1592 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu)
1593 {
1594 	unsigned int sync, len = xdp->data_end - xdp->data;
1595 	u32 ret = FEC_ENET_XDP_PASS;
1596 	struct page *page;
1597 	int err;
1598 	u32 act;
1599 
1600 	act = bpf_prog_run_xdp(prog, xdp);
1601 
1602 	/* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover
1603 	 * max len CPU touch
1604 	 */
1605 	sync = xdp->data_end - xdp->data;
1606 	sync = max(sync, len);
1607 
1608 	switch (act) {
1609 	case XDP_PASS:
1610 		rxq->stats[RX_XDP_PASS]++;
1611 		ret = FEC_ENET_XDP_PASS;
1612 		break;
1613 
1614 	case XDP_REDIRECT:
1615 		rxq->stats[RX_XDP_REDIRECT]++;
1616 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1617 		if (unlikely(err))
1618 			goto xdp_err;
1619 
1620 		ret = FEC_ENET_XDP_REDIR;
1621 		break;
1622 
1623 	case XDP_TX:
1624 		rxq->stats[RX_XDP_TX]++;
1625 		err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync);
1626 		if (unlikely(err)) {
1627 			rxq->stats[RX_XDP_TX_ERRORS]++;
1628 			goto xdp_err;
1629 		}
1630 
1631 		ret = FEC_ENET_XDP_TX;
1632 		break;
1633 
1634 	default:
1635 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1636 		fallthrough;
1637 
1638 	case XDP_ABORTED:
1639 		fallthrough;    /* handle aborts by dropping packet */
1640 
1641 	case XDP_DROP:
1642 		rxq->stats[RX_XDP_DROP]++;
1643 xdp_err:
1644 		ret = FEC_ENET_XDP_CONSUMED;
1645 		page = virt_to_head_page(xdp->data);
1646 		page_pool_put_page(rxq->page_pool, page, sync, true);
1647 		if (act != XDP_DROP)
1648 			trace_xdp_exception(fep->netdev, prog, act);
1649 		break;
1650 	}
1651 
1652 	return ret;
1653 }
1654 
1655 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1656  * When we update through the ring, if the next incoming buffer has
1657  * not been given to the system, we just set the empty indicator,
1658  * effectively tossing the packet.
1659  */
1660 static int
fec_enet_rx_queue(struct net_device * ndev,int budget,u16 queue_id)1661 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1662 {
1663 	struct fec_enet_private *fep = netdev_priv(ndev);
1664 	struct fec_enet_priv_rx_q *rxq;
1665 	struct bufdesc *bdp;
1666 	unsigned short status;
1667 	struct  sk_buff *skb;
1668 	ushort	pkt_len;
1669 	__u8 *data;
1670 	int	pkt_received = 0;
1671 	struct	bufdesc_ex *ebdp = NULL;
1672 	bool	vlan_packet_rcvd = false;
1673 	u16	vlan_tag;
1674 	int	index = 0;
1675 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1676 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1677 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1678 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1679 	int cpu = smp_processor_id();
1680 	struct xdp_buff xdp;
1681 	struct page *page;
1682 	u32 sub_len = 4;
1683 
1684 #if !defined(CONFIG_M5272)
1685 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1686 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1687 	 */
1688 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1689 		data_start += 2;
1690 		sub_len += 2;
1691 	}
1692 #endif
1693 
1694 #ifdef CONFIG_M532x
1695 	flush_cache_all();
1696 #endif
1697 	rxq = fep->rx_queue[queue_id];
1698 
1699 	/* First, grab all of the stats for the incoming packet.
1700 	 * These get messed up if we get called due to a busy condition.
1701 	 */
1702 	bdp = rxq->bd.cur;
1703 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1704 
1705 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1706 
1707 		if (pkt_received >= budget)
1708 			break;
1709 		pkt_received++;
1710 
1711 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1712 
1713 		/* Check for errors. */
1714 		status ^= BD_ENET_RX_LAST;
1715 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1716 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1717 			   BD_ENET_RX_CL)) {
1718 			ndev->stats.rx_errors++;
1719 			if (status & BD_ENET_RX_OV) {
1720 				/* FIFO overrun */
1721 				ndev->stats.rx_fifo_errors++;
1722 				goto rx_processing_done;
1723 			}
1724 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1725 						| BD_ENET_RX_LAST)) {
1726 				/* Frame too long or too short. */
1727 				ndev->stats.rx_length_errors++;
1728 				if (status & BD_ENET_RX_LAST)
1729 					netdev_err(ndev, "rcv is not +last\n");
1730 			}
1731 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1732 				ndev->stats.rx_crc_errors++;
1733 			/* Report late collisions as a frame error. */
1734 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1735 				ndev->stats.rx_frame_errors++;
1736 			goto rx_processing_done;
1737 		}
1738 
1739 		/* Process the incoming frame. */
1740 		ndev->stats.rx_packets++;
1741 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1742 		ndev->stats.rx_bytes += pkt_len;
1743 
1744 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1745 		page = rxq->rx_skb_info[index].page;
1746 		dma_sync_single_for_cpu(&fep->pdev->dev,
1747 					fec32_to_cpu(bdp->cbd_bufaddr),
1748 					pkt_len,
1749 					DMA_FROM_DEVICE);
1750 		prefetch(page_address(page));
1751 		fec_enet_update_cbd(rxq, bdp, index);
1752 
1753 		if (xdp_prog) {
1754 			xdp_buff_clear_frags_flag(&xdp);
1755 			/* subtract 16bit shift and FCS */
1756 			xdp_prepare_buff(&xdp, page_address(page),
1757 					 data_start, pkt_len - sub_len, false);
1758 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu);
1759 			xdp_result |= ret;
1760 			if (ret != FEC_ENET_XDP_PASS)
1761 				goto rx_processing_done;
1762 		}
1763 
1764 		/* The packet length includes FCS, but we don't want to
1765 		 * include that when passing upstream as it messes up
1766 		 * bridging applications.
1767 		 */
1768 		skb = build_skb(page_address(page), PAGE_SIZE);
1769 		if (unlikely(!skb)) {
1770 			page_pool_recycle_direct(rxq->page_pool, page);
1771 			ndev->stats.rx_dropped++;
1772 
1773 			netdev_err_once(ndev, "build_skb failed!\n");
1774 			goto rx_processing_done;
1775 		}
1776 
1777 		skb_reserve(skb, data_start);
1778 		skb_put(skb, pkt_len - sub_len);
1779 		skb_mark_for_recycle(skb);
1780 
1781 		if (unlikely(need_swap)) {
1782 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1783 			swap_buffer(data, pkt_len);
1784 		}
1785 		data = skb->data;
1786 
1787 		/* Extract the enhanced buffer descriptor */
1788 		ebdp = NULL;
1789 		if (fep->bufdesc_ex)
1790 			ebdp = (struct bufdesc_ex *)bdp;
1791 
1792 		/* If this is a VLAN packet remove the VLAN Tag */
1793 		vlan_packet_rcvd = false;
1794 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1795 		    fep->bufdesc_ex &&
1796 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1797 			/* Push and remove the vlan tag */
1798 			struct vlan_hdr *vlan_header =
1799 					(struct vlan_hdr *) (data + ETH_HLEN);
1800 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1801 
1802 			vlan_packet_rcvd = true;
1803 
1804 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1805 			skb_pull(skb, VLAN_HLEN);
1806 		}
1807 
1808 		skb->protocol = eth_type_trans(skb, ndev);
1809 
1810 		/* Get receive timestamp from the skb */
1811 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1812 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1813 					  skb_hwtstamps(skb));
1814 
1815 		if (fep->bufdesc_ex &&
1816 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1817 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1818 				/* don't check it */
1819 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1820 			} else {
1821 				skb_checksum_none_assert(skb);
1822 			}
1823 		}
1824 
1825 		/* Handle received VLAN packets */
1826 		if (vlan_packet_rcvd)
1827 			__vlan_hwaccel_put_tag(skb,
1828 					       htons(ETH_P_8021Q),
1829 					       vlan_tag);
1830 
1831 		skb_record_rx_queue(skb, queue_id);
1832 		napi_gro_receive(&fep->napi, skb);
1833 
1834 rx_processing_done:
1835 		/* Clear the status flags for this buffer */
1836 		status &= ~BD_ENET_RX_STATS;
1837 
1838 		/* Mark the buffer empty */
1839 		status |= BD_ENET_RX_EMPTY;
1840 
1841 		if (fep->bufdesc_ex) {
1842 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1843 
1844 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1845 			ebdp->cbd_prot = 0;
1846 			ebdp->cbd_bdu = 0;
1847 		}
1848 		/* Make sure the updates to rest of the descriptor are
1849 		 * performed before transferring ownership.
1850 		 */
1851 		wmb();
1852 		bdp->cbd_sc = cpu_to_fec16(status);
1853 
1854 		/* Update BD pointer to next entry */
1855 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1856 
1857 		/* Doing this here will keep the FEC running while we process
1858 		 * incoming frames.  On a heavily loaded network, we should be
1859 		 * able to keep up at the expense of system resources.
1860 		 */
1861 		writel(0, rxq->bd.reg_desc_active);
1862 	}
1863 	rxq->bd.cur = bdp;
1864 
1865 	if (xdp_result & FEC_ENET_XDP_REDIR)
1866 		xdp_do_flush_map();
1867 
1868 	return pkt_received;
1869 }
1870 
fec_enet_rx(struct net_device * ndev,int budget)1871 static int fec_enet_rx(struct net_device *ndev, int budget)
1872 {
1873 	struct fec_enet_private *fep = netdev_priv(ndev);
1874 	int i, done = 0;
1875 
1876 	/* Make sure that AVB queues are processed first. */
1877 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1878 		done += fec_enet_rx_queue(ndev, budget - done, i);
1879 
1880 	return done;
1881 }
1882 
fec_enet_collect_events(struct fec_enet_private * fep)1883 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1884 {
1885 	uint int_events;
1886 
1887 	int_events = readl(fep->hwp + FEC_IEVENT);
1888 
1889 	/* Don't clear MDIO events, we poll for those */
1890 	int_events &= ~FEC_ENET_MII;
1891 
1892 	writel(int_events, fep->hwp + FEC_IEVENT);
1893 
1894 	return int_events != 0;
1895 }
1896 
1897 static irqreturn_t
fec_enet_interrupt(int irq,void * dev_id)1898 fec_enet_interrupt(int irq, void *dev_id)
1899 {
1900 	struct net_device *ndev = dev_id;
1901 	struct fec_enet_private *fep = netdev_priv(ndev);
1902 	irqreturn_t ret = IRQ_NONE;
1903 
1904 	if (fec_enet_collect_events(fep) && fep->link) {
1905 		ret = IRQ_HANDLED;
1906 
1907 		if (napi_schedule_prep(&fep->napi)) {
1908 			/* Disable interrupts */
1909 			writel(0, fep->hwp + FEC_IMASK);
1910 			__napi_schedule(&fep->napi);
1911 		}
1912 	}
1913 
1914 	return ret;
1915 }
1916 
fec_enet_rx_napi(struct napi_struct * napi,int budget)1917 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1918 {
1919 	struct net_device *ndev = napi->dev;
1920 	struct fec_enet_private *fep = netdev_priv(ndev);
1921 	int done = 0;
1922 
1923 	do {
1924 		done += fec_enet_rx(ndev, budget - done);
1925 		fec_enet_tx(ndev, budget);
1926 	} while ((done < budget) && fec_enet_collect_events(fep));
1927 
1928 	if (done < budget) {
1929 		napi_complete_done(napi, done);
1930 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1931 	}
1932 
1933 	return done;
1934 }
1935 
1936 /* ------------------------------------------------------------------------- */
fec_get_mac(struct net_device * ndev)1937 static int fec_get_mac(struct net_device *ndev)
1938 {
1939 	struct fec_enet_private *fep = netdev_priv(ndev);
1940 	unsigned char *iap, tmpaddr[ETH_ALEN];
1941 	int ret;
1942 
1943 	/*
1944 	 * try to get mac address in following order:
1945 	 *
1946 	 * 1) module parameter via kernel command line in form
1947 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1948 	 */
1949 	iap = macaddr;
1950 
1951 	/*
1952 	 * 2) from device tree data
1953 	 */
1954 	if (!is_valid_ether_addr(iap)) {
1955 		struct device_node *np = fep->pdev->dev.of_node;
1956 		if (np) {
1957 			ret = of_get_mac_address(np, tmpaddr);
1958 			if (!ret)
1959 				iap = tmpaddr;
1960 			else if (ret == -EPROBE_DEFER)
1961 				return ret;
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * 3) from flash or fuse (via platform data)
1967 	 */
1968 	if (!is_valid_ether_addr(iap)) {
1969 #ifdef CONFIG_M5272
1970 		if (FEC_FLASHMAC)
1971 			iap = (unsigned char *)FEC_FLASHMAC;
1972 #else
1973 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1974 
1975 		if (pdata)
1976 			iap = (unsigned char *)&pdata->mac;
1977 #endif
1978 	}
1979 
1980 	/*
1981 	 * 4) FEC mac registers set by bootloader
1982 	 */
1983 	if (!is_valid_ether_addr(iap)) {
1984 		*((__be32 *) &tmpaddr[0]) =
1985 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1986 		*((__be16 *) &tmpaddr[4]) =
1987 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1988 		iap = &tmpaddr[0];
1989 	}
1990 
1991 	/*
1992 	 * 5) random mac address
1993 	 */
1994 	if (!is_valid_ether_addr(iap)) {
1995 		/* Report it and use a random ethernet address instead */
1996 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1997 		eth_hw_addr_random(ndev);
1998 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1999 			 ndev->dev_addr);
2000 		return 0;
2001 	}
2002 
2003 	/* Adjust MAC if using macaddr */
2004 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
2005 
2006 	return 0;
2007 }
2008 
2009 /* ------------------------------------------------------------------------- */
2010 
2011 /*
2012  * Phy section
2013  */
fec_enet_adjust_link(struct net_device * ndev)2014 static void fec_enet_adjust_link(struct net_device *ndev)
2015 {
2016 	struct fec_enet_private *fep = netdev_priv(ndev);
2017 	struct phy_device *phy_dev = ndev->phydev;
2018 	int status_change = 0;
2019 
2020 	/*
2021 	 * If the netdev is down, or is going down, we're not interested
2022 	 * in link state events, so just mark our idea of the link as down
2023 	 * and ignore the event.
2024 	 */
2025 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
2026 		fep->link = 0;
2027 	} else if (phy_dev->link) {
2028 		if (!fep->link) {
2029 			fep->link = phy_dev->link;
2030 			status_change = 1;
2031 		}
2032 
2033 		if (fep->full_duplex != phy_dev->duplex) {
2034 			fep->full_duplex = phy_dev->duplex;
2035 			status_change = 1;
2036 		}
2037 
2038 		if (phy_dev->speed != fep->speed) {
2039 			fep->speed = phy_dev->speed;
2040 			status_change = 1;
2041 		}
2042 
2043 		/* if any of the above changed restart the FEC */
2044 		if (status_change) {
2045 			netif_stop_queue(ndev);
2046 			napi_disable(&fep->napi);
2047 			netif_tx_lock_bh(ndev);
2048 			fec_restart(ndev);
2049 			netif_tx_wake_all_queues(ndev);
2050 			netif_tx_unlock_bh(ndev);
2051 			napi_enable(&fep->napi);
2052 		}
2053 	} else {
2054 		if (fep->link) {
2055 			netif_stop_queue(ndev);
2056 			napi_disable(&fep->napi);
2057 			netif_tx_lock_bh(ndev);
2058 			fec_stop(ndev);
2059 			netif_tx_unlock_bh(ndev);
2060 			napi_enable(&fep->napi);
2061 			fep->link = phy_dev->link;
2062 			status_change = 1;
2063 		}
2064 	}
2065 
2066 	if (status_change)
2067 		phy_print_status(phy_dev);
2068 }
2069 
fec_enet_mdio_wait(struct fec_enet_private * fep)2070 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2071 {
2072 	uint ievent;
2073 	int ret;
2074 
2075 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2076 					ievent & FEC_ENET_MII, 2, 30000);
2077 
2078 	if (!ret)
2079 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2080 
2081 	return ret;
2082 }
2083 
fec_enet_mdio_read_c22(struct mii_bus * bus,int mii_id,int regnum)2084 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2085 {
2086 	struct fec_enet_private *fep = bus->priv;
2087 	struct device *dev = &fep->pdev->dev;
2088 	int ret = 0, frame_start, frame_addr, frame_op;
2089 
2090 	ret = pm_runtime_resume_and_get(dev);
2091 	if (ret < 0)
2092 		return ret;
2093 
2094 	/* C22 read */
2095 	frame_op = FEC_MMFR_OP_READ;
2096 	frame_start = FEC_MMFR_ST;
2097 	frame_addr = regnum;
2098 
2099 	/* start a read op */
2100 	writel(frame_start | frame_op |
2101 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2102 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2103 
2104 	/* wait for end of transfer */
2105 	ret = fec_enet_mdio_wait(fep);
2106 	if (ret) {
2107 		netdev_err(fep->netdev, "MDIO read timeout\n");
2108 		goto out;
2109 	}
2110 
2111 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2112 
2113 out:
2114 	pm_runtime_mark_last_busy(dev);
2115 	pm_runtime_put_autosuspend(dev);
2116 
2117 	return ret;
2118 }
2119 
fec_enet_mdio_read_c45(struct mii_bus * bus,int mii_id,int devad,int regnum)2120 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2121 				  int devad, int regnum)
2122 {
2123 	struct fec_enet_private *fep = bus->priv;
2124 	struct device *dev = &fep->pdev->dev;
2125 	int ret = 0, frame_start, frame_op;
2126 
2127 	ret = pm_runtime_resume_and_get(dev);
2128 	if (ret < 0)
2129 		return ret;
2130 
2131 	frame_start = FEC_MMFR_ST_C45;
2132 
2133 	/* write address */
2134 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2135 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2136 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2137 	       fep->hwp + FEC_MII_DATA);
2138 
2139 	/* wait for end of transfer */
2140 	ret = fec_enet_mdio_wait(fep);
2141 	if (ret) {
2142 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2143 		goto out;
2144 	}
2145 
2146 	frame_op = FEC_MMFR_OP_READ_C45;
2147 
2148 	/* start a read op */
2149 	writel(frame_start | frame_op |
2150 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2151 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2152 
2153 	/* wait for end of transfer */
2154 	ret = fec_enet_mdio_wait(fep);
2155 	if (ret) {
2156 		netdev_err(fep->netdev, "MDIO read timeout\n");
2157 		goto out;
2158 	}
2159 
2160 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2161 
2162 out:
2163 	pm_runtime_mark_last_busy(dev);
2164 	pm_runtime_put_autosuspend(dev);
2165 
2166 	return ret;
2167 }
2168 
fec_enet_mdio_write_c22(struct mii_bus * bus,int mii_id,int regnum,u16 value)2169 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2170 				   u16 value)
2171 {
2172 	struct fec_enet_private *fep = bus->priv;
2173 	struct device *dev = &fep->pdev->dev;
2174 	int ret, frame_start, frame_addr;
2175 
2176 	ret = pm_runtime_resume_and_get(dev);
2177 	if (ret < 0)
2178 		return ret;
2179 
2180 	/* C22 write */
2181 	frame_start = FEC_MMFR_ST;
2182 	frame_addr = regnum;
2183 
2184 	/* start a write op */
2185 	writel(frame_start | FEC_MMFR_OP_WRITE |
2186 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2187 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2188 	       fep->hwp + FEC_MII_DATA);
2189 
2190 	/* wait for end of transfer */
2191 	ret = fec_enet_mdio_wait(fep);
2192 	if (ret)
2193 		netdev_err(fep->netdev, "MDIO write timeout\n");
2194 
2195 	pm_runtime_mark_last_busy(dev);
2196 	pm_runtime_put_autosuspend(dev);
2197 
2198 	return ret;
2199 }
2200 
fec_enet_mdio_write_c45(struct mii_bus * bus,int mii_id,int devad,int regnum,u16 value)2201 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2202 				   int devad, int regnum, u16 value)
2203 {
2204 	struct fec_enet_private *fep = bus->priv;
2205 	struct device *dev = &fep->pdev->dev;
2206 	int ret, frame_start;
2207 
2208 	ret = pm_runtime_resume_and_get(dev);
2209 	if (ret < 0)
2210 		return ret;
2211 
2212 	frame_start = FEC_MMFR_ST_C45;
2213 
2214 	/* write address */
2215 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2216 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2217 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2218 	       fep->hwp + FEC_MII_DATA);
2219 
2220 	/* wait for end of transfer */
2221 	ret = fec_enet_mdio_wait(fep);
2222 	if (ret) {
2223 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2224 		goto out;
2225 	}
2226 
2227 	/* start a write op */
2228 	writel(frame_start | FEC_MMFR_OP_WRITE |
2229 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2230 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2231 	       fep->hwp + FEC_MII_DATA);
2232 
2233 	/* wait for end of transfer */
2234 	ret = fec_enet_mdio_wait(fep);
2235 	if (ret)
2236 		netdev_err(fep->netdev, "MDIO write timeout\n");
2237 
2238 out:
2239 	pm_runtime_mark_last_busy(dev);
2240 	pm_runtime_put_autosuspend(dev);
2241 
2242 	return ret;
2243 }
2244 
fec_enet_phy_reset_after_clk_enable(struct net_device * ndev)2245 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2246 {
2247 	struct fec_enet_private *fep = netdev_priv(ndev);
2248 	struct phy_device *phy_dev = ndev->phydev;
2249 
2250 	if (phy_dev) {
2251 		phy_reset_after_clk_enable(phy_dev);
2252 	} else if (fep->phy_node) {
2253 		/*
2254 		 * If the PHY still is not bound to the MAC, but there is
2255 		 * OF PHY node and a matching PHY device instance already,
2256 		 * use the OF PHY node to obtain the PHY device instance,
2257 		 * and then use that PHY device instance when triggering
2258 		 * the PHY reset.
2259 		 */
2260 		phy_dev = of_phy_find_device(fep->phy_node);
2261 		phy_reset_after_clk_enable(phy_dev);
2262 		put_device(&phy_dev->mdio.dev);
2263 	}
2264 }
2265 
fec_enet_clk_enable(struct net_device * ndev,bool enable)2266 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2267 {
2268 	struct fec_enet_private *fep = netdev_priv(ndev);
2269 	int ret;
2270 
2271 	if (enable) {
2272 		ret = clk_prepare_enable(fep->clk_enet_out);
2273 		if (ret)
2274 			return ret;
2275 
2276 		if (fep->clk_ptp) {
2277 			mutex_lock(&fep->ptp_clk_mutex);
2278 			ret = clk_prepare_enable(fep->clk_ptp);
2279 			if (ret) {
2280 				mutex_unlock(&fep->ptp_clk_mutex);
2281 				goto failed_clk_ptp;
2282 			} else {
2283 				fep->ptp_clk_on = true;
2284 			}
2285 			mutex_unlock(&fep->ptp_clk_mutex);
2286 		}
2287 
2288 		ret = clk_prepare_enable(fep->clk_ref);
2289 		if (ret)
2290 			goto failed_clk_ref;
2291 
2292 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2293 		if (ret)
2294 			goto failed_clk_2x_txclk;
2295 
2296 		fec_enet_phy_reset_after_clk_enable(ndev);
2297 	} else {
2298 		clk_disable_unprepare(fep->clk_enet_out);
2299 		if (fep->clk_ptp) {
2300 			mutex_lock(&fep->ptp_clk_mutex);
2301 			clk_disable_unprepare(fep->clk_ptp);
2302 			fep->ptp_clk_on = false;
2303 			mutex_unlock(&fep->ptp_clk_mutex);
2304 		}
2305 		clk_disable_unprepare(fep->clk_ref);
2306 		clk_disable_unprepare(fep->clk_2x_txclk);
2307 	}
2308 
2309 	return 0;
2310 
2311 failed_clk_2x_txclk:
2312 	if (fep->clk_ref)
2313 		clk_disable_unprepare(fep->clk_ref);
2314 failed_clk_ref:
2315 	if (fep->clk_ptp) {
2316 		mutex_lock(&fep->ptp_clk_mutex);
2317 		clk_disable_unprepare(fep->clk_ptp);
2318 		fep->ptp_clk_on = false;
2319 		mutex_unlock(&fep->ptp_clk_mutex);
2320 	}
2321 failed_clk_ptp:
2322 	clk_disable_unprepare(fep->clk_enet_out);
2323 
2324 	return ret;
2325 }
2326 
fec_enet_parse_rgmii_delay(struct fec_enet_private * fep,struct device_node * np)2327 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2328 				      struct device_node *np)
2329 {
2330 	u32 rgmii_tx_delay, rgmii_rx_delay;
2331 
2332 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2333 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2334 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2335 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2336 			return -EINVAL;
2337 		} else if (rgmii_tx_delay == 2000) {
2338 			fep->rgmii_txc_dly = true;
2339 		}
2340 	}
2341 
2342 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2343 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2344 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2345 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2346 			return -EINVAL;
2347 		} else if (rgmii_rx_delay == 2000) {
2348 			fep->rgmii_rxc_dly = true;
2349 		}
2350 	}
2351 
2352 	return 0;
2353 }
2354 
fec_enet_mii_probe(struct net_device * ndev)2355 static int fec_enet_mii_probe(struct net_device *ndev)
2356 {
2357 	struct fec_enet_private *fep = netdev_priv(ndev);
2358 	struct phy_device *phy_dev = NULL;
2359 	char mdio_bus_id[MII_BUS_ID_SIZE];
2360 	char phy_name[MII_BUS_ID_SIZE + 3];
2361 	int phy_id;
2362 	int dev_id = fep->dev_id;
2363 
2364 	if (fep->phy_node) {
2365 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2366 					 &fec_enet_adjust_link, 0,
2367 					 fep->phy_interface);
2368 		if (!phy_dev) {
2369 			netdev_err(ndev, "Unable to connect to phy\n");
2370 			return -ENODEV;
2371 		}
2372 	} else {
2373 		/* check for attached phy */
2374 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2375 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2376 				continue;
2377 			if (dev_id--)
2378 				continue;
2379 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2380 			break;
2381 		}
2382 
2383 		if (phy_id >= PHY_MAX_ADDR) {
2384 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2385 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2386 			phy_id = 0;
2387 		}
2388 
2389 		snprintf(phy_name, sizeof(phy_name),
2390 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2391 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2392 				      fep->phy_interface);
2393 	}
2394 
2395 	if (IS_ERR(phy_dev)) {
2396 		netdev_err(ndev, "could not attach to PHY\n");
2397 		return PTR_ERR(phy_dev);
2398 	}
2399 
2400 	/* mask with MAC supported features */
2401 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2402 		phy_set_max_speed(phy_dev, 1000);
2403 		phy_remove_link_mode(phy_dev,
2404 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2405 #if !defined(CONFIG_M5272)
2406 		phy_support_sym_pause(phy_dev);
2407 #endif
2408 	}
2409 	else
2410 		phy_set_max_speed(phy_dev, 100);
2411 
2412 	fep->link = 0;
2413 	fep->full_duplex = 0;
2414 
2415 	phy_attached_info(phy_dev);
2416 
2417 	return 0;
2418 }
2419 
fec_enet_mii_init(struct platform_device * pdev)2420 static int fec_enet_mii_init(struct platform_device *pdev)
2421 {
2422 	static struct mii_bus *fec0_mii_bus;
2423 	struct net_device *ndev = platform_get_drvdata(pdev);
2424 	struct fec_enet_private *fep = netdev_priv(ndev);
2425 	bool suppress_preamble = false;
2426 	struct phy_device *phydev;
2427 	struct device_node *node;
2428 	int err = -ENXIO;
2429 	u32 mii_speed, holdtime;
2430 	u32 bus_freq;
2431 	int addr;
2432 
2433 	/*
2434 	 * The i.MX28 dual fec interfaces are not equal.
2435 	 * Here are the differences:
2436 	 *
2437 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2438 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2439 	 *  - external phys can only be configured by fec0
2440 	 *
2441 	 * That is to say fec1 can not work independently. It only works
2442 	 * when fec0 is working. The reason behind this design is that the
2443 	 * second interface is added primarily for Switch mode.
2444 	 *
2445 	 * Because of the last point above, both phys are attached on fec0
2446 	 * mdio interface in board design, and need to be configured by
2447 	 * fec0 mii_bus.
2448 	 */
2449 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2450 		/* fec1 uses fec0 mii_bus */
2451 		if (mii_cnt && fec0_mii_bus) {
2452 			fep->mii_bus = fec0_mii_bus;
2453 			mii_cnt++;
2454 			return 0;
2455 		}
2456 		return -ENOENT;
2457 	}
2458 
2459 	bus_freq = 2500000; /* 2.5MHz by default */
2460 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2461 	if (node) {
2462 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2463 		suppress_preamble = of_property_read_bool(node,
2464 							  "suppress-preamble");
2465 	}
2466 
2467 	/*
2468 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2469 	 *
2470 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2471 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2472 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2473 	 * document.
2474 	 */
2475 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2476 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2477 		mii_speed--;
2478 	if (mii_speed > 63) {
2479 		dev_err(&pdev->dev,
2480 			"fec clock (%lu) too fast to get right mii speed\n",
2481 			clk_get_rate(fep->clk_ipg));
2482 		err = -EINVAL;
2483 		goto err_out;
2484 	}
2485 
2486 	/*
2487 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2488 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2489 	 * versions are RAZ there, so just ignore the difference and write the
2490 	 * register always.
2491 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2492 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2493 	 * output.
2494 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2495 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2496 	 * holdtime cannot result in a value greater than 3.
2497 	 */
2498 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2499 
2500 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2501 
2502 	if (suppress_preamble)
2503 		fep->phy_speed |= BIT(7);
2504 
2505 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2506 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2507 		 * MII event generation condition:
2508 		 * - writing MSCR:
2509 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2510 		 *	  mscr_reg_data_in[7:0] != 0
2511 		 * - writing MMFR:
2512 		 *	- mscr[7:0]_not_zero
2513 		 */
2514 		writel(0, fep->hwp + FEC_MII_DATA);
2515 	}
2516 
2517 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2518 
2519 	/* Clear any pending transaction complete indication */
2520 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2521 
2522 	fep->mii_bus = mdiobus_alloc();
2523 	if (fep->mii_bus == NULL) {
2524 		err = -ENOMEM;
2525 		goto err_out;
2526 	}
2527 
2528 	fep->mii_bus->name = "fec_enet_mii_bus";
2529 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2530 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2531 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2532 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2533 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2534 	}
2535 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2536 		pdev->name, fep->dev_id + 1);
2537 	fep->mii_bus->priv = fep;
2538 	fep->mii_bus->parent = &pdev->dev;
2539 
2540 	err = of_mdiobus_register(fep->mii_bus, node);
2541 	if (err)
2542 		goto err_out_free_mdiobus;
2543 	of_node_put(node);
2544 
2545 	/* find all the PHY devices on the bus and set mac_managed_pm to true */
2546 	for (addr = 0; addr < PHY_MAX_ADDR; addr++) {
2547 		phydev = mdiobus_get_phy(fep->mii_bus, addr);
2548 		if (phydev)
2549 			phydev->mac_managed_pm = true;
2550 	}
2551 
2552 	mii_cnt++;
2553 
2554 	/* save fec0 mii_bus */
2555 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2556 		fec0_mii_bus = fep->mii_bus;
2557 
2558 	return 0;
2559 
2560 err_out_free_mdiobus:
2561 	mdiobus_free(fep->mii_bus);
2562 err_out:
2563 	of_node_put(node);
2564 	return err;
2565 }
2566 
fec_enet_mii_remove(struct fec_enet_private * fep)2567 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2568 {
2569 	if (--mii_cnt == 0) {
2570 		mdiobus_unregister(fep->mii_bus);
2571 		mdiobus_free(fep->mii_bus);
2572 	}
2573 }
2574 
fec_enet_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)2575 static void fec_enet_get_drvinfo(struct net_device *ndev,
2576 				 struct ethtool_drvinfo *info)
2577 {
2578 	struct fec_enet_private *fep = netdev_priv(ndev);
2579 
2580 	strscpy(info->driver, fep->pdev->dev.driver->name,
2581 		sizeof(info->driver));
2582 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2583 }
2584 
fec_enet_get_regs_len(struct net_device * ndev)2585 static int fec_enet_get_regs_len(struct net_device *ndev)
2586 {
2587 	struct fec_enet_private *fep = netdev_priv(ndev);
2588 	struct resource *r;
2589 	int s = 0;
2590 
2591 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2592 	if (r)
2593 		s = resource_size(r);
2594 
2595 	return s;
2596 }
2597 
2598 /* List of registers that can be safety be read to dump them with ethtool */
2599 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2600 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2601 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2602 static __u32 fec_enet_register_version = 2;
2603 static u32 fec_enet_register_offset[] = {
2604 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2605 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2606 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2607 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2608 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2609 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2610 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2611 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2612 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2613 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2614 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2615 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2616 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2617 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2618 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2619 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2620 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2621 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2622 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2623 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2624 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2625 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2626 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2627 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2628 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2629 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2630 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2631 };
2632 /* for i.MX6ul */
2633 static u32 fec_enet_register_offset_6ul[] = {
2634 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2635 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2636 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2637 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2638 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2639 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2640 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2641 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2642 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2643 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2644 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2645 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2646 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2647 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2648 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2649 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2650 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2651 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2652 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2653 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2654 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2655 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2656 };
2657 #else
2658 static __u32 fec_enet_register_version = 1;
2659 static u32 fec_enet_register_offset[] = {
2660 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2661 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2662 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2663 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2664 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2665 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2666 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2667 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2668 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2669 };
2670 #endif
2671 
fec_enet_get_regs(struct net_device * ndev,struct ethtool_regs * regs,void * regbuf)2672 static void fec_enet_get_regs(struct net_device *ndev,
2673 			      struct ethtool_regs *regs, void *regbuf)
2674 {
2675 	struct fec_enet_private *fep = netdev_priv(ndev);
2676 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2677 	struct device *dev = &fep->pdev->dev;
2678 	u32 *buf = (u32 *)regbuf;
2679 	u32 i, off;
2680 	int ret;
2681 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2682 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2683 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2684 	u32 *reg_list;
2685 	u32 reg_cnt;
2686 
2687 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2688 		reg_list = fec_enet_register_offset;
2689 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2690 	} else {
2691 		reg_list = fec_enet_register_offset_6ul;
2692 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2693 	}
2694 #else
2695 	/* coldfire */
2696 	static u32 *reg_list = fec_enet_register_offset;
2697 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2698 #endif
2699 	ret = pm_runtime_resume_and_get(dev);
2700 	if (ret < 0)
2701 		return;
2702 
2703 	regs->version = fec_enet_register_version;
2704 
2705 	memset(buf, 0, regs->len);
2706 
2707 	for (i = 0; i < reg_cnt; i++) {
2708 		off = reg_list[i];
2709 
2710 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2711 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2712 			continue;
2713 
2714 		off >>= 2;
2715 		buf[off] = readl(&theregs[off]);
2716 	}
2717 
2718 	pm_runtime_mark_last_busy(dev);
2719 	pm_runtime_put_autosuspend(dev);
2720 }
2721 
fec_enet_get_ts_info(struct net_device * ndev,struct ethtool_ts_info * info)2722 static int fec_enet_get_ts_info(struct net_device *ndev,
2723 				struct ethtool_ts_info *info)
2724 {
2725 	struct fec_enet_private *fep = netdev_priv(ndev);
2726 
2727 	if (fep->bufdesc_ex) {
2728 
2729 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2730 					SOF_TIMESTAMPING_RX_SOFTWARE |
2731 					SOF_TIMESTAMPING_SOFTWARE |
2732 					SOF_TIMESTAMPING_TX_HARDWARE |
2733 					SOF_TIMESTAMPING_RX_HARDWARE |
2734 					SOF_TIMESTAMPING_RAW_HARDWARE;
2735 		if (fep->ptp_clock)
2736 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2737 		else
2738 			info->phc_index = -1;
2739 
2740 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2741 				 (1 << HWTSTAMP_TX_ON);
2742 
2743 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2744 				   (1 << HWTSTAMP_FILTER_ALL);
2745 		return 0;
2746 	} else {
2747 		return ethtool_op_get_ts_info(ndev, info);
2748 	}
2749 }
2750 
2751 #if !defined(CONFIG_M5272)
2752 
fec_enet_get_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2753 static void fec_enet_get_pauseparam(struct net_device *ndev,
2754 				    struct ethtool_pauseparam *pause)
2755 {
2756 	struct fec_enet_private *fep = netdev_priv(ndev);
2757 
2758 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2759 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2760 	pause->rx_pause = pause->tx_pause;
2761 }
2762 
fec_enet_set_pauseparam(struct net_device * ndev,struct ethtool_pauseparam * pause)2763 static int fec_enet_set_pauseparam(struct net_device *ndev,
2764 				   struct ethtool_pauseparam *pause)
2765 {
2766 	struct fec_enet_private *fep = netdev_priv(ndev);
2767 
2768 	if (!ndev->phydev)
2769 		return -ENODEV;
2770 
2771 	if (pause->tx_pause != pause->rx_pause) {
2772 		netdev_info(ndev,
2773 			"hardware only support enable/disable both tx and rx");
2774 		return -EINVAL;
2775 	}
2776 
2777 	fep->pause_flag = 0;
2778 
2779 	/* tx pause must be same as rx pause */
2780 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2781 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2782 
2783 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2784 			  pause->autoneg);
2785 
2786 	if (pause->autoneg) {
2787 		if (netif_running(ndev))
2788 			fec_stop(ndev);
2789 		phy_start_aneg(ndev->phydev);
2790 	}
2791 	if (netif_running(ndev)) {
2792 		napi_disable(&fep->napi);
2793 		netif_tx_lock_bh(ndev);
2794 		fec_restart(ndev);
2795 		netif_tx_wake_all_queues(ndev);
2796 		netif_tx_unlock_bh(ndev);
2797 		napi_enable(&fep->napi);
2798 	}
2799 
2800 	return 0;
2801 }
2802 
2803 static const struct fec_stat {
2804 	char name[ETH_GSTRING_LEN];
2805 	u16 offset;
2806 } fec_stats[] = {
2807 	/* RMON TX */
2808 	{ "tx_dropped", RMON_T_DROP },
2809 	{ "tx_packets", RMON_T_PACKETS },
2810 	{ "tx_broadcast", RMON_T_BC_PKT },
2811 	{ "tx_multicast", RMON_T_MC_PKT },
2812 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2813 	{ "tx_undersize", RMON_T_UNDERSIZE },
2814 	{ "tx_oversize", RMON_T_OVERSIZE },
2815 	{ "tx_fragment", RMON_T_FRAG },
2816 	{ "tx_jabber", RMON_T_JAB },
2817 	{ "tx_collision", RMON_T_COL },
2818 	{ "tx_64byte", RMON_T_P64 },
2819 	{ "tx_65to127byte", RMON_T_P65TO127 },
2820 	{ "tx_128to255byte", RMON_T_P128TO255 },
2821 	{ "tx_256to511byte", RMON_T_P256TO511 },
2822 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2823 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2824 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2825 	{ "tx_octets", RMON_T_OCTETS },
2826 
2827 	/* IEEE TX */
2828 	{ "IEEE_tx_drop", IEEE_T_DROP },
2829 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2830 	{ "IEEE_tx_1col", IEEE_T_1COL },
2831 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2832 	{ "IEEE_tx_def", IEEE_T_DEF },
2833 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2834 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2835 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2836 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2837 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2838 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2839 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2840 
2841 	/* RMON RX */
2842 	{ "rx_packets", RMON_R_PACKETS },
2843 	{ "rx_broadcast", RMON_R_BC_PKT },
2844 	{ "rx_multicast", RMON_R_MC_PKT },
2845 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2846 	{ "rx_undersize", RMON_R_UNDERSIZE },
2847 	{ "rx_oversize", RMON_R_OVERSIZE },
2848 	{ "rx_fragment", RMON_R_FRAG },
2849 	{ "rx_jabber", RMON_R_JAB },
2850 	{ "rx_64byte", RMON_R_P64 },
2851 	{ "rx_65to127byte", RMON_R_P65TO127 },
2852 	{ "rx_128to255byte", RMON_R_P128TO255 },
2853 	{ "rx_256to511byte", RMON_R_P256TO511 },
2854 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2855 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2856 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2857 	{ "rx_octets", RMON_R_OCTETS },
2858 
2859 	/* IEEE RX */
2860 	{ "IEEE_rx_drop", IEEE_R_DROP },
2861 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2862 	{ "IEEE_rx_crc", IEEE_R_CRC },
2863 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2864 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2865 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2866 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2867 };
2868 
2869 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2870 
2871 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2872 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2873 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2874 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2875 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2876 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2877 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2878 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2879 };
2880 
fec_enet_update_ethtool_stats(struct net_device * dev)2881 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2882 {
2883 	struct fec_enet_private *fep = netdev_priv(dev);
2884 	int i;
2885 
2886 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2887 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2888 }
2889 
fec_enet_get_xdp_stats(struct fec_enet_private * fep,u64 * data)2890 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2891 {
2892 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2893 	struct fec_enet_priv_rx_q *rxq;
2894 	int i, j;
2895 
2896 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2897 		rxq = fep->rx_queue[i];
2898 
2899 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2900 			xdp_stats[j] += rxq->stats[j];
2901 	}
2902 
2903 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2904 }
2905 
fec_enet_page_pool_stats(struct fec_enet_private * fep,u64 * data)2906 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2907 {
2908 #ifdef CONFIG_PAGE_POOL_STATS
2909 	struct page_pool_stats stats = {};
2910 	struct fec_enet_priv_rx_q *rxq;
2911 	int i;
2912 
2913 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2914 		rxq = fep->rx_queue[i];
2915 
2916 		if (!rxq->page_pool)
2917 			continue;
2918 
2919 		page_pool_get_stats(rxq->page_pool, &stats);
2920 	}
2921 
2922 	page_pool_ethtool_stats_get(data, &stats);
2923 #endif
2924 }
2925 
fec_enet_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)2926 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2927 				       struct ethtool_stats *stats, u64 *data)
2928 {
2929 	struct fec_enet_private *fep = netdev_priv(dev);
2930 
2931 	if (netif_running(dev))
2932 		fec_enet_update_ethtool_stats(dev);
2933 
2934 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2935 	data += FEC_STATS_SIZE / sizeof(u64);
2936 
2937 	fec_enet_get_xdp_stats(fep, data);
2938 	data += XDP_STATS_TOTAL;
2939 
2940 	fec_enet_page_pool_stats(fep, data);
2941 }
2942 
fec_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2943 static void fec_enet_get_strings(struct net_device *netdev,
2944 	u32 stringset, u8 *data)
2945 {
2946 	int i;
2947 	switch (stringset) {
2948 	case ETH_SS_STATS:
2949 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2950 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2951 			data += ETH_GSTRING_LEN;
2952 		}
2953 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2954 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2955 			data += ETH_GSTRING_LEN;
2956 		}
2957 		page_pool_ethtool_stats_get_strings(data);
2958 
2959 		break;
2960 	case ETH_SS_TEST:
2961 		net_selftest_get_strings(data);
2962 		break;
2963 	}
2964 }
2965 
fec_enet_get_sset_count(struct net_device * dev,int sset)2966 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2967 {
2968 	int count;
2969 
2970 	switch (sset) {
2971 	case ETH_SS_STATS:
2972 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2973 		count += page_pool_ethtool_stats_get_count();
2974 		return count;
2975 
2976 	case ETH_SS_TEST:
2977 		return net_selftest_get_count();
2978 	default:
2979 		return -EOPNOTSUPP;
2980 	}
2981 }
2982 
fec_enet_clear_ethtool_stats(struct net_device * dev)2983 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2984 {
2985 	struct fec_enet_private *fep = netdev_priv(dev);
2986 	struct fec_enet_priv_rx_q *rxq;
2987 	int i, j;
2988 
2989 	/* Disable MIB statistics counters */
2990 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2991 
2992 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2993 		writel(0, fep->hwp + fec_stats[i].offset);
2994 
2995 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2996 		rxq = fep->rx_queue[i];
2997 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2998 			rxq->stats[j] = 0;
2999 	}
3000 
3001 	/* Don't disable MIB statistics counters */
3002 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
3003 }
3004 
3005 #else	/* !defined(CONFIG_M5272) */
3006 #define FEC_STATS_SIZE	0
fec_enet_update_ethtool_stats(struct net_device * dev)3007 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
3008 {
3009 }
3010 
fec_enet_clear_ethtool_stats(struct net_device * dev)3011 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
3012 {
3013 }
3014 #endif /* !defined(CONFIG_M5272) */
3015 
3016 /* ITR clock source is enet system clock (clk_ahb).
3017  * TCTT unit is cycle_ns * 64 cycle
3018  * So, the ICTT value = X us / (cycle_ns * 64)
3019  */
fec_enet_us_to_itr_clock(struct net_device * ndev,int us)3020 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
3021 {
3022 	struct fec_enet_private *fep = netdev_priv(ndev);
3023 
3024 	return us * (fep->itr_clk_rate / 64000) / 1000;
3025 }
3026 
3027 /* Set threshold for interrupt coalescing */
fec_enet_itr_coal_set(struct net_device * ndev)3028 static void fec_enet_itr_coal_set(struct net_device *ndev)
3029 {
3030 	struct fec_enet_private *fep = netdev_priv(ndev);
3031 	int rx_itr, tx_itr;
3032 
3033 	/* Must be greater than zero to avoid unpredictable behavior */
3034 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
3035 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
3036 		return;
3037 
3038 	/* Select enet system clock as Interrupt Coalescing
3039 	 * timer Clock Source
3040 	 */
3041 	rx_itr = FEC_ITR_CLK_SEL;
3042 	tx_itr = FEC_ITR_CLK_SEL;
3043 
3044 	/* set ICFT and ICTT */
3045 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
3046 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
3047 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
3048 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
3049 
3050 	rx_itr |= FEC_ITR_EN;
3051 	tx_itr |= FEC_ITR_EN;
3052 
3053 	writel(tx_itr, fep->hwp + FEC_TXIC0);
3054 	writel(rx_itr, fep->hwp + FEC_RXIC0);
3055 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3056 		writel(tx_itr, fep->hwp + FEC_TXIC1);
3057 		writel(rx_itr, fep->hwp + FEC_RXIC1);
3058 		writel(tx_itr, fep->hwp + FEC_TXIC2);
3059 		writel(rx_itr, fep->hwp + FEC_RXIC2);
3060 	}
3061 }
3062 
fec_enet_get_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3063 static int fec_enet_get_coalesce(struct net_device *ndev,
3064 				 struct ethtool_coalesce *ec,
3065 				 struct kernel_ethtool_coalesce *kernel_coal,
3066 				 struct netlink_ext_ack *extack)
3067 {
3068 	struct fec_enet_private *fep = netdev_priv(ndev);
3069 
3070 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3071 		return -EOPNOTSUPP;
3072 
3073 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3074 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3075 
3076 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3077 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3078 
3079 	return 0;
3080 }
3081 
fec_enet_set_coalesce(struct net_device * ndev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)3082 static int fec_enet_set_coalesce(struct net_device *ndev,
3083 				 struct ethtool_coalesce *ec,
3084 				 struct kernel_ethtool_coalesce *kernel_coal,
3085 				 struct netlink_ext_ack *extack)
3086 {
3087 	struct fec_enet_private *fep = netdev_priv(ndev);
3088 	struct device *dev = &fep->pdev->dev;
3089 	unsigned int cycle;
3090 
3091 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3092 		return -EOPNOTSUPP;
3093 
3094 	if (ec->rx_max_coalesced_frames > 255) {
3095 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3096 		return -EINVAL;
3097 	}
3098 
3099 	if (ec->tx_max_coalesced_frames > 255) {
3100 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3101 		return -EINVAL;
3102 	}
3103 
3104 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3105 	if (cycle > 0xFFFF) {
3106 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3107 		return -EINVAL;
3108 	}
3109 
3110 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3111 	if (cycle > 0xFFFF) {
3112 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3113 		return -EINVAL;
3114 	}
3115 
3116 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3117 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3118 
3119 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3120 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3121 
3122 	fec_enet_itr_coal_set(ndev);
3123 
3124 	return 0;
3125 }
3126 
3127 /* LPI Sleep Ts count base on tx clk (clk_ref).
3128  * The lpi sleep cnt value = X us / (cycle_ns).
3129  */
fec_enet_us_to_tx_cycle(struct net_device * ndev,int us)3130 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3131 {
3132 	struct fec_enet_private *fep = netdev_priv(ndev);
3133 
3134 	return us * (fep->clk_ref_rate / 1000) / 1000;
3135 }
3136 
fec_enet_eee_mode_set(struct net_device * ndev,bool enable)3137 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3138 {
3139 	struct fec_enet_private *fep = netdev_priv(ndev);
3140 	struct ethtool_eee *p = &fep->eee;
3141 	unsigned int sleep_cycle, wake_cycle;
3142 	int ret = 0;
3143 
3144 	if (enable) {
3145 		ret = phy_init_eee(ndev->phydev, false);
3146 		if (ret)
3147 			return ret;
3148 
3149 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3150 		wake_cycle = sleep_cycle;
3151 	} else {
3152 		sleep_cycle = 0;
3153 		wake_cycle = 0;
3154 	}
3155 
3156 	p->tx_lpi_enabled = enable;
3157 	p->eee_enabled = enable;
3158 	p->eee_active = enable;
3159 
3160 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3161 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3162 
3163 	return 0;
3164 }
3165 
3166 static int
fec_enet_get_eee(struct net_device * ndev,struct ethtool_eee * edata)3167 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3168 {
3169 	struct fec_enet_private *fep = netdev_priv(ndev);
3170 	struct ethtool_eee *p = &fep->eee;
3171 
3172 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3173 		return -EOPNOTSUPP;
3174 
3175 	if (!netif_running(ndev))
3176 		return -ENETDOWN;
3177 
3178 	edata->eee_enabled = p->eee_enabled;
3179 	edata->eee_active = p->eee_active;
3180 	edata->tx_lpi_timer = p->tx_lpi_timer;
3181 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3182 
3183 	return phy_ethtool_get_eee(ndev->phydev, edata);
3184 }
3185 
3186 static int
fec_enet_set_eee(struct net_device * ndev,struct ethtool_eee * edata)3187 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3188 {
3189 	struct fec_enet_private *fep = netdev_priv(ndev);
3190 	struct ethtool_eee *p = &fep->eee;
3191 	int ret = 0;
3192 
3193 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3194 		return -EOPNOTSUPP;
3195 
3196 	if (!netif_running(ndev))
3197 		return -ENETDOWN;
3198 
3199 	p->tx_lpi_timer = edata->tx_lpi_timer;
3200 
3201 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3202 	    !edata->tx_lpi_timer)
3203 		ret = fec_enet_eee_mode_set(ndev, false);
3204 	else
3205 		ret = fec_enet_eee_mode_set(ndev, true);
3206 
3207 	if (ret)
3208 		return ret;
3209 
3210 	return phy_ethtool_set_eee(ndev->phydev, edata);
3211 }
3212 
3213 static void
fec_enet_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3214 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3215 {
3216 	struct fec_enet_private *fep = netdev_priv(ndev);
3217 
3218 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3219 		wol->supported = WAKE_MAGIC;
3220 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3221 	} else {
3222 		wol->supported = wol->wolopts = 0;
3223 	}
3224 }
3225 
3226 static int
fec_enet_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)3227 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3228 {
3229 	struct fec_enet_private *fep = netdev_priv(ndev);
3230 
3231 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3232 		return -EINVAL;
3233 
3234 	if (wol->wolopts & ~WAKE_MAGIC)
3235 		return -EINVAL;
3236 
3237 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3238 	if (device_may_wakeup(&ndev->dev))
3239 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3240 	else
3241 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3242 
3243 	return 0;
3244 }
3245 
3246 static const struct ethtool_ops fec_enet_ethtool_ops = {
3247 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3248 				     ETHTOOL_COALESCE_MAX_FRAMES,
3249 	.get_drvinfo		= fec_enet_get_drvinfo,
3250 	.get_regs_len		= fec_enet_get_regs_len,
3251 	.get_regs		= fec_enet_get_regs,
3252 	.nway_reset		= phy_ethtool_nway_reset,
3253 	.get_link		= ethtool_op_get_link,
3254 	.get_coalesce		= fec_enet_get_coalesce,
3255 	.set_coalesce		= fec_enet_set_coalesce,
3256 #ifndef CONFIG_M5272
3257 	.get_pauseparam		= fec_enet_get_pauseparam,
3258 	.set_pauseparam		= fec_enet_set_pauseparam,
3259 	.get_strings		= fec_enet_get_strings,
3260 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3261 	.get_sset_count		= fec_enet_get_sset_count,
3262 #endif
3263 	.get_ts_info		= fec_enet_get_ts_info,
3264 	.get_wol		= fec_enet_get_wol,
3265 	.set_wol		= fec_enet_set_wol,
3266 	.get_eee		= fec_enet_get_eee,
3267 	.set_eee		= fec_enet_set_eee,
3268 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3269 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3270 	.self_test		= net_selftest,
3271 };
3272 
fec_enet_free_buffers(struct net_device * ndev)3273 static void fec_enet_free_buffers(struct net_device *ndev)
3274 {
3275 	struct fec_enet_private *fep = netdev_priv(ndev);
3276 	unsigned int i;
3277 	struct fec_enet_priv_tx_q *txq;
3278 	struct fec_enet_priv_rx_q *rxq;
3279 	unsigned int q;
3280 
3281 	for (q = 0; q < fep->num_rx_queues; q++) {
3282 		rxq = fep->rx_queue[q];
3283 		for (i = 0; i < rxq->bd.ring_size; i++)
3284 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3285 
3286 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3287 			rxq->stats[i] = 0;
3288 
3289 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3290 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3291 		page_pool_destroy(rxq->page_pool);
3292 		rxq->page_pool = NULL;
3293 	}
3294 
3295 	for (q = 0; q < fep->num_tx_queues; q++) {
3296 		txq = fep->tx_queue[q];
3297 		for (i = 0; i < txq->bd.ring_size; i++) {
3298 			kfree(txq->tx_bounce[i]);
3299 			txq->tx_bounce[i] = NULL;
3300 
3301 			if (!txq->tx_buf[i].buf_p) {
3302 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3303 				continue;
3304 			}
3305 
3306 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3307 				dev_kfree_skb(txq->tx_buf[i].buf_p);
3308 			} else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) {
3309 				xdp_return_frame(txq->tx_buf[i].buf_p);
3310 			} else {
3311 				struct page *page = txq->tx_buf[i].buf_p;
3312 
3313 				page_pool_put_page(page->pp, page, 0, false);
3314 			}
3315 
3316 			txq->tx_buf[i].buf_p = NULL;
3317 			txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3318 		}
3319 	}
3320 }
3321 
fec_enet_free_queue(struct net_device * ndev)3322 static void fec_enet_free_queue(struct net_device *ndev)
3323 {
3324 	struct fec_enet_private *fep = netdev_priv(ndev);
3325 	int i;
3326 	struct fec_enet_priv_tx_q *txq;
3327 
3328 	for (i = 0; i < fep->num_tx_queues; i++)
3329 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3330 			txq = fep->tx_queue[i];
3331 			dma_free_coherent(&fep->pdev->dev,
3332 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3333 					  txq->tso_hdrs,
3334 					  txq->tso_hdrs_dma);
3335 		}
3336 
3337 	for (i = 0; i < fep->num_rx_queues; i++)
3338 		kfree(fep->rx_queue[i]);
3339 	for (i = 0; i < fep->num_tx_queues; i++)
3340 		kfree(fep->tx_queue[i]);
3341 }
3342 
fec_enet_alloc_queue(struct net_device * ndev)3343 static int fec_enet_alloc_queue(struct net_device *ndev)
3344 {
3345 	struct fec_enet_private *fep = netdev_priv(ndev);
3346 	int i;
3347 	int ret = 0;
3348 	struct fec_enet_priv_tx_q *txq;
3349 
3350 	for (i = 0; i < fep->num_tx_queues; i++) {
3351 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3352 		if (!txq) {
3353 			ret = -ENOMEM;
3354 			goto alloc_failed;
3355 		}
3356 
3357 		fep->tx_queue[i] = txq;
3358 		txq->bd.ring_size = TX_RING_SIZE;
3359 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3360 
3361 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3362 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3363 
3364 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3365 					txq->bd.ring_size * TSO_HEADER_SIZE,
3366 					&txq->tso_hdrs_dma,
3367 					GFP_KERNEL);
3368 		if (!txq->tso_hdrs) {
3369 			ret = -ENOMEM;
3370 			goto alloc_failed;
3371 		}
3372 	}
3373 
3374 	for (i = 0; i < fep->num_rx_queues; i++) {
3375 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3376 					   GFP_KERNEL);
3377 		if (!fep->rx_queue[i]) {
3378 			ret = -ENOMEM;
3379 			goto alloc_failed;
3380 		}
3381 
3382 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3383 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3384 	}
3385 	return ret;
3386 
3387 alloc_failed:
3388 	fec_enet_free_queue(ndev);
3389 	return ret;
3390 }
3391 
3392 static int
fec_enet_alloc_rxq_buffers(struct net_device * ndev,unsigned int queue)3393 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3394 {
3395 	struct fec_enet_private *fep = netdev_priv(ndev);
3396 	struct fec_enet_priv_rx_q *rxq;
3397 	dma_addr_t phys_addr;
3398 	struct bufdesc	*bdp;
3399 	struct page *page;
3400 	int i, err;
3401 
3402 	rxq = fep->rx_queue[queue];
3403 	bdp = rxq->bd.base;
3404 
3405 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3406 	if (err < 0) {
3407 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3408 		return err;
3409 	}
3410 
3411 	for (i = 0; i < rxq->bd.ring_size; i++) {
3412 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3413 		if (!page)
3414 			goto err_alloc;
3415 
3416 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3417 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3418 
3419 		rxq->rx_skb_info[i].page = page;
3420 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3421 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3422 
3423 		if (fep->bufdesc_ex) {
3424 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3425 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3426 		}
3427 
3428 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3429 	}
3430 
3431 	/* Set the last buffer to wrap. */
3432 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3433 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3434 	return 0;
3435 
3436  err_alloc:
3437 	fec_enet_free_buffers(ndev);
3438 	return -ENOMEM;
3439 }
3440 
3441 static int
fec_enet_alloc_txq_buffers(struct net_device * ndev,unsigned int queue)3442 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3443 {
3444 	struct fec_enet_private *fep = netdev_priv(ndev);
3445 	unsigned int i;
3446 	struct bufdesc  *bdp;
3447 	struct fec_enet_priv_tx_q *txq;
3448 
3449 	txq = fep->tx_queue[queue];
3450 	bdp = txq->bd.base;
3451 	for (i = 0; i < txq->bd.ring_size; i++) {
3452 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3453 		if (!txq->tx_bounce[i])
3454 			goto err_alloc;
3455 
3456 		bdp->cbd_sc = cpu_to_fec16(0);
3457 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3458 
3459 		if (fep->bufdesc_ex) {
3460 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3461 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3462 		}
3463 
3464 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3465 	}
3466 
3467 	/* Set the last buffer to wrap. */
3468 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3469 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3470 
3471 	return 0;
3472 
3473  err_alloc:
3474 	fec_enet_free_buffers(ndev);
3475 	return -ENOMEM;
3476 }
3477 
fec_enet_alloc_buffers(struct net_device * ndev)3478 static int fec_enet_alloc_buffers(struct net_device *ndev)
3479 {
3480 	struct fec_enet_private *fep = netdev_priv(ndev);
3481 	unsigned int i;
3482 
3483 	for (i = 0; i < fep->num_rx_queues; i++)
3484 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3485 			return -ENOMEM;
3486 
3487 	for (i = 0; i < fep->num_tx_queues; i++)
3488 		if (fec_enet_alloc_txq_buffers(ndev, i))
3489 			return -ENOMEM;
3490 	return 0;
3491 }
3492 
3493 static int
fec_enet_open(struct net_device * ndev)3494 fec_enet_open(struct net_device *ndev)
3495 {
3496 	struct fec_enet_private *fep = netdev_priv(ndev);
3497 	int ret;
3498 	bool reset_again;
3499 
3500 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3501 	if (ret < 0)
3502 		return ret;
3503 
3504 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3505 	ret = fec_enet_clk_enable(ndev, true);
3506 	if (ret)
3507 		goto clk_enable;
3508 
3509 	/* During the first fec_enet_open call the PHY isn't probed at this
3510 	 * point. Therefore the phy_reset_after_clk_enable() call within
3511 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3512 	 * sure the PHY is working correctly we check if we need to reset again
3513 	 * later when the PHY is probed
3514 	 */
3515 	if (ndev->phydev && ndev->phydev->drv)
3516 		reset_again = false;
3517 	else
3518 		reset_again = true;
3519 
3520 	/* I should reset the ring buffers here, but I don't yet know
3521 	 * a simple way to do that.
3522 	 */
3523 
3524 	ret = fec_enet_alloc_buffers(ndev);
3525 	if (ret)
3526 		goto err_enet_alloc;
3527 
3528 	/* Init MAC prior to mii bus probe */
3529 	fec_restart(ndev);
3530 
3531 	/* Call phy_reset_after_clk_enable() again if it failed during
3532 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3533 	 */
3534 	if (reset_again)
3535 		fec_enet_phy_reset_after_clk_enable(ndev);
3536 
3537 	/* Probe and connect to PHY when open the interface */
3538 	ret = fec_enet_mii_probe(ndev);
3539 	if (ret)
3540 		goto err_enet_mii_probe;
3541 
3542 	if (fep->quirks & FEC_QUIRK_ERR006687)
3543 		imx6q_cpuidle_fec_irqs_used();
3544 
3545 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3546 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3547 
3548 	napi_enable(&fep->napi);
3549 	phy_start(ndev->phydev);
3550 	netif_tx_start_all_queues(ndev);
3551 
3552 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3553 				 FEC_WOL_FLAG_ENABLE);
3554 
3555 	return 0;
3556 
3557 err_enet_mii_probe:
3558 	fec_enet_free_buffers(ndev);
3559 err_enet_alloc:
3560 	fec_enet_clk_enable(ndev, false);
3561 clk_enable:
3562 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3563 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3564 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3565 	return ret;
3566 }
3567 
3568 static int
fec_enet_close(struct net_device * ndev)3569 fec_enet_close(struct net_device *ndev)
3570 {
3571 	struct fec_enet_private *fep = netdev_priv(ndev);
3572 
3573 	phy_stop(ndev->phydev);
3574 
3575 	if (netif_device_present(ndev)) {
3576 		napi_disable(&fep->napi);
3577 		netif_tx_disable(ndev);
3578 		fec_stop(ndev);
3579 	}
3580 
3581 	phy_disconnect(ndev->phydev);
3582 
3583 	if (fep->quirks & FEC_QUIRK_ERR006687)
3584 		imx6q_cpuidle_fec_irqs_unused();
3585 
3586 	fec_enet_update_ethtool_stats(ndev);
3587 
3588 	fec_enet_clk_enable(ndev, false);
3589 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3590 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3591 
3592 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3593 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3594 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3595 
3596 	fec_enet_free_buffers(ndev);
3597 
3598 	return 0;
3599 }
3600 
3601 /* Set or clear the multicast filter for this adaptor.
3602  * Skeleton taken from sunlance driver.
3603  * The CPM Ethernet implementation allows Multicast as well as individual
3604  * MAC address filtering.  Some of the drivers check to make sure it is
3605  * a group multicast address, and discard those that are not.  I guess I
3606  * will do the same for now, but just remove the test if you want
3607  * individual filtering as well (do the upper net layers want or support
3608  * this kind of feature?).
3609  */
3610 
3611 #define FEC_HASH_BITS	6		/* #bits in hash */
3612 
set_multicast_list(struct net_device * ndev)3613 static void set_multicast_list(struct net_device *ndev)
3614 {
3615 	struct fec_enet_private *fep = netdev_priv(ndev);
3616 	struct netdev_hw_addr *ha;
3617 	unsigned int crc, tmp;
3618 	unsigned char hash;
3619 	unsigned int hash_high = 0, hash_low = 0;
3620 
3621 	if (ndev->flags & IFF_PROMISC) {
3622 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3623 		tmp |= 0x8;
3624 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3625 		return;
3626 	}
3627 
3628 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3629 	tmp &= ~0x8;
3630 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3631 
3632 	if (ndev->flags & IFF_ALLMULTI) {
3633 		/* Catch all multicast addresses, so set the
3634 		 * filter to all 1's
3635 		 */
3636 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3637 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3638 
3639 		return;
3640 	}
3641 
3642 	/* Add the addresses in hash register */
3643 	netdev_for_each_mc_addr(ha, ndev) {
3644 		/* calculate crc32 value of mac address */
3645 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3646 
3647 		/* only upper 6 bits (FEC_HASH_BITS) are used
3648 		 * which point to specific bit in the hash registers
3649 		 */
3650 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3651 
3652 		if (hash > 31)
3653 			hash_high |= 1 << (hash - 32);
3654 		else
3655 			hash_low |= 1 << hash;
3656 	}
3657 
3658 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3659 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3660 }
3661 
3662 /* Set a MAC change in hardware. */
3663 static int
fec_set_mac_address(struct net_device * ndev,void * p)3664 fec_set_mac_address(struct net_device *ndev, void *p)
3665 {
3666 	struct fec_enet_private *fep = netdev_priv(ndev);
3667 	struct sockaddr *addr = p;
3668 
3669 	if (addr) {
3670 		if (!is_valid_ether_addr(addr->sa_data))
3671 			return -EADDRNOTAVAIL;
3672 		eth_hw_addr_set(ndev, addr->sa_data);
3673 	}
3674 
3675 	/* Add netif status check here to avoid system hang in below case:
3676 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3677 	 * After ethx down, fec all clocks are gated off and then register
3678 	 * access causes system hang.
3679 	 */
3680 	if (!netif_running(ndev))
3681 		return 0;
3682 
3683 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3684 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3685 		fep->hwp + FEC_ADDR_LOW);
3686 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3687 		fep->hwp + FEC_ADDR_HIGH);
3688 	return 0;
3689 }
3690 
fec_enet_set_netdev_features(struct net_device * netdev,netdev_features_t features)3691 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3692 	netdev_features_t features)
3693 {
3694 	struct fec_enet_private *fep = netdev_priv(netdev);
3695 	netdev_features_t changed = features ^ netdev->features;
3696 
3697 	netdev->features = features;
3698 
3699 	/* Receive checksum has been changed */
3700 	if (changed & NETIF_F_RXCSUM) {
3701 		if (features & NETIF_F_RXCSUM)
3702 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3703 		else
3704 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3705 	}
3706 }
3707 
fec_set_features(struct net_device * netdev,netdev_features_t features)3708 static int fec_set_features(struct net_device *netdev,
3709 	netdev_features_t features)
3710 {
3711 	struct fec_enet_private *fep = netdev_priv(netdev);
3712 	netdev_features_t changed = features ^ netdev->features;
3713 
3714 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3715 		napi_disable(&fep->napi);
3716 		netif_tx_lock_bh(netdev);
3717 		fec_stop(netdev);
3718 		fec_enet_set_netdev_features(netdev, features);
3719 		fec_restart(netdev);
3720 		netif_tx_wake_all_queues(netdev);
3721 		netif_tx_unlock_bh(netdev);
3722 		napi_enable(&fep->napi);
3723 	} else {
3724 		fec_enet_set_netdev_features(netdev, features);
3725 	}
3726 
3727 	return 0;
3728 }
3729 
fec_enet_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)3730 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3731 				 struct net_device *sb_dev)
3732 {
3733 	struct fec_enet_private *fep = netdev_priv(ndev);
3734 	u16 vlan_tag = 0;
3735 
3736 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3737 		return netdev_pick_tx(ndev, skb, NULL);
3738 
3739 	/* VLAN is present in the payload.*/
3740 	if (eth_type_vlan(skb->protocol)) {
3741 		struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb);
3742 
3743 		vlan_tag = ntohs(vhdr->h_vlan_TCI);
3744 	/*  VLAN is present in the skb but not yet pushed in the payload.*/
3745 	} else if (skb_vlan_tag_present(skb)) {
3746 		vlan_tag = skb->vlan_tci;
3747 	} else {
3748 		return vlan_tag;
3749 	}
3750 
3751 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3752 }
3753 
fec_enet_bpf(struct net_device * dev,struct netdev_bpf * bpf)3754 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3755 {
3756 	struct fec_enet_private *fep = netdev_priv(dev);
3757 	bool is_run = netif_running(dev);
3758 	struct bpf_prog *old_prog;
3759 
3760 	switch (bpf->command) {
3761 	case XDP_SETUP_PROG:
3762 		/* No need to support the SoCs that require to
3763 		 * do the frame swap because the performance wouldn't be
3764 		 * better than the skb mode.
3765 		 */
3766 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3767 			return -EOPNOTSUPP;
3768 
3769 		if (!bpf->prog)
3770 			xdp_features_clear_redirect_target(dev);
3771 
3772 		if (is_run) {
3773 			napi_disable(&fep->napi);
3774 			netif_tx_disable(dev);
3775 		}
3776 
3777 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3778 		if (old_prog)
3779 			bpf_prog_put(old_prog);
3780 
3781 		fec_restart(dev);
3782 
3783 		if (is_run) {
3784 			napi_enable(&fep->napi);
3785 			netif_tx_start_all_queues(dev);
3786 		}
3787 
3788 		if (bpf->prog)
3789 			xdp_features_set_redirect_target(dev, false);
3790 
3791 		return 0;
3792 
3793 	case XDP_SETUP_XSK_POOL:
3794 		return -EOPNOTSUPP;
3795 
3796 	default:
3797 		return -EOPNOTSUPP;
3798 	}
3799 }
3800 
3801 static int
fec_enet_xdp_get_tx_queue(struct fec_enet_private * fep,int index)3802 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3803 {
3804 	if (unlikely(index < 0))
3805 		return 0;
3806 
3807 	return (index % fep->num_tx_queues);
3808 }
3809 
fec_enet_txq_xmit_frame(struct fec_enet_private * fep,struct fec_enet_priv_tx_q * txq,void * frame,u32 dma_sync_len,bool ndo_xmit)3810 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3811 				   struct fec_enet_priv_tx_q *txq,
3812 				   void *frame, u32 dma_sync_len,
3813 				   bool ndo_xmit)
3814 {
3815 	unsigned int index, status, estatus;
3816 	struct bufdesc *bdp;
3817 	dma_addr_t dma_addr;
3818 	int entries_free;
3819 	u16 frame_len;
3820 
3821 	entries_free = fec_enet_get_free_txdesc_num(txq);
3822 	if (entries_free < MAX_SKB_FRAGS + 1) {
3823 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3824 		return -EBUSY;
3825 	}
3826 
3827 	/* Fill in a Tx ring entry */
3828 	bdp = txq->bd.cur;
3829 	status = fec16_to_cpu(bdp->cbd_sc);
3830 	status &= ~BD_ENET_TX_STATS;
3831 
3832 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3833 
3834 	if (ndo_xmit) {
3835 		struct xdp_frame *xdpf = frame;
3836 
3837 		dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data,
3838 					  xdpf->len, DMA_TO_DEVICE);
3839 		if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3840 			return -ENOMEM;
3841 
3842 		frame_len = xdpf->len;
3843 		txq->tx_buf[index].buf_p = xdpf;
3844 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3845 	} else {
3846 		struct xdp_buff *xdpb = frame;
3847 		struct page *page;
3848 
3849 		page = virt_to_page(xdpb->data);
3850 		dma_addr = page_pool_get_dma_addr(page) +
3851 			   (xdpb->data - xdpb->data_hard_start);
3852 		dma_sync_single_for_device(&fep->pdev->dev, dma_addr,
3853 					   dma_sync_len, DMA_BIDIRECTIONAL);
3854 		frame_len = xdpb->data_end - xdpb->data;
3855 		txq->tx_buf[index].buf_p = page;
3856 		txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX;
3857 	}
3858 
3859 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3860 	if (fep->bufdesc_ex)
3861 		estatus = BD_ENET_TX_INT;
3862 
3863 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3864 	bdp->cbd_datlen = cpu_to_fec16(frame_len);
3865 
3866 	if (fep->bufdesc_ex) {
3867 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3868 
3869 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3870 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3871 
3872 		ebdp->cbd_bdu = 0;
3873 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3874 	}
3875 
3876 	/* Make sure the updates to rest of the descriptor are performed before
3877 	 * transferring ownership.
3878 	 */
3879 	dma_wmb();
3880 
3881 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3882 	 * it's the last BD of the frame, and to put the CRC on the end.
3883 	 */
3884 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3885 	bdp->cbd_sc = cpu_to_fec16(status);
3886 
3887 	/* If this was the last BD in the ring, start at the beginning again. */
3888 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3889 
3890 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3891 	dma_wmb();
3892 
3893 	txq->bd.cur = bdp;
3894 
3895 	/* Trigger transmission start */
3896 	writel(0, txq->bd.reg_desc_active);
3897 
3898 	return 0;
3899 }
3900 
fec_enet_xdp_tx_xmit(struct fec_enet_private * fep,int cpu,struct xdp_buff * xdp,u32 dma_sync_len)3901 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep,
3902 				int cpu, struct xdp_buff *xdp,
3903 				u32 dma_sync_len)
3904 {
3905 	struct fec_enet_priv_tx_q *txq;
3906 	struct netdev_queue *nq;
3907 	int queue, ret;
3908 
3909 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3910 	txq = fep->tx_queue[queue];
3911 	nq = netdev_get_tx_queue(fep->netdev, queue);
3912 
3913 	__netif_tx_lock(nq, cpu);
3914 
3915 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3916 	txq_trans_cond_update(nq);
3917 	ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false);
3918 
3919 	__netif_tx_unlock(nq);
3920 
3921 	return ret;
3922 }
3923 
fec_enet_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)3924 static int fec_enet_xdp_xmit(struct net_device *dev,
3925 			     int num_frames,
3926 			     struct xdp_frame **frames,
3927 			     u32 flags)
3928 {
3929 	struct fec_enet_private *fep = netdev_priv(dev);
3930 	struct fec_enet_priv_tx_q *txq;
3931 	int cpu = smp_processor_id();
3932 	unsigned int sent_frames = 0;
3933 	struct netdev_queue *nq;
3934 	unsigned int queue;
3935 	int i;
3936 
3937 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3938 	txq = fep->tx_queue[queue];
3939 	nq = netdev_get_tx_queue(fep->netdev, queue);
3940 
3941 	__netif_tx_lock(nq, cpu);
3942 
3943 	/* Avoid tx timeout as XDP shares the queue with kernel stack */
3944 	txq_trans_cond_update(nq);
3945 	for (i = 0; i < num_frames; i++) {
3946 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0)
3947 			break;
3948 		sent_frames++;
3949 	}
3950 
3951 	__netif_tx_unlock(nq);
3952 
3953 	return sent_frames;
3954 }
3955 
fec_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)3956 static int fec_hwtstamp_get(struct net_device *ndev,
3957 			    struct kernel_hwtstamp_config *config)
3958 {
3959 	struct fec_enet_private *fep = netdev_priv(ndev);
3960 
3961 	if (!netif_running(ndev))
3962 		return -EINVAL;
3963 
3964 	if (!fep->bufdesc_ex)
3965 		return -EOPNOTSUPP;
3966 
3967 	fec_ptp_get(ndev, config);
3968 
3969 	return 0;
3970 }
3971 
fec_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3972 static int fec_hwtstamp_set(struct net_device *ndev,
3973 			    struct kernel_hwtstamp_config *config,
3974 			    struct netlink_ext_ack *extack)
3975 {
3976 	struct fec_enet_private *fep = netdev_priv(ndev);
3977 
3978 	if (!netif_running(ndev))
3979 		return -EINVAL;
3980 
3981 	if (!fep->bufdesc_ex)
3982 		return -EOPNOTSUPP;
3983 
3984 	return fec_ptp_set(ndev, config, extack);
3985 }
3986 
3987 static const struct net_device_ops fec_netdev_ops = {
3988 	.ndo_open		= fec_enet_open,
3989 	.ndo_stop		= fec_enet_close,
3990 	.ndo_start_xmit		= fec_enet_start_xmit,
3991 	.ndo_select_queue       = fec_enet_select_queue,
3992 	.ndo_set_rx_mode	= set_multicast_list,
3993 	.ndo_validate_addr	= eth_validate_addr,
3994 	.ndo_tx_timeout		= fec_timeout,
3995 	.ndo_set_mac_address	= fec_set_mac_address,
3996 	.ndo_eth_ioctl		= phy_do_ioctl_running,
3997 	.ndo_set_features	= fec_set_features,
3998 	.ndo_bpf		= fec_enet_bpf,
3999 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
4000 	.ndo_hwtstamp_get	= fec_hwtstamp_get,
4001 	.ndo_hwtstamp_set	= fec_hwtstamp_set,
4002 };
4003 
4004 static const unsigned short offset_des_active_rxq[] = {
4005 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
4006 };
4007 
4008 static const unsigned short offset_des_active_txq[] = {
4009 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
4010 };
4011 
4012  /*
4013   * XXX:  We need to clean up on failure exits here.
4014   *
4015   */
fec_enet_init(struct net_device * ndev)4016 static int fec_enet_init(struct net_device *ndev)
4017 {
4018 	struct fec_enet_private *fep = netdev_priv(ndev);
4019 	struct bufdesc *cbd_base;
4020 	dma_addr_t bd_dma;
4021 	int bd_size;
4022 	unsigned int i;
4023 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
4024 			sizeof(struct bufdesc);
4025 	unsigned dsize_log2 = __fls(dsize);
4026 	int ret;
4027 
4028 	WARN_ON(dsize != (1 << dsize_log2));
4029 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
4030 	fep->rx_align = 0xf;
4031 	fep->tx_align = 0xf;
4032 #else
4033 	fep->rx_align = 0x3;
4034 	fep->tx_align = 0x3;
4035 #endif
4036 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4037 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
4038 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
4039 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
4040 
4041 	/* Check mask of the streaming and coherent API */
4042 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
4043 	if (ret < 0) {
4044 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
4045 		return ret;
4046 	}
4047 
4048 	ret = fec_enet_alloc_queue(ndev);
4049 	if (ret)
4050 		return ret;
4051 
4052 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
4053 
4054 	/* Allocate memory for buffer descriptors. */
4055 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4056 				       GFP_KERNEL);
4057 	if (!cbd_base) {
4058 		ret = -ENOMEM;
4059 		goto free_queue_mem;
4060 	}
4061 
4062 	/* Get the Ethernet address */
4063 	ret = fec_get_mac(ndev);
4064 	if (ret)
4065 		goto free_queue_mem;
4066 
4067 	/* Set receive and transmit descriptor base. */
4068 	for (i = 0; i < fep->num_rx_queues; i++) {
4069 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4070 		unsigned size = dsize * rxq->bd.ring_size;
4071 
4072 		rxq->bd.qid = i;
4073 		rxq->bd.base = cbd_base;
4074 		rxq->bd.cur = cbd_base;
4075 		rxq->bd.dma = bd_dma;
4076 		rxq->bd.dsize = dsize;
4077 		rxq->bd.dsize_log2 = dsize_log2;
4078 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4079 		bd_dma += size;
4080 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4081 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4082 	}
4083 
4084 	for (i = 0; i < fep->num_tx_queues; i++) {
4085 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4086 		unsigned size = dsize * txq->bd.ring_size;
4087 
4088 		txq->bd.qid = i;
4089 		txq->bd.base = cbd_base;
4090 		txq->bd.cur = cbd_base;
4091 		txq->bd.dma = bd_dma;
4092 		txq->bd.dsize = dsize;
4093 		txq->bd.dsize_log2 = dsize_log2;
4094 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4095 		bd_dma += size;
4096 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4097 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4098 	}
4099 
4100 
4101 	/* The FEC Ethernet specific entries in the device structure */
4102 	ndev->watchdog_timeo = TX_TIMEOUT;
4103 	ndev->netdev_ops = &fec_netdev_ops;
4104 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4105 
4106 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4107 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4108 
4109 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4110 		/* enable hw VLAN support */
4111 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4112 
4113 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4114 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4115 
4116 		/* enable hw accelerator */
4117 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4118 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4119 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4120 	}
4121 
4122 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4123 		fep->tx_align = 0;
4124 		fep->rx_align = 0x3f;
4125 	}
4126 
4127 	ndev->hw_features = ndev->features;
4128 
4129 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4130 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4131 				     NETDEV_XDP_ACT_REDIRECT;
4132 
4133 	fec_restart(ndev);
4134 
4135 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4136 		fec_enet_clear_ethtool_stats(ndev);
4137 	else
4138 		fec_enet_update_ethtool_stats(ndev);
4139 
4140 	return 0;
4141 
4142 free_queue_mem:
4143 	fec_enet_free_queue(ndev);
4144 	return ret;
4145 }
4146 
fec_enet_deinit(struct net_device * ndev)4147 static void fec_enet_deinit(struct net_device *ndev)
4148 {
4149 	struct fec_enet_private *fep = netdev_priv(ndev);
4150 
4151 	netif_napi_del(&fep->napi);
4152 	fec_enet_free_queue(ndev);
4153 }
4154 
4155 #ifdef CONFIG_OF
fec_reset_phy(struct platform_device * pdev)4156 static int fec_reset_phy(struct platform_device *pdev)
4157 {
4158 	struct gpio_desc *phy_reset;
4159 	int msec = 1, phy_post_delay = 0;
4160 	struct device_node *np = pdev->dev.of_node;
4161 	int err;
4162 
4163 	if (!np)
4164 		return 0;
4165 
4166 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4167 	/* A sane reset duration should not be longer than 1s */
4168 	if (!err && msec > 1000)
4169 		msec = 1;
4170 
4171 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4172 	/* valid reset duration should be less than 1s */
4173 	if (!err && phy_post_delay > 1000)
4174 		return -EINVAL;
4175 
4176 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4177 					    GPIOD_OUT_HIGH);
4178 	if (IS_ERR(phy_reset))
4179 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4180 				     "failed to get phy-reset-gpios\n");
4181 
4182 	if (!phy_reset)
4183 		return 0;
4184 
4185 	if (msec > 20)
4186 		msleep(msec);
4187 	else
4188 		usleep_range(msec * 1000, msec * 1000 + 1000);
4189 
4190 	gpiod_set_value_cansleep(phy_reset, 0);
4191 
4192 	if (!phy_post_delay)
4193 		return 0;
4194 
4195 	if (phy_post_delay > 20)
4196 		msleep(phy_post_delay);
4197 	else
4198 		usleep_range(phy_post_delay * 1000,
4199 			     phy_post_delay * 1000 + 1000);
4200 
4201 	return 0;
4202 }
4203 #else /* CONFIG_OF */
fec_reset_phy(struct platform_device * pdev)4204 static int fec_reset_phy(struct platform_device *pdev)
4205 {
4206 	/*
4207 	 * In case of platform probe, the reset has been done
4208 	 * by machine code.
4209 	 */
4210 	return 0;
4211 }
4212 #endif /* CONFIG_OF */
4213 
4214 static void
fec_enet_get_queue_num(struct platform_device * pdev,int * num_tx,int * num_rx)4215 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4216 {
4217 	struct device_node *np = pdev->dev.of_node;
4218 
4219 	*num_tx = *num_rx = 1;
4220 
4221 	if (!np || !of_device_is_available(np))
4222 		return;
4223 
4224 	/* parse the num of tx and rx queues */
4225 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4226 
4227 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4228 
4229 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4230 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4231 			 *num_tx);
4232 		*num_tx = 1;
4233 		return;
4234 	}
4235 
4236 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4237 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4238 			 *num_rx);
4239 		*num_rx = 1;
4240 		return;
4241 	}
4242 
4243 }
4244 
fec_enet_get_irq_cnt(struct platform_device * pdev)4245 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4246 {
4247 	int irq_cnt = platform_irq_count(pdev);
4248 
4249 	if (irq_cnt > FEC_IRQ_NUM)
4250 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4251 	else if (irq_cnt == 2)
4252 		irq_cnt = 1;	/* last for pps */
4253 	else if (irq_cnt <= 0)
4254 		irq_cnt = 1;	/* At least 1 irq is needed */
4255 	return irq_cnt;
4256 }
4257 
fec_enet_get_wakeup_irq(struct platform_device * pdev)4258 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4259 {
4260 	struct net_device *ndev = platform_get_drvdata(pdev);
4261 	struct fec_enet_private *fep = netdev_priv(ndev);
4262 
4263 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4264 		fep->wake_irq = fep->irq[2];
4265 	else
4266 		fep->wake_irq = fep->irq[0];
4267 }
4268 
fec_enet_init_stop_mode(struct fec_enet_private * fep,struct device_node * np)4269 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4270 				   struct device_node *np)
4271 {
4272 	struct device_node *gpr_np;
4273 	u32 out_val[3];
4274 	int ret = 0;
4275 
4276 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4277 	if (!gpr_np)
4278 		return 0;
4279 
4280 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4281 					 ARRAY_SIZE(out_val));
4282 	if (ret) {
4283 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4284 		goto out;
4285 	}
4286 
4287 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4288 	if (IS_ERR(fep->stop_gpr.gpr)) {
4289 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4290 		ret = PTR_ERR(fep->stop_gpr.gpr);
4291 		fep->stop_gpr.gpr = NULL;
4292 		goto out;
4293 	}
4294 
4295 	fep->stop_gpr.reg = out_val[1];
4296 	fep->stop_gpr.bit = out_val[2];
4297 
4298 out:
4299 	of_node_put(gpr_np);
4300 
4301 	return ret;
4302 }
4303 
4304 static int
fec_probe(struct platform_device * pdev)4305 fec_probe(struct platform_device *pdev)
4306 {
4307 	struct fec_enet_private *fep;
4308 	struct fec_platform_data *pdata;
4309 	phy_interface_t interface;
4310 	struct net_device *ndev;
4311 	int i, irq, ret = 0;
4312 	const struct of_device_id *of_id;
4313 	static int dev_id;
4314 	struct device_node *np = pdev->dev.of_node, *phy_node;
4315 	int num_tx_qs;
4316 	int num_rx_qs;
4317 	char irq_name[8];
4318 	int irq_cnt;
4319 	struct fec_devinfo *dev_info;
4320 
4321 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4322 
4323 	/* Init network device */
4324 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4325 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4326 	if (!ndev)
4327 		return -ENOMEM;
4328 
4329 	SET_NETDEV_DEV(ndev, &pdev->dev);
4330 
4331 	/* setup board info structure */
4332 	fep = netdev_priv(ndev);
4333 
4334 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4335 	if (of_id)
4336 		pdev->id_entry = of_id->data;
4337 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4338 	if (dev_info)
4339 		fep->quirks = dev_info->quirks;
4340 
4341 	fep->netdev = ndev;
4342 	fep->num_rx_queues = num_rx_qs;
4343 	fep->num_tx_queues = num_tx_qs;
4344 
4345 #if !defined(CONFIG_M5272)
4346 	/* default enable pause frame auto negotiation */
4347 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4348 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4349 #endif
4350 
4351 	/* Select default pin state */
4352 	pinctrl_pm_select_default_state(&pdev->dev);
4353 
4354 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4355 	if (IS_ERR(fep->hwp)) {
4356 		ret = PTR_ERR(fep->hwp);
4357 		goto failed_ioremap;
4358 	}
4359 
4360 	fep->pdev = pdev;
4361 	fep->dev_id = dev_id++;
4362 
4363 	platform_set_drvdata(pdev, ndev);
4364 
4365 	if ((of_machine_is_compatible("fsl,imx6q") ||
4366 	     of_machine_is_compatible("fsl,imx6dl")) &&
4367 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4368 		fep->quirks |= FEC_QUIRK_ERR006687;
4369 
4370 	ret = fec_enet_ipc_handle_init(fep);
4371 	if (ret)
4372 		goto failed_ipc_init;
4373 
4374 	if (of_property_read_bool(np, "fsl,magic-packet"))
4375 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4376 
4377 	ret = fec_enet_init_stop_mode(fep, np);
4378 	if (ret)
4379 		goto failed_stop_mode;
4380 
4381 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4382 	if (!phy_node && of_phy_is_fixed_link(np)) {
4383 		ret = of_phy_register_fixed_link(np);
4384 		if (ret < 0) {
4385 			dev_err(&pdev->dev,
4386 				"broken fixed-link specification\n");
4387 			goto failed_phy;
4388 		}
4389 		phy_node = of_node_get(np);
4390 	}
4391 	fep->phy_node = phy_node;
4392 
4393 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4394 	if (ret) {
4395 		pdata = dev_get_platdata(&pdev->dev);
4396 		if (pdata)
4397 			fep->phy_interface = pdata->phy;
4398 		else
4399 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4400 	} else {
4401 		fep->phy_interface = interface;
4402 	}
4403 
4404 	ret = fec_enet_parse_rgmii_delay(fep, np);
4405 	if (ret)
4406 		goto failed_rgmii_delay;
4407 
4408 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4409 	if (IS_ERR(fep->clk_ipg)) {
4410 		ret = PTR_ERR(fep->clk_ipg);
4411 		goto failed_clk;
4412 	}
4413 
4414 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4415 	if (IS_ERR(fep->clk_ahb)) {
4416 		ret = PTR_ERR(fep->clk_ahb);
4417 		goto failed_clk;
4418 	}
4419 
4420 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4421 
4422 	/* enet_out is optional, depends on board */
4423 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4424 	if (IS_ERR(fep->clk_enet_out)) {
4425 		ret = PTR_ERR(fep->clk_enet_out);
4426 		goto failed_clk;
4427 	}
4428 
4429 	fep->ptp_clk_on = false;
4430 	mutex_init(&fep->ptp_clk_mutex);
4431 
4432 	/* clk_ref is optional, depends on board */
4433 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4434 	if (IS_ERR(fep->clk_ref)) {
4435 		ret = PTR_ERR(fep->clk_ref);
4436 		goto failed_clk;
4437 	}
4438 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4439 
4440 	/* clk_2x_txclk is optional, depends on board */
4441 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4442 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4443 		if (IS_ERR(fep->clk_2x_txclk))
4444 			fep->clk_2x_txclk = NULL;
4445 	}
4446 
4447 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4448 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4449 	if (IS_ERR(fep->clk_ptp)) {
4450 		fep->clk_ptp = NULL;
4451 		fep->bufdesc_ex = false;
4452 	}
4453 
4454 	ret = fec_enet_clk_enable(ndev, true);
4455 	if (ret)
4456 		goto failed_clk;
4457 
4458 	ret = clk_prepare_enable(fep->clk_ipg);
4459 	if (ret)
4460 		goto failed_clk_ipg;
4461 	ret = clk_prepare_enable(fep->clk_ahb);
4462 	if (ret)
4463 		goto failed_clk_ahb;
4464 
4465 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4466 	if (!IS_ERR(fep->reg_phy)) {
4467 		ret = regulator_enable(fep->reg_phy);
4468 		if (ret) {
4469 			dev_err(&pdev->dev,
4470 				"Failed to enable phy regulator: %d\n", ret);
4471 			goto failed_regulator;
4472 		}
4473 	} else {
4474 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4475 			ret = -EPROBE_DEFER;
4476 			goto failed_regulator;
4477 		}
4478 		fep->reg_phy = NULL;
4479 	}
4480 
4481 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4482 	pm_runtime_use_autosuspend(&pdev->dev);
4483 	pm_runtime_get_noresume(&pdev->dev);
4484 	pm_runtime_set_active(&pdev->dev);
4485 	pm_runtime_enable(&pdev->dev);
4486 
4487 	ret = fec_reset_phy(pdev);
4488 	if (ret)
4489 		goto failed_reset;
4490 
4491 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4492 	if (fep->bufdesc_ex)
4493 		fec_ptp_init(pdev, irq_cnt);
4494 
4495 	ret = fec_enet_init(ndev);
4496 	if (ret)
4497 		goto failed_init;
4498 
4499 	for (i = 0; i < irq_cnt; i++) {
4500 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4501 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4502 		if (irq < 0)
4503 			irq = platform_get_irq(pdev, i);
4504 		if (irq < 0) {
4505 			ret = irq;
4506 			goto failed_irq;
4507 		}
4508 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4509 				       0, pdev->name, ndev);
4510 		if (ret)
4511 			goto failed_irq;
4512 
4513 		fep->irq[i] = irq;
4514 	}
4515 
4516 	/* Decide which interrupt line is wakeup capable */
4517 	fec_enet_get_wakeup_irq(pdev);
4518 
4519 	ret = fec_enet_mii_init(pdev);
4520 	if (ret)
4521 		goto failed_mii_init;
4522 
4523 	/* Carrier starts down, phylib will bring it up */
4524 	netif_carrier_off(ndev);
4525 	fec_enet_clk_enable(ndev, false);
4526 	pinctrl_pm_select_sleep_state(&pdev->dev);
4527 
4528 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4529 
4530 	ret = register_netdev(ndev);
4531 	if (ret)
4532 		goto failed_register;
4533 
4534 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4535 			   FEC_WOL_HAS_MAGIC_PACKET);
4536 
4537 	if (fep->bufdesc_ex && fep->ptp_clock)
4538 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4539 
4540 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4541 
4542 	pm_runtime_mark_last_busy(&pdev->dev);
4543 	pm_runtime_put_autosuspend(&pdev->dev);
4544 
4545 	return 0;
4546 
4547 failed_register:
4548 	fec_enet_mii_remove(fep);
4549 failed_mii_init:
4550 failed_irq:
4551 	fec_enet_deinit(ndev);
4552 failed_init:
4553 	fec_ptp_stop(pdev);
4554 failed_reset:
4555 	pm_runtime_put_noidle(&pdev->dev);
4556 	pm_runtime_disable(&pdev->dev);
4557 	if (fep->reg_phy)
4558 		regulator_disable(fep->reg_phy);
4559 failed_regulator:
4560 	clk_disable_unprepare(fep->clk_ahb);
4561 failed_clk_ahb:
4562 	clk_disable_unprepare(fep->clk_ipg);
4563 failed_clk_ipg:
4564 	fec_enet_clk_enable(ndev, false);
4565 failed_clk:
4566 failed_rgmii_delay:
4567 	if (of_phy_is_fixed_link(np))
4568 		of_phy_deregister_fixed_link(np);
4569 	of_node_put(phy_node);
4570 failed_stop_mode:
4571 failed_ipc_init:
4572 failed_phy:
4573 	dev_id--;
4574 failed_ioremap:
4575 	free_netdev(ndev);
4576 
4577 	return ret;
4578 }
4579 
4580 static void
fec_drv_remove(struct platform_device * pdev)4581 fec_drv_remove(struct platform_device *pdev)
4582 {
4583 	struct net_device *ndev = platform_get_drvdata(pdev);
4584 	struct fec_enet_private *fep = netdev_priv(ndev);
4585 	struct device_node *np = pdev->dev.of_node;
4586 	int ret;
4587 
4588 	ret = pm_runtime_get_sync(&pdev->dev);
4589 	if (ret < 0)
4590 		dev_err(&pdev->dev,
4591 			"Failed to resume device in remove callback (%pe)\n",
4592 			ERR_PTR(ret));
4593 
4594 	cancel_work_sync(&fep->tx_timeout_work);
4595 	fec_ptp_stop(pdev);
4596 	unregister_netdev(ndev);
4597 	fec_enet_mii_remove(fep);
4598 	if (fep->reg_phy)
4599 		regulator_disable(fep->reg_phy);
4600 
4601 	if (of_phy_is_fixed_link(np))
4602 		of_phy_deregister_fixed_link(np);
4603 	of_node_put(fep->phy_node);
4604 
4605 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4606 	 * disabling them again.
4607 	 */
4608 	if (ret >= 0) {
4609 		clk_disable_unprepare(fep->clk_ahb);
4610 		clk_disable_unprepare(fep->clk_ipg);
4611 	}
4612 	pm_runtime_put_noidle(&pdev->dev);
4613 	pm_runtime_disable(&pdev->dev);
4614 
4615 	fec_enet_deinit(ndev);
4616 	free_netdev(ndev);
4617 }
4618 
fec_suspend(struct device * dev)4619 static int __maybe_unused fec_suspend(struct device *dev)
4620 {
4621 	struct net_device *ndev = dev_get_drvdata(dev);
4622 	struct fec_enet_private *fep = netdev_priv(ndev);
4623 	int ret;
4624 
4625 	rtnl_lock();
4626 	if (netif_running(ndev)) {
4627 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4628 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4629 		phy_stop(ndev->phydev);
4630 		napi_disable(&fep->napi);
4631 		netif_tx_lock_bh(ndev);
4632 		netif_device_detach(ndev);
4633 		netif_tx_unlock_bh(ndev);
4634 		fec_stop(ndev);
4635 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4636 			fec_irqs_disable(ndev);
4637 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4638 		} else {
4639 			fec_irqs_disable_except_wakeup(ndev);
4640 			if (fep->wake_irq > 0) {
4641 				disable_irq(fep->wake_irq);
4642 				enable_irq_wake(fep->wake_irq);
4643 			}
4644 			fec_enet_stop_mode(fep, true);
4645 		}
4646 		/* It's safe to disable clocks since interrupts are masked */
4647 		fec_enet_clk_enable(ndev, false);
4648 
4649 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4650 		if (fep->rpm_active) {
4651 			ret = pm_runtime_force_suspend(dev);
4652 			if (ret < 0) {
4653 				rtnl_unlock();
4654 				return ret;
4655 			}
4656 		}
4657 	}
4658 	rtnl_unlock();
4659 
4660 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4661 		regulator_disable(fep->reg_phy);
4662 
4663 	/* SOC supply clock to phy, when clock is disabled, phy link down
4664 	 * SOC control phy regulator, when regulator is disabled, phy link down
4665 	 */
4666 	if (fep->clk_enet_out || fep->reg_phy)
4667 		fep->link = 0;
4668 
4669 	return 0;
4670 }
4671 
fec_resume(struct device * dev)4672 static int __maybe_unused fec_resume(struct device *dev)
4673 {
4674 	struct net_device *ndev = dev_get_drvdata(dev);
4675 	struct fec_enet_private *fep = netdev_priv(ndev);
4676 	int ret;
4677 	int val;
4678 
4679 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4680 		ret = regulator_enable(fep->reg_phy);
4681 		if (ret)
4682 			return ret;
4683 	}
4684 
4685 	rtnl_lock();
4686 	if (netif_running(ndev)) {
4687 		if (fep->rpm_active)
4688 			pm_runtime_force_resume(dev);
4689 
4690 		ret = fec_enet_clk_enable(ndev, true);
4691 		if (ret) {
4692 			rtnl_unlock();
4693 			goto failed_clk;
4694 		}
4695 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4696 			fec_enet_stop_mode(fep, false);
4697 			if (fep->wake_irq) {
4698 				disable_irq_wake(fep->wake_irq);
4699 				enable_irq(fep->wake_irq);
4700 			}
4701 
4702 			val = readl(fep->hwp + FEC_ECNTRL);
4703 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4704 			writel(val, fep->hwp + FEC_ECNTRL);
4705 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4706 		} else {
4707 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4708 		}
4709 		fec_restart(ndev);
4710 		netif_tx_lock_bh(ndev);
4711 		netif_device_attach(ndev);
4712 		netif_tx_unlock_bh(ndev);
4713 		napi_enable(&fep->napi);
4714 		phy_init_hw(ndev->phydev);
4715 		phy_start(ndev->phydev);
4716 	}
4717 	rtnl_unlock();
4718 
4719 	return 0;
4720 
4721 failed_clk:
4722 	if (fep->reg_phy)
4723 		regulator_disable(fep->reg_phy);
4724 	return ret;
4725 }
4726 
fec_runtime_suspend(struct device * dev)4727 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4728 {
4729 	struct net_device *ndev = dev_get_drvdata(dev);
4730 	struct fec_enet_private *fep = netdev_priv(ndev);
4731 
4732 	clk_disable_unprepare(fep->clk_ahb);
4733 	clk_disable_unprepare(fep->clk_ipg);
4734 
4735 	return 0;
4736 }
4737 
fec_runtime_resume(struct device * dev)4738 static int __maybe_unused fec_runtime_resume(struct device *dev)
4739 {
4740 	struct net_device *ndev = dev_get_drvdata(dev);
4741 	struct fec_enet_private *fep = netdev_priv(ndev);
4742 	int ret;
4743 
4744 	ret = clk_prepare_enable(fep->clk_ahb);
4745 	if (ret)
4746 		return ret;
4747 	ret = clk_prepare_enable(fep->clk_ipg);
4748 	if (ret)
4749 		goto failed_clk_ipg;
4750 
4751 	return 0;
4752 
4753 failed_clk_ipg:
4754 	clk_disable_unprepare(fep->clk_ahb);
4755 	return ret;
4756 }
4757 
4758 static const struct dev_pm_ops fec_pm_ops = {
4759 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4760 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4761 };
4762 
4763 static struct platform_driver fec_driver = {
4764 	.driver	= {
4765 		.name	= DRIVER_NAME,
4766 		.pm	= &fec_pm_ops,
4767 		.of_match_table = fec_dt_ids,
4768 		.suppress_bind_attrs = true,
4769 	},
4770 	.id_table = fec_devtype,
4771 	.probe	= fec_probe,
4772 	.remove_new = fec_drv_remove,
4773 };
4774 
4775 module_platform_driver(fec_driver);
4776 
4777 MODULE_LICENSE("GPL");
4778