1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
4 *
5 * the driver does not rely on the native chipselects at all
6 * but only uses the gpio type chipselects
7 *
8 * Based on: spi-bcm2835.c
9 *
10 * Copyright (C) 2015 Martin Sperl
11 */
12
13 #include <linux/clk.h>
14 #include <linux/completion.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/regmap.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spinlock.h>
27
28 /* define polling limits */
29 static unsigned int polling_limit_us = 30;
30 module_param(polling_limit_us, uint, 0664);
31 MODULE_PARM_DESC(polling_limit_us,
32 "time in us to run a transfer in polling mode - if zero no polling is used\n");
33
34 /*
35 * spi register defines
36 *
37 * note there is garbage in the "official" documentation,
38 * so some data is taken from the file:
39 * brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
40 * inside of:
41 * http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
42 */
43
44 /* SPI register offsets */
45 #define BCM2835_AUX_SPI_CNTL0 0x00
46 #define BCM2835_AUX_SPI_CNTL1 0x04
47 #define BCM2835_AUX_SPI_STAT 0x08
48 #define BCM2835_AUX_SPI_PEEK 0x0C
49 #define BCM2835_AUX_SPI_IO 0x20
50 #define BCM2835_AUX_SPI_TXHOLD 0x30
51
52 /* Bitfields in CNTL0 */
53 #define BCM2835_AUX_SPI_CNTL0_SPEED 0xFFF00000
54 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX 0xFFF
55 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT 20
56 #define BCM2835_AUX_SPI_CNTL0_CS 0x000E0000
57 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT 0x00010000
58 #define BCM2835_AUX_SPI_CNTL0_VAR_CS 0x00008000
59 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH 0x00004000
60 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD 0x00003000
61 #define BCM2835_AUX_SPI_CNTL0_ENABLE 0x00000800
62 #define BCM2835_AUX_SPI_CNTL0_IN_RISING 0x00000400
63 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO 0x00000200
64 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING 0x00000100
65 #define BCM2835_AUX_SPI_CNTL0_CPOL 0x00000080
66 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT 0x00000040
67 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN 0x0000003F
68
69 /* Bitfields in CNTL1 */
70 #define BCM2835_AUX_SPI_CNTL1_CSHIGH 0x00000700
71 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY 0x00000080
72 #define BCM2835_AUX_SPI_CNTL1_IDLE 0x00000040
73 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN 0x00000002
74 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN 0x00000001
75
76 /* Bitfields in STAT */
77 #define BCM2835_AUX_SPI_STAT_TX_LVL 0xFF000000
78 #define BCM2835_AUX_SPI_STAT_RX_LVL 0x00FF0000
79 #define BCM2835_AUX_SPI_STAT_TX_FULL 0x00000400
80 #define BCM2835_AUX_SPI_STAT_TX_EMPTY 0x00000200
81 #define BCM2835_AUX_SPI_STAT_RX_FULL 0x00000100
82 #define BCM2835_AUX_SPI_STAT_RX_EMPTY 0x00000080
83 #define BCM2835_AUX_SPI_STAT_BUSY 0x00000040
84 #define BCM2835_AUX_SPI_STAT_BITCOUNT 0x0000003F
85
86 struct bcm2835aux_spi {
87 void __iomem *regs;
88 struct clk *clk;
89 int irq;
90 u32 cntl[2];
91 const u8 *tx_buf;
92 u8 *rx_buf;
93 int tx_len;
94 int rx_len;
95 int pending;
96
97 u64 count_transfer_polling;
98 u64 count_transfer_irq;
99 u64 count_transfer_irq_after_poll;
100
101 struct dentry *debugfs_dir;
102 };
103
104 #if defined(CONFIG_DEBUG_FS)
bcm2835aux_debugfs_create(struct bcm2835aux_spi * bs,const char * dname)105 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
106 const char *dname)
107 {
108 char name[64];
109 struct dentry *dir;
110
111 /* get full name */
112 snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
113
114 /* the base directory */
115 dir = debugfs_create_dir(name, NULL);
116 bs->debugfs_dir = dir;
117
118 /* the counters */
119 debugfs_create_u64("count_transfer_polling", 0444, dir,
120 &bs->count_transfer_polling);
121 debugfs_create_u64("count_transfer_irq", 0444, dir,
122 &bs->count_transfer_irq);
123 debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
124 &bs->count_transfer_irq_after_poll);
125 }
126
bcm2835aux_debugfs_remove(struct bcm2835aux_spi * bs)127 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
128 {
129 debugfs_remove_recursive(bs->debugfs_dir);
130 bs->debugfs_dir = NULL;
131 }
132 #else
bcm2835aux_debugfs_create(struct bcm2835aux_spi * bs,const char * dname)133 static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
134 const char *dname)
135 {
136 }
137
bcm2835aux_debugfs_remove(struct bcm2835aux_spi * bs)138 static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
139 {
140 }
141 #endif /* CONFIG_DEBUG_FS */
142
bcm2835aux_rd(struct bcm2835aux_spi * bs,unsigned int reg)143 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned int reg)
144 {
145 return readl(bs->regs + reg);
146 }
147
bcm2835aux_wr(struct bcm2835aux_spi * bs,unsigned int reg,u32 val)148 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned int reg,
149 u32 val)
150 {
151 writel(val, bs->regs + reg);
152 }
153
bcm2835aux_rd_fifo(struct bcm2835aux_spi * bs)154 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
155 {
156 u32 data;
157 int count = min(bs->rx_len, 3);
158
159 data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
160 if (bs->rx_buf) {
161 switch (count) {
162 case 3:
163 *bs->rx_buf++ = (data >> 16) & 0xff;
164 fallthrough;
165 case 2:
166 *bs->rx_buf++ = (data >> 8) & 0xff;
167 fallthrough;
168 case 1:
169 *bs->rx_buf++ = (data >> 0) & 0xff;
170 /* fallthrough - no default */
171 }
172 }
173 bs->rx_len -= count;
174 bs->pending -= count;
175 }
176
bcm2835aux_wr_fifo(struct bcm2835aux_spi * bs)177 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
178 {
179 u32 data;
180 u8 byte;
181 int count;
182 int i;
183
184 /* gather up to 3 bytes to write to the FIFO */
185 count = min(bs->tx_len, 3);
186 data = 0;
187 for (i = 0; i < count; i++) {
188 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
189 data |= byte << (8 * (2 - i));
190 }
191
192 /* and set the variable bit-length */
193 data |= (count * 8) << 24;
194
195 /* and decrement length */
196 bs->tx_len -= count;
197 bs->pending += count;
198
199 /* write to the correct TX-register */
200 if (bs->tx_len)
201 bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
202 else
203 bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
204 }
205
bcm2835aux_spi_reset_hw(struct bcm2835aux_spi * bs)206 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
207 {
208 /* disable spi clearing fifo and interrupts */
209 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
210 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
211 BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
212 }
213
bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi * bs)214 static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
215 {
216 u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
217
218 /* check if we have data to read */
219 for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
220 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
221 bcm2835aux_rd_fifo(bs);
222
223 /* check if we have data to write */
224 while (bs->tx_len &&
225 (bs->pending < 12) &&
226 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
227 BCM2835_AUX_SPI_STAT_TX_FULL))) {
228 bcm2835aux_wr_fifo(bs);
229 }
230 }
231
bcm2835aux_spi_interrupt(int irq,void * dev_id)232 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
233 {
234 struct spi_controller *host = dev_id;
235 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
236
237 /* IRQ may be shared, so return if our interrupts are disabled */
238 if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
239 (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
240 return IRQ_NONE;
241
242 /* do common fifo handling */
243 bcm2835aux_spi_transfer_helper(bs);
244
245 if (!bs->tx_len) {
246 /* disable tx fifo empty interrupt */
247 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
248 BCM2835_AUX_SPI_CNTL1_IDLE);
249 }
250
251 /* and if rx_len is 0 then disable interrupts and wake up completion */
252 if (!bs->rx_len) {
253 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
254 spi_finalize_current_transfer(host);
255 }
256
257 return IRQ_HANDLED;
258 }
259
__bcm2835aux_spi_transfer_one_irq(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * tfr)260 static int __bcm2835aux_spi_transfer_one_irq(struct spi_controller *host,
261 struct spi_device *spi,
262 struct spi_transfer *tfr)
263 {
264 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
265
266 /* enable interrupts */
267 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
268 BCM2835_AUX_SPI_CNTL1_TXEMPTY |
269 BCM2835_AUX_SPI_CNTL1_IDLE);
270
271 /* and wait for finish... */
272 return 1;
273 }
274
bcm2835aux_spi_transfer_one_irq(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * tfr)275 static int bcm2835aux_spi_transfer_one_irq(struct spi_controller *host,
276 struct spi_device *spi,
277 struct spi_transfer *tfr)
278 {
279 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
280
281 /* update statistics */
282 bs->count_transfer_irq++;
283
284 /* fill in registers and fifos before enabling interrupts */
285 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
286 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
287
288 /* fill in tx fifo with data before enabling interrupts */
289 while ((bs->tx_len) &&
290 (bs->pending < 12) &&
291 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
292 BCM2835_AUX_SPI_STAT_TX_FULL))) {
293 bcm2835aux_wr_fifo(bs);
294 }
295
296 /* now run the interrupt mode */
297 return __bcm2835aux_spi_transfer_one_irq(host, spi, tfr);
298 }
299
bcm2835aux_spi_transfer_one_poll(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * tfr)300 static int bcm2835aux_spi_transfer_one_poll(struct spi_controller *host,
301 struct spi_device *spi,
302 struct spi_transfer *tfr)
303 {
304 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
305 unsigned long timeout;
306
307 /* update statistics */
308 bs->count_transfer_polling++;
309
310 /* configure spi */
311 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
312 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
313
314 /* set the timeout to at least 2 jiffies */
315 timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
316
317 /* loop until finished the transfer */
318 while (bs->rx_len) {
319
320 /* do common fifo handling */
321 bcm2835aux_spi_transfer_helper(bs);
322
323 /* there is still data pending to read check the timeout */
324 if (bs->rx_len && time_after(jiffies, timeout)) {
325 dev_dbg_ratelimited(&spi->dev,
326 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
327 jiffies - timeout,
328 bs->tx_len, bs->rx_len);
329 /* forward to interrupt handler */
330 bs->count_transfer_irq_after_poll++;
331 return __bcm2835aux_spi_transfer_one_irq(host,
332 spi, tfr);
333 }
334 }
335
336 /* and return without waiting for completion */
337 return 0;
338 }
339
bcm2835aux_spi_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * tfr)340 static int bcm2835aux_spi_transfer_one(struct spi_controller *host,
341 struct spi_device *spi,
342 struct spi_transfer *tfr)
343 {
344 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
345 unsigned long spi_hz, clk_hz, speed;
346 unsigned long hz_per_byte, byte_limit;
347
348 /* calculate the registers to handle
349 *
350 * note that we use the variable data mode, which
351 * is not optimal for longer transfers as we waste registers
352 * resulting (potentially) in more interrupts when transferring
353 * more than 12 bytes
354 */
355
356 /* set clock */
357 spi_hz = tfr->speed_hz;
358 clk_hz = clk_get_rate(bs->clk);
359
360 if (spi_hz >= clk_hz / 2) {
361 speed = 0;
362 } else if (spi_hz) {
363 speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
364 if (speed > BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
365 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
366 } else { /* the slowest we can go */
367 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
368 }
369 /* mask out old speed from previous spi_transfer */
370 bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
371 /* set the new speed */
372 bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
373
374 tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
375
376 /* set transmit buffers and length */
377 bs->tx_buf = tfr->tx_buf;
378 bs->rx_buf = tfr->rx_buf;
379 bs->tx_len = tfr->len;
380 bs->rx_len = tfr->len;
381 bs->pending = 0;
382
383 /* Calculate the estimated time in us the transfer runs. Note that
384 * there are 2 idle clocks cycles after each chunk getting
385 * transferred - in our case the chunk size is 3 bytes, so we
386 * approximate this by 9 cycles/byte. This is used to find the number
387 * of Hz per byte per polling limit. E.g., we can transfer 1 byte in
388 * 30 µs per 300,000 Hz of bus clock.
389 */
390 hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
391 byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
392
393 /* run in polling mode for short transfers */
394 if (tfr->len < byte_limit)
395 return bcm2835aux_spi_transfer_one_poll(host, spi, tfr);
396
397 /* run in interrupt mode for all others */
398 return bcm2835aux_spi_transfer_one_irq(host, spi, tfr);
399 }
400
bcm2835aux_spi_prepare_message(struct spi_controller * host,struct spi_message * msg)401 static int bcm2835aux_spi_prepare_message(struct spi_controller *host,
402 struct spi_message *msg)
403 {
404 struct spi_device *spi = msg->spi;
405 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
406
407 bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
408 BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
409 BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
410 bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
411
412 /* handle all the modes */
413 if (spi->mode & SPI_CPOL) {
414 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
415 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
416 } else {
417 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
418 }
419 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
420 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
421
422 return 0;
423 }
424
bcm2835aux_spi_unprepare_message(struct spi_controller * host,struct spi_message * msg)425 static int bcm2835aux_spi_unprepare_message(struct spi_controller *host,
426 struct spi_message *msg)
427 {
428 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
429
430 bcm2835aux_spi_reset_hw(bs);
431
432 return 0;
433 }
434
bcm2835aux_spi_handle_err(struct spi_controller * host,struct spi_message * msg)435 static void bcm2835aux_spi_handle_err(struct spi_controller *host,
436 struct spi_message *msg)
437 {
438 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
439
440 bcm2835aux_spi_reset_hw(bs);
441 }
442
bcm2835aux_spi_setup(struct spi_device * spi)443 static int bcm2835aux_spi_setup(struct spi_device *spi)
444 {
445 /* sanity check for native cs */
446 if (spi->mode & SPI_NO_CS)
447 return 0;
448
449 if (spi_get_csgpiod(spi, 0))
450 return 0;
451
452 /* for dt-backwards compatibility: only support native on CS0
453 * known things not supported with broken native CS:
454 * * multiple chip-selects: cs0-cs2 are all
455 * simultaniously asserted whenever there is a transfer
456 * this even includes SPI_NO_CS
457 * * SPI_CS_HIGH: cs are always asserted low
458 * * cs_change: cs is deasserted after each spi_transfer
459 * * cs_delay_usec: cs is always deasserted one SCK cycle
460 * after the last transfer
461 * probably more...
462 */
463 dev_warn(&spi->dev,
464 "Native CS is not supported - please configure cs-gpio in device-tree\n");
465
466 if (spi_get_chipselect(spi, 0) == 0)
467 return 0;
468
469 dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
470
471 return -EINVAL;
472 }
473
bcm2835aux_spi_probe(struct platform_device * pdev)474 static int bcm2835aux_spi_probe(struct platform_device *pdev)
475 {
476 struct spi_controller *host;
477 struct bcm2835aux_spi *bs;
478 unsigned long clk_hz;
479 int err;
480
481 host = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
482 if (!host)
483 return -ENOMEM;
484
485 platform_set_drvdata(pdev, host);
486 host->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
487 host->bits_per_word_mask = SPI_BPW_MASK(8);
488 /* even though the driver never officially supported native CS
489 * allow a single native CS for legacy DT support purposes when
490 * no cs-gpio is configured.
491 * Known limitations for native cs are:
492 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
493 * whenever there is a transfer - this even includes SPI_NO_CS
494 * * SPI_CS_HIGH: is ignores - cs are always asserted low
495 * * cs_change: cs is deasserted after each spi_transfer
496 * * cs_delay_usec: cs is always deasserted one SCK cycle after
497 * a spi_transfer
498 */
499 host->num_chipselect = 1;
500 host->setup = bcm2835aux_spi_setup;
501 host->transfer_one = bcm2835aux_spi_transfer_one;
502 host->handle_err = bcm2835aux_spi_handle_err;
503 host->prepare_message = bcm2835aux_spi_prepare_message;
504 host->unprepare_message = bcm2835aux_spi_unprepare_message;
505 host->dev.of_node = pdev->dev.of_node;
506 host->use_gpio_descriptors = true;
507
508 bs = spi_controller_get_devdata(host);
509
510 /* the main area */
511 bs->regs = devm_platform_ioremap_resource(pdev, 0);
512 if (IS_ERR(bs->regs))
513 return PTR_ERR(bs->regs);
514
515 bs->clk = devm_clk_get(&pdev->dev, NULL);
516 if (IS_ERR(bs->clk)) {
517 err = PTR_ERR(bs->clk);
518 dev_err(&pdev->dev, "could not get clk: %d\n", err);
519 return err;
520 }
521
522 bs->irq = platform_get_irq(pdev, 0);
523 if (bs->irq < 0)
524 return bs->irq;
525
526 /* this also enables the HW block */
527 err = clk_prepare_enable(bs->clk);
528 if (err) {
529 dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
530 return err;
531 }
532
533 /* just checking if the clock returns a sane value */
534 clk_hz = clk_get_rate(bs->clk);
535 if (!clk_hz) {
536 dev_err(&pdev->dev, "clock returns 0 Hz\n");
537 err = -ENODEV;
538 goto out_clk_disable;
539 }
540
541 /* reset SPI-HW block */
542 bcm2835aux_spi_reset_hw(bs);
543
544 err = devm_request_irq(&pdev->dev, bs->irq,
545 bcm2835aux_spi_interrupt,
546 IRQF_SHARED,
547 dev_name(&pdev->dev), host);
548 if (err) {
549 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
550 goto out_clk_disable;
551 }
552
553 err = spi_register_controller(host);
554 if (err) {
555 dev_err(&pdev->dev, "could not register SPI host: %d\n", err);
556 goto out_clk_disable;
557 }
558
559 bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
560
561 return 0;
562
563 out_clk_disable:
564 clk_disable_unprepare(bs->clk);
565 return err;
566 }
567
bcm2835aux_spi_remove(struct platform_device * pdev)568 static void bcm2835aux_spi_remove(struct platform_device *pdev)
569 {
570 struct spi_controller *host = platform_get_drvdata(pdev);
571 struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
572
573 bcm2835aux_debugfs_remove(bs);
574
575 spi_unregister_controller(host);
576
577 bcm2835aux_spi_reset_hw(bs);
578
579 /* disable the HW block by releasing the clock */
580 clk_disable_unprepare(bs->clk);
581 }
582
583 static const struct of_device_id bcm2835aux_spi_match[] = {
584 { .compatible = "brcm,bcm2835-aux-spi", },
585 {}
586 };
587 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
588
589 static struct platform_driver bcm2835aux_spi_driver = {
590 .driver = {
591 .name = "spi-bcm2835aux",
592 .of_match_table = bcm2835aux_spi_match,
593 },
594 .probe = bcm2835aux_spi_probe,
595 .remove_new = bcm2835aux_spi_remove,
596 };
597 module_platform_driver(bcm2835aux_spi_driver);
598
599 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
600 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
601 MODULE_LICENSE("GPL");
602