xref: /openbmc/linux/drivers/input/misc/adxl34x.c (revision 2612e3bbc0386368a850140a6c9b990cd496a5ec)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * ADXL345/346 Three-Axis Digital Accelerometers
4   *
5   * Enter bugs at http://blackfin.uclinux.org/
6   *
7   * Copyright (C) 2009 Michael Hennerich, Analog Devices Inc.
8   */
9  
10  #include <linux/device.h>
11  #include <linux/delay.h>
12  #include <linux/input.h>
13  #include <linux/interrupt.h>
14  #include <linux/irq.h>
15  #include <linux/slab.h>
16  #include <linux/workqueue.h>
17  #include <linux/input/adxl34x.h>
18  #include <linux/module.h>
19  
20  #include "adxl34x.h"
21  
22  /* ADXL345/6 Register Map */
23  #define DEVID		0x00	/* R   Device ID */
24  #define THRESH_TAP	0x1D	/* R/W Tap threshold */
25  #define OFSX		0x1E	/* R/W X-axis offset */
26  #define OFSY		0x1F	/* R/W Y-axis offset */
27  #define OFSZ		0x20	/* R/W Z-axis offset */
28  #define DUR		0x21	/* R/W Tap duration */
29  #define LATENT		0x22	/* R/W Tap latency */
30  #define WINDOW		0x23	/* R/W Tap window */
31  #define THRESH_ACT	0x24	/* R/W Activity threshold */
32  #define THRESH_INACT	0x25	/* R/W Inactivity threshold */
33  #define TIME_INACT	0x26	/* R/W Inactivity time */
34  #define ACT_INACT_CTL	0x27	/* R/W Axis enable control for activity and */
35  				/* inactivity detection */
36  #define THRESH_FF	0x28	/* R/W Free-fall threshold */
37  #define TIME_FF		0x29	/* R/W Free-fall time */
38  #define TAP_AXES	0x2A	/* R/W Axis control for tap/double tap */
39  #define ACT_TAP_STATUS	0x2B	/* R   Source of tap/double tap */
40  #define BW_RATE		0x2C	/* R/W Data rate and power mode control */
41  #define POWER_CTL	0x2D	/* R/W Power saving features control */
42  #define INT_ENABLE	0x2E	/* R/W Interrupt enable control */
43  #define INT_MAP		0x2F	/* R/W Interrupt mapping control */
44  #define INT_SOURCE	0x30	/* R   Source of interrupts */
45  #define DATA_FORMAT	0x31	/* R/W Data format control */
46  #define DATAX0		0x32	/* R   X-Axis Data 0 */
47  #define DATAX1		0x33	/* R   X-Axis Data 1 */
48  #define DATAY0		0x34	/* R   Y-Axis Data 0 */
49  #define DATAY1		0x35	/* R   Y-Axis Data 1 */
50  #define DATAZ0		0x36	/* R   Z-Axis Data 0 */
51  #define DATAZ1		0x37	/* R   Z-Axis Data 1 */
52  #define FIFO_CTL	0x38	/* R/W FIFO control */
53  #define FIFO_STATUS	0x39	/* R   FIFO status */
54  #define TAP_SIGN	0x3A	/* R   Sign and source for tap/double tap */
55  /* Orientation ADXL346 only */
56  #define ORIENT_CONF	0x3B	/* R/W Orientation configuration */
57  #define ORIENT		0x3C	/* R   Orientation status */
58  
59  /* DEVIDs */
60  #define ID_ADXL345	0xE5
61  #define ID_ADXL346	0xE6
62  
63  /* INT_ENABLE/INT_MAP/INT_SOURCE Bits */
64  #define DATA_READY	(1 << 7)
65  #define SINGLE_TAP	(1 << 6)
66  #define DOUBLE_TAP	(1 << 5)
67  #define ACTIVITY	(1 << 4)
68  #define INACTIVITY	(1 << 3)
69  #define FREE_FALL	(1 << 2)
70  #define WATERMARK	(1 << 1)
71  #define OVERRUN		(1 << 0)
72  
73  /* ACT_INACT_CONTROL Bits */
74  #define ACT_ACDC	(1 << 7)
75  #define ACT_X_EN	(1 << 6)
76  #define ACT_Y_EN	(1 << 5)
77  #define ACT_Z_EN	(1 << 4)
78  #define INACT_ACDC	(1 << 3)
79  #define INACT_X_EN	(1 << 2)
80  #define INACT_Y_EN	(1 << 1)
81  #define INACT_Z_EN	(1 << 0)
82  
83  /* TAP_AXES Bits */
84  #define SUPPRESS	(1 << 3)
85  #define TAP_X_EN	(1 << 2)
86  #define TAP_Y_EN	(1 << 1)
87  #define TAP_Z_EN	(1 << 0)
88  
89  /* ACT_TAP_STATUS Bits */
90  #define ACT_X_SRC	(1 << 6)
91  #define ACT_Y_SRC	(1 << 5)
92  #define ACT_Z_SRC	(1 << 4)
93  #define ASLEEP		(1 << 3)
94  #define TAP_X_SRC	(1 << 2)
95  #define TAP_Y_SRC	(1 << 1)
96  #define TAP_Z_SRC	(1 << 0)
97  
98  /* BW_RATE Bits */
99  #define LOW_POWER	(1 << 4)
100  #define RATE(x)		((x) & 0xF)
101  
102  /* POWER_CTL Bits */
103  #define PCTL_LINK	(1 << 5)
104  #define PCTL_AUTO_SLEEP (1 << 4)
105  #define PCTL_MEASURE	(1 << 3)
106  #define PCTL_SLEEP	(1 << 2)
107  #define PCTL_WAKEUP(x)	((x) & 0x3)
108  
109  /* DATA_FORMAT Bits */
110  #define SELF_TEST	(1 << 7)
111  #define SPI		(1 << 6)
112  #define INT_INVERT	(1 << 5)
113  #define FULL_RES	(1 << 3)
114  #define JUSTIFY		(1 << 2)
115  #define RANGE(x)	((x) & 0x3)
116  #define RANGE_PM_2g	0
117  #define RANGE_PM_4g	1
118  #define RANGE_PM_8g	2
119  #define RANGE_PM_16g	3
120  
121  /*
122   * Maximum value our axis may get in full res mode for the input device
123   * (signed 13 bits)
124   */
125  #define ADXL_FULLRES_MAX_VAL 4096
126  
127  /*
128   * Maximum value our axis may get in fixed res mode for the input device
129   * (signed 10 bits)
130   */
131  #define ADXL_FIXEDRES_MAX_VAL 512
132  
133  /* FIFO_CTL Bits */
134  #define FIFO_MODE(x)	(((x) & 0x3) << 6)
135  #define FIFO_BYPASS	0
136  #define FIFO_FIFO	1
137  #define FIFO_STREAM	2
138  #define FIFO_TRIGGER	3
139  #define TRIGGER		(1 << 5)
140  #define SAMPLES(x)	((x) & 0x1F)
141  
142  /* FIFO_STATUS Bits */
143  #define FIFO_TRIG	(1 << 7)
144  #define ENTRIES(x)	((x) & 0x3F)
145  
146  /* TAP_SIGN Bits ADXL346 only */
147  #define XSIGN		(1 << 6)
148  #define YSIGN		(1 << 5)
149  #define ZSIGN		(1 << 4)
150  #define XTAP		(1 << 3)
151  #define YTAP		(1 << 2)
152  #define ZTAP		(1 << 1)
153  
154  /* ORIENT_CONF ADXL346 only */
155  #define ORIENT_DEADZONE(x)	(((x) & 0x7) << 4)
156  #define ORIENT_DIVISOR(x)	((x) & 0x7)
157  
158  /* ORIENT ADXL346 only */
159  #define ADXL346_2D_VALID		(1 << 6)
160  #define ADXL346_2D_ORIENT(x)		(((x) & 0x30) >> 4)
161  #define ADXL346_3D_VALID		(1 << 3)
162  #define ADXL346_3D_ORIENT(x)		((x) & 0x7)
163  #define ADXL346_2D_PORTRAIT_POS		0	/* +X */
164  #define ADXL346_2D_PORTRAIT_NEG		1	/* -X */
165  #define ADXL346_2D_LANDSCAPE_POS	2	/* +Y */
166  #define ADXL346_2D_LANDSCAPE_NEG	3	/* -Y */
167  
168  #define ADXL346_3D_FRONT		3	/* +X */
169  #define ADXL346_3D_BACK			4	/* -X */
170  #define ADXL346_3D_RIGHT		2	/* +Y */
171  #define ADXL346_3D_LEFT			5	/* -Y */
172  #define ADXL346_3D_TOP			1	/* +Z */
173  #define ADXL346_3D_BOTTOM		6	/* -Z */
174  
175  #undef ADXL_DEBUG
176  
177  #define ADXL_X_AXIS			0
178  #define ADXL_Y_AXIS			1
179  #define ADXL_Z_AXIS			2
180  
181  #define AC_READ(ac, reg)	((ac)->bops->read((ac)->dev, reg))
182  #define AC_WRITE(ac, reg, val)	((ac)->bops->write((ac)->dev, reg, val))
183  
184  struct axis_triple {
185  	int x;
186  	int y;
187  	int z;
188  };
189  
190  struct adxl34x {
191  	struct device *dev;
192  	struct input_dev *input;
193  	struct mutex mutex;	/* reentrant protection for struct */
194  	struct adxl34x_platform_data pdata;
195  	struct axis_triple swcal;
196  	struct axis_triple hwcal;
197  	struct axis_triple saved;
198  	char phys[32];
199  	unsigned orient2d_saved;
200  	unsigned orient3d_saved;
201  	bool disabled;	/* P: mutex */
202  	bool opened;	/* P: mutex */
203  	bool suspended;	/* P: mutex */
204  	bool fifo_delay;
205  	int irq;
206  	unsigned model;
207  	unsigned int_mask;
208  
209  	const struct adxl34x_bus_ops *bops;
210  };
211  
212  static const struct adxl34x_platform_data adxl34x_default_init = {
213  	.tap_threshold = 35,
214  	.tap_duration = 3,
215  	.tap_latency = 20,
216  	.tap_window = 20,
217  	.tap_axis_control = ADXL_TAP_X_EN | ADXL_TAP_Y_EN | ADXL_TAP_Z_EN,
218  	.act_axis_control = 0xFF,
219  	.activity_threshold = 6,
220  	.inactivity_threshold = 4,
221  	.inactivity_time = 3,
222  	.free_fall_threshold = 8,
223  	.free_fall_time = 0x20,
224  	.data_rate = 8,
225  	.data_range = ADXL_FULL_RES,
226  
227  	.ev_type = EV_ABS,
228  	.ev_code_x = ABS_X,	/* EV_REL */
229  	.ev_code_y = ABS_Y,	/* EV_REL */
230  	.ev_code_z = ABS_Z,	/* EV_REL */
231  
232  	.ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_TOUCH}, /* EV_KEY {x,y,z} */
233  	.power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
234  	.fifo_mode = ADXL_FIFO_STREAM,
235  	.watermark = 0,
236  };
237  
adxl34x_get_triple(struct adxl34x * ac,struct axis_triple * axis)238  static void adxl34x_get_triple(struct adxl34x *ac, struct axis_triple *axis)
239  {
240  	__le16 buf[3];
241  
242  	ac->bops->read_block(ac->dev, DATAX0, DATAZ1 - DATAX0 + 1, buf);
243  
244  	mutex_lock(&ac->mutex);
245  	ac->saved.x = (s16) le16_to_cpu(buf[0]);
246  	axis->x = ac->saved.x;
247  
248  	ac->saved.y = (s16) le16_to_cpu(buf[1]);
249  	axis->y = ac->saved.y;
250  
251  	ac->saved.z = (s16) le16_to_cpu(buf[2]);
252  	axis->z = ac->saved.z;
253  	mutex_unlock(&ac->mutex);
254  }
255  
adxl34x_service_ev_fifo(struct adxl34x * ac)256  static void adxl34x_service_ev_fifo(struct adxl34x *ac)
257  {
258  	struct adxl34x_platform_data *pdata = &ac->pdata;
259  	struct axis_triple axis;
260  
261  	adxl34x_get_triple(ac, &axis);
262  
263  	input_event(ac->input, pdata->ev_type, pdata->ev_code_x,
264  		    axis.x - ac->swcal.x);
265  	input_event(ac->input, pdata->ev_type, pdata->ev_code_y,
266  		    axis.y - ac->swcal.y);
267  	input_event(ac->input, pdata->ev_type, pdata->ev_code_z,
268  		    axis.z - ac->swcal.z);
269  }
270  
adxl34x_report_key_single(struct input_dev * input,int key)271  static void adxl34x_report_key_single(struct input_dev *input, int key)
272  {
273  	input_report_key(input, key, true);
274  	input_sync(input);
275  	input_report_key(input, key, false);
276  }
277  
adxl34x_send_key_events(struct adxl34x * ac,struct adxl34x_platform_data * pdata,int status,int press)278  static void adxl34x_send_key_events(struct adxl34x *ac,
279  		struct adxl34x_platform_data *pdata, int status, int press)
280  {
281  	int i;
282  
283  	for (i = ADXL_X_AXIS; i <= ADXL_Z_AXIS; i++) {
284  		if (status & (1 << (ADXL_Z_AXIS - i)))
285  			input_report_key(ac->input,
286  					 pdata->ev_code_tap[i], press);
287  	}
288  }
289  
adxl34x_do_tap(struct adxl34x * ac,struct adxl34x_platform_data * pdata,int status)290  static void adxl34x_do_tap(struct adxl34x *ac,
291  		struct adxl34x_platform_data *pdata, int status)
292  {
293  	adxl34x_send_key_events(ac, pdata, status, true);
294  	input_sync(ac->input);
295  	adxl34x_send_key_events(ac, pdata, status, false);
296  }
297  
adxl34x_irq(int irq,void * handle)298  static irqreturn_t adxl34x_irq(int irq, void *handle)
299  {
300  	struct adxl34x *ac = handle;
301  	struct adxl34x_platform_data *pdata = &ac->pdata;
302  	int int_stat, tap_stat, samples, orient, orient_code;
303  
304  	/*
305  	 * ACT_TAP_STATUS should be read before clearing the interrupt
306  	 * Avoid reading ACT_TAP_STATUS in case TAP detection is disabled
307  	 */
308  
309  	if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
310  		tap_stat = AC_READ(ac, ACT_TAP_STATUS);
311  	else
312  		tap_stat = 0;
313  
314  	int_stat = AC_READ(ac, INT_SOURCE);
315  
316  	if (int_stat & FREE_FALL)
317  		adxl34x_report_key_single(ac->input, pdata->ev_code_ff);
318  
319  	if (int_stat & OVERRUN)
320  		dev_dbg(ac->dev, "OVERRUN\n");
321  
322  	if (int_stat & (SINGLE_TAP | DOUBLE_TAP)) {
323  		adxl34x_do_tap(ac, pdata, tap_stat);
324  
325  		if (int_stat & DOUBLE_TAP)
326  			adxl34x_do_tap(ac, pdata, tap_stat);
327  	}
328  
329  	if (pdata->ev_code_act_inactivity) {
330  		if (int_stat & ACTIVITY)
331  			input_report_key(ac->input,
332  					 pdata->ev_code_act_inactivity, 1);
333  		if (int_stat & INACTIVITY)
334  			input_report_key(ac->input,
335  					 pdata->ev_code_act_inactivity, 0);
336  	}
337  
338  	/*
339  	 * ORIENTATION SENSING ADXL346 only
340  	 */
341  	if (pdata->orientation_enable) {
342  		orient = AC_READ(ac, ORIENT);
343  		if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_2D) &&
344  		    (orient & ADXL346_2D_VALID)) {
345  
346  			orient_code = ADXL346_2D_ORIENT(orient);
347  			/* Report orientation only when it changes */
348  			if (ac->orient2d_saved != orient_code) {
349  				ac->orient2d_saved = orient_code;
350  				adxl34x_report_key_single(ac->input,
351  					pdata->ev_codes_orient_2d[orient_code]);
352  			}
353  		}
354  
355  		if ((pdata->orientation_enable & ADXL_EN_ORIENTATION_3D) &&
356  		    (orient & ADXL346_3D_VALID)) {
357  
358  			orient_code = ADXL346_3D_ORIENT(orient) - 1;
359  			/* Report orientation only when it changes */
360  			if (ac->orient3d_saved != orient_code) {
361  				ac->orient3d_saved = orient_code;
362  				adxl34x_report_key_single(ac->input,
363  					pdata->ev_codes_orient_3d[orient_code]);
364  			}
365  		}
366  	}
367  
368  	if (int_stat & (DATA_READY | WATERMARK)) {
369  
370  		if (pdata->fifo_mode)
371  			samples = ENTRIES(AC_READ(ac, FIFO_STATUS)) + 1;
372  		else
373  			samples = 1;
374  
375  		for (; samples > 0; samples--) {
376  			adxl34x_service_ev_fifo(ac);
377  			/*
378  			 * To ensure that the FIFO has
379  			 * completely popped, there must be at least 5 us between
380  			 * the end of reading the data registers, signified by the
381  			 * transition to register 0x38 from 0x37 or the CS pin
382  			 * going high, and the start of new reads of the FIFO or
383  			 * reading the FIFO_STATUS register. For SPI operation at
384  			 * 1.5 MHz or lower, the register addressing portion of the
385  			 * transmission is sufficient delay to ensure the FIFO has
386  			 * completely popped. It is necessary for SPI operation
387  			 * greater than 1.5 MHz to de-assert the CS pin to ensure a
388  			 * total of 5 us, which is at most 3.4 us at 5 MHz
389  			 * operation.
390  			 */
391  			if (ac->fifo_delay && (samples > 1))
392  				udelay(3);
393  		}
394  	}
395  
396  	input_sync(ac->input);
397  
398  	return IRQ_HANDLED;
399  }
400  
__adxl34x_disable(struct adxl34x * ac)401  static void __adxl34x_disable(struct adxl34x *ac)
402  {
403  	/*
404  	 * A '0' places the ADXL34x into standby mode
405  	 * with minimum power consumption.
406  	 */
407  	AC_WRITE(ac, POWER_CTL, 0);
408  }
409  
__adxl34x_enable(struct adxl34x * ac)410  static void __adxl34x_enable(struct adxl34x *ac)
411  {
412  	AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
413  }
414  
adxl34x_suspend(struct device * dev)415  static int adxl34x_suspend(struct device *dev)
416  {
417  	struct adxl34x *ac = dev_get_drvdata(dev);
418  
419  	mutex_lock(&ac->mutex);
420  
421  	if (!ac->suspended && !ac->disabled && ac->opened)
422  		__adxl34x_disable(ac);
423  
424  	ac->suspended = true;
425  
426  	mutex_unlock(&ac->mutex);
427  
428  	return 0;
429  }
430  
adxl34x_resume(struct device * dev)431  static int adxl34x_resume(struct device *dev)
432  {
433  	struct adxl34x *ac = dev_get_drvdata(dev);
434  
435  	mutex_lock(&ac->mutex);
436  
437  	if (ac->suspended && !ac->disabled && ac->opened)
438  		__adxl34x_enable(ac);
439  
440  	ac->suspended = false;
441  
442  	mutex_unlock(&ac->mutex);
443  
444  	return 0;
445  }
446  
adxl34x_disable_show(struct device * dev,struct device_attribute * attr,char * buf)447  static ssize_t adxl34x_disable_show(struct device *dev,
448  				    struct device_attribute *attr, char *buf)
449  {
450  	struct adxl34x *ac = dev_get_drvdata(dev);
451  
452  	return sprintf(buf, "%u\n", ac->disabled);
453  }
454  
adxl34x_disable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)455  static ssize_t adxl34x_disable_store(struct device *dev,
456  				     struct device_attribute *attr,
457  				     const char *buf, size_t count)
458  {
459  	struct adxl34x *ac = dev_get_drvdata(dev);
460  	unsigned int val;
461  	int error;
462  
463  	error = kstrtouint(buf, 10, &val);
464  	if (error)
465  		return error;
466  
467  	mutex_lock(&ac->mutex);
468  
469  	if (!ac->suspended && ac->opened) {
470  		if (val) {
471  			if (!ac->disabled)
472  				__adxl34x_disable(ac);
473  		} else {
474  			if (ac->disabled)
475  				__adxl34x_enable(ac);
476  		}
477  	}
478  
479  	ac->disabled = !!val;
480  
481  	mutex_unlock(&ac->mutex);
482  
483  	return count;
484  }
485  
486  static DEVICE_ATTR(disable, 0664, adxl34x_disable_show, adxl34x_disable_store);
487  
adxl34x_calibrate_show(struct device * dev,struct device_attribute * attr,char * buf)488  static ssize_t adxl34x_calibrate_show(struct device *dev,
489  				      struct device_attribute *attr, char *buf)
490  {
491  	struct adxl34x *ac = dev_get_drvdata(dev);
492  	ssize_t count;
493  
494  	mutex_lock(&ac->mutex);
495  	count = sprintf(buf, "%d,%d,%d\n",
496  			ac->hwcal.x * 4 + ac->swcal.x,
497  			ac->hwcal.y * 4 + ac->swcal.y,
498  			ac->hwcal.z * 4 + ac->swcal.z);
499  	mutex_unlock(&ac->mutex);
500  
501  	return count;
502  }
503  
adxl34x_calibrate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)504  static ssize_t adxl34x_calibrate_store(struct device *dev,
505  				       struct device_attribute *attr,
506  				       const char *buf, size_t count)
507  {
508  	struct adxl34x *ac = dev_get_drvdata(dev);
509  
510  	/*
511  	 * Hardware offset calibration has a resolution of 15.6 mg/LSB.
512  	 * We use HW calibration and handle the remaining bits in SW. (4mg/LSB)
513  	 */
514  
515  	mutex_lock(&ac->mutex);
516  	ac->hwcal.x -= (ac->saved.x / 4);
517  	ac->swcal.x = ac->saved.x % 4;
518  
519  	ac->hwcal.y -= (ac->saved.y / 4);
520  	ac->swcal.y = ac->saved.y % 4;
521  
522  	ac->hwcal.z -= (ac->saved.z / 4);
523  	ac->swcal.z = ac->saved.z % 4;
524  
525  	AC_WRITE(ac, OFSX, (s8) ac->hwcal.x);
526  	AC_WRITE(ac, OFSY, (s8) ac->hwcal.y);
527  	AC_WRITE(ac, OFSZ, (s8) ac->hwcal.z);
528  	mutex_unlock(&ac->mutex);
529  
530  	return count;
531  }
532  
533  static DEVICE_ATTR(calibrate, 0664,
534  		   adxl34x_calibrate_show, adxl34x_calibrate_store);
535  
adxl34x_rate_show(struct device * dev,struct device_attribute * attr,char * buf)536  static ssize_t adxl34x_rate_show(struct device *dev,
537  				 struct device_attribute *attr, char *buf)
538  {
539  	struct adxl34x *ac = dev_get_drvdata(dev);
540  
541  	return sprintf(buf, "%u\n", RATE(ac->pdata.data_rate));
542  }
543  
adxl34x_rate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)544  static ssize_t adxl34x_rate_store(struct device *dev,
545  				  struct device_attribute *attr,
546  				  const char *buf, size_t count)
547  {
548  	struct adxl34x *ac = dev_get_drvdata(dev);
549  	unsigned char val;
550  	int error;
551  
552  	error = kstrtou8(buf, 10, &val);
553  	if (error)
554  		return error;
555  
556  	mutex_lock(&ac->mutex);
557  
558  	ac->pdata.data_rate = RATE(val);
559  	AC_WRITE(ac, BW_RATE,
560  		 ac->pdata.data_rate |
561  			(ac->pdata.low_power_mode ? LOW_POWER : 0));
562  
563  	mutex_unlock(&ac->mutex);
564  
565  	return count;
566  }
567  
568  static DEVICE_ATTR(rate, 0664, adxl34x_rate_show, adxl34x_rate_store);
569  
adxl34x_autosleep_show(struct device * dev,struct device_attribute * attr,char * buf)570  static ssize_t adxl34x_autosleep_show(struct device *dev,
571  				 struct device_attribute *attr, char *buf)
572  {
573  	struct adxl34x *ac = dev_get_drvdata(dev);
574  
575  	return sprintf(buf, "%u\n",
576  		ac->pdata.power_mode & (PCTL_AUTO_SLEEP | PCTL_LINK) ? 1 : 0);
577  }
578  
adxl34x_autosleep_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)579  static ssize_t adxl34x_autosleep_store(struct device *dev,
580  				  struct device_attribute *attr,
581  				  const char *buf, size_t count)
582  {
583  	struct adxl34x *ac = dev_get_drvdata(dev);
584  	unsigned int val;
585  	int error;
586  
587  	error = kstrtouint(buf, 10, &val);
588  	if (error)
589  		return error;
590  
591  	mutex_lock(&ac->mutex);
592  
593  	if (val)
594  		ac->pdata.power_mode |= (PCTL_AUTO_SLEEP | PCTL_LINK);
595  	else
596  		ac->pdata.power_mode &= ~(PCTL_AUTO_SLEEP | PCTL_LINK);
597  
598  	if (!ac->disabled && !ac->suspended && ac->opened)
599  		AC_WRITE(ac, POWER_CTL, ac->pdata.power_mode | PCTL_MEASURE);
600  
601  	mutex_unlock(&ac->mutex);
602  
603  	return count;
604  }
605  
606  static DEVICE_ATTR(autosleep, 0664,
607  		   adxl34x_autosleep_show, adxl34x_autosleep_store);
608  
adxl34x_position_show(struct device * dev,struct device_attribute * attr,char * buf)609  static ssize_t adxl34x_position_show(struct device *dev,
610  				 struct device_attribute *attr, char *buf)
611  {
612  	struct adxl34x *ac = dev_get_drvdata(dev);
613  	ssize_t count;
614  
615  	mutex_lock(&ac->mutex);
616  	count = sprintf(buf, "(%d, %d, %d)\n",
617  			ac->saved.x, ac->saved.y, ac->saved.z);
618  	mutex_unlock(&ac->mutex);
619  
620  	return count;
621  }
622  
623  static DEVICE_ATTR(position, S_IRUGO, adxl34x_position_show, NULL);
624  
625  #ifdef ADXL_DEBUG
adxl34x_write_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)626  static ssize_t adxl34x_write_store(struct device *dev,
627  				   struct device_attribute *attr,
628  				   const char *buf, size_t count)
629  {
630  	struct adxl34x *ac = dev_get_drvdata(dev);
631  	unsigned int val;
632  	int error;
633  
634  	/*
635  	 * This allows basic ADXL register write access for debug purposes.
636  	 */
637  	error = kstrtouint(buf, 16, &val);
638  	if (error)
639  		return error;
640  
641  	mutex_lock(&ac->mutex);
642  	AC_WRITE(ac, val >> 8, val & 0xFF);
643  	mutex_unlock(&ac->mutex);
644  
645  	return count;
646  }
647  
648  static DEVICE_ATTR(write, 0664, NULL, adxl34x_write_store);
649  #endif
650  
651  static struct attribute *adxl34x_attributes[] = {
652  	&dev_attr_disable.attr,
653  	&dev_attr_calibrate.attr,
654  	&dev_attr_rate.attr,
655  	&dev_attr_autosleep.attr,
656  	&dev_attr_position.attr,
657  #ifdef ADXL_DEBUG
658  	&dev_attr_write.attr,
659  #endif
660  	NULL
661  };
662  
663  static const struct attribute_group adxl34x_attr_group = {
664  	.attrs = adxl34x_attributes,
665  };
666  
adxl34x_input_open(struct input_dev * input)667  static int adxl34x_input_open(struct input_dev *input)
668  {
669  	struct adxl34x *ac = input_get_drvdata(input);
670  
671  	mutex_lock(&ac->mutex);
672  
673  	if (!ac->suspended && !ac->disabled)
674  		__adxl34x_enable(ac);
675  
676  	ac->opened = true;
677  
678  	mutex_unlock(&ac->mutex);
679  
680  	return 0;
681  }
682  
adxl34x_input_close(struct input_dev * input)683  static void adxl34x_input_close(struct input_dev *input)
684  {
685  	struct adxl34x *ac = input_get_drvdata(input);
686  
687  	mutex_lock(&ac->mutex);
688  
689  	if (!ac->suspended && !ac->disabled)
690  		__adxl34x_disable(ac);
691  
692  	ac->opened = false;
693  
694  	mutex_unlock(&ac->mutex);
695  }
696  
adxl34x_probe(struct device * dev,int irq,bool fifo_delay_default,const struct adxl34x_bus_ops * bops)697  struct adxl34x *adxl34x_probe(struct device *dev, int irq,
698  			      bool fifo_delay_default,
699  			      const struct adxl34x_bus_ops *bops)
700  {
701  	struct adxl34x *ac;
702  	struct input_dev *input_dev;
703  	const struct adxl34x_platform_data *pdata;
704  	int err, range, i;
705  	int revid;
706  
707  	if (!irq) {
708  		dev_err(dev, "no IRQ?\n");
709  		err = -ENODEV;
710  		goto err_out;
711  	}
712  
713  	ac = kzalloc(sizeof(*ac), GFP_KERNEL);
714  	input_dev = input_allocate_device();
715  	if (!ac || !input_dev) {
716  		err = -ENOMEM;
717  		goto err_free_mem;
718  	}
719  
720  	ac->fifo_delay = fifo_delay_default;
721  
722  	pdata = dev_get_platdata(dev);
723  	if (!pdata) {
724  		dev_dbg(dev,
725  			"No platform data: Using default initialization\n");
726  		pdata = &adxl34x_default_init;
727  	}
728  
729  	ac->pdata = *pdata;
730  	pdata = &ac->pdata;
731  
732  	ac->input = input_dev;
733  	ac->dev = dev;
734  	ac->irq = irq;
735  	ac->bops = bops;
736  
737  	mutex_init(&ac->mutex);
738  
739  	input_dev->name = "ADXL34x accelerometer";
740  	revid = AC_READ(ac, DEVID);
741  
742  	switch (revid) {
743  	case ID_ADXL345:
744  		ac->model = 345;
745  		break;
746  	case ID_ADXL346:
747  		ac->model = 346;
748  		break;
749  	default:
750  		dev_err(dev, "Failed to probe %s\n", input_dev->name);
751  		err = -ENODEV;
752  		goto err_free_mem;
753  	}
754  
755  	snprintf(ac->phys, sizeof(ac->phys), "%s/input0", dev_name(dev));
756  
757  	input_dev->phys = ac->phys;
758  	input_dev->dev.parent = dev;
759  	input_dev->id.product = ac->model;
760  	input_dev->id.bustype = bops->bustype;
761  	input_dev->open = adxl34x_input_open;
762  	input_dev->close = adxl34x_input_close;
763  
764  	input_set_drvdata(input_dev, ac);
765  
766  	__set_bit(ac->pdata.ev_type, input_dev->evbit);
767  
768  	if (ac->pdata.ev_type == EV_REL) {
769  		__set_bit(REL_X, input_dev->relbit);
770  		__set_bit(REL_Y, input_dev->relbit);
771  		__set_bit(REL_Z, input_dev->relbit);
772  	} else {
773  		/* EV_ABS */
774  		__set_bit(ABS_X, input_dev->absbit);
775  		__set_bit(ABS_Y, input_dev->absbit);
776  		__set_bit(ABS_Z, input_dev->absbit);
777  
778  		if (pdata->data_range & FULL_RES)
779  			range = ADXL_FULLRES_MAX_VAL;	/* Signed 13-bit */
780  		else
781  			range = ADXL_FIXEDRES_MAX_VAL;	/* Signed 10-bit */
782  
783  		input_set_abs_params(input_dev, ABS_X, -range, range, 3, 3);
784  		input_set_abs_params(input_dev, ABS_Y, -range, range, 3, 3);
785  		input_set_abs_params(input_dev, ABS_Z, -range, range, 3, 3);
786  	}
787  
788  	__set_bit(EV_KEY, input_dev->evbit);
789  	__set_bit(pdata->ev_code_tap[ADXL_X_AXIS], input_dev->keybit);
790  	__set_bit(pdata->ev_code_tap[ADXL_Y_AXIS], input_dev->keybit);
791  	__set_bit(pdata->ev_code_tap[ADXL_Z_AXIS], input_dev->keybit);
792  
793  	if (pdata->ev_code_ff) {
794  		ac->int_mask = FREE_FALL;
795  		__set_bit(pdata->ev_code_ff, input_dev->keybit);
796  	}
797  
798  	if (pdata->ev_code_act_inactivity)
799  		__set_bit(pdata->ev_code_act_inactivity, input_dev->keybit);
800  
801  	ac->int_mask |= ACTIVITY | INACTIVITY;
802  
803  	if (pdata->watermark) {
804  		ac->int_mask |= WATERMARK;
805  		if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
806  			ac->pdata.fifo_mode |= FIFO_STREAM;
807  	} else {
808  		ac->int_mask |= DATA_READY;
809  	}
810  
811  	if (pdata->tap_axis_control & (TAP_X_EN | TAP_Y_EN | TAP_Z_EN))
812  		ac->int_mask |= SINGLE_TAP | DOUBLE_TAP;
813  
814  	if (FIFO_MODE(pdata->fifo_mode) == FIFO_BYPASS)
815  		ac->fifo_delay = false;
816  
817  	AC_WRITE(ac, POWER_CTL, 0);
818  
819  	err = request_threaded_irq(ac->irq, NULL, adxl34x_irq,
820  				   IRQF_ONESHOT, dev_name(dev), ac);
821  	if (err) {
822  		dev_err(dev, "irq %d busy?\n", ac->irq);
823  		goto err_free_mem;
824  	}
825  
826  	err = sysfs_create_group(&dev->kobj, &adxl34x_attr_group);
827  	if (err)
828  		goto err_free_irq;
829  
830  	err = input_register_device(input_dev);
831  	if (err)
832  		goto err_remove_attr;
833  
834  	AC_WRITE(ac, OFSX, pdata->x_axis_offset);
835  	ac->hwcal.x = pdata->x_axis_offset;
836  	AC_WRITE(ac, OFSY, pdata->y_axis_offset);
837  	ac->hwcal.y = pdata->y_axis_offset;
838  	AC_WRITE(ac, OFSZ, pdata->z_axis_offset);
839  	ac->hwcal.z = pdata->z_axis_offset;
840  	AC_WRITE(ac, THRESH_TAP, pdata->tap_threshold);
841  	AC_WRITE(ac, DUR, pdata->tap_duration);
842  	AC_WRITE(ac, LATENT, pdata->tap_latency);
843  	AC_WRITE(ac, WINDOW, pdata->tap_window);
844  	AC_WRITE(ac, THRESH_ACT, pdata->activity_threshold);
845  	AC_WRITE(ac, THRESH_INACT, pdata->inactivity_threshold);
846  	AC_WRITE(ac, TIME_INACT, pdata->inactivity_time);
847  	AC_WRITE(ac, THRESH_FF, pdata->free_fall_threshold);
848  	AC_WRITE(ac, TIME_FF, pdata->free_fall_time);
849  	AC_WRITE(ac, TAP_AXES, pdata->tap_axis_control);
850  	AC_WRITE(ac, ACT_INACT_CTL, pdata->act_axis_control);
851  	AC_WRITE(ac, BW_RATE, RATE(ac->pdata.data_rate) |
852  		 (pdata->low_power_mode ? LOW_POWER : 0));
853  	AC_WRITE(ac, DATA_FORMAT, pdata->data_range);
854  	AC_WRITE(ac, FIFO_CTL, FIFO_MODE(pdata->fifo_mode) |
855  			SAMPLES(pdata->watermark));
856  
857  	if (pdata->use_int2) {
858  		/* Map all INTs to INT2 */
859  		AC_WRITE(ac, INT_MAP, ac->int_mask | OVERRUN);
860  	} else {
861  		/* Map all INTs to INT1 */
862  		AC_WRITE(ac, INT_MAP, 0);
863  	}
864  
865  	if (ac->model == 346 && ac->pdata.orientation_enable) {
866  		AC_WRITE(ac, ORIENT_CONF,
867  			ORIENT_DEADZONE(ac->pdata.deadzone_angle) |
868  			ORIENT_DIVISOR(ac->pdata.divisor_length));
869  
870  		ac->orient2d_saved = 1234;
871  		ac->orient3d_saved = 1234;
872  
873  		if (pdata->orientation_enable & ADXL_EN_ORIENTATION_3D)
874  			for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_3d); i++)
875  				__set_bit(pdata->ev_codes_orient_3d[i],
876  					  input_dev->keybit);
877  
878  		if (pdata->orientation_enable & ADXL_EN_ORIENTATION_2D)
879  			for (i = 0; i < ARRAY_SIZE(pdata->ev_codes_orient_2d); i++)
880  				__set_bit(pdata->ev_codes_orient_2d[i],
881  					  input_dev->keybit);
882  	} else {
883  		ac->pdata.orientation_enable = 0;
884  	}
885  
886  	AC_WRITE(ac, INT_ENABLE, ac->int_mask | OVERRUN);
887  
888  	ac->pdata.power_mode &= (PCTL_AUTO_SLEEP | PCTL_LINK);
889  
890  	return ac;
891  
892   err_remove_attr:
893  	sysfs_remove_group(&dev->kobj, &adxl34x_attr_group);
894   err_free_irq:
895  	free_irq(ac->irq, ac);
896   err_free_mem:
897  	input_free_device(input_dev);
898  	kfree(ac);
899   err_out:
900  	return ERR_PTR(err);
901  }
902  EXPORT_SYMBOL_GPL(adxl34x_probe);
903  
adxl34x_remove(struct adxl34x * ac)904  void adxl34x_remove(struct adxl34x *ac)
905  {
906  	sysfs_remove_group(&ac->dev->kobj, &adxl34x_attr_group);
907  	free_irq(ac->irq, ac);
908  	input_unregister_device(ac->input);
909  	dev_dbg(ac->dev, "unregistered accelerometer\n");
910  	kfree(ac);
911  }
912  EXPORT_SYMBOL_GPL(adxl34x_remove);
913  
914  EXPORT_GPL_SIMPLE_DEV_PM_OPS(adxl34x_pm, adxl34x_suspend, adxl34x_resume);
915  
916  MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
917  MODULE_DESCRIPTION("ADXL345/346 Three-Axis Digital Accelerometer Driver");
918  MODULE_LICENSE("GPL");
919