1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI EDMA DMA engine driver
4 *
5 * Copyright 2012 Texas Instruments
6 */
7
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/pm_runtime.h>
24
25 #include <linux/platform_data/edma.h>
26
27 #include "../dmaengine.h"
28 #include "../virt-dma.h"
29
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT 0x00
32 #define PARM_SRC 0x04
33 #define PARM_A_B_CNT 0x08
34 #define PARM_DST 0x0c
35 #define PARM_SRC_DST_BIDX 0x10
36 #define PARM_LINK_BCNTRLD 0x14
37 #define PARM_SRC_DST_CIDX 0x18
38 #define PARM_CCNT 0x1c
39
40 #define PARM_SIZE 0x20
41
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER 0x00 /* 64 bits */
44 #define SH_ECR 0x08 /* 64 bits */
45 #define SH_ESR 0x10 /* 64 bits */
46 #define SH_CER 0x18 /* 64 bits */
47 #define SH_EER 0x20 /* 64 bits */
48 #define SH_EECR 0x28 /* 64 bits */
49 #define SH_EESR 0x30 /* 64 bits */
50 #define SH_SER 0x38 /* 64 bits */
51 #define SH_SECR 0x40 /* 64 bits */
52 #define SH_IER 0x50 /* 64 bits */
53 #define SH_IECR 0x58 /* 64 bits */
54 #define SH_IESR 0x60 /* 64 bits */
55 #define SH_IPR 0x68 /* 64 bits */
56 #define SH_ICR 0x70 /* 64 bits */
57 #define SH_IEVAL 0x78
58 #define SH_QER 0x80
59 #define SH_QEER 0x84
60 #define SH_QEECR 0x88
61 #define SH_QEESR 0x8c
62 #define SH_QSER 0x90
63 #define SH_QSECR 0x94
64 #define SH_SIZE 0x200
65
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV 0x0000
68 #define EDMA_CCCFG 0x0004
69 #define EDMA_QCHMAP 0x0200 /* 8 registers */
70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM 0x0260
72 #define EDMA_QUETCMAP 0x0280
73 #define EDMA_QUEPRI 0x0284
74 #define EDMA_EMR 0x0300 /* 64 bits */
75 #define EDMA_EMCR 0x0308 /* 64 bits */
76 #define EDMA_QEMR 0x0310
77 #define EDMA_QEMCR 0x0314
78 #define EDMA_CCERR 0x0318
79 #define EDMA_CCERRCLR 0x031c
80 #define EDMA_EEVAL 0x0320
81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82 #define EDMA_QRAE 0x0380 /* 4 registers */
83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84 #define EDMA_QSTAT 0x0600 /* 2 registers */
85 #define EDMA_QWMTHRA 0x0620
86 #define EDMA_QWMTHRB 0x0624
87 #define EDMA_CCSTAT 0x0640
88
89 #define EDMA_M 0x1000 /* global channel registers */
90 #define EDMA_ECR 0x1008
91 #define EDMA_ECRH 0x100C
92 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
93 #define EDMA_PARM 0x4000 /* PaRAM entries */
94
95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
97 #define EDMA_DCHMAP 0x0100 /* 64 registers */
98
99 /* CCCFG register */
100 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
101 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
102 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
103 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
104 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
105 #define CHMAP_EXIST BIT(24)
106
107 /* CCSTAT register */
108 #define EDMA_CCSTAT_ACTV BIT(4)
109
110 /*
111 * Max of 20 segments per channel to conserve PaRAM slots
112 * Also note that MAX_NR_SG should be at least the no.of periods
113 * that are required for ASoC, otherwise DMA prep calls will
114 * fail. Today davinci-pcm is the only user of this driver and
115 * requires at least 17 slots, so we setup the default to 20.
116 */
117 #define MAX_NR_SG 20
118 #define EDMA_MAX_SLOTS MAX_NR_SG
119 #define EDMA_DESCRIPTORS 16
120
121 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
122 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
123 #define EDMA_CONT_PARAMS_ANY 1001
124 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
125 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
126
127 /*
128 * 64bit array registers are split into two 32bit registers:
129 * reg0: channel/event 0-31
130 * reg1: channel/event 32-63
131 *
132 * bit 5 in the channel number tells the array index (0/1)
133 * bit 0-4 (0x1f) is the bit offset within the register
134 */
135 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5)
136 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f))
137
138 /* PaRAM slots are laid out like this */
139 struct edmacc_param {
140 u32 opt;
141 u32 src;
142 u32 a_b_cnt;
143 u32 dst;
144 u32 src_dst_bidx;
145 u32 link_bcntrld;
146 u32 src_dst_cidx;
147 u32 ccnt;
148 } __packed;
149
150 /* fields in edmacc_param.opt */
151 #define SAM BIT(0)
152 #define DAM BIT(1)
153 #define SYNCDIM BIT(2)
154 #define STATIC BIT(3)
155 #define EDMA_FWID (0x07 << 8)
156 #define TCCMODE BIT(11)
157 #define EDMA_TCC(t) ((t) << 12)
158 #define TCINTEN BIT(20)
159 #define ITCINTEN BIT(21)
160 #define TCCHEN BIT(22)
161 #define ITCCHEN BIT(23)
162
163 struct edma_pset {
164 u32 len;
165 dma_addr_t addr;
166 struct edmacc_param param;
167 };
168
169 struct edma_desc {
170 struct virt_dma_desc vdesc;
171 struct list_head node;
172 enum dma_transfer_direction direction;
173 int cyclic;
174 bool polled;
175 int absync;
176 int pset_nr;
177 struct edma_chan *echan;
178 int processed;
179
180 /*
181 * The following 4 elements are used for residue accounting.
182 *
183 * - processed_stat: the number of SG elements we have traversed
184 * so far to cover accounting. This is updated directly to processed
185 * during edma_callback and is always <= processed, because processed
186 * refers to the number of pending transfer (programmed to EDMA
187 * controller), where as processed_stat tracks number of transfers
188 * accounted for so far.
189 *
190 * - residue: The amount of bytes we have left to transfer for this desc
191 *
192 * - residue_stat: The residue in bytes of data we have covered
193 * so far for accounting. This is updated directly to residue
194 * during callbacks to keep it current.
195 *
196 * - sg_len: Tracks the length of the current intermediate transfer,
197 * this is required to update the residue during intermediate transfer
198 * completion callback.
199 */
200 int processed_stat;
201 u32 sg_len;
202 u32 residue;
203 u32 residue_stat;
204
205 struct edma_pset pset[];
206 };
207
208 struct edma_cc;
209
210 struct edma_tc {
211 u16 id;
212 };
213
214 struct edma_chan {
215 struct virt_dma_chan vchan;
216 struct list_head node;
217 struct edma_desc *edesc;
218 struct edma_cc *ecc;
219 struct edma_tc *tc;
220 int ch_num;
221 bool alloced;
222 bool hw_triggered;
223 int slot[EDMA_MAX_SLOTS];
224 int missed;
225 struct dma_slave_config cfg;
226 };
227
228 struct edma_cc {
229 struct device *dev;
230 struct edma_soc_info *info;
231 void __iomem *base;
232 int id;
233 bool legacy_mode;
234
235 /* eDMA3 resource information */
236 unsigned num_channels;
237 unsigned num_qchannels;
238 unsigned num_region;
239 unsigned num_slots;
240 unsigned num_tc;
241 bool chmap_exist;
242 enum dma_event_q default_queue;
243
244 unsigned int ccint;
245 unsigned int ccerrint;
246
247 /*
248 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
249 * in use by Linux or if it is allocated to be used by DSP.
250 */
251 unsigned long *slot_inuse;
252
253 /*
254 * For tracking reserved channels used by DSP.
255 * If the bit is cleared, the channel is allocated to be used by DSP
256 * and Linux must not touch it.
257 */
258 unsigned long *channels_mask;
259
260 struct dma_device dma_slave;
261 struct dma_device *dma_memcpy;
262 struct edma_chan *slave_chans;
263 struct edma_tc *tc_list;
264 int dummy_slot;
265 };
266
267 /* dummy param set used to (re)initialize parameter RAM slots */
268 static const struct edmacc_param dummy_paramset = {
269 .link_bcntrld = 0xffff,
270 .ccnt = 1,
271 };
272
273 #define EDMA_BINDING_LEGACY 0
274 #define EDMA_BINDING_TPCC 1
275 static const u32 edma_binding_type[] = {
276 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
277 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
278 };
279
280 static const struct of_device_id edma_of_ids[] = {
281 {
282 .compatible = "ti,edma3",
283 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
284 },
285 {
286 .compatible = "ti,edma3-tpcc",
287 .data = &edma_binding_type[EDMA_BINDING_TPCC],
288 },
289 {}
290 };
291 MODULE_DEVICE_TABLE(of, edma_of_ids);
292
293 static const struct of_device_id edma_tptc_of_ids[] = {
294 { .compatible = "ti,edma3-tptc", },
295 {}
296 };
297 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
298
edma_read(struct edma_cc * ecc,int offset)299 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
300 {
301 return (unsigned int)__raw_readl(ecc->base + offset);
302 }
303
edma_write(struct edma_cc * ecc,int offset,int val)304 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
305 {
306 __raw_writel(val, ecc->base + offset);
307 }
308
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)309 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
310 unsigned or)
311 {
312 unsigned val = edma_read(ecc, offset);
313
314 val &= and;
315 val |= or;
316 edma_write(ecc, offset, val);
317 }
318
edma_or(struct edma_cc * ecc,int offset,unsigned or)319 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
320 {
321 unsigned val = edma_read(ecc, offset);
322
323 val |= or;
324 edma_write(ecc, offset, val);
325 }
326
edma_read_array(struct edma_cc * ecc,int offset,int i)327 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
328 int i)
329 {
330 return edma_read(ecc, offset + (i << 2));
331 }
332
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)333 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
334 unsigned val)
335 {
336 edma_write(ecc, offset + (i << 2), val);
337 }
338
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)339 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
340 unsigned and, unsigned or)
341 {
342 edma_modify(ecc, offset + (i << 2), and, or);
343 }
344
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)345 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
346 unsigned or)
347 {
348 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
349 }
350
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)351 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
352 int j, unsigned val)
353 {
354 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
355 }
356
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)357 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
358 int offset, int i)
359 {
360 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
361 }
362
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)363 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
364 unsigned val)
365 {
366 edma_write(ecc, EDMA_SHADOW0 + offset, val);
367 }
368
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)369 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
370 int i, unsigned val)
371 {
372 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
373 }
374
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)375 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
376 int param_no, unsigned and, unsigned or)
377 {
378 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
379 }
380
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)381 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
382 int priority)
383 {
384 int bit = queue_no * 4;
385
386 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
387 }
388
edma_set_chmap(struct edma_chan * echan,int slot)389 static void edma_set_chmap(struct edma_chan *echan, int slot)
390 {
391 struct edma_cc *ecc = echan->ecc;
392 int channel = EDMA_CHAN_SLOT(echan->ch_num);
393
394 if (ecc->chmap_exist) {
395 slot = EDMA_CHAN_SLOT(slot);
396 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
397 }
398 }
399
edma_setup_interrupt(struct edma_chan * echan,bool enable)400 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
401 {
402 struct edma_cc *ecc = echan->ecc;
403 int channel = EDMA_CHAN_SLOT(echan->ch_num);
404 int idx = EDMA_REG_ARRAY_INDEX(channel);
405 int ch_bit = EDMA_CHANNEL_BIT(channel);
406
407 if (enable) {
408 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
409 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
410 } else {
411 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
412 }
413 }
414
415 /*
416 * paRAM slot management functions
417 */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)418 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
419 const struct edmacc_param *param)
420 {
421 slot = EDMA_CHAN_SLOT(slot);
422 if (slot >= ecc->num_slots)
423 return;
424 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
425 }
426
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)427 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
428 struct edmacc_param *param)
429 {
430 slot = EDMA_CHAN_SLOT(slot);
431 if (slot >= ecc->num_slots)
432 return -EINVAL;
433 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
434
435 return 0;
436 }
437
438 /**
439 * edma_alloc_slot - allocate DMA parameter RAM
440 * @ecc: pointer to edma_cc struct
441 * @slot: specific slot to allocate; negative for "any unused slot"
442 *
443 * This allocates a parameter RAM slot, initializing it to hold a
444 * dummy transfer. Slots allocated using this routine have not been
445 * mapped to a hardware DMA channel, and will normally be used by
446 * linking to them from a slot associated with a DMA channel.
447 *
448 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
449 * slots may be allocated on behalf of DSP firmware.
450 *
451 * Returns the number of the slot, else negative errno.
452 */
edma_alloc_slot(struct edma_cc * ecc,int slot)453 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
454 {
455 if (slot >= 0) {
456 slot = EDMA_CHAN_SLOT(slot);
457 /* Requesting entry paRAM slot for a HW triggered channel. */
458 if (ecc->chmap_exist && slot < ecc->num_channels)
459 slot = EDMA_SLOT_ANY;
460 }
461
462 if (slot < 0) {
463 if (ecc->chmap_exist)
464 slot = 0;
465 else
466 slot = ecc->num_channels;
467 for (;;) {
468 slot = find_next_zero_bit(ecc->slot_inuse,
469 ecc->num_slots,
470 slot);
471 if (slot == ecc->num_slots)
472 return -ENOMEM;
473 if (!test_and_set_bit(slot, ecc->slot_inuse))
474 break;
475 }
476 } else if (slot >= ecc->num_slots) {
477 return -EINVAL;
478 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
479 return -EBUSY;
480 }
481
482 edma_write_slot(ecc, slot, &dummy_paramset);
483
484 return EDMA_CTLR_CHAN(ecc->id, slot);
485 }
486
edma_free_slot(struct edma_cc * ecc,unsigned slot)487 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
488 {
489 slot = EDMA_CHAN_SLOT(slot);
490 if (slot >= ecc->num_slots)
491 return;
492
493 edma_write_slot(ecc, slot, &dummy_paramset);
494 clear_bit(slot, ecc->slot_inuse);
495 }
496
497 /**
498 * edma_link - link one parameter RAM slot to another
499 * @ecc: pointer to edma_cc struct
500 * @from: parameter RAM slot originating the link
501 * @to: parameter RAM slot which is the link target
502 *
503 * The originating slot should not be part of any active DMA transfer.
504 */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)505 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
506 {
507 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
508 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
509
510 from = EDMA_CHAN_SLOT(from);
511 to = EDMA_CHAN_SLOT(to);
512 if (from >= ecc->num_slots || to >= ecc->num_slots)
513 return;
514
515 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
516 PARM_OFFSET(to));
517 }
518
519 /**
520 * edma_get_position - returns the current transfer point
521 * @ecc: pointer to edma_cc struct
522 * @slot: parameter RAM slot being examined
523 * @dst: true selects the dest position, false the source
524 *
525 * Returns the position of the current active slot
526 */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)527 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
528 bool dst)
529 {
530 u32 offs;
531
532 slot = EDMA_CHAN_SLOT(slot);
533 offs = PARM_OFFSET(slot);
534 offs += dst ? PARM_DST : PARM_SRC;
535
536 return edma_read(ecc, offs);
537 }
538
539 /*
540 * Channels with event associations will be triggered by their hardware
541 * events, and channels without such associations will be triggered by
542 * software. (At this writing there is no interface for using software
543 * triggers except with channels that don't support hardware triggers.)
544 */
edma_start(struct edma_chan * echan)545 static void edma_start(struct edma_chan *echan)
546 {
547 struct edma_cc *ecc = echan->ecc;
548 int channel = EDMA_CHAN_SLOT(echan->ch_num);
549 int idx = EDMA_REG_ARRAY_INDEX(channel);
550 int ch_bit = EDMA_CHANNEL_BIT(channel);
551
552 if (!echan->hw_triggered) {
553 /* EDMA channels without event association */
554 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
555 edma_shadow0_read_array(ecc, SH_ESR, idx));
556 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
557 } else {
558 /* EDMA channel with event association */
559 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
560 edma_shadow0_read_array(ecc, SH_ER, idx));
561 /* Clear any pending event or error */
562 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
563 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
564 /* Clear any SER */
565 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
566 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
567 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
568 edma_shadow0_read_array(ecc, SH_EER, idx));
569 }
570 }
571
edma_stop(struct edma_chan * echan)572 static void edma_stop(struct edma_chan *echan)
573 {
574 struct edma_cc *ecc = echan->ecc;
575 int channel = EDMA_CHAN_SLOT(echan->ch_num);
576 int idx = EDMA_REG_ARRAY_INDEX(channel);
577 int ch_bit = EDMA_CHANNEL_BIT(channel);
578
579 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
580 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
581 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
582 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
583
584 /* clear possibly pending completion interrupt */
585 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
586
587 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
588 edma_shadow0_read_array(ecc, SH_EER, idx));
589
590 /* REVISIT: consider guarding against inappropriate event
591 * chaining by overwriting with dummy_paramset.
592 */
593 }
594
595 /*
596 * Temporarily disable EDMA hardware events on the specified channel,
597 * preventing them from triggering new transfers
598 */
edma_pause(struct edma_chan * echan)599 static void edma_pause(struct edma_chan *echan)
600 {
601 int channel = EDMA_CHAN_SLOT(echan->ch_num);
602
603 edma_shadow0_write_array(echan->ecc, SH_EECR,
604 EDMA_REG_ARRAY_INDEX(channel),
605 EDMA_CHANNEL_BIT(channel));
606 }
607
608 /* Re-enable EDMA hardware events on the specified channel. */
edma_resume(struct edma_chan * echan)609 static void edma_resume(struct edma_chan *echan)
610 {
611 int channel = EDMA_CHAN_SLOT(echan->ch_num);
612
613 edma_shadow0_write_array(echan->ecc, SH_EESR,
614 EDMA_REG_ARRAY_INDEX(channel),
615 EDMA_CHANNEL_BIT(channel));
616 }
617
edma_trigger_channel(struct edma_chan * echan)618 static void edma_trigger_channel(struct edma_chan *echan)
619 {
620 struct edma_cc *ecc = echan->ecc;
621 int channel = EDMA_CHAN_SLOT(echan->ch_num);
622 int idx = EDMA_REG_ARRAY_INDEX(channel);
623 int ch_bit = EDMA_CHANNEL_BIT(channel);
624
625 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
626
627 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
628 edma_shadow0_read_array(ecc, SH_ESR, idx));
629 }
630
edma_clean_channel(struct edma_chan * echan)631 static void edma_clean_channel(struct edma_chan *echan)
632 {
633 struct edma_cc *ecc = echan->ecc;
634 int channel = EDMA_CHAN_SLOT(echan->ch_num);
635 int idx = EDMA_REG_ARRAY_INDEX(channel);
636 int ch_bit = EDMA_CHANNEL_BIT(channel);
637
638 dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
639 edma_read_array(ecc, EDMA_EMR, idx));
640 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
641 /* Clear the corresponding EMR bits */
642 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
643 /* Clear any SER */
644 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
645 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
646 }
647
648 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)649 static void edma_assign_channel_eventq(struct edma_chan *echan,
650 enum dma_event_q eventq_no)
651 {
652 struct edma_cc *ecc = echan->ecc;
653 int channel = EDMA_CHAN_SLOT(echan->ch_num);
654 int bit = (channel & 0x7) * 4;
655
656 /* default to low priority queue */
657 if (eventq_no == EVENTQ_DEFAULT)
658 eventq_no = ecc->default_queue;
659 if (eventq_no >= ecc->num_tc)
660 return;
661
662 eventq_no &= 7;
663 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
664 eventq_no << bit);
665 }
666
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)667 static int edma_alloc_channel(struct edma_chan *echan,
668 enum dma_event_q eventq_no)
669 {
670 struct edma_cc *ecc = echan->ecc;
671 int channel = EDMA_CHAN_SLOT(echan->ch_num);
672
673 if (!test_bit(echan->ch_num, ecc->channels_mask)) {
674 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
675 echan->ch_num);
676 return -EINVAL;
677 }
678
679 /* ensure access through shadow region 0 */
680 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
681 EDMA_CHANNEL_BIT(channel));
682
683 /* ensure no events are pending */
684 edma_stop(echan);
685
686 edma_setup_interrupt(echan, true);
687
688 edma_assign_channel_eventq(echan, eventq_no);
689
690 return 0;
691 }
692
edma_free_channel(struct edma_chan * echan)693 static void edma_free_channel(struct edma_chan *echan)
694 {
695 /* ensure no events are pending */
696 edma_stop(echan);
697 /* REVISIT should probably take out of shadow region 0 */
698 edma_setup_interrupt(echan, false);
699 }
700
to_edma_chan(struct dma_chan * c)701 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
702 {
703 return container_of(c, struct edma_chan, vchan.chan);
704 }
705
to_edma_desc(struct dma_async_tx_descriptor * tx)706 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
707 {
708 return container_of(tx, struct edma_desc, vdesc.tx);
709 }
710
edma_desc_free(struct virt_dma_desc * vdesc)711 static void edma_desc_free(struct virt_dma_desc *vdesc)
712 {
713 kfree(container_of(vdesc, struct edma_desc, vdesc));
714 }
715
716 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)717 static void edma_execute(struct edma_chan *echan)
718 {
719 struct edma_cc *ecc = echan->ecc;
720 struct virt_dma_desc *vdesc;
721 struct edma_desc *edesc;
722 struct device *dev = echan->vchan.chan.device->dev;
723 int i, j, left, nslots;
724
725 if (!echan->edesc) {
726 /* Setup is needed for the first transfer */
727 vdesc = vchan_next_desc(&echan->vchan);
728 if (!vdesc)
729 return;
730 list_del(&vdesc->node);
731 echan->edesc = to_edma_desc(&vdesc->tx);
732 }
733
734 edesc = echan->edesc;
735
736 /* Find out how many left */
737 left = edesc->pset_nr - edesc->processed;
738 nslots = min(MAX_NR_SG, left);
739 edesc->sg_len = 0;
740
741 /* Write descriptor PaRAM set(s) */
742 for (i = 0; i < nslots; i++) {
743 j = i + edesc->processed;
744 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
745 edesc->sg_len += edesc->pset[j].len;
746 dev_vdbg(dev,
747 "\n pset[%d]:\n"
748 " chnum\t%d\n"
749 " slot\t%d\n"
750 " opt\t%08x\n"
751 " src\t%08x\n"
752 " dst\t%08x\n"
753 " abcnt\t%08x\n"
754 " ccnt\t%08x\n"
755 " bidx\t%08x\n"
756 " cidx\t%08x\n"
757 " lkrld\t%08x\n",
758 j, echan->ch_num, echan->slot[i],
759 edesc->pset[j].param.opt,
760 edesc->pset[j].param.src,
761 edesc->pset[j].param.dst,
762 edesc->pset[j].param.a_b_cnt,
763 edesc->pset[j].param.ccnt,
764 edesc->pset[j].param.src_dst_bidx,
765 edesc->pset[j].param.src_dst_cidx,
766 edesc->pset[j].param.link_bcntrld);
767 /* Link to the previous slot if not the last set */
768 if (i != (nslots - 1))
769 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
770 }
771
772 edesc->processed += nslots;
773
774 /*
775 * If this is either the last set in a set of SG-list transactions
776 * then setup a link to the dummy slot, this results in all future
777 * events being absorbed and that's OK because we're done
778 */
779 if (edesc->processed == edesc->pset_nr) {
780 if (edesc->cyclic)
781 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
782 else
783 edma_link(ecc, echan->slot[nslots - 1],
784 echan->ecc->dummy_slot);
785 }
786
787 if (echan->missed) {
788 /*
789 * This happens due to setup times between intermediate
790 * transfers in long SG lists which have to be broken up into
791 * transfers of MAX_NR_SG
792 */
793 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
794 edma_clean_channel(echan);
795 edma_stop(echan);
796 edma_start(echan);
797 edma_trigger_channel(echan);
798 echan->missed = 0;
799 } else if (edesc->processed <= MAX_NR_SG) {
800 dev_dbg(dev, "first transfer starting on channel %d\n",
801 echan->ch_num);
802 edma_start(echan);
803 } else {
804 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
805 echan->ch_num, edesc->processed);
806 edma_resume(echan);
807 }
808 }
809
edma_terminate_all(struct dma_chan * chan)810 static int edma_terminate_all(struct dma_chan *chan)
811 {
812 struct edma_chan *echan = to_edma_chan(chan);
813 unsigned long flags;
814 LIST_HEAD(head);
815
816 spin_lock_irqsave(&echan->vchan.lock, flags);
817
818 /*
819 * Stop DMA activity: we assume the callback will not be called
820 * after edma_dma() returns (even if it does, it will see
821 * echan->edesc is NULL and exit.)
822 */
823 if (echan->edesc) {
824 edma_stop(echan);
825 /* Move the cyclic channel back to default queue */
826 if (!echan->tc && echan->edesc->cyclic)
827 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
828
829 vchan_terminate_vdesc(&echan->edesc->vdesc);
830 echan->edesc = NULL;
831 }
832
833 vchan_get_all_descriptors(&echan->vchan, &head);
834 spin_unlock_irqrestore(&echan->vchan.lock, flags);
835 vchan_dma_desc_free_list(&echan->vchan, &head);
836
837 return 0;
838 }
839
edma_synchronize(struct dma_chan * chan)840 static void edma_synchronize(struct dma_chan *chan)
841 {
842 struct edma_chan *echan = to_edma_chan(chan);
843
844 vchan_synchronize(&echan->vchan);
845 }
846
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)847 static int edma_slave_config(struct dma_chan *chan,
848 struct dma_slave_config *cfg)
849 {
850 struct edma_chan *echan = to_edma_chan(chan);
851
852 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
853 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
854 return -EINVAL;
855
856 if (cfg->src_maxburst > chan->device->max_burst ||
857 cfg->dst_maxburst > chan->device->max_burst)
858 return -EINVAL;
859
860 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
861
862 return 0;
863 }
864
edma_dma_pause(struct dma_chan * chan)865 static int edma_dma_pause(struct dma_chan *chan)
866 {
867 struct edma_chan *echan = to_edma_chan(chan);
868
869 if (!echan->edesc)
870 return -EINVAL;
871
872 edma_pause(echan);
873 return 0;
874 }
875
edma_dma_resume(struct dma_chan * chan)876 static int edma_dma_resume(struct dma_chan *chan)
877 {
878 struct edma_chan *echan = to_edma_chan(chan);
879
880 edma_resume(echan);
881 return 0;
882 }
883
884 /*
885 * A PaRAM set configuration abstraction used by other modes
886 * @chan: Channel who's PaRAM set we're configuring
887 * @pset: PaRAM set to initialize and setup.
888 * @src_addr: Source address of the DMA
889 * @dst_addr: Destination address of the DMA
890 * @burst: In units of dev_width, how much to send
891 * @dev_width: How much is the dev_width
892 * @dma_length: Total length of the DMA transfer
893 * @direction: Direction of the transfer
894 */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)895 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
896 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
897 unsigned int acnt, unsigned int dma_length,
898 enum dma_transfer_direction direction)
899 {
900 struct edma_chan *echan = to_edma_chan(chan);
901 struct device *dev = chan->device->dev;
902 struct edmacc_param *param = &epset->param;
903 int bcnt, ccnt, cidx;
904 int src_bidx, dst_bidx, src_cidx, dst_cidx;
905 int absync;
906
907 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
908 if (!burst)
909 burst = 1;
910 /*
911 * If the maxburst is equal to the fifo width, use
912 * A-synced transfers. This allows for large contiguous
913 * buffer transfers using only one PaRAM set.
914 */
915 if (burst == 1) {
916 /*
917 * For the A-sync case, bcnt and ccnt are the remainder
918 * and quotient respectively of the division of:
919 * (dma_length / acnt) by (SZ_64K -1). This is so
920 * that in case bcnt over flows, we have ccnt to use.
921 * Note: In A-sync transfer only, bcntrld is used, but it
922 * only applies for sg_dma_len(sg) >= SZ_64K.
923 * In this case, the best way adopted is- bccnt for the
924 * first frame will be the remainder below. Then for
925 * every successive frame, bcnt will be SZ_64K-1. This
926 * is assured as bcntrld = 0xffff in end of function.
927 */
928 absync = false;
929 ccnt = dma_length / acnt / (SZ_64K - 1);
930 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
931 /*
932 * If bcnt is non-zero, we have a remainder and hence an
933 * extra frame to transfer, so increment ccnt.
934 */
935 if (bcnt)
936 ccnt++;
937 else
938 bcnt = SZ_64K - 1;
939 cidx = acnt;
940 } else {
941 /*
942 * If maxburst is greater than the fifo address_width,
943 * use AB-synced transfers where A count is the fifo
944 * address_width and B count is the maxburst. In this
945 * case, we are limited to transfers of C count frames
946 * of (address_width * maxburst) where C count is limited
947 * to SZ_64K-1. This places an upper bound on the length
948 * of an SG segment that can be handled.
949 */
950 absync = true;
951 bcnt = burst;
952 ccnt = dma_length / (acnt * bcnt);
953 if (ccnt > (SZ_64K - 1)) {
954 dev_err(dev, "Exceeded max SG segment size\n");
955 return -EINVAL;
956 }
957 cidx = acnt * bcnt;
958 }
959
960 epset->len = dma_length;
961
962 if (direction == DMA_MEM_TO_DEV) {
963 src_bidx = acnt;
964 src_cidx = cidx;
965 dst_bidx = 0;
966 dst_cidx = 0;
967 epset->addr = src_addr;
968 } else if (direction == DMA_DEV_TO_MEM) {
969 src_bidx = 0;
970 src_cidx = 0;
971 dst_bidx = acnt;
972 dst_cidx = cidx;
973 epset->addr = dst_addr;
974 } else if (direction == DMA_MEM_TO_MEM) {
975 src_bidx = acnt;
976 src_cidx = cidx;
977 dst_bidx = acnt;
978 dst_cidx = cidx;
979 epset->addr = src_addr;
980 } else {
981 dev_err(dev, "%s: direction not implemented yet\n", __func__);
982 return -EINVAL;
983 }
984
985 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
986 /* Configure A or AB synchronized transfers */
987 if (absync)
988 param->opt |= SYNCDIM;
989
990 param->src = src_addr;
991 param->dst = dst_addr;
992
993 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
994 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
995
996 param->a_b_cnt = bcnt << 16 | acnt;
997 param->ccnt = ccnt;
998 /*
999 * Only time when (bcntrld) auto reload is required is for
1000 * A-sync case, and in this case, a requirement of reload value
1001 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1002 * and then later will be populated by edma_execute.
1003 */
1004 param->link_bcntrld = 0xffffffff;
1005 return absync;
1006 }
1007
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1008 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1009 struct dma_chan *chan, struct scatterlist *sgl,
1010 unsigned int sg_len, enum dma_transfer_direction direction,
1011 unsigned long tx_flags, void *context)
1012 {
1013 struct edma_chan *echan = to_edma_chan(chan);
1014 struct device *dev = chan->device->dev;
1015 struct edma_desc *edesc;
1016 dma_addr_t src_addr = 0, dst_addr = 0;
1017 enum dma_slave_buswidth dev_width;
1018 u32 burst;
1019 struct scatterlist *sg;
1020 int i, nslots, ret;
1021
1022 if (unlikely(!echan || !sgl || !sg_len))
1023 return NULL;
1024
1025 if (direction == DMA_DEV_TO_MEM) {
1026 src_addr = echan->cfg.src_addr;
1027 dev_width = echan->cfg.src_addr_width;
1028 burst = echan->cfg.src_maxburst;
1029 } else if (direction == DMA_MEM_TO_DEV) {
1030 dst_addr = echan->cfg.dst_addr;
1031 dev_width = echan->cfg.dst_addr_width;
1032 burst = echan->cfg.dst_maxburst;
1033 } else {
1034 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1035 return NULL;
1036 }
1037
1038 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1039 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1040 return NULL;
1041 }
1042
1043 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1044 if (!edesc)
1045 return NULL;
1046
1047 edesc->pset_nr = sg_len;
1048 edesc->residue = 0;
1049 edesc->direction = direction;
1050 edesc->echan = echan;
1051
1052 /* Allocate a PaRAM slot, if needed */
1053 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1054
1055 for (i = 0; i < nslots; i++) {
1056 if (echan->slot[i] < 0) {
1057 echan->slot[i] =
1058 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1059 if (echan->slot[i] < 0) {
1060 kfree(edesc);
1061 dev_err(dev, "%s: Failed to allocate slot\n",
1062 __func__);
1063 return NULL;
1064 }
1065 }
1066 }
1067
1068 /* Configure PaRAM sets for each SG */
1069 for_each_sg(sgl, sg, sg_len, i) {
1070 /* Get address for each SG */
1071 if (direction == DMA_DEV_TO_MEM)
1072 dst_addr = sg_dma_address(sg);
1073 else
1074 src_addr = sg_dma_address(sg);
1075
1076 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1077 dst_addr, burst, dev_width,
1078 sg_dma_len(sg), direction);
1079 if (ret < 0) {
1080 kfree(edesc);
1081 return NULL;
1082 }
1083
1084 edesc->absync = ret;
1085 edesc->residue += sg_dma_len(sg);
1086
1087 if (i == sg_len - 1)
1088 /* Enable completion interrupt */
1089 edesc->pset[i].param.opt |= TCINTEN;
1090 else if (!((i+1) % MAX_NR_SG))
1091 /*
1092 * Enable early completion interrupt for the
1093 * intermediateset. In this case the driver will be
1094 * notified when the paRAM set is submitted to TC. This
1095 * will allow more time to set up the next set of slots.
1096 */
1097 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1098 }
1099 edesc->residue_stat = edesc->residue;
1100
1101 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1102 }
1103
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1104 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1105 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1106 size_t len, unsigned long tx_flags)
1107 {
1108 int ret, nslots;
1109 struct edma_desc *edesc;
1110 struct device *dev = chan->device->dev;
1111 struct edma_chan *echan = to_edma_chan(chan);
1112 unsigned int width, pset_len, array_size;
1113
1114 if (unlikely(!echan || !len))
1115 return NULL;
1116
1117 /* Align the array size (acnt block) with the transfer properties */
1118 switch (__ffs((src | dest | len))) {
1119 case 0:
1120 array_size = SZ_32K - 1;
1121 break;
1122 case 1:
1123 array_size = SZ_32K - 2;
1124 break;
1125 default:
1126 array_size = SZ_32K - 4;
1127 break;
1128 }
1129
1130 if (len < SZ_64K) {
1131 /*
1132 * Transfer size less than 64K can be handled with one paRAM
1133 * slot and with one burst.
1134 * ACNT = length
1135 */
1136 width = len;
1137 pset_len = len;
1138 nslots = 1;
1139 } else {
1140 /*
1141 * Transfer size bigger than 64K will be handled with maximum of
1142 * two paRAM slots.
1143 * slot1: (full_length / 32767) times 32767 bytes bursts.
1144 * ACNT = 32767, length1: (full_length / 32767) * 32767
1145 * slot2: the remaining amount of data after slot1.
1146 * ACNT = full_length - length1, length2 = ACNT
1147 *
1148 * When the full_length is a multiple of 32767 one slot can be
1149 * used to complete the transfer.
1150 */
1151 width = array_size;
1152 pset_len = rounddown(len, width);
1153 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1154 if (unlikely(pset_len == len))
1155 nslots = 1;
1156 else
1157 nslots = 2;
1158 }
1159
1160 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1161 if (!edesc)
1162 return NULL;
1163
1164 edesc->pset_nr = nslots;
1165 edesc->residue = edesc->residue_stat = len;
1166 edesc->direction = DMA_MEM_TO_MEM;
1167 edesc->echan = echan;
1168
1169 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1170 width, pset_len, DMA_MEM_TO_MEM);
1171 if (ret < 0) {
1172 kfree(edesc);
1173 return NULL;
1174 }
1175
1176 edesc->absync = ret;
1177
1178 edesc->pset[0].param.opt |= ITCCHEN;
1179 if (nslots == 1) {
1180 /* Enable transfer complete interrupt if requested */
1181 if (tx_flags & DMA_PREP_INTERRUPT)
1182 edesc->pset[0].param.opt |= TCINTEN;
1183 } else {
1184 /* Enable transfer complete chaining for the first slot */
1185 edesc->pset[0].param.opt |= TCCHEN;
1186
1187 if (echan->slot[1] < 0) {
1188 echan->slot[1] = edma_alloc_slot(echan->ecc,
1189 EDMA_SLOT_ANY);
1190 if (echan->slot[1] < 0) {
1191 kfree(edesc);
1192 dev_err(dev, "%s: Failed to allocate slot\n",
1193 __func__);
1194 return NULL;
1195 }
1196 }
1197 dest += pset_len;
1198 src += pset_len;
1199 pset_len = width = len % array_size;
1200
1201 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1202 width, pset_len, DMA_MEM_TO_MEM);
1203 if (ret < 0) {
1204 kfree(edesc);
1205 return NULL;
1206 }
1207
1208 edesc->pset[1].param.opt |= ITCCHEN;
1209 /* Enable transfer complete interrupt if requested */
1210 if (tx_flags & DMA_PREP_INTERRUPT)
1211 edesc->pset[1].param.opt |= TCINTEN;
1212 }
1213
1214 if (!(tx_flags & DMA_PREP_INTERRUPT))
1215 edesc->polled = true;
1216
1217 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1218 }
1219
1220 static struct dma_async_tx_descriptor *
edma_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long tx_flags)1221 edma_prep_dma_interleaved(struct dma_chan *chan,
1222 struct dma_interleaved_template *xt,
1223 unsigned long tx_flags)
1224 {
1225 struct device *dev = chan->device->dev;
1226 struct edma_chan *echan = to_edma_chan(chan);
1227 struct edmacc_param *param;
1228 struct edma_desc *edesc;
1229 size_t src_icg, dst_icg;
1230 int src_bidx, dst_bidx;
1231
1232 /* Slave mode is not supported */
1233 if (is_slave_direction(xt->dir))
1234 return NULL;
1235
1236 if (xt->frame_size != 1 || xt->numf == 0)
1237 return NULL;
1238
1239 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1240 return NULL;
1241
1242 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1243 if (src_icg) {
1244 src_bidx = src_icg + xt->sgl[0].size;
1245 } else if (xt->src_inc) {
1246 src_bidx = xt->sgl[0].size;
1247 } else {
1248 dev_err(dev, "%s: SRC constant addressing is not supported\n",
1249 __func__);
1250 return NULL;
1251 }
1252
1253 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1254 if (dst_icg) {
1255 dst_bidx = dst_icg + xt->sgl[0].size;
1256 } else if (xt->dst_inc) {
1257 dst_bidx = xt->sgl[0].size;
1258 } else {
1259 dev_err(dev, "%s: DST constant addressing is not supported\n",
1260 __func__);
1261 return NULL;
1262 }
1263
1264 if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1265 return NULL;
1266
1267 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1268 if (!edesc)
1269 return NULL;
1270
1271 edesc->direction = DMA_MEM_TO_MEM;
1272 edesc->echan = echan;
1273 edesc->pset_nr = 1;
1274
1275 param = &edesc->pset[0].param;
1276
1277 param->src = xt->src_start;
1278 param->dst = xt->dst_start;
1279 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1280 param->ccnt = 1;
1281 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1282 param->src_dst_cidx = 0;
1283
1284 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1285 param->opt |= ITCCHEN;
1286 /* Enable transfer complete interrupt if requested */
1287 if (tx_flags & DMA_PREP_INTERRUPT)
1288 param->opt |= TCINTEN;
1289 else
1290 edesc->polled = true;
1291
1292 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1293 }
1294
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1295 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1296 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1297 size_t period_len, enum dma_transfer_direction direction,
1298 unsigned long tx_flags)
1299 {
1300 struct edma_chan *echan = to_edma_chan(chan);
1301 struct device *dev = chan->device->dev;
1302 struct edma_desc *edesc;
1303 dma_addr_t src_addr, dst_addr;
1304 enum dma_slave_buswidth dev_width;
1305 bool use_intermediate = false;
1306 u32 burst;
1307 int i, ret, nslots;
1308
1309 if (unlikely(!echan || !buf_len || !period_len))
1310 return NULL;
1311
1312 if (direction == DMA_DEV_TO_MEM) {
1313 src_addr = echan->cfg.src_addr;
1314 dst_addr = buf_addr;
1315 dev_width = echan->cfg.src_addr_width;
1316 burst = echan->cfg.src_maxburst;
1317 } else if (direction == DMA_MEM_TO_DEV) {
1318 src_addr = buf_addr;
1319 dst_addr = echan->cfg.dst_addr;
1320 dev_width = echan->cfg.dst_addr_width;
1321 burst = echan->cfg.dst_maxburst;
1322 } else {
1323 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1324 return NULL;
1325 }
1326
1327 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1328 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1329 return NULL;
1330 }
1331
1332 if (unlikely(buf_len % period_len)) {
1333 dev_err(dev, "Period should be multiple of Buffer length\n");
1334 return NULL;
1335 }
1336
1337 nslots = (buf_len / period_len) + 1;
1338
1339 /*
1340 * Cyclic DMA users such as audio cannot tolerate delays introduced
1341 * by cases where the number of periods is more than the maximum
1342 * number of SGs the EDMA driver can handle at a time. For DMA types
1343 * such as Slave SGs, such delays are tolerable and synchronized,
1344 * but the synchronization is difficult to achieve with Cyclic and
1345 * cannot be guaranteed, so we error out early.
1346 */
1347 if (nslots > MAX_NR_SG) {
1348 /*
1349 * If the burst and period sizes are the same, we can put
1350 * the full buffer into a single period and activate
1351 * intermediate interrupts. This will produce interrupts
1352 * after each burst, which is also after each desired period.
1353 */
1354 if (burst == period_len) {
1355 period_len = buf_len;
1356 nslots = 2;
1357 use_intermediate = true;
1358 } else {
1359 return NULL;
1360 }
1361 }
1362
1363 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1364 if (!edesc)
1365 return NULL;
1366
1367 edesc->cyclic = 1;
1368 edesc->pset_nr = nslots;
1369 edesc->residue = edesc->residue_stat = buf_len;
1370 edesc->direction = direction;
1371 edesc->echan = echan;
1372
1373 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1374 __func__, echan->ch_num, nslots, period_len, buf_len);
1375
1376 for (i = 0; i < nslots; i++) {
1377 /* Allocate a PaRAM slot, if needed */
1378 if (echan->slot[i] < 0) {
1379 echan->slot[i] =
1380 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1381 if (echan->slot[i] < 0) {
1382 kfree(edesc);
1383 dev_err(dev, "%s: Failed to allocate slot\n",
1384 __func__);
1385 return NULL;
1386 }
1387 }
1388
1389 if (i == nslots - 1) {
1390 memcpy(&edesc->pset[i], &edesc->pset[0],
1391 sizeof(edesc->pset[0]));
1392 break;
1393 }
1394
1395 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1396 dst_addr, burst, dev_width, period_len,
1397 direction);
1398 if (ret < 0) {
1399 kfree(edesc);
1400 return NULL;
1401 }
1402
1403 if (direction == DMA_DEV_TO_MEM)
1404 dst_addr += period_len;
1405 else
1406 src_addr += period_len;
1407
1408 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1409 dev_vdbg(dev,
1410 "\n pset[%d]:\n"
1411 " chnum\t%d\n"
1412 " slot\t%d\n"
1413 " opt\t%08x\n"
1414 " src\t%08x\n"
1415 " dst\t%08x\n"
1416 " abcnt\t%08x\n"
1417 " ccnt\t%08x\n"
1418 " bidx\t%08x\n"
1419 " cidx\t%08x\n"
1420 " lkrld\t%08x\n",
1421 i, echan->ch_num, echan->slot[i],
1422 edesc->pset[i].param.opt,
1423 edesc->pset[i].param.src,
1424 edesc->pset[i].param.dst,
1425 edesc->pset[i].param.a_b_cnt,
1426 edesc->pset[i].param.ccnt,
1427 edesc->pset[i].param.src_dst_bidx,
1428 edesc->pset[i].param.src_dst_cidx,
1429 edesc->pset[i].param.link_bcntrld);
1430
1431 edesc->absync = ret;
1432
1433 /*
1434 * Enable period interrupt only if it is requested
1435 */
1436 if (tx_flags & DMA_PREP_INTERRUPT) {
1437 edesc->pset[i].param.opt |= TCINTEN;
1438
1439 /* Also enable intermediate interrupts if necessary */
1440 if (use_intermediate)
1441 edesc->pset[i].param.opt |= ITCINTEN;
1442 }
1443 }
1444
1445 /* Place the cyclic channel to highest priority queue */
1446 if (!echan->tc)
1447 edma_assign_channel_eventq(echan, EVENTQ_0);
1448
1449 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1450 }
1451
edma_completion_handler(struct edma_chan * echan)1452 static void edma_completion_handler(struct edma_chan *echan)
1453 {
1454 struct device *dev = echan->vchan.chan.device->dev;
1455 struct edma_desc *edesc;
1456
1457 spin_lock(&echan->vchan.lock);
1458 edesc = echan->edesc;
1459 if (edesc) {
1460 if (edesc->cyclic) {
1461 vchan_cyclic_callback(&edesc->vdesc);
1462 spin_unlock(&echan->vchan.lock);
1463 return;
1464 } else if (edesc->processed == edesc->pset_nr) {
1465 edesc->residue = 0;
1466 edma_stop(echan);
1467 vchan_cookie_complete(&edesc->vdesc);
1468 echan->edesc = NULL;
1469
1470 dev_dbg(dev, "Transfer completed on channel %d\n",
1471 echan->ch_num);
1472 } else {
1473 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1474 echan->ch_num);
1475
1476 edma_pause(echan);
1477
1478 /* Update statistics for tx_status */
1479 edesc->residue -= edesc->sg_len;
1480 edesc->residue_stat = edesc->residue;
1481 edesc->processed_stat = edesc->processed;
1482 }
1483 edma_execute(echan);
1484 }
1485
1486 spin_unlock(&echan->vchan.lock);
1487 }
1488
1489 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1490 static irqreturn_t dma_irq_handler(int irq, void *data)
1491 {
1492 struct edma_cc *ecc = data;
1493 int ctlr;
1494 u32 sh_ier;
1495 u32 sh_ipr;
1496 u32 bank;
1497
1498 ctlr = ecc->id;
1499 if (ctlr < 0)
1500 return IRQ_NONE;
1501
1502 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1503
1504 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1505 if (!sh_ipr) {
1506 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1507 if (!sh_ipr)
1508 return IRQ_NONE;
1509 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1510 bank = 1;
1511 } else {
1512 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1513 bank = 0;
1514 }
1515
1516 do {
1517 u32 slot;
1518 u32 channel;
1519
1520 slot = __ffs(sh_ipr);
1521 sh_ipr &= ~(BIT(slot));
1522
1523 if (sh_ier & BIT(slot)) {
1524 channel = (bank << 5) | slot;
1525 /* Clear the corresponding IPR bits */
1526 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1527 edma_completion_handler(&ecc->slave_chans[channel]);
1528 }
1529 } while (sh_ipr);
1530
1531 edma_shadow0_write(ecc, SH_IEVAL, 1);
1532 return IRQ_HANDLED;
1533 }
1534
edma_error_handler(struct edma_chan * echan)1535 static void edma_error_handler(struct edma_chan *echan)
1536 {
1537 struct edma_cc *ecc = echan->ecc;
1538 struct device *dev = echan->vchan.chan.device->dev;
1539 struct edmacc_param p;
1540 int err;
1541
1542 if (!echan->edesc)
1543 return;
1544
1545 spin_lock(&echan->vchan.lock);
1546
1547 err = edma_read_slot(ecc, echan->slot[0], &p);
1548
1549 /*
1550 * Issue later based on missed flag which will be sure
1551 * to happen as:
1552 * (1) we finished transmitting an intermediate slot and
1553 * edma_execute is coming up.
1554 * (2) or we finished current transfer and issue will
1555 * call edma_execute.
1556 *
1557 * Important note: issuing can be dangerous here and
1558 * lead to some nasty recursion when we are in a NULL
1559 * slot. So we avoid doing so and set the missed flag.
1560 */
1561 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1562 dev_dbg(dev, "Error on null slot, setting miss\n");
1563 echan->missed = 1;
1564 } else {
1565 /*
1566 * The slot is already programmed but the event got
1567 * missed, so its safe to issue it here.
1568 */
1569 dev_dbg(dev, "Missed event, TRIGGERING\n");
1570 edma_clean_channel(echan);
1571 edma_stop(echan);
1572 edma_start(echan);
1573 edma_trigger_channel(echan);
1574 }
1575 spin_unlock(&echan->vchan.lock);
1576 }
1577
edma_error_pending(struct edma_cc * ecc)1578 static inline bool edma_error_pending(struct edma_cc *ecc)
1579 {
1580 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1581 edma_read_array(ecc, EDMA_EMR, 1) ||
1582 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1583 return true;
1584
1585 return false;
1586 }
1587
1588 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1589 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1590 {
1591 struct edma_cc *ecc = data;
1592 int i, j;
1593 int ctlr;
1594 unsigned int cnt = 0;
1595 unsigned int val;
1596
1597 ctlr = ecc->id;
1598 if (ctlr < 0)
1599 return IRQ_NONE;
1600
1601 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1602
1603 if (!edma_error_pending(ecc)) {
1604 /*
1605 * The registers indicate no pending error event but the irq
1606 * handler has been called.
1607 * Ask eDMA to re-evaluate the error registers.
1608 */
1609 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1610 __func__);
1611 edma_write(ecc, EDMA_EEVAL, 1);
1612 return IRQ_NONE;
1613 }
1614
1615 while (1) {
1616 /* Event missed register(s) */
1617 for (j = 0; j < 2; j++) {
1618 unsigned long emr;
1619
1620 val = edma_read_array(ecc, EDMA_EMR, j);
1621 if (!val)
1622 continue;
1623
1624 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1625 emr = val;
1626 for_each_set_bit(i, &emr, 32) {
1627 int k = (j << 5) + i;
1628
1629 /* Clear the corresponding EMR bits */
1630 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1631 /* Clear any SER */
1632 edma_shadow0_write_array(ecc, SH_SECR, j,
1633 BIT(i));
1634 edma_error_handler(&ecc->slave_chans[k]);
1635 }
1636 }
1637
1638 val = edma_read(ecc, EDMA_QEMR);
1639 if (val) {
1640 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1641 /* Not reported, just clear the interrupt reason. */
1642 edma_write(ecc, EDMA_QEMCR, val);
1643 edma_shadow0_write(ecc, SH_QSECR, val);
1644 }
1645
1646 val = edma_read(ecc, EDMA_CCERR);
1647 if (val) {
1648 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1649 /* Not reported, just clear the interrupt reason. */
1650 edma_write(ecc, EDMA_CCERRCLR, val);
1651 }
1652
1653 if (!edma_error_pending(ecc))
1654 break;
1655 cnt++;
1656 if (cnt > 10)
1657 break;
1658 }
1659 edma_write(ecc, EDMA_EEVAL, 1);
1660 return IRQ_HANDLED;
1661 }
1662
1663 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1664 static int edma_alloc_chan_resources(struct dma_chan *chan)
1665 {
1666 struct edma_chan *echan = to_edma_chan(chan);
1667 struct edma_cc *ecc = echan->ecc;
1668 struct device *dev = ecc->dev;
1669 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1670 int ret;
1671
1672 if (echan->tc) {
1673 eventq_no = echan->tc->id;
1674 } else if (ecc->tc_list) {
1675 /* memcpy channel */
1676 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1677 eventq_no = echan->tc->id;
1678 }
1679
1680 ret = edma_alloc_channel(echan, eventq_no);
1681 if (ret)
1682 return ret;
1683
1684 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1685 if (echan->slot[0] < 0) {
1686 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1687 EDMA_CHAN_SLOT(echan->ch_num));
1688 ret = echan->slot[0];
1689 goto err_slot;
1690 }
1691
1692 /* Set up channel -> slot mapping for the entry slot */
1693 edma_set_chmap(echan, echan->slot[0]);
1694 echan->alloced = true;
1695
1696 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1697 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1698 echan->hw_triggered ? "HW" : "SW");
1699
1700 return 0;
1701
1702 err_slot:
1703 edma_free_channel(echan);
1704 return ret;
1705 }
1706
1707 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1708 static void edma_free_chan_resources(struct dma_chan *chan)
1709 {
1710 struct edma_chan *echan = to_edma_chan(chan);
1711 struct device *dev = echan->ecc->dev;
1712 int i;
1713
1714 /* Terminate transfers */
1715 edma_stop(echan);
1716
1717 vchan_free_chan_resources(&echan->vchan);
1718
1719 /* Free EDMA PaRAM slots */
1720 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1721 if (echan->slot[i] >= 0) {
1722 edma_free_slot(echan->ecc, echan->slot[i]);
1723 echan->slot[i] = -1;
1724 }
1725 }
1726
1727 /* Set entry slot to the dummy slot */
1728 edma_set_chmap(echan, echan->ecc->dummy_slot);
1729
1730 /* Free EDMA channel */
1731 if (echan->alloced) {
1732 edma_free_channel(echan);
1733 echan->alloced = false;
1734 }
1735
1736 echan->tc = NULL;
1737 echan->hw_triggered = false;
1738
1739 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1740 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1741 }
1742
1743 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1744 static void edma_issue_pending(struct dma_chan *chan)
1745 {
1746 struct edma_chan *echan = to_edma_chan(chan);
1747 unsigned long flags;
1748
1749 spin_lock_irqsave(&echan->vchan.lock, flags);
1750 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1751 edma_execute(echan);
1752 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1753 }
1754
1755 /*
1756 * This limit exists to avoid a possible infinite loop when waiting for proof
1757 * that a particular transfer is completed. This limit can be hit if there
1758 * are large bursts to/from slow devices or the CPU is never able to catch
1759 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1760 * RX-FIFO, as many as 55 loops have been seen.
1761 */
1762 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1763
edma_residue(struct edma_desc * edesc)1764 static u32 edma_residue(struct edma_desc *edesc)
1765 {
1766 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1767 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1768 struct edma_chan *echan = edesc->echan;
1769 struct edma_pset *pset = edesc->pset;
1770 dma_addr_t done, pos, pos_old;
1771 int channel = EDMA_CHAN_SLOT(echan->ch_num);
1772 int idx = EDMA_REG_ARRAY_INDEX(channel);
1773 int ch_bit = EDMA_CHANNEL_BIT(channel);
1774 int event_reg;
1775 int i;
1776
1777 /*
1778 * We always read the dst/src position from the first RamPar
1779 * pset. That's the one which is active now.
1780 */
1781 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1782
1783 /*
1784 * "pos" may represent a transfer request that is still being
1785 * processed by the EDMACC or EDMATC. We will busy wait until
1786 * any one of the situations occurs:
1787 * 1. while and event is pending for the channel
1788 * 2. a position updated
1789 * 3. we hit the loop limit
1790 */
1791 if (is_slave_direction(edesc->direction))
1792 event_reg = SH_ER;
1793 else
1794 event_reg = SH_ESR;
1795
1796 pos_old = pos;
1797 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1798 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1799 if (pos != pos_old)
1800 break;
1801
1802 if (!--loop_count) {
1803 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1804 "%s: timeout waiting for PaRAM update\n",
1805 __func__);
1806 break;
1807 }
1808
1809 cpu_relax();
1810 }
1811
1812 /*
1813 * Cyclic is simple. Just subtract pset[0].addr from pos.
1814 *
1815 * We never update edesc->residue in the cyclic case, so we
1816 * can tell the remaining room to the end of the circular
1817 * buffer.
1818 */
1819 if (edesc->cyclic) {
1820 done = pos - pset->addr;
1821 edesc->residue_stat = edesc->residue - done;
1822 return edesc->residue_stat;
1823 }
1824
1825 /*
1826 * If the position is 0, then EDMA loaded the closing dummy slot, the
1827 * transfer is completed
1828 */
1829 if (!pos)
1830 return 0;
1831 /*
1832 * For SG operation we catch up with the last processed
1833 * status.
1834 */
1835 pset += edesc->processed_stat;
1836
1837 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1838 /*
1839 * If we are inside this pset address range, we know
1840 * this is the active one. Get the current delta and
1841 * stop walking the psets.
1842 */
1843 if (pos >= pset->addr && pos < pset->addr + pset->len)
1844 return edesc->residue_stat - (pos - pset->addr);
1845
1846 /* Otherwise mark it done and update residue_stat. */
1847 edesc->processed_stat++;
1848 edesc->residue_stat -= pset->len;
1849 }
1850 return edesc->residue_stat;
1851 }
1852
1853 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1854 static enum dma_status edma_tx_status(struct dma_chan *chan,
1855 dma_cookie_t cookie,
1856 struct dma_tx_state *txstate)
1857 {
1858 struct edma_chan *echan = to_edma_chan(chan);
1859 struct dma_tx_state txstate_tmp;
1860 enum dma_status ret;
1861 unsigned long flags;
1862
1863 ret = dma_cookie_status(chan, cookie, txstate);
1864
1865 if (ret == DMA_COMPLETE)
1866 return ret;
1867
1868 /* Provide a dummy dma_tx_state for completion checking */
1869 if (!txstate)
1870 txstate = &txstate_tmp;
1871
1872 spin_lock_irqsave(&echan->vchan.lock, flags);
1873 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1874 txstate->residue = edma_residue(echan->edesc);
1875 } else {
1876 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1877 cookie);
1878
1879 if (vdesc)
1880 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1881 else
1882 txstate->residue = 0;
1883 }
1884
1885 /*
1886 * Mark the cookie completed if the residue is 0 for non cyclic
1887 * transfers
1888 */
1889 if (ret != DMA_COMPLETE && !txstate->residue &&
1890 echan->edesc && echan->edesc->polled &&
1891 echan->edesc->vdesc.tx.cookie == cookie) {
1892 edma_stop(echan);
1893 vchan_cookie_complete(&echan->edesc->vdesc);
1894 echan->edesc = NULL;
1895 edma_execute(echan);
1896 ret = DMA_COMPLETE;
1897 }
1898
1899 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1900
1901 return ret;
1902 }
1903
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1904 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1905 {
1906 if (!memcpy_channels)
1907 return false;
1908 while (*memcpy_channels != -1) {
1909 if (*memcpy_channels == ch_num)
1910 return true;
1911 memcpy_channels++;
1912 }
1913 return false;
1914 }
1915
1916 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1917 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1918 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1919 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1920
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1921 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1922 {
1923 struct dma_device *s_ddev = &ecc->dma_slave;
1924 struct dma_device *m_ddev = NULL;
1925 s32 *memcpy_channels = ecc->info->memcpy_channels;
1926 int i, j;
1927
1928 dma_cap_zero(s_ddev->cap_mask);
1929 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1930 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1931 if (ecc->legacy_mode && !memcpy_channels) {
1932 dev_warn(ecc->dev,
1933 "Legacy memcpy is enabled, things might not work\n");
1934
1935 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1936 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1937 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1938 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1939 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1940 }
1941
1942 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1943 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1944 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1945 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1946 s_ddev->device_issue_pending = edma_issue_pending;
1947 s_ddev->device_tx_status = edma_tx_status;
1948 s_ddev->device_config = edma_slave_config;
1949 s_ddev->device_pause = edma_dma_pause;
1950 s_ddev->device_resume = edma_dma_resume;
1951 s_ddev->device_terminate_all = edma_terminate_all;
1952 s_ddev->device_synchronize = edma_synchronize;
1953
1954 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1955 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1956 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1957 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1958 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1959
1960 s_ddev->dev = ecc->dev;
1961 INIT_LIST_HEAD(&s_ddev->channels);
1962
1963 if (memcpy_channels) {
1964 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1965 if (!m_ddev) {
1966 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1967 memcpy_channels = NULL;
1968 goto ch_setup;
1969 }
1970 ecc->dma_memcpy = m_ddev;
1971
1972 dma_cap_zero(m_ddev->cap_mask);
1973 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1974 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1975
1976 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1977 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1978 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1979 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1980 m_ddev->device_issue_pending = edma_issue_pending;
1981 m_ddev->device_tx_status = edma_tx_status;
1982 m_ddev->device_config = edma_slave_config;
1983 m_ddev->device_pause = edma_dma_pause;
1984 m_ddev->device_resume = edma_dma_resume;
1985 m_ddev->device_terminate_all = edma_terminate_all;
1986 m_ddev->device_synchronize = edma_synchronize;
1987
1988 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1989 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1990 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1991 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1992
1993 m_ddev->dev = ecc->dev;
1994 INIT_LIST_HEAD(&m_ddev->channels);
1995 } else if (!ecc->legacy_mode) {
1996 dev_info(ecc->dev, "memcpy is disabled\n");
1997 }
1998
1999 ch_setup:
2000 for (i = 0; i < ecc->num_channels; i++) {
2001 struct edma_chan *echan = &ecc->slave_chans[i];
2002 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2003 echan->ecc = ecc;
2004 echan->vchan.desc_free = edma_desc_free;
2005
2006 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2007 vchan_init(&echan->vchan, m_ddev);
2008 else
2009 vchan_init(&echan->vchan, s_ddev);
2010
2011 INIT_LIST_HEAD(&echan->node);
2012 for (j = 0; j < EDMA_MAX_SLOTS; j++)
2013 echan->slot[j] = -1;
2014 }
2015 }
2016
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)2017 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2018 struct edma_cc *ecc)
2019 {
2020 int i;
2021 u32 value, cccfg;
2022 s8 (*queue_priority_map)[2];
2023
2024 /* Decode the eDMA3 configuration from CCCFG register */
2025 cccfg = edma_read(ecc, EDMA_CCCFG);
2026
2027 value = GET_NUM_REGN(cccfg);
2028 ecc->num_region = BIT(value);
2029
2030 value = GET_NUM_DMACH(cccfg);
2031 ecc->num_channels = BIT(value + 1);
2032
2033 value = GET_NUM_QDMACH(cccfg);
2034 ecc->num_qchannels = value * 2;
2035
2036 value = GET_NUM_PAENTRY(cccfg);
2037 ecc->num_slots = BIT(value + 4);
2038
2039 value = GET_NUM_EVQUE(cccfg);
2040 ecc->num_tc = value + 1;
2041
2042 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2043
2044 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2045 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2046 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2047 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2048 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2049 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2050 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2051
2052 /* Nothing need to be done if queue priority is provided */
2053 if (pdata->queue_priority_mapping)
2054 return 0;
2055
2056 /*
2057 * Configure TC/queue priority as follows:
2058 * Q0 - priority 0
2059 * Q1 - priority 1
2060 * Q2 - priority 2
2061 * ...
2062 * The meaning of priority numbers: 0 highest priority, 7 lowest
2063 * priority. So Q0 is the highest priority queue and the last queue has
2064 * the lowest priority.
2065 */
2066 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2067 GFP_KERNEL);
2068 if (!queue_priority_map)
2069 return -ENOMEM;
2070
2071 for (i = 0; i < ecc->num_tc; i++) {
2072 queue_priority_map[i][0] = i;
2073 queue_priority_map[i][1] = i;
2074 }
2075 queue_priority_map[i][0] = -1;
2076 queue_priority_map[i][1] = -1;
2077
2078 pdata->queue_priority_mapping = queue_priority_map;
2079 /* Default queue has the lowest priority */
2080 pdata->default_queue = i - 1;
2081
2082 return 0;
2083 }
2084
2085 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)2086 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2087 size_t sz)
2088 {
2089 const char pname[] = "ti,edma-xbar-event-map";
2090 struct resource res;
2091 void __iomem *xbar;
2092 s16 (*xbar_chans)[2];
2093 size_t nelm = sz / sizeof(s16);
2094 u32 shift, offset, mux;
2095 int ret, i;
2096
2097 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2098 if (!xbar_chans)
2099 return -ENOMEM;
2100
2101 ret = of_address_to_resource(dev->of_node, 1, &res);
2102 if (ret)
2103 return -ENOMEM;
2104
2105 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2106 if (!xbar)
2107 return -ENOMEM;
2108
2109 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2110 nelm);
2111 if (ret)
2112 return -EIO;
2113
2114 /* Invalidate last entry for the other user of this mess */
2115 nelm >>= 1;
2116 xbar_chans[nelm][0] = -1;
2117 xbar_chans[nelm][1] = -1;
2118
2119 for (i = 0; i < nelm; i++) {
2120 shift = (xbar_chans[i][1] & 0x03) << 3;
2121 offset = xbar_chans[i][1] & 0xfffffffc;
2122 mux = readl(xbar + offset);
2123 mux &= ~(0xff << shift);
2124 mux |= xbar_chans[i][0] << shift;
2125 writel(mux, (xbar + offset));
2126 }
2127
2128 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2129 return 0;
2130 }
2131
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2132 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2133 bool legacy_mode)
2134 {
2135 struct edma_soc_info *info;
2136 struct property *prop;
2137 int sz, ret;
2138
2139 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2140 if (!info)
2141 return ERR_PTR(-ENOMEM);
2142
2143 if (legacy_mode) {
2144 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2145 &sz);
2146 if (prop) {
2147 ret = edma_xbar_event_map(dev, info, sz);
2148 if (ret)
2149 return ERR_PTR(ret);
2150 }
2151 return info;
2152 }
2153
2154 /* Get the list of channels allocated to be used for memcpy */
2155 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2156 if (prop) {
2157 const char pname[] = "ti,edma-memcpy-channels";
2158 size_t nelm = sz / sizeof(s32);
2159 s32 *memcpy_ch;
2160
2161 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2162 GFP_KERNEL);
2163 if (!memcpy_ch)
2164 return ERR_PTR(-ENOMEM);
2165
2166 ret = of_property_read_u32_array(dev->of_node, pname,
2167 (u32 *)memcpy_ch, nelm);
2168 if (ret)
2169 return ERR_PTR(ret);
2170
2171 memcpy_ch[nelm] = -1;
2172 info->memcpy_channels = memcpy_ch;
2173 }
2174
2175 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2176 &sz);
2177 if (prop) {
2178 const char pname[] = "ti,edma-reserved-slot-ranges";
2179 u32 (*tmp)[2];
2180 s16 (*rsv_slots)[2];
2181 size_t nelm = sz / sizeof(*tmp);
2182 struct edma_rsv_info *rsv_info;
2183 int i;
2184
2185 if (!nelm)
2186 return info;
2187
2188 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2189 if (!tmp)
2190 return ERR_PTR(-ENOMEM);
2191
2192 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2193 if (!rsv_info) {
2194 kfree(tmp);
2195 return ERR_PTR(-ENOMEM);
2196 }
2197
2198 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2199 GFP_KERNEL);
2200 if (!rsv_slots) {
2201 kfree(tmp);
2202 return ERR_PTR(-ENOMEM);
2203 }
2204
2205 ret = of_property_read_u32_array(dev->of_node, pname,
2206 (u32 *)tmp, nelm * 2);
2207 if (ret) {
2208 kfree(tmp);
2209 return ERR_PTR(ret);
2210 }
2211
2212 for (i = 0; i < nelm; i++) {
2213 rsv_slots[i][0] = tmp[i][0];
2214 rsv_slots[i][1] = tmp[i][1];
2215 }
2216 rsv_slots[nelm][0] = -1;
2217 rsv_slots[nelm][1] = -1;
2218
2219 info->rsv = rsv_info;
2220 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2221
2222 kfree(tmp);
2223 }
2224
2225 return info;
2226 }
2227
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2228 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2229 struct of_dma *ofdma)
2230 {
2231 struct edma_cc *ecc = ofdma->of_dma_data;
2232 struct dma_chan *chan = NULL;
2233 struct edma_chan *echan;
2234 int i;
2235
2236 if (!ecc || dma_spec->args_count < 1)
2237 return NULL;
2238
2239 for (i = 0; i < ecc->num_channels; i++) {
2240 echan = &ecc->slave_chans[i];
2241 if (echan->ch_num == dma_spec->args[0]) {
2242 chan = &echan->vchan.chan;
2243 break;
2244 }
2245 }
2246
2247 if (!chan)
2248 return NULL;
2249
2250 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2251 goto out;
2252
2253 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2254 dma_spec->args[1] < echan->ecc->num_tc) {
2255 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2256 goto out;
2257 }
2258
2259 return NULL;
2260 out:
2261 /* The channel is going to be used as HW synchronized */
2262 echan->hw_triggered = true;
2263 return dma_get_slave_channel(chan);
2264 }
2265 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2266 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2267 bool legacy_mode)
2268 {
2269 return ERR_PTR(-EINVAL);
2270 }
2271
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2272 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2273 struct of_dma *ofdma)
2274 {
2275 return NULL;
2276 }
2277 #endif
2278
2279 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2280
edma_probe(struct platform_device * pdev)2281 static int edma_probe(struct platform_device *pdev)
2282 {
2283 struct edma_soc_info *info = pdev->dev.platform_data;
2284 s8 (*queue_priority_mapping)[2];
2285 const s16 (*reserved)[2];
2286 int i, irq;
2287 char *irq_name;
2288 struct resource *mem;
2289 struct device_node *node = pdev->dev.of_node;
2290 struct device *dev = &pdev->dev;
2291 struct edma_cc *ecc;
2292 bool legacy_mode = true;
2293 int ret;
2294
2295 if (node) {
2296 const struct of_device_id *match;
2297
2298 match = of_match_node(edma_of_ids, node);
2299 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2300 legacy_mode = false;
2301
2302 info = edma_setup_info_from_dt(dev, legacy_mode);
2303 if (IS_ERR(info)) {
2304 dev_err(dev, "failed to get DT data\n");
2305 return PTR_ERR(info);
2306 }
2307 }
2308
2309 if (!info)
2310 return -ENODEV;
2311
2312 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2313 if (ret)
2314 return ret;
2315
2316 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2317 if (!ecc)
2318 return -ENOMEM;
2319
2320 ecc->dev = dev;
2321 ecc->id = pdev->id;
2322 ecc->legacy_mode = legacy_mode;
2323 /* When booting with DT the pdev->id is -1 */
2324 if (ecc->id < 0)
2325 ecc->id = 0;
2326
2327 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2328 if (!mem) {
2329 dev_dbg(dev, "mem resource not found, using index 0\n");
2330 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2331 if (!mem) {
2332 dev_err(dev, "no mem resource?\n");
2333 return -ENODEV;
2334 }
2335 }
2336 ecc->base = devm_ioremap_resource(dev, mem);
2337 if (IS_ERR(ecc->base))
2338 return PTR_ERR(ecc->base);
2339
2340 platform_set_drvdata(pdev, ecc);
2341
2342 pm_runtime_enable(dev);
2343 ret = pm_runtime_get_sync(dev);
2344 if (ret < 0) {
2345 dev_err(dev, "pm_runtime_get_sync() failed\n");
2346 pm_runtime_disable(dev);
2347 return ret;
2348 }
2349
2350 /* Get eDMA3 configuration from IP */
2351 ret = edma_setup_from_hw(dev, info, ecc);
2352 if (ret)
2353 goto err_disable_pm;
2354
2355 /* Allocate memory based on the information we got from the IP */
2356 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2357 sizeof(*ecc->slave_chans), GFP_KERNEL);
2358
2359 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2360 sizeof(unsigned long), GFP_KERNEL);
2361
2362 ecc->channels_mask = devm_kcalloc(dev,
2363 BITS_TO_LONGS(ecc->num_channels),
2364 sizeof(unsigned long), GFP_KERNEL);
2365 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2366 ret = -ENOMEM;
2367 goto err_disable_pm;
2368 }
2369
2370 /* Mark all channels available initially */
2371 bitmap_fill(ecc->channels_mask, ecc->num_channels);
2372
2373 ecc->default_queue = info->default_queue;
2374
2375 if (info->rsv) {
2376 /* Set the reserved slots in inuse list */
2377 reserved = info->rsv->rsv_slots;
2378 if (reserved) {
2379 for (i = 0; reserved[i][0] != -1; i++)
2380 bitmap_set(ecc->slot_inuse, reserved[i][0],
2381 reserved[i][1]);
2382 }
2383
2384 /* Clear channels not usable for Linux */
2385 reserved = info->rsv->rsv_chans;
2386 if (reserved) {
2387 for (i = 0; reserved[i][0] != -1; i++)
2388 bitmap_clear(ecc->channels_mask, reserved[i][0],
2389 reserved[i][1]);
2390 }
2391 }
2392
2393 for (i = 0; i < ecc->num_slots; i++) {
2394 /* Reset only unused - not reserved - paRAM slots */
2395 if (!test_bit(i, ecc->slot_inuse))
2396 edma_write_slot(ecc, i, &dummy_paramset);
2397 }
2398
2399 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2400 if (irq < 0 && node)
2401 irq = irq_of_parse_and_map(node, 0);
2402
2403 if (irq > 0) {
2404 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2405 dev_name(dev));
2406 if (!irq_name) {
2407 ret = -ENOMEM;
2408 goto err_disable_pm;
2409 }
2410
2411 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2412 ecc);
2413 if (ret) {
2414 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2415 goto err_disable_pm;
2416 }
2417 ecc->ccint = irq;
2418 }
2419
2420 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2421 if (irq < 0 && node)
2422 irq = irq_of_parse_and_map(node, 2);
2423
2424 if (irq > 0) {
2425 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2426 dev_name(dev));
2427 if (!irq_name) {
2428 ret = -ENOMEM;
2429 goto err_disable_pm;
2430 }
2431
2432 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2433 ecc);
2434 if (ret) {
2435 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2436 goto err_disable_pm;
2437 }
2438 ecc->ccerrint = irq;
2439 }
2440
2441 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2442 if (ecc->dummy_slot < 0) {
2443 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2444 ret = ecc->dummy_slot;
2445 goto err_disable_pm;
2446 }
2447
2448 queue_priority_mapping = info->queue_priority_mapping;
2449
2450 if (!ecc->legacy_mode) {
2451 int lowest_priority = 0;
2452 unsigned int array_max;
2453 struct of_phandle_args tc_args;
2454
2455 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2456 sizeof(*ecc->tc_list), GFP_KERNEL);
2457 if (!ecc->tc_list) {
2458 ret = -ENOMEM;
2459 goto err_reg1;
2460 }
2461
2462 for (i = 0;; i++) {
2463 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2464 1, i, &tc_args);
2465 if (ret || i == ecc->num_tc)
2466 break;
2467
2468 ecc->tc_list[i].id = i;
2469 queue_priority_mapping[i][1] = tc_args.args[0];
2470 if (queue_priority_mapping[i][1] > lowest_priority) {
2471 lowest_priority = queue_priority_mapping[i][1];
2472 info->default_queue = i;
2473 }
2474 of_node_put(tc_args.np);
2475 }
2476
2477 /* See if we have optional dma-channel-mask array */
2478 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2479 ret = of_property_read_variable_u32_array(node,
2480 "dma-channel-mask",
2481 (u32 *)ecc->channels_mask,
2482 1, array_max);
2483 if (ret > 0 && ret != array_max)
2484 dev_warn(dev, "dma-channel-mask is not complete.\n");
2485 else if (ret == -EOVERFLOW || ret == -ENODATA)
2486 dev_warn(dev,
2487 "dma-channel-mask is out of range or empty\n");
2488 }
2489
2490 /* Event queue priority mapping */
2491 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2492 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2493 queue_priority_mapping[i][1]);
2494
2495 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2496 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2497 edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2498
2499 ecc->info = info;
2500
2501 /* Init the dma device and channels */
2502 edma_dma_init(ecc, legacy_mode);
2503
2504 for (i = 0; i < ecc->num_channels; i++) {
2505 /* Do not touch reserved channels */
2506 if (!test_bit(i, ecc->channels_mask))
2507 continue;
2508
2509 /* Assign all channels to the default queue */
2510 edma_assign_channel_eventq(&ecc->slave_chans[i],
2511 info->default_queue);
2512 /* Set entry slot to the dummy slot */
2513 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2514 }
2515
2516 ecc->dma_slave.filter.map = info->slave_map;
2517 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2518 ecc->dma_slave.filter.fn = edma_filter_fn;
2519
2520 ret = dma_async_device_register(&ecc->dma_slave);
2521 if (ret) {
2522 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2523 goto err_reg1;
2524 }
2525
2526 if (ecc->dma_memcpy) {
2527 ret = dma_async_device_register(ecc->dma_memcpy);
2528 if (ret) {
2529 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2530 ret);
2531 dma_async_device_unregister(&ecc->dma_slave);
2532 goto err_reg1;
2533 }
2534 }
2535
2536 if (node)
2537 of_dma_controller_register(node, of_edma_xlate, ecc);
2538
2539 dev_info(dev, "TI EDMA DMA engine driver\n");
2540
2541 return 0;
2542
2543 err_reg1:
2544 edma_free_slot(ecc, ecc->dummy_slot);
2545 err_disable_pm:
2546 pm_runtime_put_sync(dev);
2547 pm_runtime_disable(dev);
2548 return ret;
2549 }
2550
edma_cleanupp_vchan(struct dma_device * dmadev)2551 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2552 {
2553 struct edma_chan *echan, *_echan;
2554
2555 list_for_each_entry_safe(echan, _echan,
2556 &dmadev->channels, vchan.chan.device_node) {
2557 list_del(&echan->vchan.chan.device_node);
2558 tasklet_kill(&echan->vchan.task);
2559 }
2560 }
2561
edma_remove(struct platform_device * pdev)2562 static int edma_remove(struct platform_device *pdev)
2563 {
2564 struct device *dev = &pdev->dev;
2565 struct edma_cc *ecc = dev_get_drvdata(dev);
2566
2567 devm_free_irq(dev, ecc->ccint, ecc);
2568 devm_free_irq(dev, ecc->ccerrint, ecc);
2569
2570 edma_cleanupp_vchan(&ecc->dma_slave);
2571
2572 if (dev->of_node)
2573 of_dma_controller_free(dev->of_node);
2574 dma_async_device_unregister(&ecc->dma_slave);
2575 if (ecc->dma_memcpy)
2576 dma_async_device_unregister(ecc->dma_memcpy);
2577 edma_free_slot(ecc, ecc->dummy_slot);
2578 pm_runtime_put_sync(dev);
2579 pm_runtime_disable(dev);
2580
2581 return 0;
2582 }
2583
2584 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2585 static int edma_pm_suspend(struct device *dev)
2586 {
2587 struct edma_cc *ecc = dev_get_drvdata(dev);
2588 struct edma_chan *echan = ecc->slave_chans;
2589 int i;
2590
2591 for (i = 0; i < ecc->num_channels; i++) {
2592 if (echan[i].alloced)
2593 edma_setup_interrupt(&echan[i], false);
2594 }
2595
2596 return 0;
2597 }
2598
edma_pm_resume(struct device * dev)2599 static int edma_pm_resume(struct device *dev)
2600 {
2601 struct edma_cc *ecc = dev_get_drvdata(dev);
2602 struct edma_chan *echan = ecc->slave_chans;
2603 int i;
2604 s8 (*queue_priority_mapping)[2];
2605
2606 /* re initialize dummy slot to dummy param set */
2607 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2608
2609 queue_priority_mapping = ecc->info->queue_priority_mapping;
2610
2611 /* Event queue priority mapping */
2612 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2613 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2614 queue_priority_mapping[i][1]);
2615
2616 for (i = 0; i < ecc->num_channels; i++) {
2617 if (echan[i].alloced) {
2618 /* ensure access through shadow region 0 */
2619 edma_or_array2(ecc, EDMA_DRAE, 0,
2620 EDMA_REG_ARRAY_INDEX(i),
2621 EDMA_CHANNEL_BIT(i));
2622
2623 edma_setup_interrupt(&echan[i], true);
2624
2625 /* Set up channel -> slot mapping for the entry slot */
2626 edma_set_chmap(&echan[i], echan[i].slot[0]);
2627 }
2628 }
2629
2630 return 0;
2631 }
2632 #endif
2633
2634 static const struct dev_pm_ops edma_pm_ops = {
2635 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2636 };
2637
2638 static struct platform_driver edma_driver = {
2639 .probe = edma_probe,
2640 .remove = edma_remove,
2641 .driver = {
2642 .name = "edma",
2643 .pm = &edma_pm_ops,
2644 .of_match_table = edma_of_ids,
2645 },
2646 };
2647
edma_tptc_probe(struct platform_device * pdev)2648 static int edma_tptc_probe(struct platform_device *pdev)
2649 {
2650 pm_runtime_enable(&pdev->dev);
2651 return pm_runtime_get_sync(&pdev->dev);
2652 }
2653
2654 static struct platform_driver edma_tptc_driver = {
2655 .probe = edma_tptc_probe,
2656 .driver = {
2657 .name = "edma3-tptc",
2658 .of_match_table = edma_tptc_of_ids,
2659 },
2660 };
2661
edma_filter_fn(struct dma_chan * chan,void * param)2662 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2663 {
2664 bool match = false;
2665
2666 if (chan->device->dev->driver == &edma_driver.driver) {
2667 struct edma_chan *echan = to_edma_chan(chan);
2668 unsigned ch_req = *(unsigned *)param;
2669 if (ch_req == echan->ch_num) {
2670 /* The channel is going to be used as HW synchronized */
2671 echan->hw_triggered = true;
2672 match = true;
2673 }
2674 }
2675 return match;
2676 }
2677
edma_init(void)2678 static int edma_init(void)
2679 {
2680 int ret;
2681
2682 ret = platform_driver_register(&edma_tptc_driver);
2683 if (ret)
2684 return ret;
2685
2686 return platform_driver_register(&edma_driver);
2687 }
2688 subsys_initcall(edma_init);
2689
edma_exit(void)2690 static void __exit edma_exit(void)
2691 {
2692 platform_driver_unregister(&edma_driver);
2693 platform_driver_unregister(&edma_tptc_driver);
2694 }
2695 module_exit(edma_exit);
2696
2697 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2698 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2699 MODULE_LICENSE("GPL v2");
2700