xref: /openbmc/linux/drivers/w1/masters/ds2490.c (revision 1ac731c529cd4d6adbce134754b51ff7d822b145)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *	ds2490.c  USB to one wire bridge
4   *
5   * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
6   */
7  
8  #include <linux/module.h>
9  #include <linux/kernel.h>
10  #include <linux/mod_devicetable.h>
11  #include <linux/usb.h>
12  #include <linux/slab.h>
13  
14  #include <linux/w1.h>
15  
16  /* USB Standard */
17  /* USB Control request vendor type */
18  #define VENDOR				0x40
19  
20  /* COMMAND TYPE CODES */
21  #define CONTROL_CMD			0x00
22  #define COMM_CMD			0x01
23  #define MODE_CMD			0x02
24  
25  /* CONTROL COMMAND CODES */
26  #define CTL_RESET_DEVICE		0x0000
27  #define CTL_START_EXE			0x0001
28  #define CTL_RESUME_EXE			0x0002
29  #define CTL_HALT_EXE_IDLE		0x0003
30  #define CTL_HALT_EXE_DONE		0x0004
31  #define CTL_FLUSH_COMM_CMDS		0x0007
32  #define CTL_FLUSH_RCV_BUFFER		0x0008
33  #define CTL_FLUSH_XMT_BUFFER		0x0009
34  #define CTL_GET_COMM_CMDS		0x000A
35  
36  /* MODE COMMAND CODES */
37  #define MOD_PULSE_EN			0x0000
38  #define MOD_SPEED_CHANGE_EN		0x0001
39  #define MOD_1WIRE_SPEED			0x0002
40  #define MOD_STRONG_PU_DURATION		0x0003
41  #define MOD_PULLDOWN_SLEWRATE		0x0004
42  #define MOD_PROG_PULSE_DURATION		0x0005
43  #define MOD_WRITE1_LOWTIME		0x0006
44  #define MOD_DSOW0_TREC			0x0007
45  
46  /* COMMUNICATION COMMAND CODES */
47  #define COMM_ERROR_ESCAPE		0x0601
48  #define COMM_SET_DURATION		0x0012
49  #define COMM_BIT_IO			0x0020
50  #define COMM_PULSE			0x0030
51  #define COMM_1_WIRE_RESET		0x0042
52  #define COMM_BYTE_IO			0x0052
53  #define COMM_MATCH_ACCESS		0x0064
54  #define COMM_BLOCK_IO			0x0074
55  #define COMM_READ_STRAIGHT		0x0080
56  #define COMM_DO_RELEASE			0x6092
57  #define COMM_SET_PATH			0x00A2
58  #define COMM_WRITE_SRAM_PAGE		0x00B2
59  #define COMM_WRITE_EPROM		0x00C4
60  #define COMM_READ_CRC_PROT_PAGE		0x00D4
61  #define COMM_READ_REDIRECT_PAGE_CRC	0x21E4
62  #define COMM_SEARCH_ACCESS		0x00F4
63  
64  /* Communication command bits */
65  #define COMM_TYPE			0x0008
66  #define COMM_SE				0x0008
67  #define COMM_D				0x0008
68  #define COMM_Z				0x0008
69  #define COMM_CH				0x0008
70  #define COMM_SM				0x0008
71  #define COMM_R				0x0008
72  #define COMM_IM				0x0001
73  
74  #define COMM_PS				0x4000
75  #define COMM_PST			0x4000
76  #define COMM_CIB			0x4000
77  #define COMM_RTS			0x4000
78  #define COMM_DT				0x2000
79  #define COMM_SPU			0x1000
80  #define COMM_F				0x0800
81  #define COMM_NTF			0x0400
82  #define COMM_ICP			0x0200
83  #define COMM_RST			0x0100
84  
85  #define PULSE_PROG			0x01
86  #define PULSE_SPUE			0x02
87  
88  #define BRANCH_MAIN			0xCC
89  #define BRANCH_AUX			0x33
90  
91  /* Status flags */
92  #define ST_SPUA				0x01  /* Strong Pull-up is active */
93  #define ST_PRGA				0x02  /* 12V programming pulse is being generated */
94  #define ST_12VP				0x04  /* external 12V programming voltage is present */
95  #define ST_PMOD				0x08  /* DS2490 powered from USB and external sources */
96  #define ST_HALT				0x10  /* DS2490 is currently halted */
97  #define ST_IDLE				0x20  /* DS2490 is currently idle */
98  #define ST_EPOF				0x80
99  /* Status transfer size, 16 bytes status, 16 byte result flags */
100  #define ST_SIZE				0x20
101  
102  /* Result Register flags */
103  #define RR_DETECT			0xA5 /* New device detected */
104  #define RR_NRS				0x01 /* Reset no presence or ... */
105  #define RR_SH				0x02 /* short on reset or set path */
106  #define RR_APP				0x04 /* alarming presence on reset */
107  #define RR_VPP				0x08 /* 12V expected not seen */
108  #define RR_CMP				0x10 /* compare error */
109  #define RR_CRC				0x20 /* CRC error detected */
110  #define RR_RDP				0x40 /* redirected page */
111  #define RR_EOS				0x80 /* end of search error */
112  
113  #define SPEED_NORMAL			0x00
114  #define SPEED_FLEXIBLE			0x01
115  #define SPEED_OVERDRIVE			0x02
116  
117  #define NUM_EP				4
118  #define EP_CONTROL			0
119  #define EP_STATUS			1
120  #define EP_DATA_OUT			2
121  #define EP_DATA_IN			3
122  
123  struct ds_device {
124  	struct list_head	ds_entry;
125  
126  	struct usb_device	*udev;
127  	struct usb_interface	*intf;
128  
129  	int			ep[NUM_EP];
130  
131  	/* Strong PullUp
132  	 * 0: pullup not active, else duration in milliseconds
133  	 */
134  	int			spu_sleep;
135  	/* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
136  	 * should be active or not for writes.
137  	 */
138  	u16			spu_bit;
139  
140  	u8			st_buf[ST_SIZE];
141  	u8			byte_buf;
142  
143  	struct w1_bus_master	master;
144  };
145  
146  struct ds_status {
147  	u8			enable;
148  	u8			speed;
149  	u8			pullup_dur;
150  	u8			ppuls_dur;
151  	u8			pulldown_slew;
152  	u8			write1_time;
153  	u8			write0_time;
154  	u8			reserved0;
155  	u8			status;
156  	u8			command0;
157  	u8			command1;
158  	u8			command_buffer_status;
159  	u8			data_out_buffer_status;
160  	u8			data_in_buffer_status;
161  	u8			reserved1;
162  	u8			reserved2;
163  };
164  
165  static LIST_HEAD(ds_devices);
166  static DEFINE_MUTEX(ds_mutex);
167  
ds_send_control_cmd(struct ds_device * dev,u16 value,u16 index)168  static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
169  {
170  	int err;
171  
172  	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
173  			CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
174  	if (err < 0) {
175  		dev_err(&dev->udev->dev,
176  			"Failed to send command control message %x.%x: err=%d.\n",
177  			value, index, err);
178  		return err;
179  	}
180  
181  	return err;
182  }
183  
ds_send_control_mode(struct ds_device * dev,u16 value,u16 index)184  static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
185  {
186  	int err;
187  
188  	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
189  			MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
190  	if (err < 0) {
191  		dev_err(&dev->udev->dev,
192  			"Failed to send mode control message %x.%x: err=%d.\n",
193  			value, index, err);
194  		return err;
195  	}
196  
197  	return err;
198  }
199  
ds_send_control(struct ds_device * dev,u16 value,u16 index)200  static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
201  {
202  	int err;
203  
204  	err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
205  			COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
206  	if (err < 0) {
207  		dev_err(&dev->udev->dev,
208  			"Failed to send control message %x.%x: err=%d.\n",
209  			value, index, err);
210  		return err;
211  	}
212  
213  	return err;
214  }
215  
ds_dump_status(struct ds_device * ds_dev,unsigned char * buf,int count)216  static void ds_dump_status(struct ds_device *ds_dev, unsigned char *buf, int count)
217  {
218  	struct device *dev = &ds_dev->udev->dev;
219  	int i;
220  
221  	dev_info(dev, "ep_status=0x%x, count=%d, status=%*phC",
222  		ds_dev->ep[EP_STATUS], count, count, buf);
223  
224  	if (count >= 16) {
225  		dev_dbg(dev, "enable flag: 0x%02x", buf[0]);
226  		dev_dbg(dev, "1-wire speed: 0x%02x", buf[1]);
227  		dev_dbg(dev, "strong pullup duration: 0x%02x", buf[2]);
228  		dev_dbg(dev, "programming pulse duration: 0x%02x", buf[3]);
229  		dev_dbg(dev, "pulldown slew rate control: 0x%02x", buf[4]);
230  		dev_dbg(dev, "write-1 low time: 0x%02x", buf[5]);
231  		dev_dbg(dev, "data sample offset/write-0 recovery time: 0x%02x", buf[6]);
232  		dev_dbg(dev, "reserved (test register): 0x%02x", buf[7]);
233  		dev_dbg(dev, "device status flags: 0x%02x", buf[8]);
234  		dev_dbg(dev, "communication command byte 1: 0x%02x", buf[9]);
235  		dev_dbg(dev, "communication command byte 2: 0x%02x", buf[10]);
236  		dev_dbg(dev, "communication command buffer status: 0x%02x", buf[11]);
237  		dev_dbg(dev, "1-wire data output buffer status: 0x%02x", buf[12]);
238  		dev_dbg(dev, "1-wire data input buffer status: 0x%02x", buf[13]);
239  		dev_dbg(dev, "reserved: 0x%02x", buf[14]);
240  		dev_dbg(dev, "reserved: 0x%02x", buf[15]);
241  	}
242  
243  	for (i = 16; i < count; ++i) {
244  		if (buf[i] == RR_DETECT) {
245  			dev_dbg(dev, "New device detect.\n");
246  			continue;
247  		}
248  		dev_dbg(dev, "Result Register Value: 0x%02x", buf[i]);
249  		if (buf[i] & RR_NRS)
250  			dev_dbg(dev, "NRS: Reset no presence or ...\n");
251  		if (buf[i] & RR_SH)
252  			dev_dbg(dev, "SH: short on reset or set path\n");
253  		if (buf[i] & RR_APP)
254  			dev_dbg(dev, "APP: alarming presence on reset\n");
255  		if (buf[i] & RR_VPP)
256  			dev_dbg(dev, "VPP: 12V expected not seen\n");
257  		if (buf[i] & RR_CMP)
258  			dev_dbg(dev, "CMP: compare error\n");
259  		if (buf[i] & RR_CRC)
260  			dev_dbg(dev, "CRC: CRC error detected\n");
261  		if (buf[i] & RR_RDP)
262  			dev_dbg(dev, "RDP: redirected page\n");
263  		if (buf[i] & RR_EOS)
264  			dev_dbg(dev, "EOS: end of search error\n");
265  	}
266  }
267  
ds_recv_status(struct ds_device * dev,struct ds_status * st)268  static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
269  {
270  	int count, err;
271  
272  	if (st)
273  		memset(st, 0, sizeof(*st));
274  
275  	count = 0;
276  	err = usb_interrupt_msg(dev->udev,
277  				usb_rcvintpipe(dev->udev,
278  					       dev->ep[EP_STATUS]),
279  				dev->st_buf, sizeof(dev->st_buf),
280  				&count, 1000);
281  	if (err < 0) {
282  		dev_err(&dev->udev->dev,
283  			"Failed to read 1-wire data from 0x%x: err=%d.\n",
284  			dev->ep[EP_STATUS], err);
285  		return err;
286  	}
287  
288  	if (st && count >= sizeof(*st))
289  		memcpy(st, dev->st_buf, sizeof(*st));
290  
291  	return count;
292  }
293  
ds_reset_device(struct ds_device * dev)294  static void ds_reset_device(struct ds_device *dev)
295  {
296  	ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
297  	/* Always allow strong pullup which allow individual writes to use
298  	 * the strong pullup.
299  	 */
300  	if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
301  		dev_err(&dev->udev->dev,
302  			"%s: Error allowing strong pullup\n", __func__);
303  	/* Chip strong pullup time was cleared. */
304  	if (dev->spu_sleep) {
305  		/* lower 4 bits are 0, see ds_set_pullup */
306  		u8 del = dev->spu_sleep>>4;
307  
308  		if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
309  			dev_err(&dev->udev->dev,
310  				"%s: Error setting duration\n", __func__);
311  	}
312  }
313  
ds_recv_data(struct ds_device * dev,unsigned char * buf,int size)314  static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
315  {
316  	int count, err;
317  
318  	/* Careful on size.  If size is less than what is available in
319  	 * the input buffer, the device fails the bulk transfer and
320  	 * clears the input buffer.  It could read the maximum size of
321  	 * the data buffer, but then do you return the first, last, or
322  	 * some set of the middle size bytes?  As long as the rest of
323  	 * the code is correct there will be size bytes waiting.  A
324  	 * call to ds_wait_status will wait until the device is idle
325  	 * and any data to be received would have been available.
326  	 */
327  	count = 0;
328  	err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
329  				buf, size, &count, 1000);
330  	if (err < 0) {
331  		int recv_len;
332  
333  		dev_info(&dev->udev->dev, "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
334  		usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
335  
336  		/* status might tell us why endpoint is stuck? */
337  		recv_len = ds_recv_status(dev, NULL);
338  		if (recv_len >= 0)
339  			ds_dump_status(dev, dev->st_buf, recv_len);
340  
341  		return err;
342  	}
343  
344  #if 0
345  	{
346  		int i;
347  
348  		printk("%s: count=%d: ", __func__, count);
349  		for (i = 0; i < count; ++i)
350  			printk("%02x ", buf[i]);
351  		printk("\n");
352  	}
353  #endif
354  	return count;
355  }
356  
ds_send_data(struct ds_device * dev,unsigned char * buf,int len)357  static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
358  {
359  	int count, err;
360  
361  	count = 0;
362  	err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
363  	if (err < 0) {
364  		dev_err(&dev->udev->dev, "Failed to write 1-wire data to ep0x%x: "
365  			"err=%d.\n", dev->ep[EP_DATA_OUT], err);
366  		return err;
367  	}
368  
369  	return err;
370  }
371  
372  #if 0
373  
374  int ds_stop_pulse(struct ds_device *dev, int limit)
375  {
376  	struct ds_status st;
377  	int count = 0, err = 0;
378  
379  	do {
380  		err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
381  		if (err)
382  			break;
383  		err = ds_send_control(dev, CTL_RESUME_EXE, 0);
384  		if (err)
385  			break;
386  		err = ds_recv_status(dev, &st);
387  		if (err)
388  			break;
389  
390  		if ((st.status & ST_SPUA) == 0) {
391  			err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
392  			if (err)
393  				break;
394  		}
395  	} while (++count < limit);
396  
397  	return err;
398  }
399  
400  int ds_detect(struct ds_device *dev, struct ds_status *st)
401  {
402  	int err;
403  
404  	err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
405  	if (err)
406  		return err;
407  
408  	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
409  	if (err)
410  		return err;
411  
412  	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
413  	if (err)
414  		return err;
415  
416  	err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
417  	if (err)
418  		return err;
419  
420  	err = ds_dump_status(dev, st);
421  
422  	return err;
423  }
424  
425  #endif  /*  0  */
426  
ds_wait_status(struct ds_device * dev,struct ds_status * st)427  static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
428  {
429  	int err, count = 0;
430  
431  	do {
432  		st->status = 0;
433  		err = ds_recv_status(dev, st);
434  #if 0
435  		if (err >= 0) {
436  			int i;
437  			printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
438  			for (i = 0; i < err; ++i)
439  				printk("%02x ", dev->st_buf[i]);
440  			printk("\n");
441  		}
442  #endif
443  	} while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
444  
445  	if (err >= 16 && st->status & ST_EPOF) {
446  		dev_info(&dev->udev->dev, "Resetting device after ST_EPOF.\n");
447  		ds_reset_device(dev);
448  		/* Always dump the device status. */
449  		count = 101;
450  	}
451  
452  	/* Dump the status for errors or if there is extended return data.
453  	 * The extended status includes new device detection (maybe someone
454  	 * can do something with it).
455  	 */
456  	if (err > 16 || count >= 100 || err < 0)
457  		ds_dump_status(dev, dev->st_buf, err);
458  
459  	/* Extended data isn't an error.  Well, a short is, but the dump
460  	 * would have already told the user that and we can't do anything
461  	 * about it in software anyway.
462  	 */
463  	if (count >= 100 || err < 0)
464  		return -1;
465  	else
466  		return 0;
467  }
468  
ds_reset(struct ds_device * dev)469  static int ds_reset(struct ds_device *dev)
470  {
471  	int err;
472  
473  	/* Other potentionally interesting flags for reset.
474  	 *
475  	 * COMM_NTF: Return result register feedback.  This could be used to
476  	 * detect some conditions such as short, alarming presence, or
477  	 * detect if a new device was detected.
478  	 *
479  	 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
480  	 * Select the data transfer rate.
481  	 */
482  	err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
483  	if (err)
484  		return err;
485  
486  	return 0;
487  }
488  
489  #if 0
490  static int ds_set_speed(struct ds_device *dev, int speed)
491  {
492  	int err;
493  
494  	if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
495  		return -EINVAL;
496  
497  	if (speed != SPEED_OVERDRIVE)
498  		speed = SPEED_FLEXIBLE;
499  
500  	speed &= 0xff;
501  
502  	err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
503  	if (err)
504  		return err;
505  
506  	return err;
507  }
508  #endif  /*  0  */
509  
ds_set_pullup(struct ds_device * dev,int delay)510  static int ds_set_pullup(struct ds_device *dev, int delay)
511  {
512  	int err = 0;
513  	u8 del = 1 + (u8)(delay >> 4);
514  	/* Just storing delay would not get the trunication and roundup. */
515  	int ms = del<<4;
516  
517  	/* Enable spu_bit if a delay is set. */
518  	dev->spu_bit = delay ? COMM_SPU : 0;
519  	/* If delay is zero, it has already been disabled, if the time is
520  	 * the same as the hardware was last programmed to, there is also
521  	 * nothing more to do.  Compare with the recalculated value ms
522  	 * rather than del or delay which can have a different value.
523  	 */
524  	if (delay == 0 || ms == dev->spu_sleep)
525  		return err;
526  
527  	err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
528  	if (err)
529  		return err;
530  
531  	dev->spu_sleep = ms;
532  
533  	return err;
534  }
535  
ds_touch_bit(struct ds_device * dev,u8 bit,u8 * tbit)536  static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
537  {
538  	int err;
539  	struct ds_status st;
540  
541  	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
542  		0);
543  	if (err)
544  		return err;
545  
546  	ds_wait_status(dev, &st);
547  
548  	err = ds_recv_data(dev, tbit, sizeof(*tbit));
549  	if (err < 0)
550  		return err;
551  
552  	return 0;
553  }
554  
555  #if 0
556  static int ds_write_bit(struct ds_device *dev, u8 bit)
557  {
558  	int err;
559  	struct ds_status st;
560  
561  	/* Set COMM_ICP to write without a readback.  Note, this will
562  	 * produce one time slot, a down followed by an up with COMM_D
563  	 * only determing the timing.
564  	 */
565  	err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
566  		(bit ? COMM_D : 0), 0);
567  	if (err)
568  		return err;
569  
570  	ds_wait_status(dev, &st);
571  
572  	return 0;
573  }
574  #endif
575  
ds_write_byte(struct ds_device * dev,u8 byte)576  static int ds_write_byte(struct ds_device *dev, u8 byte)
577  {
578  	int err;
579  	struct ds_status st;
580  
581  	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
582  	if (err)
583  		return err;
584  
585  	if (dev->spu_bit)
586  		msleep(dev->spu_sleep);
587  
588  	err = ds_wait_status(dev, &st);
589  	if (err)
590  		return err;
591  
592  	err = ds_recv_data(dev, &dev->byte_buf, 1);
593  	if (err < 0)
594  		return err;
595  
596  	return !(byte == dev->byte_buf);
597  }
598  
ds_read_byte(struct ds_device * dev,u8 * byte)599  static int ds_read_byte(struct ds_device *dev, u8 *byte)
600  {
601  	int err;
602  	struct ds_status st;
603  
604  	err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
605  	if (err)
606  		return err;
607  
608  	ds_wait_status(dev, &st);
609  
610  	err = ds_recv_data(dev, byte, sizeof(*byte));
611  	if (err < 0)
612  		return err;
613  
614  	return 0;
615  }
616  
ds_read_block(struct ds_device * dev,u8 * buf,int len)617  static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
618  {
619  	struct ds_status st;
620  	int err;
621  
622  	if (len > 64*1024)
623  		return -E2BIG;
624  
625  	memset(buf, 0xFF, len);
626  
627  	err = ds_send_data(dev, buf, len);
628  	if (err < 0)
629  		return err;
630  
631  	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
632  	if (err)
633  		return err;
634  
635  	ds_wait_status(dev, &st);
636  
637  	memset(buf, 0x00, len);
638  	err = ds_recv_data(dev, buf, len);
639  
640  	return err;
641  }
642  
ds_write_block(struct ds_device * dev,u8 * buf,int len)643  static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
644  {
645  	int err;
646  	struct ds_status st;
647  
648  	err = ds_send_data(dev, buf, len);
649  	if (err < 0)
650  		return err;
651  
652  	err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
653  	if (err)
654  		return err;
655  
656  	if (dev->spu_bit)
657  		msleep(dev->spu_sleep);
658  
659  	ds_wait_status(dev, &st);
660  
661  	err = ds_recv_data(dev, buf, len);
662  	if (err < 0)
663  		return err;
664  
665  	return !(err == len);
666  }
667  
ds9490r_search(void * data,struct w1_master * master,u8 search_type,w1_slave_found_callback callback)668  static void ds9490r_search(void *data, struct w1_master *master,
669  	u8 search_type, w1_slave_found_callback callback)
670  {
671  	/* When starting with an existing id, the first id returned will
672  	 * be that device (if it is still on the bus most likely).
673  	 *
674  	 * If the number of devices found is less than or equal to the
675  	 * search_limit, that number of IDs will be returned.  If there are
676  	 * more, search_limit IDs will be returned followed by a non-zero
677  	 * discrepency value.
678  	 */
679  	struct ds_device *dev = data;
680  	int err;
681  	u16 value, index;
682  	struct ds_status st;
683  	int search_limit;
684  	int found = 0;
685  	int i;
686  
687  	/* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
688  	 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
689  	 */
690  	const unsigned long jtime = msecs_to_jiffies(1000*8/75);
691  	/* FIFO 128 bytes, bulk packet size 64, read a multiple of the
692  	 * packet size.
693  	 */
694  	const size_t bufsize = 2 * 64;
695  	u64 *buf, *found_ids;
696  
697  	buf = kmalloc(bufsize, GFP_KERNEL);
698  	if (!buf)
699  		return;
700  
701  	/*
702  	 * We are holding the bus mutex during the scan, but adding devices via the
703  	 * callback needs the bus to be unlocked. So we queue up found ids here.
704  	 */
705  	found_ids = kmalloc_array(master->max_slave_count, sizeof(u64), GFP_KERNEL);
706  	if (!found_ids) {
707  		kfree(buf);
708  		return;
709  	}
710  
711  	mutex_lock(&master->bus_mutex);
712  
713  	/* address to start searching at */
714  	if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
715  		goto search_out;
716  	master->search_id = 0;
717  
718  	value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
719  		COMM_RTS;
720  	search_limit = master->max_slave_count;
721  	if (search_limit > 255)
722  		search_limit = 0;
723  	index = search_type | (search_limit << 8);
724  	if (ds_send_control(dev, value, index) < 0)
725  		goto search_out;
726  
727  	do {
728  		schedule_timeout(jtime);
729  
730  		err = ds_recv_status(dev, &st);
731  		if (err < 0 || err < sizeof(st))
732  			break;
733  
734  		if (st.data_in_buffer_status) {
735  			/*
736  			 * Bulk in can receive partial ids, but when it does
737  			 * they fail crc and will be discarded anyway.
738  			 * That has only been seen when status in buffer
739  			 * is 0 and bulk is read anyway, so don't read
740  			 * bulk without first checking if status says there
741  			 * is data to read.
742  			 */
743  			err = ds_recv_data(dev, (u8 *)buf, bufsize);
744  			if (err < 0)
745  				break;
746  			for (i = 0; i < err/8; ++i) {
747  				found_ids[found++] = buf[i];
748  				/*
749  				 * can't know if there will be a discrepancy
750  				 * value after until the next id
751  				 */
752  				if (found == search_limit) {
753  					master->search_id = buf[i];
754  					break;
755  				}
756  			}
757  		}
758  
759  		if (test_bit(W1_ABORT_SEARCH, &master->flags))
760  			break;
761  	} while (!(st.status & (ST_IDLE | ST_HALT)));
762  
763  	/* only continue the search if some weren't found */
764  	if (found <= search_limit) {
765  		master->search_id = 0;
766  	} else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
767  		/*
768  		 * Only max_slave_count will be scanned in a search,
769  		 * but it will start where it left off next search
770  		 * until all ids are identified and then it will start
771  		 * over.  A continued search will report the previous
772  		 * last id as the first id (provided it is still on the
773  		 * bus).
774  		 */
775  		dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
776  			"will continue next search.\n", __func__,
777  			master->max_slave_count);
778  		set_bit(W1_WARN_MAX_COUNT, &master->flags);
779  	}
780  
781  search_out:
782  	mutex_unlock(&master->bus_mutex);
783  	kfree(buf);
784  
785  	for (i = 0; i < found; i++) /* run callback for all queued up IDs */
786  		callback(master, found_ids[i]);
787  	kfree(found_ids);
788  }
789  
790  #if 0
791  /*
792   * FIXME: if this disabled code is ever used in the future all ds_send_data()
793   * calls must be changed to use a DMAable buffer.
794   */
795  static int ds_match_access(struct ds_device *dev, u64 init)
796  {
797  	int err;
798  	struct ds_status st;
799  
800  	err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
801  	if (err)
802  		return err;
803  
804  	ds_wait_status(dev, &st);
805  
806  	err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
807  	if (err)
808  		return err;
809  
810  	ds_wait_status(dev, &st);
811  
812  	return 0;
813  }
814  
815  static int ds_set_path(struct ds_device *dev, u64 init)
816  {
817  	int err;
818  	struct ds_status st;
819  	u8 buf[9];
820  
821  	memcpy(buf, &init, 8);
822  	buf[8] = BRANCH_MAIN;
823  
824  	err = ds_send_data(dev, buf, sizeof(buf));
825  	if (err)
826  		return err;
827  
828  	ds_wait_status(dev, &st);
829  
830  	err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
831  	if (err)
832  		return err;
833  
834  	ds_wait_status(dev, &st);
835  
836  	return 0;
837  }
838  
839  #endif  /*  0  */
840  
ds9490r_touch_bit(void * data,u8 bit)841  static u8 ds9490r_touch_bit(void *data, u8 bit)
842  {
843  	struct ds_device *dev = data;
844  
845  	if (ds_touch_bit(dev, bit, &dev->byte_buf))
846  		return 0;
847  
848  	return dev->byte_buf;
849  }
850  
851  #if 0
852  static void ds9490r_write_bit(void *data, u8 bit)
853  {
854  	struct ds_device *dev = data;
855  
856  	ds_write_bit(dev, bit);
857  }
858  
859  static u8 ds9490r_read_bit(void *data)
860  {
861  	struct ds_device *dev = data;
862  	int err;
863  
864  	err = ds_touch_bit(dev, 1, &dev->byte_buf);
865  	if (err)
866  		return 0;
867  
868  	return dev->byte_buf & 1;
869  }
870  #endif
871  
ds9490r_write_byte(void * data,u8 byte)872  static void ds9490r_write_byte(void *data, u8 byte)
873  {
874  	struct ds_device *dev = data;
875  
876  	ds_write_byte(dev, byte);
877  }
878  
ds9490r_read_byte(void * data)879  static u8 ds9490r_read_byte(void *data)
880  {
881  	struct ds_device *dev = data;
882  	int err;
883  
884  	err = ds_read_byte(dev, &dev->byte_buf);
885  	if (err)
886  		return 0;
887  
888  	return dev->byte_buf;
889  }
890  
ds9490r_write_block(void * data,const u8 * buf,int len)891  static void ds9490r_write_block(void *data, const u8 *buf, int len)
892  {
893  	struct ds_device *dev = data;
894  	u8 *tbuf;
895  
896  	if (len <= 0)
897  		return;
898  
899  	tbuf = kmemdup(buf, len, GFP_KERNEL);
900  	if (!tbuf)
901  		return;
902  
903  	ds_write_block(dev, tbuf, len);
904  
905  	kfree(tbuf);
906  }
907  
ds9490r_read_block(void * data,u8 * buf,int len)908  static u8 ds9490r_read_block(void *data, u8 *buf, int len)
909  {
910  	struct ds_device *dev = data;
911  	int err;
912  	u8 *tbuf;
913  
914  	if (len <= 0)
915  		return 0;
916  
917  	tbuf = kmalloc(len, GFP_KERNEL);
918  	if (!tbuf)
919  		return 0;
920  
921  	err = ds_read_block(dev, tbuf, len);
922  	if (err >= 0)
923  		memcpy(buf, tbuf, len);
924  
925  	kfree(tbuf);
926  
927  	return err >= 0 ? len : 0;
928  }
929  
ds9490r_reset(void * data)930  static u8 ds9490r_reset(void *data)
931  {
932  	struct ds_device *dev = data;
933  	int err;
934  
935  	err = ds_reset(dev);
936  	if (err)
937  		return 1;
938  
939  	return 0;
940  }
941  
ds9490r_set_pullup(void * data,int delay)942  static u8 ds9490r_set_pullup(void *data, int delay)
943  {
944  	struct ds_device *dev = data;
945  
946  	if (ds_set_pullup(dev, delay))
947  		return 1;
948  
949  	return 0;
950  }
951  
ds_w1_init(struct ds_device * dev)952  static int ds_w1_init(struct ds_device *dev)
953  {
954  	memset(&dev->master, 0, sizeof(struct w1_bus_master));
955  
956  	/* Reset the device as it can be in a bad state.
957  	 * This is necessary because a block write will wait for data
958  	 * to be placed in the output buffer and block any later
959  	 * commands which will keep accumulating and the device will
960  	 * not be idle.  Another case is removing the ds2490 module
961  	 * while a bus search is in progress, somehow a few commands
962  	 * get through, but the input transfers fail leaving data in
963  	 * the input buffer.  This will cause the next read to fail
964  	 * see the note in ds_recv_data.
965  	 */
966  	ds_reset_device(dev);
967  
968  	dev->master.data	= dev;
969  	dev->master.touch_bit	= &ds9490r_touch_bit;
970  	/* read_bit and write_bit in w1_bus_master are expected to set and
971  	 * sample the line level.  For write_bit that means it is expected to
972  	 * set it to that value and leave it there.  ds2490 only supports an
973  	 * individual time slot at the lowest level.  The requirement from
974  	 * pulling the bus state down to reading the state is 15us, something
975  	 * that isn't realistic on the USB bus anyway.
976  	dev->master.read_bit	= &ds9490r_read_bit;
977  	dev->master.write_bit	= &ds9490r_write_bit;
978  	*/
979  	dev->master.read_byte	= &ds9490r_read_byte;
980  	dev->master.write_byte	= &ds9490r_write_byte;
981  	dev->master.read_block	= &ds9490r_read_block;
982  	dev->master.write_block	= &ds9490r_write_block;
983  	dev->master.reset_bus	= &ds9490r_reset;
984  	dev->master.set_pullup	= &ds9490r_set_pullup;
985  	dev->master.search	= &ds9490r_search;
986  
987  	return w1_add_master_device(&dev->master);
988  }
989  
ds_w1_fini(struct ds_device * dev)990  static void ds_w1_fini(struct ds_device *dev)
991  {
992  	w1_remove_master_device(&dev->master);
993  }
994  
ds_probe(struct usb_interface * intf,const struct usb_device_id * udev_id)995  static int ds_probe(struct usb_interface *intf,
996  		    const struct usb_device_id *udev_id)
997  {
998  	struct usb_device *udev = interface_to_usbdev(intf);
999  	struct usb_endpoint_descriptor *endpoint;
1000  	struct usb_host_interface *iface_desc;
1001  	struct ds_device *dev;
1002  	int i, err, alt;
1003  
1004  	dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
1005  	if (!dev)
1006  		return -ENOMEM;
1007  
1008  	dev->udev = usb_get_dev(udev);
1009  	if (!dev->udev) {
1010  		err = -ENOMEM;
1011  		goto err_out_free;
1012  	}
1013  	memset(dev->ep, 0, sizeof(dev->ep));
1014  
1015  	usb_set_intfdata(intf, dev);
1016  
1017  	err = usb_reset_configuration(dev->udev);
1018  	if (err) {
1019  		dev_err(&dev->udev->dev,
1020  			"Failed to reset configuration: err=%d.\n", err);
1021  		goto err_out_clear;
1022  	}
1023  
1024  	/* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1025  	alt = 3;
1026  	err = usb_set_interface(dev->udev,
1027  		intf->cur_altsetting->desc.bInterfaceNumber, alt);
1028  	if (err) {
1029  		dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1030  			"for %d interface: err=%d.\n", alt,
1031  			intf->cur_altsetting->desc.bInterfaceNumber, err);
1032  		goto err_out_clear;
1033  	}
1034  
1035  	iface_desc = intf->cur_altsetting;
1036  	if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1037  		dev_err(&dev->udev->dev, "Num endpoints=%d. It is not DS9490R.\n",
1038  			iface_desc->desc.bNumEndpoints);
1039  		err = -EINVAL;
1040  		goto err_out_clear;
1041  	}
1042  
1043  	/*
1044  	 * This loop doesn'd show control 0 endpoint,
1045  	 * so we will fill only 1-3 endpoints entry.
1046  	 */
1047  	for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1048  		endpoint = &iface_desc->endpoint[i].desc;
1049  
1050  		dev->ep[i+1] = endpoint->bEndpointAddress;
1051  #if 0
1052  		printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1053  			i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1054  			(endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1055  			endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1056  #endif
1057  	}
1058  
1059  	err = ds_w1_init(dev);
1060  	if (err)
1061  		goto err_out_clear;
1062  
1063  	mutex_lock(&ds_mutex);
1064  	list_add_tail(&dev->ds_entry, &ds_devices);
1065  	mutex_unlock(&ds_mutex);
1066  
1067  	return 0;
1068  
1069  err_out_clear:
1070  	usb_set_intfdata(intf, NULL);
1071  	usb_put_dev(dev->udev);
1072  err_out_free:
1073  	kfree(dev);
1074  	return err;
1075  }
1076  
ds_disconnect(struct usb_interface * intf)1077  static void ds_disconnect(struct usb_interface *intf)
1078  {
1079  	struct ds_device *dev;
1080  
1081  	dev = usb_get_intfdata(intf);
1082  	if (!dev)
1083  		return;
1084  
1085  	mutex_lock(&ds_mutex);
1086  	list_del(&dev->ds_entry);
1087  	mutex_unlock(&ds_mutex);
1088  
1089  	ds_w1_fini(dev);
1090  
1091  	usb_set_intfdata(intf, NULL);
1092  
1093  	usb_put_dev(dev->udev);
1094  	kfree(dev);
1095  }
1096  
1097  static const struct usb_device_id ds_id_table[] = {
1098  	{ USB_DEVICE(0x04fa, 0x2490) },
1099  	{ },
1100  };
1101  MODULE_DEVICE_TABLE(usb, ds_id_table);
1102  
1103  static struct usb_driver ds_driver = {
1104  	.name =		"DS9490R",
1105  	.probe =	ds_probe,
1106  	.disconnect =	ds_disconnect,
1107  	.id_table =	ds_id_table,
1108  };
1109  module_usb_driver(ds_driver);
1110  
1111  MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1112  MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1113  MODULE_LICENSE("GPL");
1114