1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12 #define pr_fmt(fmt) "LSM: " fmt
13
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/integrity.h>
23 #include <linux/ima.h>
24 #include <linux/evm.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mman.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/backing-dev.h>
30 #include <linux/string.h>
31 #include <linux/msg.h>
32 #include <net/flow.h>
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37 /*
38 * These are descriptions of the reasons that can be passed to the
39 * security_locked_down() LSM hook. Placing this array here allows
40 * all security modules to use the same descriptions for auditing
41 * purposes.
42 */
43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
44 [LOCKDOWN_NONE] = "none",
45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 [LOCKDOWN_HIBERNATION] = "hibernation",
50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 [LOCKDOWN_IOPORT] = "raw io port access",
52 [LOCKDOWN_MSR] = "raw MSR access",
53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
64 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
65 [LOCKDOWN_KCORE] = "/proc/kcore access",
66 [LOCKDOWN_KPROBES] = "use of kprobes",
67 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
68 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
69 [LOCKDOWN_PERF] = "unsafe use of perf",
70 [LOCKDOWN_TRACEFS] = "use of tracefs",
71 [LOCKDOWN_XMON_RW] = "xmon read and write access",
72 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
73 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
74 };
75
76 struct security_hook_heads security_hook_heads __ro_after_init;
77 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
78
79 static struct kmem_cache *lsm_file_cache;
80 static struct kmem_cache *lsm_inode_cache;
81
82 char *lsm_names;
83 static struct lsm_blob_sizes blob_sizes __ro_after_init;
84
85 /* Boot-time LSM user choice */
86 static __initdata const char *chosen_lsm_order;
87 static __initdata const char *chosen_major_lsm;
88
89 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
90
91 /* Ordered list of LSMs to initialize. */
92 static __initdata struct lsm_info **ordered_lsms;
93 static __initdata struct lsm_info *exclusive;
94
95 static __initdata bool debug;
96 #define init_debug(...) \
97 do { \
98 if (debug) \
99 pr_info(__VA_ARGS__); \
100 } while (0)
101
is_enabled(struct lsm_info * lsm)102 static bool __init is_enabled(struct lsm_info *lsm)
103 {
104 if (!lsm->enabled)
105 return false;
106
107 return *lsm->enabled;
108 }
109
110 /* Mark an LSM's enabled flag. */
111 static int lsm_enabled_true __initdata = 1;
112 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)113 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
114 {
115 /*
116 * When an LSM hasn't configured an enable variable, we can use
117 * a hard-coded location for storing the default enabled state.
118 */
119 if (!lsm->enabled) {
120 if (enabled)
121 lsm->enabled = &lsm_enabled_true;
122 else
123 lsm->enabled = &lsm_enabled_false;
124 } else if (lsm->enabled == &lsm_enabled_true) {
125 if (!enabled)
126 lsm->enabled = &lsm_enabled_false;
127 } else if (lsm->enabled == &lsm_enabled_false) {
128 if (enabled)
129 lsm->enabled = &lsm_enabled_true;
130 } else {
131 *lsm->enabled = enabled;
132 }
133 }
134
135 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)136 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
137 {
138 struct lsm_info **check;
139
140 for (check = ordered_lsms; *check; check++)
141 if (*check == lsm)
142 return true;
143
144 return false;
145 }
146
147 /* Append an LSM to the list of ordered LSMs to initialize. */
148 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)149 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
150 {
151 /* Ignore duplicate selections. */
152 if (exists_ordered_lsm(lsm))
153 return;
154
155 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
156 return;
157
158 /* Enable this LSM, if it is not already set. */
159 if (!lsm->enabled)
160 lsm->enabled = &lsm_enabled_true;
161 ordered_lsms[last_lsm++] = lsm;
162
163 init_debug("%s ordered: %s (%s)\n", from, lsm->name,
164 is_enabled(lsm) ? "enabled" : "disabled");
165 }
166
167 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)168 static bool __init lsm_allowed(struct lsm_info *lsm)
169 {
170 /* Skip if the LSM is disabled. */
171 if (!is_enabled(lsm))
172 return false;
173
174 /* Not allowed if another exclusive LSM already initialized. */
175 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
176 init_debug("exclusive disabled: %s\n", lsm->name);
177 return false;
178 }
179
180 return true;
181 }
182
lsm_set_blob_size(int * need,int * lbs)183 static void __init lsm_set_blob_size(int *need, int *lbs)
184 {
185 int offset;
186
187 if (*need <= 0)
188 return;
189
190 offset = ALIGN(*lbs, sizeof(void *));
191 *lbs = offset + *need;
192 *need = offset;
193 }
194
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)195 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
196 {
197 if (!needed)
198 return;
199
200 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
201 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
202 /*
203 * The inode blob gets an rcu_head in addition to
204 * what the modules might need.
205 */
206 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
207 blob_sizes.lbs_inode = sizeof(struct rcu_head);
208 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
209 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
210 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
211 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
212 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
213 lsm_set_blob_size(&needed->lbs_xattr_count,
214 &blob_sizes.lbs_xattr_count);
215 }
216
217 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)218 static void __init prepare_lsm(struct lsm_info *lsm)
219 {
220 int enabled = lsm_allowed(lsm);
221
222 /* Record enablement (to handle any following exclusive LSMs). */
223 set_enabled(lsm, enabled);
224
225 /* If enabled, do pre-initialization work. */
226 if (enabled) {
227 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
228 exclusive = lsm;
229 init_debug("exclusive chosen: %s\n", lsm->name);
230 }
231
232 lsm_set_blob_sizes(lsm->blobs);
233 }
234 }
235
236 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)237 static void __init initialize_lsm(struct lsm_info *lsm)
238 {
239 if (is_enabled(lsm)) {
240 int ret;
241
242 init_debug("initializing %s\n", lsm->name);
243 ret = lsm->init();
244 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
245 }
246 }
247
248 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)249 static void __init ordered_lsm_parse(const char *order, const char *origin)
250 {
251 struct lsm_info *lsm;
252 char *sep, *name, *next;
253
254 /* LSM_ORDER_FIRST is always first. */
255 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
256 if (lsm->order == LSM_ORDER_FIRST)
257 append_ordered_lsm(lsm, " first");
258 }
259
260 /* Process "security=", if given. */
261 if (chosen_major_lsm) {
262 struct lsm_info *major;
263
264 /*
265 * To match the original "security=" behavior, this
266 * explicitly does NOT fallback to another Legacy Major
267 * if the selected one was separately disabled: disable
268 * all non-matching Legacy Major LSMs.
269 */
270 for (major = __start_lsm_info; major < __end_lsm_info;
271 major++) {
272 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
273 strcmp(major->name, chosen_major_lsm) != 0) {
274 set_enabled(major, false);
275 init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
276 chosen_major_lsm, major->name);
277 }
278 }
279 }
280
281 sep = kstrdup(order, GFP_KERNEL);
282 next = sep;
283 /* Walk the list, looking for matching LSMs. */
284 while ((name = strsep(&next, ",")) != NULL) {
285 bool found = false;
286
287 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
288 if (strcmp(lsm->name, name) == 0) {
289 if (lsm->order == LSM_ORDER_MUTABLE)
290 append_ordered_lsm(lsm, origin);
291 found = true;
292 }
293 }
294
295 if (!found)
296 init_debug("%s ignored: %s (not built into kernel)\n",
297 origin, name);
298 }
299
300 /* Process "security=", if given. */
301 if (chosen_major_lsm) {
302 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
303 if (exists_ordered_lsm(lsm))
304 continue;
305 if (strcmp(lsm->name, chosen_major_lsm) == 0)
306 append_ordered_lsm(lsm, "security=");
307 }
308 }
309
310 /* LSM_ORDER_LAST is always last. */
311 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
312 if (lsm->order == LSM_ORDER_LAST)
313 append_ordered_lsm(lsm, " last");
314 }
315
316 /* Disable all LSMs not in the ordered list. */
317 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
318 if (exists_ordered_lsm(lsm))
319 continue;
320 set_enabled(lsm, false);
321 init_debug("%s skipped: %s (not in requested order)\n",
322 origin, lsm->name);
323 }
324
325 kfree(sep);
326 }
327
328 static void __init lsm_early_cred(struct cred *cred);
329 static void __init lsm_early_task(struct task_struct *task);
330
331 static int lsm_append(const char *new, char **result);
332
report_lsm_order(void)333 static void __init report_lsm_order(void)
334 {
335 struct lsm_info **lsm, *early;
336 int first = 0;
337
338 pr_info("initializing lsm=");
339
340 /* Report each enabled LSM name, comma separated. */
341 for (early = __start_early_lsm_info;
342 early < __end_early_lsm_info; early++)
343 if (is_enabled(early))
344 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
345 for (lsm = ordered_lsms; *lsm; lsm++)
346 if (is_enabled(*lsm))
347 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
348
349 pr_cont("\n");
350 }
351
ordered_lsm_init(void)352 static void __init ordered_lsm_init(void)
353 {
354 struct lsm_info **lsm;
355
356 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
357 GFP_KERNEL);
358
359 if (chosen_lsm_order) {
360 if (chosen_major_lsm) {
361 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
362 chosen_major_lsm, chosen_lsm_order);
363 chosen_major_lsm = NULL;
364 }
365 ordered_lsm_parse(chosen_lsm_order, "cmdline");
366 } else
367 ordered_lsm_parse(builtin_lsm_order, "builtin");
368
369 for (lsm = ordered_lsms; *lsm; lsm++)
370 prepare_lsm(*lsm);
371
372 report_lsm_order();
373
374 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
375 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
376 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
377 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
378 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
379 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
380 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
381 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count);
382
383 /*
384 * Create any kmem_caches needed for blobs
385 */
386 if (blob_sizes.lbs_file)
387 lsm_file_cache = kmem_cache_create("lsm_file_cache",
388 blob_sizes.lbs_file, 0,
389 SLAB_PANIC, NULL);
390 if (blob_sizes.lbs_inode)
391 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
392 blob_sizes.lbs_inode, 0,
393 SLAB_PANIC, NULL);
394
395 lsm_early_cred((struct cred *) current->cred);
396 lsm_early_task(current);
397 for (lsm = ordered_lsms; *lsm; lsm++)
398 initialize_lsm(*lsm);
399
400 kfree(ordered_lsms);
401 }
402
early_security_init(void)403 int __init early_security_init(void)
404 {
405 struct lsm_info *lsm;
406
407 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
408 INIT_HLIST_HEAD(&security_hook_heads.NAME);
409 #include "linux/lsm_hook_defs.h"
410 #undef LSM_HOOK
411
412 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
413 if (!lsm->enabled)
414 lsm->enabled = &lsm_enabled_true;
415 prepare_lsm(lsm);
416 initialize_lsm(lsm);
417 }
418
419 return 0;
420 }
421
422 /**
423 * security_init - initializes the security framework
424 *
425 * This should be called early in the kernel initialization sequence.
426 */
security_init(void)427 int __init security_init(void)
428 {
429 struct lsm_info *lsm;
430
431 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
432 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order);
433 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
434
435 /*
436 * Append the names of the early LSM modules now that kmalloc() is
437 * available
438 */
439 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
440 init_debug(" early started: %s (%s)\n", lsm->name,
441 is_enabled(lsm) ? "enabled" : "disabled");
442 if (lsm->enabled)
443 lsm_append(lsm->name, &lsm_names);
444 }
445
446 /* Load LSMs in specified order. */
447 ordered_lsm_init();
448
449 return 0;
450 }
451
452 /* Save user chosen LSM */
choose_major_lsm(char * str)453 static int __init choose_major_lsm(char *str)
454 {
455 chosen_major_lsm = str;
456 return 1;
457 }
458 __setup("security=", choose_major_lsm);
459
460 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)461 static int __init choose_lsm_order(char *str)
462 {
463 chosen_lsm_order = str;
464 return 1;
465 }
466 __setup("lsm=", choose_lsm_order);
467
468 /* Enable LSM order debugging. */
enable_debug(char * str)469 static int __init enable_debug(char *str)
470 {
471 debug = true;
472 return 1;
473 }
474 __setup("lsm.debug", enable_debug);
475
match_last_lsm(const char * list,const char * lsm)476 static bool match_last_lsm(const char *list, const char *lsm)
477 {
478 const char *last;
479
480 if (WARN_ON(!list || !lsm))
481 return false;
482 last = strrchr(list, ',');
483 if (last)
484 /* Pass the comma, strcmp() will check for '\0' */
485 last++;
486 else
487 last = list;
488 return !strcmp(last, lsm);
489 }
490
lsm_append(const char * new,char ** result)491 static int lsm_append(const char *new, char **result)
492 {
493 char *cp;
494
495 if (*result == NULL) {
496 *result = kstrdup(new, GFP_KERNEL);
497 if (*result == NULL)
498 return -ENOMEM;
499 } else {
500 /* Check if it is the last registered name */
501 if (match_last_lsm(*result, new))
502 return 0;
503 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
504 if (cp == NULL)
505 return -ENOMEM;
506 kfree(*result);
507 *result = cp;
508 }
509 return 0;
510 }
511
512 /**
513 * security_add_hooks - Add a modules hooks to the hook lists.
514 * @hooks: the hooks to add
515 * @count: the number of hooks to add
516 * @lsm: the name of the security module
517 *
518 * Each LSM has to register its hooks with the infrastructure.
519 */
security_add_hooks(struct security_hook_list * hooks,int count,const char * lsm)520 void __init security_add_hooks(struct security_hook_list *hooks, int count,
521 const char *lsm)
522 {
523 int i;
524
525 for (i = 0; i < count; i++) {
526 hooks[i].lsm = lsm;
527 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
528 }
529
530 /*
531 * Don't try to append during early_security_init(), we'll come back
532 * and fix this up afterwards.
533 */
534 if (slab_is_available()) {
535 if (lsm_append(lsm, &lsm_names) < 0)
536 panic("%s - Cannot get early memory.\n", __func__);
537 }
538 }
539
call_blocking_lsm_notifier(enum lsm_event event,void * data)540 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
541 {
542 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
543 event, data);
544 }
545 EXPORT_SYMBOL(call_blocking_lsm_notifier);
546
register_blocking_lsm_notifier(struct notifier_block * nb)547 int register_blocking_lsm_notifier(struct notifier_block *nb)
548 {
549 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
550 nb);
551 }
552 EXPORT_SYMBOL(register_blocking_lsm_notifier);
553
unregister_blocking_lsm_notifier(struct notifier_block * nb)554 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
555 {
556 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
557 nb);
558 }
559 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
560
561 /**
562 * lsm_cred_alloc - allocate a composite cred blob
563 * @cred: the cred that needs a blob
564 * @gfp: allocation type
565 *
566 * Allocate the cred blob for all the modules
567 *
568 * Returns 0, or -ENOMEM if memory can't be allocated.
569 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)570 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
571 {
572 if (blob_sizes.lbs_cred == 0) {
573 cred->security = NULL;
574 return 0;
575 }
576
577 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
578 if (cred->security == NULL)
579 return -ENOMEM;
580 return 0;
581 }
582
583 /**
584 * lsm_early_cred - during initialization allocate a composite cred blob
585 * @cred: the cred that needs a blob
586 *
587 * Allocate the cred blob for all the modules
588 */
lsm_early_cred(struct cred * cred)589 static void __init lsm_early_cred(struct cred *cred)
590 {
591 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
592
593 if (rc)
594 panic("%s: Early cred alloc failed.\n", __func__);
595 }
596
597 /**
598 * lsm_file_alloc - allocate a composite file blob
599 * @file: the file that needs a blob
600 *
601 * Allocate the file blob for all the modules
602 *
603 * Returns 0, or -ENOMEM if memory can't be allocated.
604 */
lsm_file_alloc(struct file * file)605 static int lsm_file_alloc(struct file *file)
606 {
607 if (!lsm_file_cache) {
608 file->f_security = NULL;
609 return 0;
610 }
611
612 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
613 if (file->f_security == NULL)
614 return -ENOMEM;
615 return 0;
616 }
617
618 /**
619 * lsm_inode_alloc - allocate a composite inode blob
620 * @inode: the inode that needs a blob
621 *
622 * Allocate the inode blob for all the modules
623 *
624 * Returns 0, or -ENOMEM if memory can't be allocated.
625 */
lsm_inode_alloc(struct inode * inode)626 int lsm_inode_alloc(struct inode *inode)
627 {
628 if (!lsm_inode_cache) {
629 inode->i_security = NULL;
630 return 0;
631 }
632
633 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
634 if (inode->i_security == NULL)
635 return -ENOMEM;
636 return 0;
637 }
638
639 /**
640 * lsm_task_alloc - allocate a composite task blob
641 * @task: the task that needs a blob
642 *
643 * Allocate the task blob for all the modules
644 *
645 * Returns 0, or -ENOMEM if memory can't be allocated.
646 */
lsm_task_alloc(struct task_struct * task)647 static int lsm_task_alloc(struct task_struct *task)
648 {
649 if (blob_sizes.lbs_task == 0) {
650 task->security = NULL;
651 return 0;
652 }
653
654 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
655 if (task->security == NULL)
656 return -ENOMEM;
657 return 0;
658 }
659
660 /**
661 * lsm_ipc_alloc - allocate a composite ipc blob
662 * @kip: the ipc that needs a blob
663 *
664 * Allocate the ipc blob for all the modules
665 *
666 * Returns 0, or -ENOMEM if memory can't be allocated.
667 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)668 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
669 {
670 if (blob_sizes.lbs_ipc == 0) {
671 kip->security = NULL;
672 return 0;
673 }
674
675 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
676 if (kip->security == NULL)
677 return -ENOMEM;
678 return 0;
679 }
680
681 /**
682 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
683 * @mp: the msg_msg that needs a blob
684 *
685 * Allocate the ipc blob for all the modules
686 *
687 * Returns 0, or -ENOMEM if memory can't be allocated.
688 */
lsm_msg_msg_alloc(struct msg_msg * mp)689 static int lsm_msg_msg_alloc(struct msg_msg *mp)
690 {
691 if (blob_sizes.lbs_msg_msg == 0) {
692 mp->security = NULL;
693 return 0;
694 }
695
696 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
697 if (mp->security == NULL)
698 return -ENOMEM;
699 return 0;
700 }
701
702 /**
703 * lsm_early_task - during initialization allocate a composite task blob
704 * @task: the task that needs a blob
705 *
706 * Allocate the task blob for all the modules
707 */
lsm_early_task(struct task_struct * task)708 static void __init lsm_early_task(struct task_struct *task)
709 {
710 int rc = lsm_task_alloc(task);
711
712 if (rc)
713 panic("%s: Early task alloc failed.\n", __func__);
714 }
715
716 /**
717 * lsm_superblock_alloc - allocate a composite superblock blob
718 * @sb: the superblock that needs a blob
719 *
720 * Allocate the superblock blob for all the modules
721 *
722 * Returns 0, or -ENOMEM if memory can't be allocated.
723 */
lsm_superblock_alloc(struct super_block * sb)724 static int lsm_superblock_alloc(struct super_block *sb)
725 {
726 if (blob_sizes.lbs_superblock == 0) {
727 sb->s_security = NULL;
728 return 0;
729 }
730
731 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
732 if (sb->s_security == NULL)
733 return -ENOMEM;
734 return 0;
735 }
736
737 /*
738 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
739 * can be accessed with:
740 *
741 * LSM_RET_DEFAULT(<hook_name>)
742 *
743 * The macros below define static constants for the default value of each
744 * LSM hook.
745 */
746 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
747 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
748 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
749 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
750 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
751 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
752
753 #include <linux/lsm_hook_defs.h>
754 #undef LSM_HOOK
755
756 /*
757 * Hook list operation macros.
758 *
759 * call_void_hook:
760 * This is a hook that does not return a value.
761 *
762 * call_int_hook:
763 * This is a hook that returns a value.
764 */
765
766 #define call_void_hook(FUNC, ...) \
767 do { \
768 struct security_hook_list *P; \
769 \
770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
771 P->hook.FUNC(__VA_ARGS__); \
772 } while (0)
773
774 #define call_int_hook(FUNC, IRC, ...) ({ \
775 int RC = IRC; \
776 do { \
777 struct security_hook_list *P; \
778 \
779 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
780 RC = P->hook.FUNC(__VA_ARGS__); \
781 if (RC != 0) \
782 break; \
783 } \
784 } while (0); \
785 RC; \
786 })
787
788 /* Security operations */
789
790 /**
791 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
792 * @mgr: task credentials of current binder process
793 *
794 * Check whether @mgr is allowed to be the binder context manager.
795 *
796 * Return: Return 0 if permission is granted.
797 */
security_binder_set_context_mgr(const struct cred * mgr)798 int security_binder_set_context_mgr(const struct cred *mgr)
799 {
800 return call_int_hook(binder_set_context_mgr, 0, mgr);
801 }
802
803 /**
804 * security_binder_transaction() - Check if a binder transaction is allowed
805 * @from: sending process
806 * @to: receiving process
807 *
808 * Check whether @from is allowed to invoke a binder transaction call to @to.
809 *
810 * Return: Returns 0 if permission is granted.
811 */
security_binder_transaction(const struct cred * from,const struct cred * to)812 int security_binder_transaction(const struct cred *from,
813 const struct cred *to)
814 {
815 return call_int_hook(binder_transaction, 0, from, to);
816 }
817
818 /**
819 * security_binder_transfer_binder() - Check if a binder transfer is allowed
820 * @from: sending process
821 * @to: receiving process
822 *
823 * Check whether @from is allowed to transfer a binder reference to @to.
824 *
825 * Return: Returns 0 if permission is granted.
826 */
security_binder_transfer_binder(const struct cred * from,const struct cred * to)827 int security_binder_transfer_binder(const struct cred *from,
828 const struct cred *to)
829 {
830 return call_int_hook(binder_transfer_binder, 0, from, to);
831 }
832
833 /**
834 * security_binder_transfer_file() - Check if a binder file xfer is allowed
835 * @from: sending process
836 * @to: receiving process
837 * @file: file being transferred
838 *
839 * Check whether @from is allowed to transfer @file to @to.
840 *
841 * Return: Returns 0 if permission is granted.
842 */
security_binder_transfer_file(const struct cred * from,const struct cred * to,const struct file * file)843 int security_binder_transfer_file(const struct cred *from,
844 const struct cred *to, const struct file *file)
845 {
846 return call_int_hook(binder_transfer_file, 0, from, to, file);
847 }
848
849 /**
850 * security_ptrace_access_check() - Check if tracing is allowed
851 * @child: target process
852 * @mode: PTRACE_MODE flags
853 *
854 * Check permission before allowing the current process to trace the @child
855 * process. Security modules may also want to perform a process tracing check
856 * during an execve in the set_security or apply_creds hooks of tracing check
857 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
858 * process is being traced and its security attributes would be changed by the
859 * execve.
860 *
861 * Return: Returns 0 if permission is granted.
862 */
security_ptrace_access_check(struct task_struct * child,unsigned int mode)863 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
864 {
865 return call_int_hook(ptrace_access_check, 0, child, mode);
866 }
867
868 /**
869 * security_ptrace_traceme() - Check if tracing is allowed
870 * @parent: tracing process
871 *
872 * Check that the @parent process has sufficient permission to trace the
873 * current process before allowing the current process to present itself to the
874 * @parent process for tracing.
875 *
876 * Return: Returns 0 if permission is granted.
877 */
security_ptrace_traceme(struct task_struct * parent)878 int security_ptrace_traceme(struct task_struct *parent)
879 {
880 return call_int_hook(ptrace_traceme, 0, parent);
881 }
882
883 /**
884 * security_capget() - Get the capability sets for a process
885 * @target: target process
886 * @effective: effective capability set
887 * @inheritable: inheritable capability set
888 * @permitted: permitted capability set
889 *
890 * Get the @effective, @inheritable, and @permitted capability sets for the
891 * @target process. The hook may also perform permission checking to determine
892 * if the current process is allowed to see the capability sets of the @target
893 * process.
894 *
895 * Return: Returns 0 if the capability sets were successfully obtained.
896 */
security_capget(const struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)897 int security_capget(const struct task_struct *target,
898 kernel_cap_t *effective,
899 kernel_cap_t *inheritable,
900 kernel_cap_t *permitted)
901 {
902 return call_int_hook(capget, 0, target,
903 effective, inheritable, permitted);
904 }
905
906 /**
907 * security_capset() - Set the capability sets for a process
908 * @new: new credentials for the target process
909 * @old: current credentials of the target process
910 * @effective: effective capability set
911 * @inheritable: inheritable capability set
912 * @permitted: permitted capability set
913 *
914 * Set the @effective, @inheritable, and @permitted capability sets for the
915 * current process.
916 *
917 * Return: Returns 0 and update @new if permission is granted.
918 */
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)919 int security_capset(struct cred *new, const struct cred *old,
920 const kernel_cap_t *effective,
921 const kernel_cap_t *inheritable,
922 const kernel_cap_t *permitted)
923 {
924 return call_int_hook(capset, 0, new, old,
925 effective, inheritable, permitted);
926 }
927
928 /**
929 * security_capable() - Check if a process has the necessary capability
930 * @cred: credentials to examine
931 * @ns: user namespace
932 * @cap: capability requested
933 * @opts: capability check options
934 *
935 * Check whether the @tsk process has the @cap capability in the indicated
936 * credentials. @cap contains the capability <include/linux/capability.h>.
937 * @opts contains options for the capable check <include/linux/security.h>.
938 *
939 * Return: Returns 0 if the capability is granted.
940 */
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)941 int security_capable(const struct cred *cred,
942 struct user_namespace *ns,
943 int cap,
944 unsigned int opts)
945 {
946 return call_int_hook(capable, 0, cred, ns, cap, opts);
947 }
948
949 /**
950 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
951 * @cmds: commands
952 * @type: type
953 * @id: id
954 * @sb: filesystem
955 *
956 * Check whether the quotactl syscall is allowed for this @sb.
957 *
958 * Return: Returns 0 if permission is granted.
959 */
security_quotactl(int cmds,int type,int id,struct super_block * sb)960 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
961 {
962 return call_int_hook(quotactl, 0, cmds, type, id, sb);
963 }
964
965 /**
966 * security_quota_on() - Check if QUOTAON is allowed for a dentry
967 * @dentry: dentry
968 *
969 * Check whether QUOTAON is allowed for @dentry.
970 *
971 * Return: Returns 0 if permission is granted.
972 */
security_quota_on(struct dentry * dentry)973 int security_quota_on(struct dentry *dentry)
974 {
975 return call_int_hook(quota_on, 0, dentry);
976 }
977
978 /**
979 * security_syslog() - Check if accessing the kernel message ring is allowed
980 * @type: SYSLOG_ACTION_* type
981 *
982 * Check permission before accessing the kernel message ring or changing
983 * logging to the console. See the syslog(2) manual page for an explanation of
984 * the @type values.
985 *
986 * Return: Return 0 if permission is granted.
987 */
security_syslog(int type)988 int security_syslog(int type)
989 {
990 return call_int_hook(syslog, 0, type);
991 }
992
993 /**
994 * security_settime64() - Check if changing the system time is allowed
995 * @ts: new time
996 * @tz: timezone
997 *
998 * Check permission to change the system time, struct timespec64 is defined in
999 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1000 *
1001 * Return: Returns 0 if permission is granted.
1002 */
security_settime64(const struct timespec64 * ts,const struct timezone * tz)1003 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1004 {
1005 return call_int_hook(settime, 0, ts, tz);
1006 }
1007
1008 /**
1009 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1010 * @mm: mm struct
1011 * @pages: number of pages
1012 *
1013 * Check permissions for allocating a new virtual mapping. If all LSMs return
1014 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1015 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1016 * called with cap_sys_admin cleared.
1017 *
1018 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1019 * caller.
1020 */
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)1021 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1022 {
1023 struct security_hook_list *hp;
1024 int cap_sys_admin = 1;
1025 int rc;
1026
1027 /*
1028 * The module will respond with a positive value if
1029 * it thinks the __vm_enough_memory() call should be
1030 * made with the cap_sys_admin set. If all of the modules
1031 * agree that it should be set it will. If any module
1032 * thinks it should not be set it won't.
1033 */
1034 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1035 rc = hp->hook.vm_enough_memory(mm, pages);
1036 if (rc <= 0) {
1037 cap_sys_admin = 0;
1038 break;
1039 }
1040 }
1041 return __vm_enough_memory(mm, pages, cap_sys_admin);
1042 }
1043
1044 /**
1045 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1046 * @bprm: binary program information
1047 *
1048 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1049 * properly for executing @bprm->file, update the LSM's portion of
1050 * @bprm->cred->security to be what commit_creds needs to install for the new
1051 * program. This hook may also optionally check permissions (e.g. for
1052 * transitions between security domains). The hook must set @bprm->secureexec
1053 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm
1054 * contains the linux_binprm structure.
1055 *
1056 * Return: Returns 0 if the hook is successful and permission is granted.
1057 */
security_bprm_creds_for_exec(struct linux_binprm * bprm)1058 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1059 {
1060 return call_int_hook(bprm_creds_for_exec, 0, bprm);
1061 }
1062
1063 /**
1064 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1065 * @bprm: binary program information
1066 * @file: associated file
1067 *
1068 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1069 * exec, update @bprm->cred to reflect that change. This is called after
1070 * finding the binary that will be executed without an interpreter. This
1071 * ensures that the credentials will not be derived from a script that the
1072 * binary will need to reopen, which when reopend may end up being a completely
1073 * different file. This hook may also optionally check permissions (e.g. for
1074 * transitions between security domains). The hook must set @bprm->secureexec
1075 * to 1 if AT_SECURE should be set to request libc enable secure mode. The
1076 * hook must add to @bprm->per_clear any personality flags that should be
1077 * cleared from current->personality. @bprm contains the linux_binprm
1078 * structure.
1079 *
1080 * Return: Returns 0 if the hook is successful and permission is granted.
1081 */
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)1082 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
1083 {
1084 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
1085 }
1086
1087 /**
1088 * security_bprm_check() - Mediate binary handler search
1089 * @bprm: binary program information
1090 *
1091 * This hook mediates the point when a search for a binary handler will begin.
1092 * It allows a check against the @bprm->cred->security value which was set in
1093 * the preceding creds_for_exec call. The argv list and envp list are reliably
1094 * available in @bprm. This hook may be called multiple times during a single
1095 * execve. @bprm contains the linux_binprm structure.
1096 *
1097 * Return: Returns 0 if the hook is successful and permission is granted.
1098 */
security_bprm_check(struct linux_binprm * bprm)1099 int security_bprm_check(struct linux_binprm *bprm)
1100 {
1101 int ret;
1102
1103 ret = call_int_hook(bprm_check_security, 0, bprm);
1104 if (ret)
1105 return ret;
1106 return ima_bprm_check(bprm);
1107 }
1108
1109 /**
1110 * security_bprm_committing_creds() - Install creds for a process during exec()
1111 * @bprm: binary program information
1112 *
1113 * Prepare to install the new security attributes of a process being
1114 * transformed by an execve operation, based on the old credentials pointed to
1115 * by @current->cred and the information set in @bprm->cred by the
1116 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This
1117 * hook is a good place to perform state changes on the process such as closing
1118 * open file descriptors to which access will no longer be granted when the
1119 * attributes are changed. This is called immediately before commit_creds().
1120 */
security_bprm_committing_creds(struct linux_binprm * bprm)1121 void security_bprm_committing_creds(struct linux_binprm *bprm)
1122 {
1123 call_void_hook(bprm_committing_creds, bprm);
1124 }
1125
1126 /**
1127 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1128 * @bprm: binary program information
1129 *
1130 * Tidy up after the installation of the new security attributes of a process
1131 * being transformed by an execve operation. The new credentials have, by this
1132 * point, been set to @current->cred. @bprm points to the linux_binprm
1133 * structure. This hook is a good place to perform state changes on the
1134 * process such as clearing out non-inheritable signal state. This is called
1135 * immediately after commit_creds().
1136 */
security_bprm_committed_creds(struct linux_binprm * bprm)1137 void security_bprm_committed_creds(struct linux_binprm *bprm)
1138 {
1139 call_void_hook(bprm_committed_creds, bprm);
1140 }
1141
1142 /**
1143 * security_fs_context_submount() - Initialise fc->security
1144 * @fc: new filesystem context
1145 * @reference: dentry reference for submount/remount
1146 *
1147 * Fill out the ->security field for a new fs_context.
1148 *
1149 * Return: Returns 0 on success or negative error code on failure.
1150 */
security_fs_context_submount(struct fs_context * fc,struct super_block * reference)1151 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1152 {
1153 return call_int_hook(fs_context_submount, 0, fc, reference);
1154 }
1155
1156 /**
1157 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1158 * @fc: destination filesystem context
1159 * @src_fc: source filesystem context
1160 *
1161 * Allocate and attach a security structure to sc->security. This pointer is
1162 * initialised to NULL by the caller. @fc indicates the new filesystem context.
1163 * @src_fc indicates the original filesystem context.
1164 *
1165 * Return: Returns 0 on success or a negative error code on failure.
1166 */
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)1167 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1168 {
1169 return call_int_hook(fs_context_dup, 0, fc, src_fc);
1170 }
1171
1172 /**
1173 * security_fs_context_parse_param() - Configure a filesystem context
1174 * @fc: filesystem context
1175 * @param: filesystem parameter
1176 *
1177 * Userspace provided a parameter to configure a superblock. The LSM can
1178 * consume the parameter or return it to the caller for use elsewhere.
1179 *
1180 * Return: If the parameter is used by the LSM it should return 0, if it is
1181 * returned to the caller -ENOPARAM is returned, otherwise a negative
1182 * error code is returned.
1183 */
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)1184 int security_fs_context_parse_param(struct fs_context *fc,
1185 struct fs_parameter *param)
1186 {
1187 struct security_hook_list *hp;
1188 int trc;
1189 int rc = -ENOPARAM;
1190
1191 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1192 list) {
1193 trc = hp->hook.fs_context_parse_param(fc, param);
1194 if (trc == 0)
1195 rc = 0;
1196 else if (trc != -ENOPARAM)
1197 return trc;
1198 }
1199 return rc;
1200 }
1201
1202 /**
1203 * security_sb_alloc() - Allocate a super_block LSM blob
1204 * @sb: filesystem superblock
1205 *
1206 * Allocate and attach a security structure to the sb->s_security field. The
1207 * s_security field is initialized to NULL when the structure is allocated.
1208 * @sb contains the super_block structure to be modified.
1209 *
1210 * Return: Returns 0 if operation was successful.
1211 */
security_sb_alloc(struct super_block * sb)1212 int security_sb_alloc(struct super_block *sb)
1213 {
1214 int rc = lsm_superblock_alloc(sb);
1215
1216 if (unlikely(rc))
1217 return rc;
1218 rc = call_int_hook(sb_alloc_security, 0, sb);
1219 if (unlikely(rc))
1220 security_sb_free(sb);
1221 return rc;
1222 }
1223
1224 /**
1225 * security_sb_delete() - Release super_block LSM associated objects
1226 * @sb: filesystem superblock
1227 *
1228 * Release objects tied to a superblock (e.g. inodes). @sb contains the
1229 * super_block structure being released.
1230 */
security_sb_delete(struct super_block * sb)1231 void security_sb_delete(struct super_block *sb)
1232 {
1233 call_void_hook(sb_delete, sb);
1234 }
1235
1236 /**
1237 * security_sb_free() - Free a super_block LSM blob
1238 * @sb: filesystem superblock
1239 *
1240 * Deallocate and clear the sb->s_security field. @sb contains the super_block
1241 * structure to be modified.
1242 */
security_sb_free(struct super_block * sb)1243 void security_sb_free(struct super_block *sb)
1244 {
1245 call_void_hook(sb_free_security, sb);
1246 kfree(sb->s_security);
1247 sb->s_security = NULL;
1248 }
1249
1250 /**
1251 * security_free_mnt_opts() - Free memory associated with mount options
1252 * @mnt_opts: LSM processed mount options
1253 *
1254 * Free memory associated with @mnt_ops.
1255 */
security_free_mnt_opts(void ** mnt_opts)1256 void security_free_mnt_opts(void **mnt_opts)
1257 {
1258 if (!*mnt_opts)
1259 return;
1260 call_void_hook(sb_free_mnt_opts, *mnt_opts);
1261 *mnt_opts = NULL;
1262 }
1263 EXPORT_SYMBOL(security_free_mnt_opts);
1264
1265 /**
1266 * security_sb_eat_lsm_opts() - Consume LSM mount options
1267 * @options: mount options
1268 * @mnt_opts: LSM processed mount options
1269 *
1270 * Eat (scan @options) and save them in @mnt_opts.
1271 *
1272 * Return: Returns 0 on success, negative values on failure.
1273 */
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)1274 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1275 {
1276 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
1277 }
1278 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1279
1280 /**
1281 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1282 * @sb: filesystem superblock
1283 * @mnt_opts: new mount options
1284 *
1285 * Determine if the new mount options in @mnt_opts are allowed given the
1286 * existing mounted filesystem at @sb. @sb superblock being compared.
1287 *
1288 * Return: Returns 0 if options are compatible.
1289 */
security_sb_mnt_opts_compat(struct super_block * sb,void * mnt_opts)1290 int security_sb_mnt_opts_compat(struct super_block *sb,
1291 void *mnt_opts)
1292 {
1293 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
1294 }
1295 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1296
1297 /**
1298 * security_sb_remount() - Verify no incompatible mount changes during remount
1299 * @sb: filesystem superblock
1300 * @mnt_opts: (re)mount options
1301 *
1302 * Extracts security system specific mount options and verifies no changes are
1303 * being made to those options.
1304 *
1305 * Return: Returns 0 if permission is granted.
1306 */
security_sb_remount(struct super_block * sb,void * mnt_opts)1307 int security_sb_remount(struct super_block *sb,
1308 void *mnt_opts)
1309 {
1310 return call_int_hook(sb_remount, 0, sb, mnt_opts);
1311 }
1312 EXPORT_SYMBOL(security_sb_remount);
1313
1314 /**
1315 * security_sb_kern_mount() - Check if a kernel mount is allowed
1316 * @sb: filesystem superblock
1317 *
1318 * Mount this @sb if allowed by permissions.
1319 *
1320 * Return: Returns 0 if permission is granted.
1321 */
security_sb_kern_mount(struct super_block * sb)1322 int security_sb_kern_mount(struct super_block *sb)
1323 {
1324 return call_int_hook(sb_kern_mount, 0, sb);
1325 }
1326
1327 /**
1328 * security_sb_show_options() - Output the mount options for a superblock
1329 * @m: output file
1330 * @sb: filesystem superblock
1331 *
1332 * Show (print on @m) mount options for this @sb.
1333 *
1334 * Return: Returns 0 on success, negative values on failure.
1335 */
security_sb_show_options(struct seq_file * m,struct super_block * sb)1336 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1337 {
1338 return call_int_hook(sb_show_options, 0, m, sb);
1339 }
1340
1341 /**
1342 * security_sb_statfs() - Check if accessing fs stats is allowed
1343 * @dentry: superblock handle
1344 *
1345 * Check permission before obtaining filesystem statistics for the @mnt
1346 * mountpoint. @dentry is a handle on the superblock for the filesystem.
1347 *
1348 * Return: Returns 0 if permission is granted.
1349 */
security_sb_statfs(struct dentry * dentry)1350 int security_sb_statfs(struct dentry *dentry)
1351 {
1352 return call_int_hook(sb_statfs, 0, dentry);
1353 }
1354
1355 /**
1356 * security_sb_mount() - Check permission for mounting a filesystem
1357 * @dev_name: filesystem backing device
1358 * @path: mount point
1359 * @type: filesystem type
1360 * @flags: mount flags
1361 * @data: filesystem specific data
1362 *
1363 * Check permission before an object specified by @dev_name is mounted on the
1364 * mount point named by @nd. For an ordinary mount, @dev_name identifies a
1365 * device if the file system type requires a device. For a remount
1366 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount
1367 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being
1368 * mounted.
1369 *
1370 * Return: Returns 0 if permission is granted.
1371 */
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)1372 int security_sb_mount(const char *dev_name, const struct path *path,
1373 const char *type, unsigned long flags, void *data)
1374 {
1375 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1376 }
1377
1378 /**
1379 * security_sb_umount() - Check permission for unmounting a filesystem
1380 * @mnt: mounted filesystem
1381 * @flags: unmount flags
1382 *
1383 * Check permission before the @mnt file system is unmounted.
1384 *
1385 * Return: Returns 0 if permission is granted.
1386 */
security_sb_umount(struct vfsmount * mnt,int flags)1387 int security_sb_umount(struct vfsmount *mnt, int flags)
1388 {
1389 return call_int_hook(sb_umount, 0, mnt, flags);
1390 }
1391
1392 /**
1393 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1394 * @old_path: new location for current rootfs
1395 * @new_path: location of the new rootfs
1396 *
1397 * Check permission before pivoting the root filesystem.
1398 *
1399 * Return: Returns 0 if permission is granted.
1400 */
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)1401 int security_sb_pivotroot(const struct path *old_path,
1402 const struct path *new_path)
1403 {
1404 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1405 }
1406
1407 /**
1408 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1409 * @sb: filesystem superblock
1410 * @mnt_opts: binary mount options
1411 * @kern_flags: kernel flags (in)
1412 * @set_kern_flags: kernel flags (out)
1413 *
1414 * Set the security relevant mount options used for a superblock.
1415 *
1416 * Return: Returns 0 on success, error on failure.
1417 */
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)1418 int security_sb_set_mnt_opts(struct super_block *sb,
1419 void *mnt_opts,
1420 unsigned long kern_flags,
1421 unsigned long *set_kern_flags)
1422 {
1423 return call_int_hook(sb_set_mnt_opts,
1424 mnt_opts ? -EOPNOTSUPP : 0, sb,
1425 mnt_opts, kern_flags, set_kern_flags);
1426 }
1427 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1428
1429 /**
1430 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1431 * @oldsb: source superblock
1432 * @newsb: destination superblock
1433 * @kern_flags: kernel flags (in)
1434 * @set_kern_flags: kernel flags (out)
1435 *
1436 * Copy all security options from a given superblock to another.
1437 *
1438 * Return: Returns 0 on success, error on failure.
1439 */
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)1440 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1441 struct super_block *newsb,
1442 unsigned long kern_flags,
1443 unsigned long *set_kern_flags)
1444 {
1445 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1446 kern_flags, set_kern_flags);
1447 }
1448 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1449
1450 /**
1451 * security_move_mount() - Check permissions for moving a mount
1452 * @from_path: source mount point
1453 * @to_path: destination mount point
1454 *
1455 * Check permission before a mount is moved.
1456 *
1457 * Return: Returns 0 if permission is granted.
1458 */
security_move_mount(const struct path * from_path,const struct path * to_path)1459 int security_move_mount(const struct path *from_path,
1460 const struct path *to_path)
1461 {
1462 return call_int_hook(move_mount, 0, from_path, to_path);
1463 }
1464
1465 /**
1466 * security_path_notify() - Check if setting a watch is allowed
1467 * @path: file path
1468 * @mask: event mask
1469 * @obj_type: file path type
1470 *
1471 * Check permissions before setting a watch on events as defined by @mask, on
1472 * an object at @path, whose type is defined by @obj_type.
1473 *
1474 * Return: Returns 0 if permission is granted.
1475 */
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)1476 int security_path_notify(const struct path *path, u64 mask,
1477 unsigned int obj_type)
1478 {
1479 return call_int_hook(path_notify, 0, path, mask, obj_type);
1480 }
1481
1482 /**
1483 * security_inode_alloc() - Allocate an inode LSM blob
1484 * @inode: the inode
1485 *
1486 * Allocate and attach a security structure to @inode->i_security. The
1487 * i_security field is initialized to NULL when the inode structure is
1488 * allocated.
1489 *
1490 * Return: Return 0 if operation was successful.
1491 */
security_inode_alloc(struct inode * inode)1492 int security_inode_alloc(struct inode *inode)
1493 {
1494 int rc = lsm_inode_alloc(inode);
1495
1496 if (unlikely(rc))
1497 return rc;
1498 rc = call_int_hook(inode_alloc_security, 0, inode);
1499 if (unlikely(rc))
1500 security_inode_free(inode);
1501 return rc;
1502 }
1503
inode_free_by_rcu(struct rcu_head * head)1504 static void inode_free_by_rcu(struct rcu_head *head)
1505 {
1506 /*
1507 * The rcu head is at the start of the inode blob
1508 */
1509 kmem_cache_free(lsm_inode_cache, head);
1510 }
1511
1512 /**
1513 * security_inode_free() - Free an inode's LSM blob
1514 * @inode: the inode
1515 *
1516 * Deallocate the inode security structure and set @inode->i_security to NULL.
1517 */
security_inode_free(struct inode * inode)1518 void security_inode_free(struct inode *inode)
1519 {
1520 integrity_inode_free(inode);
1521 call_void_hook(inode_free_security, inode);
1522 /*
1523 * The inode may still be referenced in a path walk and
1524 * a call to security_inode_permission() can be made
1525 * after inode_free_security() is called. Ideally, the VFS
1526 * wouldn't do this, but fixing that is a much harder
1527 * job. For now, simply free the i_security via RCU, and
1528 * leave the current inode->i_security pointer intact.
1529 * The inode will be freed after the RCU grace period too.
1530 */
1531 if (inode->i_security)
1532 call_rcu((struct rcu_head *)inode->i_security,
1533 inode_free_by_rcu);
1534 }
1535
1536 /**
1537 * security_dentry_init_security() - Perform dentry initialization
1538 * @dentry: the dentry to initialize
1539 * @mode: mode used to determine resource type
1540 * @name: name of the last path component
1541 * @xattr_name: name of the security/LSM xattr
1542 * @ctx: pointer to the resulting LSM context
1543 * @ctxlen: length of @ctx
1544 *
1545 * Compute a context for a dentry as the inode is not yet available since NFSv4
1546 * has no label backed by an EA anyway. It is important to note that
1547 * @xattr_name does not need to be free'd by the caller, it is a static string.
1548 *
1549 * Return: Returns 0 on success, negative values on failure.
1550 */
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,const char ** xattr_name,void ** ctx,u32 * ctxlen)1551 int security_dentry_init_security(struct dentry *dentry, int mode,
1552 const struct qstr *name,
1553 const char **xattr_name, void **ctx,
1554 u32 *ctxlen)
1555 {
1556 struct security_hook_list *hp;
1557 int rc;
1558
1559 /*
1560 * Only one module will provide a security context.
1561 */
1562 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security,
1563 list) {
1564 rc = hp->hook.dentry_init_security(dentry, mode, name,
1565 xattr_name, ctx, ctxlen);
1566 if (rc != LSM_RET_DEFAULT(dentry_init_security))
1567 return rc;
1568 }
1569 return LSM_RET_DEFAULT(dentry_init_security);
1570 }
1571 EXPORT_SYMBOL(security_dentry_init_security);
1572
1573 /**
1574 * security_dentry_create_files_as() - Perform dentry initialization
1575 * @dentry: the dentry to initialize
1576 * @mode: mode used to determine resource type
1577 * @name: name of the last path component
1578 * @old: creds to use for LSM context calculations
1579 * @new: creds to modify
1580 *
1581 * Compute a context for a dentry as the inode is not yet available and set
1582 * that context in passed in creds so that new files are created using that
1583 * context. Context is calculated using the passed in creds and not the creds
1584 * of the caller.
1585 *
1586 * Return: Returns 0 on success, error on failure.
1587 */
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1588 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1589 struct qstr *name,
1590 const struct cred *old, struct cred *new)
1591 {
1592 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1593 name, old, new);
1594 }
1595 EXPORT_SYMBOL(security_dentry_create_files_as);
1596
1597 /**
1598 * security_inode_init_security() - Initialize an inode's LSM context
1599 * @inode: the inode
1600 * @dir: parent directory
1601 * @qstr: last component of the pathname
1602 * @initxattrs: callback function to write xattrs
1603 * @fs_data: filesystem specific data
1604 *
1605 * Obtain the security attribute name suffix and value to set on a newly
1606 * created inode and set up the incore security field for the new inode. This
1607 * hook is called by the fs code as part of the inode creation transaction and
1608 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1609 * hooks called by the VFS.
1610 *
1611 * The hook function is expected to populate the xattrs array, by calling
1612 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1613 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each
1614 * slot, the hook function should set ->name to the attribute name suffix
1615 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1616 * to the attribute value, to set ->value_len to the length of the value. If
1617 * the security module does not use security attributes or does not wish to put
1618 * a security attribute on this particular inode, then it should return
1619 * -EOPNOTSUPP to skip this processing.
1620 *
1621 * Return: Returns 0 if the LSM successfully initialized all of the inode
1622 * security attributes that are required, negative values otherwise.
1623 */
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1624 int security_inode_init_security(struct inode *inode, struct inode *dir,
1625 const struct qstr *qstr,
1626 const initxattrs initxattrs, void *fs_data)
1627 {
1628 struct security_hook_list *hp;
1629 struct xattr *new_xattrs = NULL;
1630 int ret = -EOPNOTSUPP, xattr_count = 0;
1631
1632 if (unlikely(IS_PRIVATE(inode)))
1633 return 0;
1634
1635 if (!blob_sizes.lbs_xattr_count)
1636 return 0;
1637
1638 if (initxattrs) {
1639 /* Allocate +1 for EVM and +1 as terminator. */
1640 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2,
1641 sizeof(*new_xattrs), GFP_NOFS);
1642 if (!new_xattrs)
1643 return -ENOMEM;
1644 }
1645
1646 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1647 list) {
1648 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1649 &xattr_count);
1650 if (ret && ret != -EOPNOTSUPP)
1651 goto out;
1652 /*
1653 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1654 * means that the LSM is not willing to provide an xattr, not
1655 * that it wants to signal an error. Thus, continue to invoke
1656 * the remaining LSMs.
1657 */
1658 }
1659
1660 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1661 if (!xattr_count)
1662 goto out;
1663
1664 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs,
1665 &xattr_count);
1666 if (ret)
1667 goto out;
1668 ret = initxattrs(inode, new_xattrs, fs_data);
1669 out:
1670 for (; xattr_count > 0; xattr_count--)
1671 kfree(new_xattrs[xattr_count - 1].value);
1672 kfree(new_xattrs);
1673 return (ret == -EOPNOTSUPP) ? 0 : ret;
1674 }
1675 EXPORT_SYMBOL(security_inode_init_security);
1676
1677 /**
1678 * security_inode_init_security_anon() - Initialize an anonymous inode
1679 * @inode: the inode
1680 * @name: the anonymous inode class
1681 * @context_inode: an optional related inode
1682 *
1683 * Set up the incore security field for the new anonymous inode and return
1684 * whether the inode creation is permitted by the security module or not.
1685 *
1686 * Return: Returns 0 on success, -EACCES if the security module denies the
1687 * creation of this inode, or another -errno upon other errors.
1688 */
security_inode_init_security_anon(struct inode * inode,const struct qstr * name,const struct inode * context_inode)1689 int security_inode_init_security_anon(struct inode *inode,
1690 const struct qstr *name,
1691 const struct inode *context_inode)
1692 {
1693 return call_int_hook(inode_init_security_anon, 0, inode, name,
1694 context_inode);
1695 }
1696
1697 #ifdef CONFIG_SECURITY_PATH
1698 /**
1699 * security_path_mknod() - Check if creating a special file is allowed
1700 * @dir: parent directory
1701 * @dentry: new file
1702 * @mode: new file mode
1703 * @dev: device number
1704 *
1705 * Check permissions when creating a file. Note that this hook is called even
1706 * if mknod operation is being done for a regular file.
1707 *
1708 * Return: Returns 0 if permission is granted.
1709 */
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1710 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1711 umode_t mode, unsigned int dev)
1712 {
1713 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1714 return 0;
1715 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1716 }
1717 EXPORT_SYMBOL(security_path_mknod);
1718
1719 /**
1720 * security_path_mkdir() - Check if creating a new directory is allowed
1721 * @dir: parent directory
1722 * @dentry: new directory
1723 * @mode: new directory mode
1724 *
1725 * Check permissions to create a new directory in the existing directory.
1726 *
1727 * Return: Returns 0 if permission is granted.
1728 */
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1729 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1730 umode_t mode)
1731 {
1732 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1733 return 0;
1734 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1735 }
1736 EXPORT_SYMBOL(security_path_mkdir);
1737
1738 /**
1739 * security_path_rmdir() - Check if removing a directory is allowed
1740 * @dir: parent directory
1741 * @dentry: directory to remove
1742 *
1743 * Check the permission to remove a directory.
1744 *
1745 * Return: Returns 0 if permission is granted.
1746 */
security_path_rmdir(const struct path * dir,struct dentry * dentry)1747 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1748 {
1749 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1750 return 0;
1751 return call_int_hook(path_rmdir, 0, dir, dentry);
1752 }
1753
1754 /**
1755 * security_path_unlink() - Check if removing a hard link is allowed
1756 * @dir: parent directory
1757 * @dentry: file
1758 *
1759 * Check the permission to remove a hard link to a file.
1760 *
1761 * Return: Returns 0 if permission is granted.
1762 */
security_path_unlink(const struct path * dir,struct dentry * dentry)1763 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1764 {
1765 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1766 return 0;
1767 return call_int_hook(path_unlink, 0, dir, dentry);
1768 }
1769 EXPORT_SYMBOL(security_path_unlink);
1770
1771 /**
1772 * security_path_symlink() - Check if creating a symbolic link is allowed
1773 * @dir: parent directory
1774 * @dentry: symbolic link
1775 * @old_name: file pathname
1776 *
1777 * Check the permission to create a symbolic link to a file.
1778 *
1779 * Return: Returns 0 if permission is granted.
1780 */
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1781 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1782 const char *old_name)
1783 {
1784 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1785 return 0;
1786 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1787 }
1788
1789 /**
1790 * security_path_link - Check if creating a hard link is allowed
1791 * @old_dentry: existing file
1792 * @new_dir: new parent directory
1793 * @new_dentry: new link
1794 *
1795 * Check permission before creating a new hard link to a file.
1796 *
1797 * Return: Returns 0 if permission is granted.
1798 */
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1799 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1800 struct dentry *new_dentry)
1801 {
1802 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1803 return 0;
1804 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1805 }
1806
1807 /**
1808 * security_path_rename() - Check if renaming a file is allowed
1809 * @old_dir: parent directory of the old file
1810 * @old_dentry: the old file
1811 * @new_dir: parent directory of the new file
1812 * @new_dentry: the new file
1813 * @flags: flags
1814 *
1815 * Check for permission to rename a file or directory.
1816 *
1817 * Return: Returns 0 if permission is granted.
1818 */
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1819 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1820 const struct path *new_dir, struct dentry *new_dentry,
1821 unsigned int flags)
1822 {
1823 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1824 (d_is_positive(new_dentry) &&
1825 IS_PRIVATE(d_backing_inode(new_dentry)))))
1826 return 0;
1827
1828 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1829 new_dentry, flags);
1830 }
1831 EXPORT_SYMBOL(security_path_rename);
1832
1833 /**
1834 * security_path_truncate() - Check if truncating a file is allowed
1835 * @path: file
1836 *
1837 * Check permission before truncating the file indicated by path. Note that
1838 * truncation permissions may also be checked based on already opened files,
1839 * using the security_file_truncate() hook.
1840 *
1841 * Return: Returns 0 if permission is granted.
1842 */
security_path_truncate(const struct path * path)1843 int security_path_truncate(const struct path *path)
1844 {
1845 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1846 return 0;
1847 return call_int_hook(path_truncate, 0, path);
1848 }
1849
1850 /**
1851 * security_path_chmod() - Check if changing the file's mode is allowed
1852 * @path: file
1853 * @mode: new mode
1854 *
1855 * Check for permission to change a mode of the file @path. The new mode is
1856 * specified in @mode which is a bitmask of constants from
1857 * <include/uapi/linux/stat.h>.
1858 *
1859 * Return: Returns 0 if permission is granted.
1860 */
security_path_chmod(const struct path * path,umode_t mode)1861 int security_path_chmod(const struct path *path, umode_t mode)
1862 {
1863 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1864 return 0;
1865 return call_int_hook(path_chmod, 0, path, mode);
1866 }
1867
1868 /**
1869 * security_path_chown() - Check if changing the file's owner/group is allowed
1870 * @path: file
1871 * @uid: file owner
1872 * @gid: file group
1873 *
1874 * Check for permission to change owner/group of a file or directory.
1875 *
1876 * Return: Returns 0 if permission is granted.
1877 */
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1878 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1879 {
1880 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1881 return 0;
1882 return call_int_hook(path_chown, 0, path, uid, gid);
1883 }
1884
1885 /**
1886 * security_path_chroot() - Check if changing the root directory is allowed
1887 * @path: directory
1888 *
1889 * Check for permission to change root directory.
1890 *
1891 * Return: Returns 0 if permission is granted.
1892 */
security_path_chroot(const struct path * path)1893 int security_path_chroot(const struct path *path)
1894 {
1895 return call_int_hook(path_chroot, 0, path);
1896 }
1897 #endif /* CONFIG_SECURITY_PATH */
1898
1899 /**
1900 * security_inode_create() - Check if creating a file is allowed
1901 * @dir: the parent directory
1902 * @dentry: the file being created
1903 * @mode: requested file mode
1904 *
1905 * Check permission to create a regular file.
1906 *
1907 * Return: Returns 0 if permission is granted.
1908 */
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1909 int security_inode_create(struct inode *dir, struct dentry *dentry,
1910 umode_t mode)
1911 {
1912 if (unlikely(IS_PRIVATE(dir)))
1913 return 0;
1914 return call_int_hook(inode_create, 0, dir, dentry, mode);
1915 }
1916 EXPORT_SYMBOL_GPL(security_inode_create);
1917
1918 /**
1919 * security_inode_link() - Check if creating a hard link is allowed
1920 * @old_dentry: existing file
1921 * @dir: new parent directory
1922 * @new_dentry: new link
1923 *
1924 * Check permission before creating a new hard link to a file.
1925 *
1926 * Return: Returns 0 if permission is granted.
1927 */
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1928 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1929 struct dentry *new_dentry)
1930 {
1931 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1932 return 0;
1933 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1934 }
1935
1936 /**
1937 * security_inode_unlink() - Check if removing a hard link is allowed
1938 * @dir: parent directory
1939 * @dentry: file
1940 *
1941 * Check the permission to remove a hard link to a file.
1942 *
1943 * Return: Returns 0 if permission is granted.
1944 */
security_inode_unlink(struct inode * dir,struct dentry * dentry)1945 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1946 {
1947 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1948 return 0;
1949 return call_int_hook(inode_unlink, 0, dir, dentry);
1950 }
1951
1952 /**
1953 * security_inode_symlink() - Check if creating a symbolic link is allowed
1954 * @dir: parent directory
1955 * @dentry: symbolic link
1956 * @old_name: existing filename
1957 *
1958 * Check the permission to create a symbolic link to a file.
1959 *
1960 * Return: Returns 0 if permission is granted.
1961 */
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1962 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1963 const char *old_name)
1964 {
1965 if (unlikely(IS_PRIVATE(dir)))
1966 return 0;
1967 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1968 }
1969
1970 /**
1971 * security_inode_mkdir() - Check if creation a new director is allowed
1972 * @dir: parent directory
1973 * @dentry: new directory
1974 * @mode: new directory mode
1975 *
1976 * Check permissions to create a new directory in the existing directory
1977 * associated with inode structure @dir.
1978 *
1979 * Return: Returns 0 if permission is granted.
1980 */
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1981 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1982 {
1983 if (unlikely(IS_PRIVATE(dir)))
1984 return 0;
1985 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1986 }
1987 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1988
1989 /**
1990 * security_inode_rmdir() - Check if removing a directory is allowed
1991 * @dir: parent directory
1992 * @dentry: directory to be removed
1993 *
1994 * Check the permission to remove a directory.
1995 *
1996 * Return: Returns 0 if permission is granted.
1997 */
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1998 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1999 {
2000 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2001 return 0;
2002 return call_int_hook(inode_rmdir, 0, dir, dentry);
2003 }
2004
2005 /**
2006 * security_inode_mknod() - Check if creating a special file is allowed
2007 * @dir: parent directory
2008 * @dentry: new file
2009 * @mode: new file mode
2010 * @dev: device number
2011 *
2012 * Check permissions when creating a special file (or a socket or a fifo file
2013 * created via the mknod system call). Note that if mknod operation is being
2014 * done for a regular file, then the create hook will be called and not this
2015 * hook.
2016 *
2017 * Return: Returns 0 if permission is granted.
2018 */
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)2019 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2020 umode_t mode, dev_t dev)
2021 {
2022 if (unlikely(IS_PRIVATE(dir)))
2023 return 0;
2024 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
2025 }
2026
2027 /**
2028 * security_inode_rename() - Check if renaming a file is allowed
2029 * @old_dir: parent directory of the old file
2030 * @old_dentry: the old file
2031 * @new_dir: parent directory of the new file
2032 * @new_dentry: the new file
2033 * @flags: flags
2034 *
2035 * Check for permission to rename a file or directory.
2036 *
2037 * Return: Returns 0 if permission is granted.
2038 */
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2039 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2040 struct inode *new_dir, struct dentry *new_dentry,
2041 unsigned int flags)
2042 {
2043 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2044 (d_is_positive(new_dentry) &&
2045 IS_PRIVATE(d_backing_inode(new_dentry)))))
2046 return 0;
2047
2048 if (flags & RENAME_EXCHANGE) {
2049 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
2050 old_dir, old_dentry);
2051 if (err)
2052 return err;
2053 }
2054
2055 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
2056 new_dir, new_dentry);
2057 }
2058
2059 /**
2060 * security_inode_readlink() - Check if reading a symbolic link is allowed
2061 * @dentry: link
2062 *
2063 * Check the permission to read the symbolic link.
2064 *
2065 * Return: Returns 0 if permission is granted.
2066 */
security_inode_readlink(struct dentry * dentry)2067 int security_inode_readlink(struct dentry *dentry)
2068 {
2069 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2070 return 0;
2071 return call_int_hook(inode_readlink, 0, dentry);
2072 }
2073
2074 /**
2075 * security_inode_follow_link() - Check if following a symbolic link is allowed
2076 * @dentry: link dentry
2077 * @inode: link inode
2078 * @rcu: true if in RCU-walk mode
2079 *
2080 * Check permission to follow a symbolic link when looking up a pathname. If
2081 * @rcu is true, @inode is not stable.
2082 *
2083 * Return: Returns 0 if permission is granted.
2084 */
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)2085 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2086 bool rcu)
2087 {
2088 if (unlikely(IS_PRIVATE(inode)))
2089 return 0;
2090 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
2091 }
2092
2093 /**
2094 * security_inode_permission() - Check if accessing an inode is allowed
2095 * @inode: inode
2096 * @mask: access mask
2097 *
2098 * Check permission before accessing an inode. This hook is called by the
2099 * existing Linux permission function, so a security module can use it to
2100 * provide additional checking for existing Linux permission checks. Notice
2101 * that this hook is called when a file is opened (as well as many other
2102 * operations), whereas the file_security_ops permission hook is called when
2103 * the actual read/write operations are performed.
2104 *
2105 * Return: Returns 0 if permission is granted.
2106 */
security_inode_permission(struct inode * inode,int mask)2107 int security_inode_permission(struct inode *inode, int mask)
2108 {
2109 if (unlikely(IS_PRIVATE(inode)))
2110 return 0;
2111 return call_int_hook(inode_permission, 0, inode, mask);
2112 }
2113
2114 /**
2115 * security_inode_setattr() - Check if setting file attributes is allowed
2116 * @idmap: idmap of the mount
2117 * @dentry: file
2118 * @attr: new attributes
2119 *
2120 * Check permission before setting file attributes. Note that the kernel call
2121 * to notify_change is performed from several locations, whenever file
2122 * attributes change (such as when a file is truncated, chown/chmod operations,
2123 * transferring disk quotas, etc).
2124 *
2125 * Return: Returns 0 if permission is granted.
2126 */
security_inode_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)2127 int security_inode_setattr(struct mnt_idmap *idmap,
2128 struct dentry *dentry, struct iattr *attr)
2129 {
2130 int ret;
2131
2132 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133 return 0;
2134 ret = call_int_hook(inode_setattr, 0, dentry, attr);
2135 if (ret)
2136 return ret;
2137 return evm_inode_setattr(idmap, dentry, attr);
2138 }
2139 EXPORT_SYMBOL_GPL(security_inode_setattr);
2140
2141 /**
2142 * security_inode_getattr() - Check if getting file attributes is allowed
2143 * @path: file
2144 *
2145 * Check permission before obtaining file attributes.
2146 *
2147 * Return: Returns 0 if permission is granted.
2148 */
security_inode_getattr(const struct path * path)2149 int security_inode_getattr(const struct path *path)
2150 {
2151 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2152 return 0;
2153 return call_int_hook(inode_getattr, 0, path);
2154 }
2155
2156 /**
2157 * security_inode_setxattr() - Check if setting file xattrs is allowed
2158 * @idmap: idmap of the mount
2159 * @dentry: file
2160 * @name: xattr name
2161 * @value: xattr value
2162 * @size: size of xattr value
2163 * @flags: flags
2164 *
2165 * Check permission before setting the extended attributes.
2166 *
2167 * Return: Returns 0 if permission is granted.
2168 */
security_inode_setxattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2169 int security_inode_setxattr(struct mnt_idmap *idmap,
2170 struct dentry *dentry, const char *name,
2171 const void *value, size_t size, int flags)
2172 {
2173 int ret;
2174
2175 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2176 return 0;
2177 /*
2178 * SELinux and Smack integrate the cap call,
2179 * so assume that all LSMs supplying this call do so.
2180 */
2181 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value,
2182 size, flags);
2183
2184 if (ret == 1)
2185 ret = cap_inode_setxattr(dentry, name, value, size, flags);
2186 if (ret)
2187 return ret;
2188 ret = ima_inode_setxattr(dentry, name, value, size);
2189 if (ret)
2190 return ret;
2191 return evm_inode_setxattr(idmap, dentry, name, value, size);
2192 }
2193
2194 /**
2195 * security_inode_set_acl() - Check if setting posix acls is allowed
2196 * @idmap: idmap of the mount
2197 * @dentry: file
2198 * @acl_name: acl name
2199 * @kacl: acl struct
2200 *
2201 * Check permission before setting posix acls, the posix acls in @kacl are
2202 * identified by @acl_name.
2203 *
2204 * Return: Returns 0 if permission is granted.
2205 */
security_inode_set_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name,struct posix_acl * kacl)2206 int security_inode_set_acl(struct mnt_idmap *idmap,
2207 struct dentry *dentry, const char *acl_name,
2208 struct posix_acl *kacl)
2209 {
2210 int ret;
2211
2212 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2213 return 0;
2214 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name,
2215 kacl);
2216 if (ret)
2217 return ret;
2218 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl);
2219 if (ret)
2220 return ret;
2221 return evm_inode_set_acl(idmap, dentry, acl_name, kacl);
2222 }
2223
2224 /**
2225 * security_inode_get_acl() - Check if reading posix acls is allowed
2226 * @idmap: idmap of the mount
2227 * @dentry: file
2228 * @acl_name: acl name
2229 *
2230 * Check permission before getting osix acls, the posix acls are identified by
2231 * @acl_name.
2232 *
2233 * Return: Returns 0 if permission is granted.
2234 */
security_inode_get_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2235 int security_inode_get_acl(struct mnt_idmap *idmap,
2236 struct dentry *dentry, const char *acl_name)
2237 {
2238 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2239 return 0;
2240 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name);
2241 }
2242
2243 /**
2244 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2245 * @idmap: idmap of the mount
2246 * @dentry: file
2247 * @acl_name: acl name
2248 *
2249 * Check permission before removing posix acls, the posix acls are identified
2250 * by @acl_name.
2251 *
2252 * Return: Returns 0 if permission is granted.
2253 */
security_inode_remove_acl(struct mnt_idmap * idmap,struct dentry * dentry,const char * acl_name)2254 int security_inode_remove_acl(struct mnt_idmap *idmap,
2255 struct dentry *dentry, const char *acl_name)
2256 {
2257 int ret;
2258
2259 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2260 return 0;
2261 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name);
2262 if (ret)
2263 return ret;
2264 ret = ima_inode_remove_acl(idmap, dentry, acl_name);
2265 if (ret)
2266 return ret;
2267 return evm_inode_remove_acl(idmap, dentry, acl_name);
2268 }
2269
2270 /**
2271 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2272 * @dentry: file
2273 * @name: xattr name
2274 * @value: xattr value
2275 * @size: xattr value size
2276 * @flags: flags
2277 *
2278 * Update inode security field after successful setxattr operation.
2279 */
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)2280 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2281 const void *value, size_t size, int flags)
2282 {
2283 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2284 return;
2285 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2286 evm_inode_post_setxattr(dentry, name, value, size);
2287 }
2288
2289 /**
2290 * security_inode_getxattr() - Check if xattr access is allowed
2291 * @dentry: file
2292 * @name: xattr name
2293 *
2294 * Check permission before obtaining the extended attributes identified by
2295 * @name for @dentry.
2296 *
2297 * Return: Returns 0 if permission is granted.
2298 */
security_inode_getxattr(struct dentry * dentry,const char * name)2299 int security_inode_getxattr(struct dentry *dentry, const char *name)
2300 {
2301 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2302 return 0;
2303 return call_int_hook(inode_getxattr, 0, dentry, name);
2304 }
2305
2306 /**
2307 * security_inode_listxattr() - Check if listing xattrs is allowed
2308 * @dentry: file
2309 *
2310 * Check permission before obtaining the list of extended attribute names for
2311 * @dentry.
2312 *
2313 * Return: Returns 0 if permission is granted.
2314 */
security_inode_listxattr(struct dentry * dentry)2315 int security_inode_listxattr(struct dentry *dentry)
2316 {
2317 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2318 return 0;
2319 return call_int_hook(inode_listxattr, 0, dentry);
2320 }
2321
2322 /**
2323 * security_inode_removexattr() - Check if removing an xattr is allowed
2324 * @idmap: idmap of the mount
2325 * @dentry: file
2326 * @name: xattr name
2327 *
2328 * Check permission before removing the extended attribute identified by @name
2329 * for @dentry.
2330 *
2331 * Return: Returns 0 if permission is granted.
2332 */
security_inode_removexattr(struct mnt_idmap * idmap,struct dentry * dentry,const char * name)2333 int security_inode_removexattr(struct mnt_idmap *idmap,
2334 struct dentry *dentry, const char *name)
2335 {
2336 int ret;
2337
2338 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339 return 0;
2340 /*
2341 * SELinux and Smack integrate the cap call,
2342 * so assume that all LSMs supplying this call do so.
2343 */
2344 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name);
2345 if (ret == 1)
2346 ret = cap_inode_removexattr(idmap, dentry, name);
2347 if (ret)
2348 return ret;
2349 ret = ima_inode_removexattr(dentry, name);
2350 if (ret)
2351 return ret;
2352 return evm_inode_removexattr(idmap, dentry, name);
2353 }
2354
2355 /**
2356 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2357 * @dentry: associated dentry
2358 *
2359 * Called when an inode has been changed to determine if
2360 * security_inode_killpriv() should be called.
2361 *
2362 * Return: Return <0 on error to abort the inode change operation, return 0 if
2363 * security_inode_killpriv() does not need to be called, return >0 if
2364 * security_inode_killpriv() does need to be called.
2365 */
security_inode_need_killpriv(struct dentry * dentry)2366 int security_inode_need_killpriv(struct dentry *dentry)
2367 {
2368 return call_int_hook(inode_need_killpriv, 0, dentry);
2369 }
2370
2371 /**
2372 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2373 * @idmap: idmap of the mount
2374 * @dentry: associated dentry
2375 *
2376 * The @dentry's setuid bit is being removed. Remove similar security labels.
2377 * Called with the dentry->d_inode->i_mutex held.
2378 *
2379 * Return: Return 0 on success. If error is returned, then the operation
2380 * causing setuid bit removal is failed.
2381 */
security_inode_killpriv(struct mnt_idmap * idmap,struct dentry * dentry)2382 int security_inode_killpriv(struct mnt_idmap *idmap,
2383 struct dentry *dentry)
2384 {
2385 return call_int_hook(inode_killpriv, 0, idmap, dentry);
2386 }
2387
2388 /**
2389 * security_inode_getsecurity() - Get the xattr security label of an inode
2390 * @idmap: idmap of the mount
2391 * @inode: inode
2392 * @name: xattr name
2393 * @buffer: security label buffer
2394 * @alloc: allocation flag
2395 *
2396 * Retrieve a copy of the extended attribute representation of the security
2397 * label associated with @name for @inode via @buffer. Note that @name is the
2398 * remainder of the attribute name after the security prefix has been removed.
2399 * @alloc is used to specify if the call should return a value via the buffer
2400 * or just the value length.
2401 *
2402 * Return: Returns size of buffer on success.
2403 */
security_inode_getsecurity(struct mnt_idmap * idmap,struct inode * inode,const char * name,void ** buffer,bool alloc)2404 int security_inode_getsecurity(struct mnt_idmap *idmap,
2405 struct inode *inode, const char *name,
2406 void **buffer, bool alloc)
2407 {
2408 struct security_hook_list *hp;
2409 int rc;
2410
2411 if (unlikely(IS_PRIVATE(inode)))
2412 return LSM_RET_DEFAULT(inode_getsecurity);
2413 /*
2414 * Only one module will provide an attribute with a given name.
2415 */
2416 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
2417 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer,
2418 alloc);
2419 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
2420 return rc;
2421 }
2422 return LSM_RET_DEFAULT(inode_getsecurity);
2423 }
2424
2425 /**
2426 * security_inode_setsecurity() - Set the xattr security label of an inode
2427 * @inode: inode
2428 * @name: xattr name
2429 * @value: security label
2430 * @size: length of security label
2431 * @flags: flags
2432 *
2433 * Set the security label associated with @name for @inode from the extended
2434 * attribute value @value. @size indicates the size of the @value in bytes.
2435 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2436 * remainder of the attribute name after the security. prefix has been removed.
2437 *
2438 * Return: Returns 0 on success.
2439 */
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)2440 int security_inode_setsecurity(struct inode *inode, const char *name,
2441 const void *value, size_t size, int flags)
2442 {
2443 struct security_hook_list *hp;
2444 int rc;
2445
2446 if (unlikely(IS_PRIVATE(inode)))
2447 return LSM_RET_DEFAULT(inode_setsecurity);
2448 /*
2449 * Only one module will provide an attribute with a given name.
2450 */
2451 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
2452 rc = hp->hook.inode_setsecurity(inode, name, value, size,
2453 flags);
2454 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
2455 return rc;
2456 }
2457 return LSM_RET_DEFAULT(inode_setsecurity);
2458 }
2459
2460 /**
2461 * security_inode_listsecurity() - List the xattr security label names
2462 * @inode: inode
2463 * @buffer: buffer
2464 * @buffer_size: size of buffer
2465 *
2466 * Copy the extended attribute names for the security labels associated with
2467 * @inode into @buffer. The maximum size of @buffer is specified by
2468 * @buffer_size. @buffer may be NULL to request the size of the buffer
2469 * required.
2470 *
2471 * Return: Returns number of bytes used/required on success.
2472 */
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)2473 int security_inode_listsecurity(struct inode *inode,
2474 char *buffer, size_t buffer_size)
2475 {
2476 if (unlikely(IS_PRIVATE(inode)))
2477 return 0;
2478 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
2479 }
2480 EXPORT_SYMBOL(security_inode_listsecurity);
2481
2482 /**
2483 * security_inode_getsecid() - Get an inode's secid
2484 * @inode: inode
2485 * @secid: secid to return
2486 *
2487 * Get the secid associated with the node. In case of failure, @secid will be
2488 * set to zero.
2489 */
security_inode_getsecid(struct inode * inode,u32 * secid)2490 void security_inode_getsecid(struct inode *inode, u32 *secid)
2491 {
2492 call_void_hook(inode_getsecid, inode, secid);
2493 }
2494
2495 /**
2496 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2497 * @src: union dentry of copy-up file
2498 * @new: newly created creds
2499 *
2500 * A file is about to be copied up from lower layer to upper layer of overlay
2501 * filesystem. Security module can prepare a set of new creds and modify as
2502 * need be and return new creds. Caller will switch to new creds temporarily to
2503 * create new file and release newly allocated creds.
2504 *
2505 * Return: Returns 0 on success or a negative error code on error.
2506 */
security_inode_copy_up(struct dentry * src,struct cred ** new)2507 int security_inode_copy_up(struct dentry *src, struct cred **new)
2508 {
2509 return call_int_hook(inode_copy_up, 0, src, new);
2510 }
2511 EXPORT_SYMBOL(security_inode_copy_up);
2512
2513 /**
2514 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2515 * @name: xattr name
2516 *
2517 * Filter the xattrs being copied up when a unioned file is copied up from a
2518 * lower layer to the union/overlay layer. The caller is responsible for
2519 * reading and writing the xattrs, this hook is merely a filter.
2520 *
2521 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2522 * if the security module does not know about attribute, or a negative
2523 * error code to abort the copy up.
2524 */
security_inode_copy_up_xattr(const char * name)2525 int security_inode_copy_up_xattr(const char *name)
2526 {
2527 struct security_hook_list *hp;
2528 int rc;
2529
2530 /*
2531 * The implementation can return 0 (accept the xattr), 1 (discard the
2532 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2533 * any other error code in case of an error.
2534 */
2535 hlist_for_each_entry(hp,
2536 &security_hook_heads.inode_copy_up_xattr, list) {
2537 rc = hp->hook.inode_copy_up_xattr(name);
2538 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2539 return rc;
2540 }
2541
2542 return evm_inode_copy_up_xattr(name);
2543 }
2544 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2545
2546 /**
2547 * security_kernfs_init_security() - Init LSM context for a kernfs node
2548 * @kn_dir: parent kernfs node
2549 * @kn: the kernfs node to initialize
2550 *
2551 * Initialize the security context of a newly created kernfs node based on its
2552 * own and its parent's attributes.
2553 *
2554 * Return: Returns 0 if permission is granted.
2555 */
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)2556 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2557 struct kernfs_node *kn)
2558 {
2559 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
2560 }
2561
2562 /**
2563 * security_file_permission() - Check file permissions
2564 * @file: file
2565 * @mask: requested permissions
2566 *
2567 * Check file permissions before accessing an open file. This hook is called
2568 * by various operations that read or write files. A security module can use
2569 * this hook to perform additional checking on these operations, e.g. to
2570 * revalidate permissions on use to support privilege bracketing or policy
2571 * changes. Notice that this hook is used when the actual read/write
2572 * operations are performed, whereas the inode_security_ops hook is called when
2573 * a file is opened (as well as many other operations). Although this hook can
2574 * be used to revalidate permissions for various system call operations that
2575 * read or write files, it does not address the revalidation of permissions for
2576 * memory-mapped files. Security modules must handle this separately if they
2577 * need such revalidation.
2578 *
2579 * Return: Returns 0 if permission is granted.
2580 */
security_file_permission(struct file * file,int mask)2581 int security_file_permission(struct file *file, int mask)
2582 {
2583 int ret;
2584
2585 ret = call_int_hook(file_permission, 0, file, mask);
2586 if (ret)
2587 return ret;
2588
2589 return fsnotify_perm(file, mask);
2590 }
2591
2592 /**
2593 * security_file_alloc() - Allocate and init a file's LSM blob
2594 * @file: the file
2595 *
2596 * Allocate and attach a security structure to the file->f_security field. The
2597 * security field is initialized to NULL when the structure is first created.
2598 *
2599 * Return: Return 0 if the hook is successful and permission is granted.
2600 */
security_file_alloc(struct file * file)2601 int security_file_alloc(struct file *file)
2602 {
2603 int rc = lsm_file_alloc(file);
2604
2605 if (rc)
2606 return rc;
2607 rc = call_int_hook(file_alloc_security, 0, file);
2608 if (unlikely(rc))
2609 security_file_free(file);
2610 return rc;
2611 }
2612
2613 /**
2614 * security_file_free() - Free a file's LSM blob
2615 * @file: the file
2616 *
2617 * Deallocate and free any security structures stored in file->f_security.
2618 */
security_file_free(struct file * file)2619 void security_file_free(struct file *file)
2620 {
2621 void *blob;
2622
2623 call_void_hook(file_free_security, file);
2624
2625 blob = file->f_security;
2626 if (blob) {
2627 file->f_security = NULL;
2628 kmem_cache_free(lsm_file_cache, blob);
2629 }
2630 }
2631
2632 /**
2633 * security_file_ioctl() - Check if an ioctl is allowed
2634 * @file: associated file
2635 * @cmd: ioctl cmd
2636 * @arg: ioctl arguments
2637 *
2638 * Check permission for an ioctl operation on @file. Note that @arg sometimes
2639 * represents a user space pointer; in other cases, it may be a simple integer
2640 * value. When @arg represents a user space pointer, it should never be used
2641 * by the security module.
2642 *
2643 * Return: Returns 0 if permission is granted.
2644 */
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2645 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2646 {
2647 return call_int_hook(file_ioctl, 0, file, cmd, arg);
2648 }
2649 EXPORT_SYMBOL_GPL(security_file_ioctl);
2650
2651 /**
2652 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2653 * @file: associated file
2654 * @cmd: ioctl cmd
2655 * @arg: ioctl arguments
2656 *
2657 * Compat version of security_file_ioctl() that correctly handles 32-bit
2658 * processes running on 64-bit kernels.
2659 *
2660 * Return: Returns 0 if permission is granted.
2661 */
security_file_ioctl_compat(struct file * file,unsigned int cmd,unsigned long arg)2662 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2663 unsigned long arg)
2664 {
2665 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
2666 }
2667 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2668
mmap_prot(struct file * file,unsigned long prot)2669 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2670 {
2671 /*
2672 * Does we have PROT_READ and does the application expect
2673 * it to imply PROT_EXEC? If not, nothing to talk about...
2674 */
2675 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2676 return prot;
2677 if (!(current->personality & READ_IMPLIES_EXEC))
2678 return prot;
2679 /*
2680 * if that's an anonymous mapping, let it.
2681 */
2682 if (!file)
2683 return prot | PROT_EXEC;
2684 /*
2685 * ditto if it's not on noexec mount, except that on !MMU we need
2686 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2687 */
2688 if (!path_noexec(&file->f_path)) {
2689 #ifndef CONFIG_MMU
2690 if (file->f_op->mmap_capabilities) {
2691 unsigned caps = file->f_op->mmap_capabilities(file);
2692 if (!(caps & NOMMU_MAP_EXEC))
2693 return prot;
2694 }
2695 #endif
2696 return prot | PROT_EXEC;
2697 }
2698 /* anything on noexec mount won't get PROT_EXEC */
2699 return prot;
2700 }
2701
2702 /**
2703 * security_mmap_file() - Check if mmap'ing a file is allowed
2704 * @file: file
2705 * @prot: protection applied by the kernel
2706 * @flags: flags
2707 *
2708 * Check permissions for a mmap operation. The @file may be NULL, e.g. if
2709 * mapping anonymous memory.
2710 *
2711 * Return: Returns 0 if permission is granted.
2712 */
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)2713 int security_mmap_file(struct file *file, unsigned long prot,
2714 unsigned long flags)
2715 {
2716 unsigned long prot_adj = mmap_prot(file, prot);
2717 int ret;
2718
2719 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
2720 if (ret)
2721 return ret;
2722 return ima_file_mmap(file, prot, prot_adj, flags);
2723 }
2724
2725 /**
2726 * security_mmap_addr() - Check if mmap'ing an address is allowed
2727 * @addr: address
2728 *
2729 * Check permissions for a mmap operation at @addr.
2730 *
2731 * Return: Returns 0 if permission is granted.
2732 */
security_mmap_addr(unsigned long addr)2733 int security_mmap_addr(unsigned long addr)
2734 {
2735 return call_int_hook(mmap_addr, 0, addr);
2736 }
2737
2738 /**
2739 * security_file_mprotect() - Check if changing memory protections is allowed
2740 * @vma: memory region
2741 * @reqprot: application requested protection
2742 * @prot: protection applied by the kernel
2743 *
2744 * Check permissions before changing memory access permissions.
2745 *
2746 * Return: Returns 0 if permission is granted.
2747 */
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)2748 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2749 unsigned long prot)
2750 {
2751 int ret;
2752
2753 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
2754 if (ret)
2755 return ret;
2756 return ima_file_mprotect(vma, prot);
2757 }
2758
2759 /**
2760 * security_file_lock() - Check if a file lock is allowed
2761 * @file: file
2762 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2763 *
2764 * Check permission before performing file locking operations. Note the hook
2765 * mediates both flock and fcntl style locks.
2766 *
2767 * Return: Returns 0 if permission is granted.
2768 */
security_file_lock(struct file * file,unsigned int cmd)2769 int security_file_lock(struct file *file, unsigned int cmd)
2770 {
2771 return call_int_hook(file_lock, 0, file, cmd);
2772 }
2773
2774 /**
2775 * security_file_fcntl() - Check if fcntl() op is allowed
2776 * @file: file
2777 * @cmd: fcntl command
2778 * @arg: command argument
2779 *
2780 * Check permission before allowing the file operation specified by @cmd from
2781 * being performed on the file @file. Note that @arg sometimes represents a
2782 * user space pointer; in other cases, it may be a simple integer value. When
2783 * @arg represents a user space pointer, it should never be used by the
2784 * security module.
2785 *
2786 * Return: Returns 0 if permission is granted.
2787 */
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)2788 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2789 {
2790 return call_int_hook(file_fcntl, 0, file, cmd, arg);
2791 }
2792
2793 /**
2794 * security_file_set_fowner() - Set the file owner info in the LSM blob
2795 * @file: the file
2796 *
2797 * Save owner security information (typically from current->security) in
2798 * file->f_security for later use by the send_sigiotask hook.
2799 *
2800 * Return: Returns 0 on success.
2801 */
security_file_set_fowner(struct file * file)2802 void security_file_set_fowner(struct file *file)
2803 {
2804 call_void_hook(file_set_fowner, file);
2805 }
2806
2807 /**
2808 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2809 * @tsk: target task
2810 * @fown: signal sender
2811 * @sig: signal to be sent, SIGIO is sent if 0
2812 *
2813 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2814 * process @tsk. Note that this hook is sometimes called from interrupt. Note
2815 * that the fown_struct, @fown, is never outside the context of a struct file,
2816 * so the file structure (and associated security information) can always be
2817 * obtained: container_of(fown, struct file, f_owner).
2818 *
2819 * Return: Returns 0 if permission is granted.
2820 */
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)2821 int security_file_send_sigiotask(struct task_struct *tsk,
2822 struct fown_struct *fown, int sig)
2823 {
2824 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
2825 }
2826
2827 /**
2828 * security_file_receive() - Check is receiving a file via IPC is allowed
2829 * @file: file being received
2830 *
2831 * This hook allows security modules to control the ability of a process to
2832 * receive an open file descriptor via socket IPC.
2833 *
2834 * Return: Returns 0 if permission is granted.
2835 */
security_file_receive(struct file * file)2836 int security_file_receive(struct file *file)
2837 {
2838 return call_int_hook(file_receive, 0, file);
2839 }
2840
2841 /**
2842 * security_file_open() - Save open() time state for late use by the LSM
2843 * @file:
2844 *
2845 * Save open-time permission checking state for later use upon file_permission,
2846 * and recheck access if anything has changed since inode_permission.
2847 *
2848 * Return: Returns 0 if permission is granted.
2849 */
security_file_open(struct file * file)2850 int security_file_open(struct file *file)
2851 {
2852 int ret;
2853
2854 ret = call_int_hook(file_open, 0, file);
2855 if (ret)
2856 return ret;
2857
2858 return fsnotify_perm(file, MAY_OPEN);
2859 }
2860
2861 /**
2862 * security_file_truncate() - Check if truncating a file is allowed
2863 * @file: file
2864 *
2865 * Check permission before truncating a file, i.e. using ftruncate. Note that
2866 * truncation permission may also be checked based on the path, using the
2867 * @path_truncate hook.
2868 *
2869 * Return: Returns 0 if permission is granted.
2870 */
security_file_truncate(struct file * file)2871 int security_file_truncate(struct file *file)
2872 {
2873 return call_int_hook(file_truncate, 0, file);
2874 }
2875
2876 /**
2877 * security_task_alloc() - Allocate a task's LSM blob
2878 * @task: the task
2879 * @clone_flags: flags indicating what is being shared
2880 *
2881 * Handle allocation of task-related resources.
2882 *
2883 * Return: Returns a zero on success, negative values on failure.
2884 */
security_task_alloc(struct task_struct * task,unsigned long clone_flags)2885 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
2886 {
2887 int rc = lsm_task_alloc(task);
2888
2889 if (rc)
2890 return rc;
2891 rc = call_int_hook(task_alloc, 0, task, clone_flags);
2892 if (unlikely(rc))
2893 security_task_free(task);
2894 return rc;
2895 }
2896
2897 /**
2898 * security_task_free() - Free a task's LSM blob and related resources
2899 * @task: task
2900 *
2901 * Handle release of task-related resources. Note that this can be called from
2902 * interrupt context.
2903 */
security_task_free(struct task_struct * task)2904 void security_task_free(struct task_struct *task)
2905 {
2906 call_void_hook(task_free, task);
2907
2908 kfree(task->security);
2909 task->security = NULL;
2910 }
2911
2912 /**
2913 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
2914 * @cred: credentials
2915 * @gfp: gfp flags
2916 *
2917 * Only allocate sufficient memory and attach to @cred such that
2918 * cred_transfer() will not get ENOMEM.
2919 *
2920 * Return: Returns 0 on success, negative values on failure.
2921 */
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)2922 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
2923 {
2924 int rc = lsm_cred_alloc(cred, gfp);
2925
2926 if (rc)
2927 return rc;
2928
2929 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
2930 if (unlikely(rc))
2931 security_cred_free(cred);
2932 return rc;
2933 }
2934
2935 /**
2936 * security_cred_free() - Free the cred's LSM blob and associated resources
2937 * @cred: credentials
2938 *
2939 * Deallocate and clear the cred->security field in a set of credentials.
2940 */
security_cred_free(struct cred * cred)2941 void security_cred_free(struct cred *cred)
2942 {
2943 /*
2944 * There is a failure case in prepare_creds() that
2945 * may result in a call here with ->security being NULL.
2946 */
2947 if (unlikely(cred->security == NULL))
2948 return;
2949
2950 call_void_hook(cred_free, cred);
2951
2952 kfree(cred->security);
2953 cred->security = NULL;
2954 }
2955
2956 /**
2957 * security_prepare_creds() - Prepare a new set of credentials
2958 * @new: new credentials
2959 * @old: original credentials
2960 * @gfp: gfp flags
2961 *
2962 * Prepare a new set of credentials by copying the data from the old set.
2963 *
2964 * Return: Returns 0 on success, negative values on failure.
2965 */
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)2966 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
2967 {
2968 int rc = lsm_cred_alloc(new, gfp);
2969
2970 if (rc)
2971 return rc;
2972
2973 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
2974 if (unlikely(rc))
2975 security_cred_free(new);
2976 return rc;
2977 }
2978
2979 /**
2980 * security_transfer_creds() - Transfer creds
2981 * @new: target credentials
2982 * @old: original credentials
2983 *
2984 * Transfer data from original creds to new creds.
2985 */
security_transfer_creds(struct cred * new,const struct cred * old)2986 void security_transfer_creds(struct cred *new, const struct cred *old)
2987 {
2988 call_void_hook(cred_transfer, new, old);
2989 }
2990
2991 /**
2992 * security_cred_getsecid() - Get the secid from a set of credentials
2993 * @c: credentials
2994 * @secid: secid value
2995 *
2996 * Retrieve the security identifier of the cred structure @c. In case of
2997 * failure, @secid will be set to zero.
2998 */
security_cred_getsecid(const struct cred * c,u32 * secid)2999 void security_cred_getsecid(const struct cred *c, u32 *secid)
3000 {
3001 *secid = 0;
3002 call_void_hook(cred_getsecid, c, secid);
3003 }
3004 EXPORT_SYMBOL(security_cred_getsecid);
3005
3006 /**
3007 * security_kernel_act_as() - Set the kernel credentials to act as secid
3008 * @new: credentials
3009 * @secid: secid
3010 *
3011 * Set the credentials for a kernel service to act as (subjective context).
3012 * The current task must be the one that nominated @secid.
3013 *
3014 * Return: Returns 0 if successful.
3015 */
security_kernel_act_as(struct cred * new,u32 secid)3016 int security_kernel_act_as(struct cred *new, u32 secid)
3017 {
3018 return call_int_hook(kernel_act_as, 0, new, secid);
3019 }
3020
3021 /**
3022 * security_kernel_create_files_as() - Set file creation context using an inode
3023 * @new: target credentials
3024 * @inode: reference inode
3025 *
3026 * Set the file creation context in a set of credentials to be the same as the
3027 * objective context of the specified inode. The current task must be the one
3028 * that nominated @inode.
3029 *
3030 * Return: Returns 0 if successful.
3031 */
security_kernel_create_files_as(struct cred * new,struct inode * inode)3032 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3033 {
3034 return call_int_hook(kernel_create_files_as, 0, new, inode);
3035 }
3036
3037 /**
3038 * security_kernel_module_request() - Check is loading a module is allowed
3039 * @kmod_name: module name
3040 *
3041 * Ability to trigger the kernel to automatically upcall to userspace for
3042 * userspace to load a kernel module with the given name.
3043 *
3044 * Return: Returns 0 if successful.
3045 */
security_kernel_module_request(char * kmod_name)3046 int security_kernel_module_request(char *kmod_name)
3047 {
3048 int ret;
3049
3050 ret = call_int_hook(kernel_module_request, 0, kmod_name);
3051 if (ret)
3052 return ret;
3053 return integrity_kernel_module_request(kmod_name);
3054 }
3055
3056 /**
3057 * security_kernel_read_file() - Read a file specified by userspace
3058 * @file: file
3059 * @id: file identifier
3060 * @contents: trust if security_kernel_post_read_file() will be called
3061 *
3062 * Read a file specified by userspace.
3063 *
3064 * Return: Returns 0 if permission is granted.
3065 */
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)3066 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3067 bool contents)
3068 {
3069 int ret;
3070
3071 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
3072 if (ret)
3073 return ret;
3074 return ima_read_file(file, id, contents);
3075 }
3076 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3077
3078 /**
3079 * security_kernel_post_read_file() - Read a file specified by userspace
3080 * @file: file
3081 * @buf: file contents
3082 * @size: size of file contents
3083 * @id: file identifier
3084 *
3085 * Read a file specified by userspace. This must be paired with a prior call
3086 * to security_kernel_read_file() call that indicated this hook would also be
3087 * called, see security_kernel_read_file() for more information.
3088 *
3089 * Return: Returns 0 if permission is granted.
3090 */
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)3091 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3092 enum kernel_read_file_id id)
3093 {
3094 int ret;
3095
3096 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
3097 if (ret)
3098 return ret;
3099 return ima_post_read_file(file, buf, size, id);
3100 }
3101 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3102
3103 /**
3104 * security_kernel_load_data() - Load data provided by userspace
3105 * @id: data identifier
3106 * @contents: true if security_kernel_post_load_data() will be called
3107 *
3108 * Load data provided by userspace.
3109 *
3110 * Return: Returns 0 if permission is granted.
3111 */
security_kernel_load_data(enum kernel_load_data_id id,bool contents)3112 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3113 {
3114 int ret;
3115
3116 ret = call_int_hook(kernel_load_data, 0, id, contents);
3117 if (ret)
3118 return ret;
3119 return ima_load_data(id, contents);
3120 }
3121 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3122
3123 /**
3124 * security_kernel_post_load_data() - Load userspace data from a non-file source
3125 * @buf: data
3126 * @size: size of data
3127 * @id: data identifier
3128 * @description: text description of data, specific to the id value
3129 *
3130 * Load data provided by a non-file source (usually userspace buffer). This
3131 * must be paired with a prior security_kernel_load_data() call that indicated
3132 * this hook would also be called, see security_kernel_load_data() for more
3133 * information.
3134 *
3135 * Return: Returns 0 if permission is granted.
3136 */
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)3137 int security_kernel_post_load_data(char *buf, loff_t size,
3138 enum kernel_load_data_id id,
3139 char *description)
3140 {
3141 int ret;
3142
3143 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
3144 description);
3145 if (ret)
3146 return ret;
3147 return ima_post_load_data(buf, size, id, description);
3148 }
3149 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3150
3151 /**
3152 * security_task_fix_setuid() - Update LSM with new user id attributes
3153 * @new: updated credentials
3154 * @old: credentials being replaced
3155 * @flags: LSM_SETID_* flag values
3156 *
3157 * Update the module's state after setting one or more of the user identity
3158 * attributes of the current process. The @flags parameter indicates which of
3159 * the set*uid system calls invoked this hook. If @new is the set of
3160 * credentials that will be installed. Modifications should be made to this
3161 * rather than to @current->cred.
3162 *
3163 * Return: Returns 0 on success.
3164 */
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)3165 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3166 int flags)
3167 {
3168 return call_int_hook(task_fix_setuid, 0, new, old, flags);
3169 }
3170
3171 /**
3172 * security_task_fix_setgid() - Update LSM with new group id attributes
3173 * @new: updated credentials
3174 * @old: credentials being replaced
3175 * @flags: LSM_SETID_* flag value
3176 *
3177 * Update the module's state after setting one or more of the group identity
3178 * attributes of the current process. The @flags parameter indicates which of
3179 * the set*gid system calls invoked this hook. @new is the set of credentials
3180 * that will be installed. Modifications should be made to this rather than to
3181 * @current->cred.
3182 *
3183 * Return: Returns 0 on success.
3184 */
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)3185 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3186 int flags)
3187 {
3188 return call_int_hook(task_fix_setgid, 0, new, old, flags);
3189 }
3190
3191 /**
3192 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3193 * @new: updated credentials
3194 * @old: credentials being replaced
3195 *
3196 * Update the module's state after setting the supplementary group identity
3197 * attributes of the current process. @new is the set of credentials that will
3198 * be installed. Modifications should be made to this rather than to
3199 * @current->cred.
3200 *
3201 * Return: Returns 0 on success.
3202 */
security_task_fix_setgroups(struct cred * new,const struct cred * old)3203 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3204 {
3205 return call_int_hook(task_fix_setgroups, 0, new, old);
3206 }
3207
3208 /**
3209 * security_task_setpgid() - Check if setting the pgid is allowed
3210 * @p: task being modified
3211 * @pgid: new pgid
3212 *
3213 * Check permission before setting the process group identifier of the process
3214 * @p to @pgid.
3215 *
3216 * Return: Returns 0 if permission is granted.
3217 */
security_task_setpgid(struct task_struct * p,pid_t pgid)3218 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3219 {
3220 return call_int_hook(task_setpgid, 0, p, pgid);
3221 }
3222
3223 /**
3224 * security_task_getpgid() - Check if getting the pgid is allowed
3225 * @p: task
3226 *
3227 * Check permission before getting the process group identifier of the process
3228 * @p.
3229 *
3230 * Return: Returns 0 if permission is granted.
3231 */
security_task_getpgid(struct task_struct * p)3232 int security_task_getpgid(struct task_struct *p)
3233 {
3234 return call_int_hook(task_getpgid, 0, p);
3235 }
3236
3237 /**
3238 * security_task_getsid() - Check if getting the session id is allowed
3239 * @p: task
3240 *
3241 * Check permission before getting the session identifier of the process @p.
3242 *
3243 * Return: Returns 0 if permission is granted.
3244 */
security_task_getsid(struct task_struct * p)3245 int security_task_getsid(struct task_struct *p)
3246 {
3247 return call_int_hook(task_getsid, 0, p);
3248 }
3249
3250 /**
3251 * security_current_getsecid_subj() - Get the current task's subjective secid
3252 * @secid: secid value
3253 *
3254 * Retrieve the subjective security identifier of the current task and return
3255 * it in @secid. In case of failure, @secid will be set to zero.
3256 */
security_current_getsecid_subj(u32 * secid)3257 void security_current_getsecid_subj(u32 *secid)
3258 {
3259 *secid = 0;
3260 call_void_hook(current_getsecid_subj, secid);
3261 }
3262 EXPORT_SYMBOL(security_current_getsecid_subj);
3263
3264 /**
3265 * security_task_getsecid_obj() - Get a task's objective secid
3266 * @p: target task
3267 * @secid: secid value
3268 *
3269 * Retrieve the objective security identifier of the task_struct in @p and
3270 * return it in @secid. In case of failure, @secid will be set to zero.
3271 */
security_task_getsecid_obj(struct task_struct * p,u32 * secid)3272 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3273 {
3274 *secid = 0;
3275 call_void_hook(task_getsecid_obj, p, secid);
3276 }
3277 EXPORT_SYMBOL(security_task_getsecid_obj);
3278
3279 /**
3280 * security_task_setnice() - Check if setting a task's nice value is allowed
3281 * @p: target task
3282 * @nice: nice value
3283 *
3284 * Check permission before setting the nice value of @p to @nice.
3285 *
3286 * Return: Returns 0 if permission is granted.
3287 */
security_task_setnice(struct task_struct * p,int nice)3288 int security_task_setnice(struct task_struct *p, int nice)
3289 {
3290 return call_int_hook(task_setnice, 0, p, nice);
3291 }
3292
3293 /**
3294 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3295 * @p: target task
3296 * @ioprio: ioprio value
3297 *
3298 * Check permission before setting the ioprio value of @p to @ioprio.
3299 *
3300 * Return: Returns 0 if permission is granted.
3301 */
security_task_setioprio(struct task_struct * p,int ioprio)3302 int security_task_setioprio(struct task_struct *p, int ioprio)
3303 {
3304 return call_int_hook(task_setioprio, 0, p, ioprio);
3305 }
3306
3307 /**
3308 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3309 * @p: task
3310 *
3311 * Check permission before getting the ioprio value of @p.
3312 *
3313 * Return: Returns 0 if permission is granted.
3314 */
security_task_getioprio(struct task_struct * p)3315 int security_task_getioprio(struct task_struct *p)
3316 {
3317 return call_int_hook(task_getioprio, 0, p);
3318 }
3319
3320 /**
3321 * security_task_prlimit() - Check if get/setting resources limits is allowed
3322 * @cred: current task credentials
3323 * @tcred: target task credentials
3324 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3325 *
3326 * Check permission before getting and/or setting the resource limits of
3327 * another task.
3328 *
3329 * Return: Returns 0 if permission is granted.
3330 */
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)3331 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3332 unsigned int flags)
3333 {
3334 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
3335 }
3336
3337 /**
3338 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3339 * @p: target task's group leader
3340 * @resource: resource whose limit is being set
3341 * @new_rlim: new resource limit
3342 *
3343 * Check permission before setting the resource limits of process @p for
3344 * @resource to @new_rlim. The old resource limit values can be examined by
3345 * dereferencing (p->signal->rlim + resource).
3346 *
3347 * Return: Returns 0 if permission is granted.
3348 */
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)3349 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3350 struct rlimit *new_rlim)
3351 {
3352 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
3353 }
3354
3355 /**
3356 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3357 * @p: target task
3358 *
3359 * Check permission before setting scheduling policy and/or parameters of
3360 * process @p.
3361 *
3362 * Return: Returns 0 if permission is granted.
3363 */
security_task_setscheduler(struct task_struct * p)3364 int security_task_setscheduler(struct task_struct *p)
3365 {
3366 return call_int_hook(task_setscheduler, 0, p);
3367 }
3368
3369 /**
3370 * security_task_getscheduler() - Check if getting scheduling info is allowed
3371 * @p: target task
3372 *
3373 * Check permission before obtaining scheduling information for process @p.
3374 *
3375 * Return: Returns 0 if permission is granted.
3376 */
security_task_getscheduler(struct task_struct * p)3377 int security_task_getscheduler(struct task_struct *p)
3378 {
3379 return call_int_hook(task_getscheduler, 0, p);
3380 }
3381
3382 /**
3383 * security_task_movememory() - Check if moving memory is allowed
3384 * @p: task
3385 *
3386 * Check permission before moving memory owned by process @p.
3387 *
3388 * Return: Returns 0 if permission is granted.
3389 */
security_task_movememory(struct task_struct * p)3390 int security_task_movememory(struct task_struct *p)
3391 {
3392 return call_int_hook(task_movememory, 0, p);
3393 }
3394
3395 /**
3396 * security_task_kill() - Check if sending a signal is allowed
3397 * @p: target process
3398 * @info: signal information
3399 * @sig: signal value
3400 * @cred: credentials of the signal sender, NULL if @current
3401 *
3402 * Check permission before sending signal @sig to @p. @info can be NULL, the
3403 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or
3404 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3405 * the kernel and should typically be permitted. SIGIO signals are handled
3406 * separately by the send_sigiotask hook in file_security_ops.
3407 *
3408 * Return: Returns 0 if permission is granted.
3409 */
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)3410 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3411 int sig, const struct cred *cred)
3412 {
3413 return call_int_hook(task_kill, 0, p, info, sig, cred);
3414 }
3415
3416 /**
3417 * security_task_prctl() - Check if a prctl op is allowed
3418 * @option: operation
3419 * @arg2: argument
3420 * @arg3: argument
3421 * @arg4: argument
3422 * @arg5: argument
3423 *
3424 * Check permission before performing a process control operation on the
3425 * current process.
3426 *
3427 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3428 * to cause prctl() to return immediately with that value.
3429 */
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)3430 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3431 unsigned long arg4, unsigned long arg5)
3432 {
3433 int thisrc;
3434 int rc = LSM_RET_DEFAULT(task_prctl);
3435 struct security_hook_list *hp;
3436
3437 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3438 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3439 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3440 rc = thisrc;
3441 if (thisrc != 0)
3442 break;
3443 }
3444 }
3445 return rc;
3446 }
3447
3448 /**
3449 * security_task_to_inode() - Set the security attributes of a task's inode
3450 * @p: task
3451 * @inode: inode
3452 *
3453 * Set the security attributes for an inode based on an associated task's
3454 * security attributes, e.g. for /proc/pid inodes.
3455 */
security_task_to_inode(struct task_struct * p,struct inode * inode)3456 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3457 {
3458 call_void_hook(task_to_inode, p, inode);
3459 }
3460
3461 /**
3462 * security_create_user_ns() - Check if creating a new userns is allowed
3463 * @cred: prepared creds
3464 *
3465 * Check permission prior to creating a new user namespace.
3466 *
3467 * Return: Returns 0 if successful, otherwise < 0 error code.
3468 */
security_create_user_ns(const struct cred * cred)3469 int security_create_user_ns(const struct cred *cred)
3470 {
3471 return call_int_hook(userns_create, 0, cred);
3472 }
3473
3474 /**
3475 * security_ipc_permission() - Check if sysv ipc access is allowed
3476 * @ipcp: ipc permission structure
3477 * @flag: requested permissions
3478 *
3479 * Check permissions for access to IPC.
3480 *
3481 * Return: Returns 0 if permission is granted.
3482 */
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)3483 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3484 {
3485 return call_int_hook(ipc_permission, 0, ipcp, flag);
3486 }
3487
3488 /**
3489 * security_ipc_getsecid() - Get the sysv ipc object's secid
3490 * @ipcp: ipc permission structure
3491 * @secid: secid pointer
3492 *
3493 * Get the secid associated with the ipc object. In case of failure, @secid
3494 * will be set to zero.
3495 */
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)3496 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3497 {
3498 *secid = 0;
3499 call_void_hook(ipc_getsecid, ipcp, secid);
3500 }
3501
3502 /**
3503 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3504 * @msg: message structure
3505 *
3506 * Allocate and attach a security structure to the msg->security field. The
3507 * security field is initialized to NULL when the structure is first created.
3508 *
3509 * Return: Return 0 if operation was successful and permission is granted.
3510 */
security_msg_msg_alloc(struct msg_msg * msg)3511 int security_msg_msg_alloc(struct msg_msg *msg)
3512 {
3513 int rc = lsm_msg_msg_alloc(msg);
3514
3515 if (unlikely(rc))
3516 return rc;
3517 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
3518 if (unlikely(rc))
3519 security_msg_msg_free(msg);
3520 return rc;
3521 }
3522
3523 /**
3524 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3525 * @msg: message structure
3526 *
3527 * Deallocate the security structure for this message.
3528 */
security_msg_msg_free(struct msg_msg * msg)3529 void security_msg_msg_free(struct msg_msg *msg)
3530 {
3531 call_void_hook(msg_msg_free_security, msg);
3532 kfree(msg->security);
3533 msg->security = NULL;
3534 }
3535
3536 /**
3537 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3538 * @msq: sysv ipc permission structure
3539 *
3540 * Allocate and attach a security structure to @msg. The security field is
3541 * initialized to NULL when the structure is first created.
3542 *
3543 * Return: Returns 0 if operation was successful and permission is granted.
3544 */
security_msg_queue_alloc(struct kern_ipc_perm * msq)3545 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3546 {
3547 int rc = lsm_ipc_alloc(msq);
3548
3549 if (unlikely(rc))
3550 return rc;
3551 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
3552 if (unlikely(rc))
3553 security_msg_queue_free(msq);
3554 return rc;
3555 }
3556
3557 /**
3558 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3559 * @msq: sysv ipc permission structure
3560 *
3561 * Deallocate security field @perm->security for the message queue.
3562 */
security_msg_queue_free(struct kern_ipc_perm * msq)3563 void security_msg_queue_free(struct kern_ipc_perm *msq)
3564 {
3565 call_void_hook(msg_queue_free_security, msq);
3566 kfree(msq->security);
3567 msq->security = NULL;
3568 }
3569
3570 /**
3571 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3572 * @msq: sysv ipc permission structure
3573 * @msqflg: operation flags
3574 *
3575 * Check permission when a message queue is requested through the msgget system
3576 * call. This hook is only called when returning the message queue identifier
3577 * for an existing message queue, not when a new message queue is created.
3578 *
3579 * Return: Return 0 if permission is granted.
3580 */
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)3581 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3582 {
3583 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
3584 }
3585
3586 /**
3587 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3588 * @msq: sysv ipc permission structure
3589 * @cmd: operation
3590 *
3591 * Check permission when a message control operation specified by @cmd is to be
3592 * performed on the message queue with permissions.
3593 *
3594 * Return: Returns 0 if permission is granted.
3595 */
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)3596 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3597 {
3598 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
3599 }
3600
3601 /**
3602 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3603 * @msq: sysv ipc permission structure
3604 * @msg: message
3605 * @msqflg: operation flags
3606 *
3607 * Check permission before a message, @msg, is enqueued on the message queue
3608 * with permissions specified in @msq.
3609 *
3610 * Return: Returns 0 if permission is granted.
3611 */
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)3612 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3613 struct msg_msg *msg, int msqflg)
3614 {
3615 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
3616 }
3617
3618 /**
3619 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3620 * @msq: sysv ipc permission structure
3621 * @msg: message
3622 * @target: target task
3623 * @type: type of message requested
3624 * @mode: operation flags
3625 *
3626 * Check permission before a message, @msg, is removed from the message queue.
3627 * The @target task structure contains a pointer to the process that will be
3628 * receiving the message (not equal to the current process when inline receives
3629 * are being performed).
3630 *
3631 * Return: Returns 0 if permission is granted.
3632 */
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)3633 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3634 struct task_struct *target, long type, int mode)
3635 {
3636 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
3637 }
3638
3639 /**
3640 * security_shm_alloc() - Allocate a sysv shm LSM blob
3641 * @shp: sysv ipc permission structure
3642 *
3643 * Allocate and attach a security structure to the @shp security field. The
3644 * security field is initialized to NULL when the structure is first created.
3645 *
3646 * Return: Returns 0 if operation was successful and permission is granted.
3647 */
security_shm_alloc(struct kern_ipc_perm * shp)3648 int security_shm_alloc(struct kern_ipc_perm *shp)
3649 {
3650 int rc = lsm_ipc_alloc(shp);
3651
3652 if (unlikely(rc))
3653 return rc;
3654 rc = call_int_hook(shm_alloc_security, 0, shp);
3655 if (unlikely(rc))
3656 security_shm_free(shp);
3657 return rc;
3658 }
3659
3660 /**
3661 * security_shm_free() - Free a sysv shm LSM blob
3662 * @shp: sysv ipc permission structure
3663 *
3664 * Deallocate the security structure @perm->security for the memory segment.
3665 */
security_shm_free(struct kern_ipc_perm * shp)3666 void security_shm_free(struct kern_ipc_perm *shp)
3667 {
3668 call_void_hook(shm_free_security, shp);
3669 kfree(shp->security);
3670 shp->security = NULL;
3671 }
3672
3673 /**
3674 * security_shm_associate() - Check if a sysv shm operation is allowed
3675 * @shp: sysv ipc permission structure
3676 * @shmflg: operation flags
3677 *
3678 * Check permission when a shared memory region is requested through the shmget
3679 * system call. This hook is only called when returning the shared memory
3680 * region identifier for an existing region, not when a new shared memory
3681 * region is created.
3682 *
3683 * Return: Returns 0 if permission is granted.
3684 */
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)3685 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3686 {
3687 return call_int_hook(shm_associate, 0, shp, shmflg);
3688 }
3689
3690 /**
3691 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3692 * @shp: sysv ipc permission structure
3693 * @cmd: operation
3694 *
3695 * Check permission when a shared memory control operation specified by @cmd is
3696 * to be performed on the shared memory region with permissions in @shp.
3697 *
3698 * Return: Return 0 if permission is granted.
3699 */
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)3700 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3701 {
3702 return call_int_hook(shm_shmctl, 0, shp, cmd);
3703 }
3704
3705 /**
3706 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3707 * @shp: sysv ipc permission structure
3708 * @shmaddr: address of memory region to attach
3709 * @shmflg: operation flags
3710 *
3711 * Check permissions prior to allowing the shmat system call to attach the
3712 * shared memory segment with permissions @shp to the data segment of the
3713 * calling process. The attaching address is specified by @shmaddr.
3714 *
3715 * Return: Returns 0 if permission is granted.
3716 */
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)3717 int security_shm_shmat(struct kern_ipc_perm *shp,
3718 char __user *shmaddr, int shmflg)
3719 {
3720 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
3721 }
3722
3723 /**
3724 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3725 * @sma: sysv ipc permission structure
3726 *
3727 * Allocate and attach a security structure to the @sma security field. The
3728 * security field is initialized to NULL when the structure is first created.
3729 *
3730 * Return: Returns 0 if operation was successful and permission is granted.
3731 */
security_sem_alloc(struct kern_ipc_perm * sma)3732 int security_sem_alloc(struct kern_ipc_perm *sma)
3733 {
3734 int rc = lsm_ipc_alloc(sma);
3735
3736 if (unlikely(rc))
3737 return rc;
3738 rc = call_int_hook(sem_alloc_security, 0, sma);
3739 if (unlikely(rc))
3740 security_sem_free(sma);
3741 return rc;
3742 }
3743
3744 /**
3745 * security_sem_free() - Free a sysv semaphore LSM blob
3746 * @sma: sysv ipc permission structure
3747 *
3748 * Deallocate security structure @sma->security for the semaphore.
3749 */
security_sem_free(struct kern_ipc_perm * sma)3750 void security_sem_free(struct kern_ipc_perm *sma)
3751 {
3752 call_void_hook(sem_free_security, sma);
3753 kfree(sma->security);
3754 sma->security = NULL;
3755 }
3756
3757 /**
3758 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3759 * @sma: sysv ipc permission structure
3760 * @semflg: operation flags
3761 *
3762 * Check permission when a semaphore is requested through the semget system
3763 * call. This hook is only called when returning the semaphore identifier for
3764 * an existing semaphore, not when a new one must be created.
3765 *
3766 * Return: Returns 0 if permission is granted.
3767 */
security_sem_associate(struct kern_ipc_perm * sma,int semflg)3768 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3769 {
3770 return call_int_hook(sem_associate, 0, sma, semflg);
3771 }
3772
3773 /**
3774 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3775 * @sma: sysv ipc permission structure
3776 * @cmd: operation
3777 *
3778 * Check permission when a semaphore operation specified by @cmd is to be
3779 * performed on the semaphore.
3780 *
3781 * Return: Returns 0 if permission is granted.
3782 */
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)3783 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3784 {
3785 return call_int_hook(sem_semctl, 0, sma, cmd);
3786 }
3787
3788 /**
3789 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3790 * @sma: sysv ipc permission structure
3791 * @sops: operations to perform
3792 * @nsops: number of operations
3793 * @alter: flag indicating changes will be made
3794 *
3795 * Check permissions before performing operations on members of the semaphore
3796 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3797 *
3798 * Return: Returns 0 if permission is granted.
3799 */
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)3800 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3801 unsigned nsops, int alter)
3802 {
3803 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
3804 }
3805
3806 /**
3807 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3808 * @dentry: dentry
3809 * @inode: inode
3810 *
3811 * Fill in @inode security information for a @dentry if allowed.
3812 */
security_d_instantiate(struct dentry * dentry,struct inode * inode)3813 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3814 {
3815 if (unlikely(inode && IS_PRIVATE(inode)))
3816 return;
3817 call_void_hook(d_instantiate, dentry, inode);
3818 }
3819 EXPORT_SYMBOL(security_d_instantiate);
3820
3821 /**
3822 * security_getprocattr() - Read an attribute for a task
3823 * @p: the task
3824 * @lsm: LSM name
3825 * @name: attribute name
3826 * @value: attribute value
3827 *
3828 * Read attribute @name for task @p and store it into @value if allowed.
3829 *
3830 * Return: Returns the length of @value on success, a negative value otherwise.
3831 */
security_getprocattr(struct task_struct * p,const char * lsm,const char * name,char ** value)3832 int security_getprocattr(struct task_struct *p, const char *lsm,
3833 const char *name, char **value)
3834 {
3835 struct security_hook_list *hp;
3836
3837 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
3838 if (lsm != NULL && strcmp(lsm, hp->lsm))
3839 continue;
3840 return hp->hook.getprocattr(p, name, value);
3841 }
3842 return LSM_RET_DEFAULT(getprocattr);
3843 }
3844
3845 /**
3846 * security_setprocattr() - Set an attribute for a task
3847 * @lsm: LSM name
3848 * @name: attribute name
3849 * @value: attribute value
3850 * @size: attribute value size
3851 *
3852 * Write (set) the current task's attribute @name to @value, size @size if
3853 * allowed.
3854 *
3855 * Return: Returns bytes written on success, a negative value otherwise.
3856 */
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)3857 int security_setprocattr(const char *lsm, const char *name, void *value,
3858 size_t size)
3859 {
3860 struct security_hook_list *hp;
3861
3862 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
3863 if (lsm != NULL && strcmp(lsm, hp->lsm))
3864 continue;
3865 return hp->hook.setprocattr(name, value, size);
3866 }
3867 return LSM_RET_DEFAULT(setprocattr);
3868 }
3869
3870 /**
3871 * security_netlink_send() - Save info and check if netlink sending is allowed
3872 * @sk: sending socket
3873 * @skb: netlink message
3874 *
3875 * Save security information for a netlink message so that permission checking
3876 * can be performed when the message is processed. The security information
3877 * can be saved using the eff_cap field of the netlink_skb_parms structure.
3878 * Also may be used to provide fine grained control over message transmission.
3879 *
3880 * Return: Returns 0 if the information was successfully saved and message is
3881 * allowed to be transmitted.
3882 */
security_netlink_send(struct sock * sk,struct sk_buff * skb)3883 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
3884 {
3885 return call_int_hook(netlink_send, 0, sk, skb);
3886 }
3887
3888 /**
3889 * security_ismaclabel() - Check is the named attribute is a MAC label
3890 * @name: full extended attribute name
3891 *
3892 * Check if the extended attribute specified by @name represents a MAC label.
3893 *
3894 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
3895 */
security_ismaclabel(const char * name)3896 int security_ismaclabel(const char *name)
3897 {
3898 return call_int_hook(ismaclabel, 0, name);
3899 }
3900 EXPORT_SYMBOL(security_ismaclabel);
3901
3902 /**
3903 * security_secid_to_secctx() - Convert a secid to a secctx
3904 * @secid: secid
3905 * @secdata: secctx
3906 * @seclen: secctx length
3907 *
3908 * Convert secid to security context. If @secdata is NULL the length of the
3909 * result will be returned in @seclen, but no @secdata will be returned. This
3910 * does mean that the length could change between calls to check the length and
3911 * the next call which actually allocates and returns the @secdata.
3912 *
3913 * Return: Return 0 on success, error on failure.
3914 */
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)3915 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
3916 {
3917 struct security_hook_list *hp;
3918 int rc;
3919
3920 /*
3921 * Currently, only one LSM can implement secid_to_secctx (i.e this
3922 * LSM hook is not "stackable").
3923 */
3924 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
3925 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
3926 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
3927 return rc;
3928 }
3929
3930 return LSM_RET_DEFAULT(secid_to_secctx);
3931 }
3932 EXPORT_SYMBOL(security_secid_to_secctx);
3933
3934 /**
3935 * security_secctx_to_secid() - Convert a secctx to a secid
3936 * @secdata: secctx
3937 * @seclen: length of secctx
3938 * @secid: secid
3939 *
3940 * Convert security context to secid.
3941 *
3942 * Return: Returns 0 on success, error on failure.
3943 */
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)3944 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
3945 {
3946 *secid = 0;
3947 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
3948 }
3949 EXPORT_SYMBOL(security_secctx_to_secid);
3950
3951 /**
3952 * security_release_secctx() - Free a secctx buffer
3953 * @secdata: secctx
3954 * @seclen: length of secctx
3955 *
3956 * Release the security context.
3957 */
security_release_secctx(char * secdata,u32 seclen)3958 void security_release_secctx(char *secdata, u32 seclen)
3959 {
3960 call_void_hook(release_secctx, secdata, seclen);
3961 }
3962 EXPORT_SYMBOL(security_release_secctx);
3963
3964 /**
3965 * security_inode_invalidate_secctx() - Invalidate an inode's security label
3966 * @inode: inode
3967 *
3968 * Notify the security module that it must revalidate the security context of
3969 * an inode.
3970 */
security_inode_invalidate_secctx(struct inode * inode)3971 void security_inode_invalidate_secctx(struct inode *inode)
3972 {
3973 call_void_hook(inode_invalidate_secctx, inode);
3974 }
3975 EXPORT_SYMBOL(security_inode_invalidate_secctx);
3976
3977 /**
3978 * security_inode_notifysecctx() - Nofify the LSM of an inode's security label
3979 * @inode: inode
3980 * @ctx: secctx
3981 * @ctxlen: length of secctx
3982 *
3983 * Notify the security module of what the security context of an inode should
3984 * be. Initializes the incore security context managed by the security module
3985 * for this inode. Example usage: NFS client invokes this hook to initialize
3986 * the security context in its incore inode to the value provided by the server
3987 * for the file when the server returned the file's attributes to the client.
3988 * Must be called with inode->i_mutex locked.
3989 *
3990 * Return: Returns 0 on success, error on failure.
3991 */
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)3992 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
3993 {
3994 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
3995 }
3996 EXPORT_SYMBOL(security_inode_notifysecctx);
3997
3998 /**
3999 * security_inode_setsecctx() - Change the security label of an inode
4000 * @dentry: inode
4001 * @ctx: secctx
4002 * @ctxlen: length of secctx
4003 *
4004 * Change the security context of an inode. Updates the incore security
4005 * context managed by the security module and invokes the fs code as needed
4006 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4007 * context. Example usage: NFS server invokes this hook to change the security
4008 * context in its incore inode and on the backing filesystem to a value
4009 * provided by the client on a SETATTR operation. Must be called with
4010 * inode->i_mutex locked.
4011 *
4012 * Return: Returns 0 on success, error on failure.
4013 */
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)4014 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4015 {
4016 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
4017 }
4018 EXPORT_SYMBOL(security_inode_setsecctx);
4019
4020 /**
4021 * security_inode_getsecctx() - Get the security label of an inode
4022 * @inode: inode
4023 * @ctx: secctx
4024 * @ctxlen: length of secctx
4025 *
4026 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4027 * context for the given @inode.
4028 *
4029 * Return: Returns 0 on success, error on failure.
4030 */
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)4031 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4032 {
4033 struct security_hook_list *hp;
4034 int rc;
4035
4036 /*
4037 * Only one module will provide a security context.
4038 */
4039 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
4040 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
4041 if (rc != LSM_RET_DEFAULT(inode_getsecctx))
4042 return rc;
4043 }
4044
4045 return LSM_RET_DEFAULT(inode_getsecctx);
4046 }
4047 EXPORT_SYMBOL(security_inode_getsecctx);
4048
4049 #ifdef CONFIG_WATCH_QUEUE
4050 /**
4051 * security_post_notification() - Check if a watch notification can be posted
4052 * @w_cred: credentials of the task that set the watch
4053 * @cred: credentials of the task which triggered the watch
4054 * @n: the notification
4055 *
4056 * Check to see if a watch notification can be posted to a particular queue.
4057 *
4058 * Return: Returns 0 if permission is granted.
4059 */
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)4060 int security_post_notification(const struct cred *w_cred,
4061 const struct cred *cred,
4062 struct watch_notification *n)
4063 {
4064 return call_int_hook(post_notification, 0, w_cred, cred, n);
4065 }
4066 #endif /* CONFIG_WATCH_QUEUE */
4067
4068 #ifdef CONFIG_KEY_NOTIFICATIONS
4069 /**
4070 * security_watch_key() - Check if a task is allowed to watch for key events
4071 * @key: the key to watch
4072 *
4073 * Check to see if a process is allowed to watch for event notifications from
4074 * a key or keyring.
4075 *
4076 * Return: Returns 0 if permission is granted.
4077 */
security_watch_key(struct key * key)4078 int security_watch_key(struct key *key)
4079 {
4080 return call_int_hook(watch_key, 0, key);
4081 }
4082 #endif /* CONFIG_KEY_NOTIFICATIONS */
4083
4084 #ifdef CONFIG_SECURITY_NETWORK
4085 /**
4086 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4087 * @sock: originating sock
4088 * @other: peer sock
4089 * @newsk: new sock
4090 *
4091 * Check permissions before establishing a Unix domain stream connection
4092 * between @sock and @other.
4093 *
4094 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4095 * Linux provides an alternative to the conventional file name space for Unix
4096 * domain sockets. Whereas binding and connecting to sockets in the file name
4097 * space is mediated by the typical file permissions (and caught by the mknod
4098 * and permission hooks in inode_security_ops), binding and connecting to
4099 * sockets in the abstract name space is completely unmediated. Sufficient
4100 * control of Unix domain sockets in the abstract name space isn't possible
4101 * using only the socket layer hooks, since we need to know the actual target
4102 * socket, which is not looked up until we are inside the af_unix code.
4103 *
4104 * Return: Returns 0 if permission is granted.
4105 */
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)4106 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4107 struct sock *newsk)
4108 {
4109 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
4110 }
4111 EXPORT_SYMBOL(security_unix_stream_connect);
4112
4113 /**
4114 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4115 * @sock: originating sock
4116 * @other: peer sock
4117 *
4118 * Check permissions before connecting or sending datagrams from @sock to
4119 * @other.
4120 *
4121 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4122 * Linux provides an alternative to the conventional file name space for Unix
4123 * domain sockets. Whereas binding and connecting to sockets in the file name
4124 * space is mediated by the typical file permissions (and caught by the mknod
4125 * and permission hooks in inode_security_ops), binding and connecting to
4126 * sockets in the abstract name space is completely unmediated. Sufficient
4127 * control of Unix domain sockets in the abstract name space isn't possible
4128 * using only the socket layer hooks, since we need to know the actual target
4129 * socket, which is not looked up until we are inside the af_unix code.
4130 *
4131 * Return: Returns 0 if permission is granted.
4132 */
security_unix_may_send(struct socket * sock,struct socket * other)4133 int security_unix_may_send(struct socket *sock, struct socket *other)
4134 {
4135 return call_int_hook(unix_may_send, 0, sock, other);
4136 }
4137 EXPORT_SYMBOL(security_unix_may_send);
4138
4139 /**
4140 * security_socket_create() - Check if creating a new socket is allowed
4141 * @family: protocol family
4142 * @type: communications type
4143 * @protocol: requested protocol
4144 * @kern: set to 1 if a kernel socket is requested
4145 *
4146 * Check permissions prior to creating a new socket.
4147 *
4148 * Return: Returns 0 if permission is granted.
4149 */
security_socket_create(int family,int type,int protocol,int kern)4150 int security_socket_create(int family, int type, int protocol, int kern)
4151 {
4152 return call_int_hook(socket_create, 0, family, type, protocol, kern);
4153 }
4154
4155 /**
4156 * security_socket_post_create() - Initialize a newly created socket
4157 * @sock: socket
4158 * @family: protocol family
4159 * @type: communications type
4160 * @protocol: requested protocol
4161 * @kern: set to 1 if a kernel socket is requested
4162 *
4163 * This hook allows a module to update or allocate a per-socket security
4164 * structure. Note that the security field was not added directly to the socket
4165 * structure, but rather, the socket security information is stored in the
4166 * associated inode. Typically, the inode alloc_security hook will allocate
4167 * and attach security information to SOCK_INODE(sock)->i_security. This hook
4168 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4169 * information that wasn't available when the inode was allocated.
4170 *
4171 * Return: Returns 0 if permission is granted.
4172 */
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)4173 int security_socket_post_create(struct socket *sock, int family,
4174 int type, int protocol, int kern)
4175 {
4176 return call_int_hook(socket_post_create, 0, sock, family, type,
4177 protocol, kern);
4178 }
4179
4180 /**
4181 * security_socket_socketpair() - Check if creating a socketpair is allowed
4182 * @socka: first socket
4183 * @sockb: second socket
4184 *
4185 * Check permissions before creating a fresh pair of sockets.
4186 *
4187 * Return: Returns 0 if permission is granted and the connection was
4188 * established.
4189 */
security_socket_socketpair(struct socket * socka,struct socket * sockb)4190 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4191 {
4192 return call_int_hook(socket_socketpair, 0, socka, sockb);
4193 }
4194 EXPORT_SYMBOL(security_socket_socketpair);
4195
4196 /**
4197 * security_socket_bind() - Check if a socket bind operation is allowed
4198 * @sock: socket
4199 * @address: requested bind address
4200 * @addrlen: length of address
4201 *
4202 * Check permission before socket protocol layer bind operation is performed
4203 * and the socket @sock is bound to the address specified in the @address
4204 * parameter.
4205 *
4206 * Return: Returns 0 if permission is granted.
4207 */
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)4208 int security_socket_bind(struct socket *sock,
4209 struct sockaddr *address, int addrlen)
4210 {
4211 return call_int_hook(socket_bind, 0, sock, address, addrlen);
4212 }
4213
4214 /**
4215 * security_socket_connect() - Check if a socket connect operation is allowed
4216 * @sock: socket
4217 * @address: address of remote connection point
4218 * @addrlen: length of address
4219 *
4220 * Check permission before socket protocol layer connect operation attempts to
4221 * connect socket @sock to a remote address, @address.
4222 *
4223 * Return: Returns 0 if permission is granted.
4224 */
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)4225 int security_socket_connect(struct socket *sock,
4226 struct sockaddr *address, int addrlen)
4227 {
4228 return call_int_hook(socket_connect, 0, sock, address, addrlen);
4229 }
4230
4231 /**
4232 * security_socket_listen() - Check if a socket is allowed to listen
4233 * @sock: socket
4234 * @backlog: connection queue size
4235 *
4236 * Check permission before socket protocol layer listen operation.
4237 *
4238 * Return: Returns 0 if permission is granted.
4239 */
security_socket_listen(struct socket * sock,int backlog)4240 int security_socket_listen(struct socket *sock, int backlog)
4241 {
4242 return call_int_hook(socket_listen, 0, sock, backlog);
4243 }
4244
4245 /**
4246 * security_socket_accept() - Check if a socket is allowed to accept connections
4247 * @sock: listening socket
4248 * @newsock: newly creation connection socket
4249 *
4250 * Check permission before accepting a new connection. Note that the new
4251 * socket, @newsock, has been created and some information copied to it, but
4252 * the accept operation has not actually been performed.
4253 *
4254 * Return: Returns 0 if permission is granted.
4255 */
security_socket_accept(struct socket * sock,struct socket * newsock)4256 int security_socket_accept(struct socket *sock, struct socket *newsock)
4257 {
4258 return call_int_hook(socket_accept, 0, sock, newsock);
4259 }
4260
4261 /**
4262 * security_socket_sendmsg() - Check is sending a message is allowed
4263 * @sock: sending socket
4264 * @msg: message to send
4265 * @size: size of message
4266 *
4267 * Check permission before transmitting a message to another socket.
4268 *
4269 * Return: Returns 0 if permission is granted.
4270 */
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)4271 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4272 {
4273 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
4274 }
4275
4276 /**
4277 * security_socket_recvmsg() - Check if receiving a message is allowed
4278 * @sock: receiving socket
4279 * @msg: message to receive
4280 * @size: size of message
4281 * @flags: operational flags
4282 *
4283 * Check permission before receiving a message from a socket.
4284 *
4285 * Return: Returns 0 if permission is granted.
4286 */
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)4287 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4288 int size, int flags)
4289 {
4290 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
4291 }
4292
4293 /**
4294 * security_socket_getsockname() - Check if reading the socket addr is allowed
4295 * @sock: socket
4296 *
4297 * Check permission before reading the local address (name) of the socket
4298 * object.
4299 *
4300 * Return: Returns 0 if permission is granted.
4301 */
security_socket_getsockname(struct socket * sock)4302 int security_socket_getsockname(struct socket *sock)
4303 {
4304 return call_int_hook(socket_getsockname, 0, sock);
4305 }
4306
4307 /**
4308 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4309 * @sock: socket
4310 *
4311 * Check permission before the remote address (name) of a socket object.
4312 *
4313 * Return: Returns 0 if permission is granted.
4314 */
security_socket_getpeername(struct socket * sock)4315 int security_socket_getpeername(struct socket *sock)
4316 {
4317 return call_int_hook(socket_getpeername, 0, sock);
4318 }
4319
4320 /**
4321 * security_socket_getsockopt() - Check if reading a socket option is allowed
4322 * @sock: socket
4323 * @level: option's protocol level
4324 * @optname: option name
4325 *
4326 * Check permissions before retrieving the options associated with socket
4327 * @sock.
4328 *
4329 * Return: Returns 0 if permission is granted.
4330 */
security_socket_getsockopt(struct socket * sock,int level,int optname)4331 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4332 {
4333 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
4334 }
4335
4336 /**
4337 * security_socket_setsockopt() - Check if setting a socket option is allowed
4338 * @sock: socket
4339 * @level: option's protocol level
4340 * @optname: option name
4341 *
4342 * Check permissions before setting the options associated with socket @sock.
4343 *
4344 * Return: Returns 0 if permission is granted.
4345 */
security_socket_setsockopt(struct socket * sock,int level,int optname)4346 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4347 {
4348 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
4349 }
4350
4351 /**
4352 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4353 * @sock: socket
4354 * @how: flag indicating how sends and receives are handled
4355 *
4356 * Checks permission before all or part of a connection on the socket @sock is
4357 * shut down.
4358 *
4359 * Return: Returns 0 if permission is granted.
4360 */
security_socket_shutdown(struct socket * sock,int how)4361 int security_socket_shutdown(struct socket *sock, int how)
4362 {
4363 return call_int_hook(socket_shutdown, 0, sock, how);
4364 }
4365
4366 /**
4367 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4368 * @sk: destination sock
4369 * @skb: incoming packet
4370 *
4371 * Check permissions on incoming network packets. This hook is distinct from
4372 * Netfilter's IP input hooks since it is the first time that the incoming
4373 * sk_buff @skb has been associated with a particular socket, @sk. Must not
4374 * sleep inside this hook because some callers hold spinlocks.
4375 *
4376 * Return: Returns 0 if permission is granted.
4377 */
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)4378 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4379 {
4380 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
4381 }
4382 EXPORT_SYMBOL(security_sock_rcv_skb);
4383
4384 /**
4385 * security_socket_getpeersec_stream() - Get the remote peer label
4386 * @sock: socket
4387 * @optval: destination buffer
4388 * @optlen: size of peer label copied into the buffer
4389 * @len: maximum size of the destination buffer
4390 *
4391 * This hook allows the security module to provide peer socket security state
4392 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4393 * For tcp sockets this can be meaningful if the socket is associated with an
4394 * ipsec SA.
4395 *
4396 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4397 * values.
4398 */
security_socket_getpeersec_stream(struct socket * sock,sockptr_t optval,sockptr_t optlen,unsigned int len)4399 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4400 sockptr_t optlen, unsigned int len)
4401 {
4402 struct security_hook_list *hp;
4403 int rc;
4404
4405 /*
4406 * Only one module will provide a security context.
4407 */
4408 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
4409 list) {
4410 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen,
4411 len);
4412 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream))
4413 return rc;
4414 }
4415 return LSM_RET_DEFAULT(socket_getpeersec_stream);
4416 }
4417
4418 /**
4419 * security_socket_getpeersec_dgram() - Get the remote peer label
4420 * @sock: socket
4421 * @skb: datagram packet
4422 * @secid: remote peer label secid
4423 *
4424 * This hook allows the security module to provide peer socket security state
4425 * for udp sockets on a per-packet basis to userspace via getsockopt
4426 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4427 * option via getsockopt. It can then retrieve the security state returned by
4428 * this hook for a packet via the SCM_SECURITY ancillary message type.
4429 *
4430 * Return: Returns 0 on success, error on failure.
4431 */
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)4432 int security_socket_getpeersec_dgram(struct socket *sock,
4433 struct sk_buff *skb, u32 *secid)
4434 {
4435 struct security_hook_list *hp;
4436 int rc;
4437
4438 /*
4439 * Only one module will provide a security context.
4440 */
4441 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram,
4442 list) {
4443 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid);
4444 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram))
4445 return rc;
4446 }
4447 return LSM_RET_DEFAULT(socket_getpeersec_dgram);
4448 }
4449 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4450
4451 /**
4452 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4453 * @sk: sock
4454 * @family: protocol family
4455 * @priority: gfp flags
4456 *
4457 * Allocate and attach a security structure to the sk->sk_security field, which
4458 * is used to copy security attributes between local stream sockets.
4459 *
4460 * Return: Returns 0 on success, error on failure.
4461 */
security_sk_alloc(struct sock * sk,int family,gfp_t priority)4462 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4463 {
4464 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
4465 }
4466
4467 /**
4468 * security_sk_free() - Free the sock's LSM blob
4469 * @sk: sock
4470 *
4471 * Deallocate security structure.
4472 */
security_sk_free(struct sock * sk)4473 void security_sk_free(struct sock *sk)
4474 {
4475 call_void_hook(sk_free_security, sk);
4476 }
4477
4478 /**
4479 * security_sk_clone() - Clone a sock's LSM state
4480 * @sk: original sock
4481 * @newsk: target sock
4482 *
4483 * Clone/copy security structure.
4484 */
security_sk_clone(const struct sock * sk,struct sock * newsk)4485 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4486 {
4487 call_void_hook(sk_clone_security, sk, newsk);
4488 }
4489 EXPORT_SYMBOL(security_sk_clone);
4490
4491 /**
4492 * security_sk_classify_flow() - Set a flow's secid based on socket
4493 * @sk: original socket
4494 * @flic: target flow
4495 *
4496 * Set the target flow's secid to socket's secid.
4497 */
security_sk_classify_flow(const struct sock * sk,struct flowi_common * flic)4498 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4499 {
4500 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4501 }
4502 EXPORT_SYMBOL(security_sk_classify_flow);
4503
4504 /**
4505 * security_req_classify_flow() - Set a flow's secid based on request_sock
4506 * @req: request_sock
4507 * @flic: target flow
4508 *
4509 * Sets @flic's secid to @req's secid.
4510 */
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)4511 void security_req_classify_flow(const struct request_sock *req,
4512 struct flowi_common *flic)
4513 {
4514 call_void_hook(req_classify_flow, req, flic);
4515 }
4516 EXPORT_SYMBOL(security_req_classify_flow);
4517
4518 /**
4519 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4520 * @sk: sock being grafted
4521 * @parent: target parent socket
4522 *
4523 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4524 * LSM state from @parent.
4525 */
security_sock_graft(struct sock * sk,struct socket * parent)4526 void security_sock_graft(struct sock *sk, struct socket *parent)
4527 {
4528 call_void_hook(sock_graft, sk, parent);
4529 }
4530 EXPORT_SYMBOL(security_sock_graft);
4531
4532 /**
4533 * security_inet_conn_request() - Set request_sock state using incoming connect
4534 * @sk: parent listening sock
4535 * @skb: incoming connection
4536 * @req: new request_sock
4537 *
4538 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4539 *
4540 * Return: Returns 0 if permission is granted.
4541 */
security_inet_conn_request(const struct sock * sk,struct sk_buff * skb,struct request_sock * req)4542 int security_inet_conn_request(const struct sock *sk,
4543 struct sk_buff *skb, struct request_sock *req)
4544 {
4545 return call_int_hook(inet_conn_request, 0, sk, skb, req);
4546 }
4547 EXPORT_SYMBOL(security_inet_conn_request);
4548
4549 /**
4550 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4551 * @newsk: new sock
4552 * @req: connection request_sock
4553 *
4554 * Set that LSM state of @sock using the LSM state from @req.
4555 */
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)4556 void security_inet_csk_clone(struct sock *newsk,
4557 const struct request_sock *req)
4558 {
4559 call_void_hook(inet_csk_clone, newsk, req);
4560 }
4561
4562 /**
4563 * security_inet_conn_established() - Update sock's LSM state with connection
4564 * @sk: sock
4565 * @skb: connection packet
4566 *
4567 * Update @sock's LSM state to represent a new connection from @skb.
4568 */
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)4569 void security_inet_conn_established(struct sock *sk,
4570 struct sk_buff *skb)
4571 {
4572 call_void_hook(inet_conn_established, sk, skb);
4573 }
4574 EXPORT_SYMBOL(security_inet_conn_established);
4575
4576 /**
4577 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4578 * @secid: new secmark value
4579 *
4580 * Check if the process should be allowed to relabel packets to @secid.
4581 *
4582 * Return: Returns 0 if permission is granted.
4583 */
security_secmark_relabel_packet(u32 secid)4584 int security_secmark_relabel_packet(u32 secid)
4585 {
4586 return call_int_hook(secmark_relabel_packet, 0, secid);
4587 }
4588 EXPORT_SYMBOL(security_secmark_relabel_packet);
4589
4590 /**
4591 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4592 *
4593 * Tells the LSM to increment the number of secmark labeling rules loaded.
4594 */
security_secmark_refcount_inc(void)4595 void security_secmark_refcount_inc(void)
4596 {
4597 call_void_hook(secmark_refcount_inc);
4598 }
4599 EXPORT_SYMBOL(security_secmark_refcount_inc);
4600
4601 /**
4602 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4603 *
4604 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4605 */
security_secmark_refcount_dec(void)4606 void security_secmark_refcount_dec(void)
4607 {
4608 call_void_hook(secmark_refcount_dec);
4609 }
4610 EXPORT_SYMBOL(security_secmark_refcount_dec);
4611
4612 /**
4613 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4614 * @security: pointer to the LSM blob
4615 *
4616 * This hook allows a module to allocate a security structure for a TUN device,
4617 * returning the pointer in @security.
4618 *
4619 * Return: Returns a zero on success, negative values on failure.
4620 */
security_tun_dev_alloc_security(void ** security)4621 int security_tun_dev_alloc_security(void **security)
4622 {
4623 return call_int_hook(tun_dev_alloc_security, 0, security);
4624 }
4625 EXPORT_SYMBOL(security_tun_dev_alloc_security);
4626
4627 /**
4628 * security_tun_dev_free_security() - Free a TUN device LSM blob
4629 * @security: LSM blob
4630 *
4631 * This hook allows a module to free the security structure for a TUN device.
4632 */
security_tun_dev_free_security(void * security)4633 void security_tun_dev_free_security(void *security)
4634 {
4635 call_void_hook(tun_dev_free_security, security);
4636 }
4637 EXPORT_SYMBOL(security_tun_dev_free_security);
4638
4639 /**
4640 * security_tun_dev_create() - Check if creating a TUN device is allowed
4641 *
4642 * Check permissions prior to creating a new TUN device.
4643 *
4644 * Return: Returns 0 if permission is granted.
4645 */
security_tun_dev_create(void)4646 int security_tun_dev_create(void)
4647 {
4648 return call_int_hook(tun_dev_create, 0);
4649 }
4650 EXPORT_SYMBOL(security_tun_dev_create);
4651
4652 /**
4653 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4654 * @security: TUN device LSM blob
4655 *
4656 * Check permissions prior to attaching to a TUN device queue.
4657 *
4658 * Return: Returns 0 if permission is granted.
4659 */
security_tun_dev_attach_queue(void * security)4660 int security_tun_dev_attach_queue(void *security)
4661 {
4662 return call_int_hook(tun_dev_attach_queue, 0, security);
4663 }
4664 EXPORT_SYMBOL(security_tun_dev_attach_queue);
4665
4666 /**
4667 * security_tun_dev_attach() - Update TUN device LSM state on attach
4668 * @sk: associated sock
4669 * @security: TUN device LSM blob
4670 *
4671 * This hook can be used by the module to update any security state associated
4672 * with the TUN device's sock structure.
4673 *
4674 * Return: Returns 0 if permission is granted.
4675 */
security_tun_dev_attach(struct sock * sk,void * security)4676 int security_tun_dev_attach(struct sock *sk, void *security)
4677 {
4678 return call_int_hook(tun_dev_attach, 0, sk, security);
4679 }
4680 EXPORT_SYMBOL(security_tun_dev_attach);
4681
4682 /**
4683 * security_tun_dev_open() - Update TUN device LSM state on open
4684 * @security: TUN device LSM blob
4685 *
4686 * This hook can be used by the module to update any security state associated
4687 * with the TUN device's security structure.
4688 *
4689 * Return: Returns 0 if permission is granted.
4690 */
security_tun_dev_open(void * security)4691 int security_tun_dev_open(void *security)
4692 {
4693 return call_int_hook(tun_dev_open, 0, security);
4694 }
4695 EXPORT_SYMBOL(security_tun_dev_open);
4696
4697 /**
4698 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4699 * @asoc: SCTP association
4700 * @skb: packet requesting the association
4701 *
4702 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4703 *
4704 * Return: Returns 0 on success, error on failure.
4705 */
security_sctp_assoc_request(struct sctp_association * asoc,struct sk_buff * skb)4706 int security_sctp_assoc_request(struct sctp_association *asoc,
4707 struct sk_buff *skb)
4708 {
4709 return call_int_hook(sctp_assoc_request, 0, asoc, skb);
4710 }
4711 EXPORT_SYMBOL(security_sctp_assoc_request);
4712
4713 /**
4714 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4715 * @sk: socket
4716 * @optname: SCTP option to validate
4717 * @address: list of IP addresses to validate
4718 * @addrlen: length of the address list
4719 *
4720 * Validiate permissions required for each address associated with sock @sk.
4721 * Depending on @optname, the addresses will be treated as either a connect or
4722 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4723 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4724 *
4725 * Return: Returns 0 on success, error on failure.
4726 */
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)4727 int security_sctp_bind_connect(struct sock *sk, int optname,
4728 struct sockaddr *address, int addrlen)
4729 {
4730 return call_int_hook(sctp_bind_connect, 0, sk, optname,
4731 address, addrlen);
4732 }
4733 EXPORT_SYMBOL(security_sctp_bind_connect);
4734
4735 /**
4736 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4737 * @asoc: SCTP association
4738 * @sk: original sock
4739 * @newsk: target sock
4740 *
4741 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4742 * socket) or when a socket is 'peeled off' e.g userspace calls
4743 * sctp_peeloff(3).
4744 */
security_sctp_sk_clone(struct sctp_association * asoc,struct sock * sk,struct sock * newsk)4745 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4746 struct sock *newsk)
4747 {
4748 call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4749 }
4750 EXPORT_SYMBOL(security_sctp_sk_clone);
4751
4752 /**
4753 * security_sctp_assoc_established() - Update LSM state when assoc established
4754 * @asoc: SCTP association
4755 * @skb: packet establishing the association
4756 *
4757 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4758 * security module.
4759 *
4760 * Return: Returns 0 if permission is granted.
4761 */
security_sctp_assoc_established(struct sctp_association * asoc,struct sk_buff * skb)4762 int security_sctp_assoc_established(struct sctp_association *asoc,
4763 struct sk_buff *skb)
4764 {
4765 return call_int_hook(sctp_assoc_established, 0, asoc, skb);
4766 }
4767 EXPORT_SYMBOL(security_sctp_assoc_established);
4768
4769 /**
4770 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4771 * @sk: the owning MPTCP socket
4772 * @ssk: the new subflow
4773 *
4774 * Update the labeling for the given MPTCP subflow, to match the one of the
4775 * owning MPTCP socket. This hook has to be called after the socket creation and
4776 * initialization via the security_socket_create() and
4777 * security_socket_post_create() LSM hooks.
4778 *
4779 * Return: Returns 0 on success or a negative error code on failure.
4780 */
security_mptcp_add_subflow(struct sock * sk,struct sock * ssk)4781 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4782 {
4783 return call_int_hook(mptcp_add_subflow, 0, sk, ssk);
4784 }
4785
4786 #endif /* CONFIG_SECURITY_NETWORK */
4787
4788 #ifdef CONFIG_SECURITY_INFINIBAND
4789 /**
4790 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4791 * @sec: LSM blob
4792 * @subnet_prefix: subnet prefix of the port
4793 * @pkey: IB pkey
4794 *
4795 * Check permission to access a pkey when modifying a QP.
4796 *
4797 * Return: Returns 0 if permission is granted.
4798 */
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)4799 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4800 {
4801 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
4802 }
4803 EXPORT_SYMBOL(security_ib_pkey_access);
4804
4805 /**
4806 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
4807 * @sec: LSM blob
4808 * @dev_name: IB device name
4809 * @port_num: port number
4810 *
4811 * Check permissions to send and receive SMPs on a end port.
4812 *
4813 * Return: Returns 0 if permission is granted.
4814 */
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)4815 int security_ib_endport_manage_subnet(void *sec,
4816 const char *dev_name, u8 port_num)
4817 {
4818 return call_int_hook(ib_endport_manage_subnet, 0, sec,
4819 dev_name, port_num);
4820 }
4821 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
4822
4823 /**
4824 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
4825 * @sec: LSM blob
4826 *
4827 * Allocate a security structure for Infiniband objects.
4828 *
4829 * Return: Returns 0 on success, non-zero on failure.
4830 */
security_ib_alloc_security(void ** sec)4831 int security_ib_alloc_security(void **sec)
4832 {
4833 return call_int_hook(ib_alloc_security, 0, sec);
4834 }
4835 EXPORT_SYMBOL(security_ib_alloc_security);
4836
4837 /**
4838 * security_ib_free_security() - Free an Infiniband LSM blob
4839 * @sec: LSM blob
4840 *
4841 * Deallocate an Infiniband security structure.
4842 */
security_ib_free_security(void * sec)4843 void security_ib_free_security(void *sec)
4844 {
4845 call_void_hook(ib_free_security, sec);
4846 }
4847 EXPORT_SYMBOL(security_ib_free_security);
4848 #endif /* CONFIG_SECURITY_INFINIBAND */
4849
4850 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4851 /**
4852 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
4853 * @ctxp: xfrm security context being added to the SPD
4854 * @sec_ctx: security label provided by userspace
4855 * @gfp: gfp flags
4856 *
4857 * Allocate a security structure to the xp->security field; the security field
4858 * is initialized to NULL when the xfrm_policy is allocated.
4859 *
4860 * Return: Return 0 if operation was successful.
4861 */
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)4862 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
4863 struct xfrm_user_sec_ctx *sec_ctx,
4864 gfp_t gfp)
4865 {
4866 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
4867 }
4868 EXPORT_SYMBOL(security_xfrm_policy_alloc);
4869
4870 /**
4871 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
4872 * @old_ctx: xfrm security context
4873 * @new_ctxp: target xfrm security context
4874 *
4875 * Allocate a security structure in new_ctxp that contains the information from
4876 * the old_ctx structure.
4877 *
4878 * Return: Return 0 if operation was successful.
4879 */
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)4880 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
4881 struct xfrm_sec_ctx **new_ctxp)
4882 {
4883 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
4884 }
4885
4886 /**
4887 * security_xfrm_policy_free() - Free a xfrm security context
4888 * @ctx: xfrm security context
4889 *
4890 * Free LSM resources associated with @ctx.
4891 */
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)4892 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
4893 {
4894 call_void_hook(xfrm_policy_free_security, ctx);
4895 }
4896 EXPORT_SYMBOL(security_xfrm_policy_free);
4897
4898 /**
4899 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
4900 * @ctx: xfrm security context
4901 *
4902 * Authorize deletion of a SPD entry.
4903 *
4904 * Return: Returns 0 if permission is granted.
4905 */
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)4906 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
4907 {
4908 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
4909 }
4910
4911 /**
4912 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
4913 * @x: xfrm state being added to the SAD
4914 * @sec_ctx: security label provided by userspace
4915 *
4916 * Allocate a security structure to the @x->security field; the security field
4917 * is initialized to NULL when the xfrm_state is allocated. Set the context to
4918 * correspond to @sec_ctx.
4919 *
4920 * Return: Return 0 if operation was successful.
4921 */
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)4922 int security_xfrm_state_alloc(struct xfrm_state *x,
4923 struct xfrm_user_sec_ctx *sec_ctx)
4924 {
4925 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
4926 }
4927 EXPORT_SYMBOL(security_xfrm_state_alloc);
4928
4929 /**
4930 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
4931 * @x: xfrm state being added to the SAD
4932 * @polsec: associated policy's security context
4933 * @secid: secid from the flow
4934 *
4935 * Allocate a security structure to the x->security field; the security field
4936 * is initialized to NULL when the xfrm_state is allocated. Set the context to
4937 * correspond to secid.
4938 *
4939 * Return: Returns 0 if operation was successful.
4940 */
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)4941 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
4942 struct xfrm_sec_ctx *polsec, u32 secid)
4943 {
4944 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
4945 }
4946
4947 /**
4948 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
4949 * @x: xfrm state
4950 *
4951 * Authorize deletion of x->security.
4952 *
4953 * Return: Returns 0 if permission is granted.
4954 */
security_xfrm_state_delete(struct xfrm_state * x)4955 int security_xfrm_state_delete(struct xfrm_state *x)
4956 {
4957 return call_int_hook(xfrm_state_delete_security, 0, x);
4958 }
4959 EXPORT_SYMBOL(security_xfrm_state_delete);
4960
4961 /**
4962 * security_xfrm_state_free() - Free a xfrm state
4963 * @x: xfrm state
4964 *
4965 * Deallocate x->security.
4966 */
security_xfrm_state_free(struct xfrm_state * x)4967 void security_xfrm_state_free(struct xfrm_state *x)
4968 {
4969 call_void_hook(xfrm_state_free_security, x);
4970 }
4971
4972 /**
4973 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
4974 * @ctx: target xfrm security context
4975 * @fl_secid: flow secid used to authorize access
4976 *
4977 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
4978 * packet. The hook is called when selecting either a per-socket policy or a
4979 * generic xfrm policy.
4980 *
4981 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
4982 * other errors.
4983 */
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid)4984 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
4985 {
4986 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
4987 }
4988
4989 /**
4990 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
4991 * @x: xfrm state to match
4992 * @xp: xfrm policy to check for a match
4993 * @flic: flow to check for a match.
4994 *
4995 * Check @xp and @flic for a match with @x.
4996 *
4997 * Return: Returns 1 if there is a match.
4998 */
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)4999 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5000 struct xfrm_policy *xp,
5001 const struct flowi_common *flic)
5002 {
5003 struct security_hook_list *hp;
5004 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5005
5006 /*
5007 * Since this function is expected to return 0 or 1, the judgment
5008 * becomes difficult if multiple LSMs supply this call. Fortunately,
5009 * we can use the first LSM's judgment because currently only SELinux
5010 * supplies this call.
5011 *
5012 * For speed optimization, we explicitly break the loop rather than
5013 * using the macro
5014 */
5015 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5016 list) {
5017 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5018 break;
5019 }
5020 return rc;
5021 }
5022
5023 /**
5024 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5025 * @skb: xfrm packet
5026 * @secid: secid
5027 *
5028 * Decode the packet in @skb and return the security label in @secid.
5029 *
5030 * Return: Return 0 if all xfrms used have the same secid.
5031 */
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)5032 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5033 {
5034 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
5035 }
5036
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)5037 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5038 {
5039 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
5040 0);
5041
5042 BUG_ON(rc);
5043 }
5044 EXPORT_SYMBOL(security_skb_classify_flow);
5045 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
5046
5047 #ifdef CONFIG_KEYS
5048 /**
5049 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5050 * @key: key
5051 * @cred: credentials
5052 * @flags: allocation flags
5053 *
5054 * Permit allocation of a key and assign security data. Note that key does not
5055 * have a serial number assigned at this point.
5056 *
5057 * Return: Return 0 if permission is granted, -ve error otherwise.
5058 */
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)5059 int security_key_alloc(struct key *key, const struct cred *cred,
5060 unsigned long flags)
5061 {
5062 return call_int_hook(key_alloc, 0, key, cred, flags);
5063 }
5064
5065 /**
5066 * security_key_free() - Free a kernel key LSM blob
5067 * @key: key
5068 *
5069 * Notification of destruction; free security data.
5070 */
security_key_free(struct key * key)5071 void security_key_free(struct key *key)
5072 {
5073 call_void_hook(key_free, key);
5074 }
5075
5076 /**
5077 * security_key_permission() - Check if a kernel key operation is allowed
5078 * @key_ref: key reference
5079 * @cred: credentials of actor requesting access
5080 * @need_perm: requested permissions
5081 *
5082 * See whether a specific operational right is granted to a process on a key.
5083 *
5084 * Return: Return 0 if permission is granted, -ve error otherwise.
5085 */
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)5086 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5087 enum key_need_perm need_perm)
5088 {
5089 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
5090 }
5091
5092 /**
5093 * security_key_getsecurity() - Get the key's security label
5094 * @key: key
5095 * @buffer: security label buffer
5096 *
5097 * Get a textual representation of the security context attached to a key for
5098 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the
5099 * storage for the NUL-terminated string and the caller should free it.
5100 *
5101 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5102 * an error occurs. May also return 0 (and a NULL buffer pointer) if
5103 * there is no security label assigned to the key.
5104 */
security_key_getsecurity(struct key * key,char ** buffer)5105 int security_key_getsecurity(struct key *key, char **buffer)
5106 {
5107 *buffer = NULL;
5108 return call_int_hook(key_getsecurity, 0, key, buffer);
5109 }
5110 #endif /* CONFIG_KEYS */
5111
5112 #ifdef CONFIG_AUDIT
5113 /**
5114 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5115 * @field: audit action
5116 * @op: rule operator
5117 * @rulestr: rule context
5118 * @lsmrule: receive buffer for audit rule struct
5119 * @gfp: GFP flag used for kmalloc
5120 *
5121 * Allocate and initialize an LSM audit rule structure.
5122 *
5123 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5124 * an invalid rule.
5125 */
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule,gfp_t gfp)5126 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5127 gfp_t gfp)
5128 {
5129 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule, gfp);
5130 }
5131
5132 /**
5133 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5134 * @krule: audit rule
5135 *
5136 * Specifies whether given @krule contains any fields related to the current
5137 * LSM.
5138 *
5139 * Return: Returns 1 in case of relation found, 0 otherwise.
5140 */
security_audit_rule_known(struct audit_krule * krule)5141 int security_audit_rule_known(struct audit_krule *krule)
5142 {
5143 return call_int_hook(audit_rule_known, 0, krule);
5144 }
5145
5146 /**
5147 * security_audit_rule_free() - Free an LSM audit rule struct
5148 * @lsmrule: audit rule struct
5149 *
5150 * Deallocate the LSM audit rule structure previously allocated by
5151 * audit_rule_init().
5152 */
security_audit_rule_free(void * lsmrule)5153 void security_audit_rule_free(void *lsmrule)
5154 {
5155 call_void_hook(audit_rule_free, lsmrule);
5156 }
5157
5158 /**
5159 * security_audit_rule_match() - Check if a label matches an audit rule
5160 * @secid: security label
5161 * @field: LSM audit field
5162 * @op: matching operator
5163 * @lsmrule: audit rule
5164 *
5165 * Determine if given @secid matches a rule previously approved by
5166 * security_audit_rule_known().
5167 *
5168 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5169 * failure.
5170 */
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)5171 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5172 {
5173 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
5174 }
5175 #endif /* CONFIG_AUDIT */
5176
5177 #ifdef CONFIG_BPF_SYSCALL
5178 /**
5179 * security_bpf() - Check if the bpf syscall operation is allowed
5180 * @cmd: command
5181 * @attr: bpf attribute
5182 * @size: size
5183 *
5184 * Do a initial check for all bpf syscalls after the attribute is copied into
5185 * the kernel. The actual security module can implement their own rules to
5186 * check the specific cmd they need.
5187 *
5188 * Return: Returns 0 if permission is granted.
5189 */
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)5190 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5191 {
5192 return call_int_hook(bpf, 0, cmd, attr, size);
5193 }
5194
5195 /**
5196 * security_bpf_map() - Check if access to a bpf map is allowed
5197 * @map: bpf map
5198 * @fmode: mode
5199 *
5200 * Do a check when the kernel generates and returns a file descriptor for eBPF
5201 * maps.
5202 *
5203 * Return: Returns 0 if permission is granted.
5204 */
security_bpf_map(struct bpf_map * map,fmode_t fmode)5205 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5206 {
5207 return call_int_hook(bpf_map, 0, map, fmode);
5208 }
5209
5210 /**
5211 * security_bpf_prog() - Check if access to a bpf program is allowed
5212 * @prog: bpf program
5213 *
5214 * Do a check when the kernel generates and returns a file descriptor for eBPF
5215 * programs.
5216 *
5217 * Return: Returns 0 if permission is granted.
5218 */
security_bpf_prog(struct bpf_prog * prog)5219 int security_bpf_prog(struct bpf_prog *prog)
5220 {
5221 return call_int_hook(bpf_prog, 0, prog);
5222 }
5223
5224 /**
5225 * security_bpf_map_alloc() - Allocate a bpf map LSM blob
5226 * @map: bpf map
5227 *
5228 * Initialize the security field inside bpf map.
5229 *
5230 * Return: Returns 0 on success, error on failure.
5231 */
security_bpf_map_alloc(struct bpf_map * map)5232 int security_bpf_map_alloc(struct bpf_map *map)
5233 {
5234 return call_int_hook(bpf_map_alloc_security, 0, map);
5235 }
5236
5237 /**
5238 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob
5239 * @aux: bpf program aux info struct
5240 *
5241 * Initialize the security field inside bpf program.
5242 *
5243 * Return: Returns 0 on success, error on failure.
5244 */
security_bpf_prog_alloc(struct bpf_prog_aux * aux)5245 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
5246 {
5247 return call_int_hook(bpf_prog_alloc_security, 0, aux);
5248 }
5249
5250 /**
5251 * security_bpf_map_free() - Free a bpf map's LSM blob
5252 * @map: bpf map
5253 *
5254 * Clean up the security information stored inside bpf map.
5255 */
security_bpf_map_free(struct bpf_map * map)5256 void security_bpf_map_free(struct bpf_map *map)
5257 {
5258 call_void_hook(bpf_map_free_security, map);
5259 }
5260
5261 /**
5262 * security_bpf_prog_free() - Free a bpf program's LSM blob
5263 * @aux: bpf program aux info struct
5264 *
5265 * Clean up the security information stored inside bpf prog.
5266 */
security_bpf_prog_free(struct bpf_prog_aux * aux)5267 void security_bpf_prog_free(struct bpf_prog_aux *aux)
5268 {
5269 call_void_hook(bpf_prog_free_security, aux);
5270 }
5271 #endif /* CONFIG_BPF_SYSCALL */
5272
5273 /**
5274 * security_locked_down() - Check if a kernel feature is allowed
5275 * @what: requested kernel feature
5276 *
5277 * Determine whether a kernel feature that potentially enables arbitrary code
5278 * execution in kernel space should be permitted.
5279 *
5280 * Return: Returns 0 if permission is granted.
5281 */
security_locked_down(enum lockdown_reason what)5282 int security_locked_down(enum lockdown_reason what)
5283 {
5284 return call_int_hook(locked_down, 0, what);
5285 }
5286 EXPORT_SYMBOL(security_locked_down);
5287
5288 #ifdef CONFIG_PERF_EVENTS
5289 /**
5290 * security_perf_event_open() - Check if a perf event open is allowed
5291 * @attr: perf event attribute
5292 * @type: type of event
5293 *
5294 * Check whether the @type of perf_event_open syscall is allowed.
5295 *
5296 * Return: Returns 0 if permission is granted.
5297 */
security_perf_event_open(struct perf_event_attr * attr,int type)5298 int security_perf_event_open(struct perf_event_attr *attr, int type)
5299 {
5300 return call_int_hook(perf_event_open, 0, attr, type);
5301 }
5302
5303 /**
5304 * security_perf_event_alloc() - Allocate a perf event LSM blob
5305 * @event: perf event
5306 *
5307 * Allocate and save perf_event security info.
5308 *
5309 * Return: Returns 0 on success, error on failure.
5310 */
security_perf_event_alloc(struct perf_event * event)5311 int security_perf_event_alloc(struct perf_event *event)
5312 {
5313 return call_int_hook(perf_event_alloc, 0, event);
5314 }
5315
5316 /**
5317 * security_perf_event_free() - Free a perf event LSM blob
5318 * @event: perf event
5319 *
5320 * Release (free) perf_event security info.
5321 */
security_perf_event_free(struct perf_event * event)5322 void security_perf_event_free(struct perf_event *event)
5323 {
5324 call_void_hook(perf_event_free, event);
5325 }
5326
5327 /**
5328 * security_perf_event_read() - Check if reading a perf event label is allowed
5329 * @event: perf event
5330 *
5331 * Read perf_event security info if allowed.
5332 *
5333 * Return: Returns 0 if permission is granted.
5334 */
security_perf_event_read(struct perf_event * event)5335 int security_perf_event_read(struct perf_event *event)
5336 {
5337 return call_int_hook(perf_event_read, 0, event);
5338 }
5339
5340 /**
5341 * security_perf_event_write() - Check if writing a perf event label is allowed
5342 * @event: perf event
5343 *
5344 * Write perf_event security info if allowed.
5345 *
5346 * Return: Returns 0 if permission is granted.
5347 */
security_perf_event_write(struct perf_event * event)5348 int security_perf_event_write(struct perf_event *event)
5349 {
5350 return call_int_hook(perf_event_write, 0, event);
5351 }
5352 #endif /* CONFIG_PERF_EVENTS */
5353
5354 #ifdef CONFIG_IO_URING
5355 /**
5356 * security_uring_override_creds() - Check if overriding creds is allowed
5357 * @new: new credentials
5358 *
5359 * Check if the current task, executing an io_uring operation, is allowed to
5360 * override it's credentials with @new.
5361 *
5362 * Return: Returns 0 if permission is granted.
5363 */
security_uring_override_creds(const struct cred * new)5364 int security_uring_override_creds(const struct cred *new)
5365 {
5366 return call_int_hook(uring_override_creds, 0, new);
5367 }
5368
5369 /**
5370 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5371 *
5372 * Check whether the current task is allowed to spawn a io_uring polling thread
5373 * (IORING_SETUP_SQPOLL).
5374 *
5375 * Return: Returns 0 if permission is granted.
5376 */
security_uring_sqpoll(void)5377 int security_uring_sqpoll(void)
5378 {
5379 return call_int_hook(uring_sqpoll, 0);
5380 }
5381
5382 /**
5383 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5384 * @ioucmd: command
5385 *
5386 * Check whether the file_operations uring_cmd is allowed to run.
5387 *
5388 * Return: Returns 0 if permission is granted.
5389 */
security_uring_cmd(struct io_uring_cmd * ioucmd)5390 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5391 {
5392 return call_int_hook(uring_cmd, 0, ioucmd);
5393 }
5394 #endif /* CONFIG_IO_URING */
5395