xref: /openbmc/linux/drivers/pci/endpoint/functions/pci-epf-ntb.c (revision 2612e3bbc0386368a850140a6c9b990cd496a5ec)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Endpoint Function Driver to implement Non-Transparent Bridge functionality
4   *
5   * Copyright (C) 2020 Texas Instruments
6   * Author: Kishon Vijay Abraham I <kishon@ti.com>
7   */
8  
9  /*
10   * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint
11   * (EP) controller instances (see diagram below) in such a way that
12   * transactions from one EP controller are routed to the other EP controller.
13   * Once PCI NTB function driver configures the SoC with multiple EP instances,
14   * HOST1 and HOST2 can communicate with each other using SoC as a bridge.
15   *
16   *    +-------------+                                   +-------------+
17   *    |             |                                   |             |
18   *    |    HOST1    |                                   |    HOST2    |
19   *    |             |                                   |             |
20   *    +------^------+                                   +------^------+
21   *           |                                                 |
22   *           |                                                 |
23   * +---------|-------------------------------------------------|---------+
24   * |  +------v------+                                   +------v------+  |
25   * |  |             |                                   |             |  |
26   * |  |     EP      |                                   |     EP      |  |
27   * |  | CONTROLLER1 |                                   | CONTROLLER2 |  |
28   * |  |             <----------------------------------->             |  |
29   * |  |             |                                   |             |  |
30   * |  |             |                                   |             |  |
31   * |  |             |  SoC With Multiple EP Instances   |             |  |
32   * |  |             |  (Configured using NTB Function)  |             |  |
33   * |  +-------------+                                   +-------------+  |
34   * +---------------------------------------------------------------------+
35   */
36  
37  #include <linux/delay.h>
38  #include <linux/io.h>
39  #include <linux/module.h>
40  #include <linux/slab.h>
41  
42  #include <linux/pci-epc.h>
43  #include <linux/pci-epf.h>
44  
45  static struct workqueue_struct *kpcintb_workqueue;
46  
47  #define COMMAND_CONFIGURE_DOORBELL	1
48  #define COMMAND_TEARDOWN_DOORBELL	2
49  #define COMMAND_CONFIGURE_MW		3
50  #define COMMAND_TEARDOWN_MW		4
51  #define COMMAND_LINK_UP			5
52  #define COMMAND_LINK_DOWN		6
53  
54  #define COMMAND_STATUS_OK		1
55  #define COMMAND_STATUS_ERROR		2
56  
57  #define LINK_STATUS_UP			BIT(0)
58  
59  #define SPAD_COUNT			64
60  #define DB_COUNT			4
61  #define NTB_MW_OFFSET			2
62  #define DB_COUNT_MASK			GENMASK(15, 0)
63  #define MSIX_ENABLE			BIT(16)
64  #define MAX_DB_COUNT			32
65  #define MAX_MW				4
66  
67  enum epf_ntb_bar {
68  	BAR_CONFIG,
69  	BAR_PEER_SPAD,
70  	BAR_DB_MW1,
71  	BAR_MW2,
72  	BAR_MW3,
73  	BAR_MW4,
74  };
75  
76  struct epf_ntb {
77  	u32 num_mws;
78  	u32 db_count;
79  	u32 spad_count;
80  	struct pci_epf *epf;
81  	u64 mws_size[MAX_MW];
82  	struct config_group group;
83  	struct epf_ntb_epc *epc[2];
84  };
85  
86  #define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
87  
88  struct epf_ntb_epc {
89  	u8 func_no;
90  	u8 vfunc_no;
91  	bool linkup;
92  	bool is_msix;
93  	int msix_bar;
94  	u32 spad_size;
95  	struct pci_epc *epc;
96  	struct epf_ntb *epf_ntb;
97  	void __iomem *mw_addr[6];
98  	size_t msix_table_offset;
99  	struct epf_ntb_ctrl *reg;
100  	struct pci_epf_bar *epf_bar;
101  	enum pci_barno epf_ntb_bar[6];
102  	struct delayed_work cmd_handler;
103  	enum pci_epc_interface_type type;
104  	const struct pci_epc_features *epc_features;
105  };
106  
107  struct epf_ntb_ctrl {
108  	u32	command;
109  	u32	argument;
110  	u16	command_status;
111  	u16	link_status;
112  	u32	topology;
113  	u64	addr;
114  	u64	size;
115  	u32	num_mws;
116  	u32	mw1_offset;
117  	u32	spad_offset;
118  	u32	spad_count;
119  	u32	db_entry_size;
120  	u32	db_data[MAX_DB_COUNT];
121  	u32	db_offset[MAX_DB_COUNT];
122  } __packed;
123  
124  static struct pci_epf_header epf_ntb_header = {
125  	.vendorid	= PCI_ANY_ID,
126  	.deviceid	= PCI_ANY_ID,
127  	.baseclass_code	= PCI_BASE_CLASS_MEMORY,
128  	.interrupt_pin	= PCI_INTERRUPT_INTA,
129  };
130  
131  /**
132   * epf_ntb_link_up() - Raise link_up interrupt to both the hosts
133   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
134   * @link_up: true or false indicating Link is UP or Down
135   *
136   * Once NTB function in HOST1 and the NTB function in HOST2 invoke
137   * ntb_link_enable(), this NTB function driver will trigger a link event to
138   * the NTB client in both the hosts.
139   */
epf_ntb_link_up(struct epf_ntb * ntb,bool link_up)140  static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
141  {
142  	enum pci_epc_interface_type type;
143  	enum pci_epc_irq_type irq_type;
144  	struct epf_ntb_epc *ntb_epc;
145  	struct epf_ntb_ctrl *ctrl;
146  	struct pci_epc *epc;
147  	u8 func_no, vfunc_no;
148  	bool is_msix;
149  	int ret;
150  
151  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
152  		ntb_epc = ntb->epc[type];
153  		epc = ntb_epc->epc;
154  		func_no = ntb_epc->func_no;
155  		vfunc_no = ntb_epc->vfunc_no;
156  		is_msix = ntb_epc->is_msix;
157  		ctrl = ntb_epc->reg;
158  		if (link_up)
159  			ctrl->link_status |= LINK_STATUS_UP;
160  		else
161  			ctrl->link_status &= ~LINK_STATUS_UP;
162  		irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI;
163  		ret = pci_epc_raise_irq(epc, func_no, vfunc_no, irq_type, 1);
164  		if (ret) {
165  			dev_err(&epc->dev,
166  				"%s intf: Failed to raise Link Up IRQ\n",
167  				pci_epc_interface_string(type));
168  			return ret;
169  		}
170  	}
171  
172  	return 0;
173  }
174  
175  /**
176   * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host
177   *   to access the memory window of other host
178   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
179   * @type: PRIMARY interface or SECONDARY interface
180   * @mw: Index of the memory window (either 0, 1, 2 or 3)
181   *
182   * +-----------------+    +---->+----------------+-----------+-----------------+
183   * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
184   * +-----------------+    |     +----------------+           +-----------------+
185   * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
186   * +-----------------+----+     +----------------+         | |                 |
187   * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
188   * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
189   * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
190   * +-----------------+    |     |----------------+     | |   |                 |
191   * |       BAR4      |    |     |                |     | |   +-----------------+
192   * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
193   * |       BAR5      |    |     |                |   | |     +-----------------+
194   * +-----------------+    +---->-----------------+   | |     |                 |
195   *   EP CONTROLLER 1            |                |   | |     +-----------------+
196   *                              |                |   | +---->+ MSI|X ADDRESS 4 |
197   *                              +----------------+   |       +-----------------+
198   *                      (A)      EP CONTROLLER 2     |       |                 |
199   *                                 (OB SPACE)        |       |                 |
200   *                                                   +------->      MW1        |
201   *                                                           |                 |
202   *                                                           |                 |
203   *                                                   (B)     +-----------------+
204   *                                                           |                 |
205   *                                                           |                 |
206   *                                                           |                 |
207   *                                                           |                 |
208   *                                                           |                 |
209   *                                                           +-----------------+
210   *                                                           PCI Address Space
211   *                                                           (Managed by HOST2)
212   *
213   * This function performs stage (B) in the above diagram (see MW1) i.e., map OB
214   * address space of memory window to PCI address space.
215   *
216   * This operation requires 3 parameters
217   *  1) Address in the outbound address space
218   *  2) Address in the PCI Address space
219   *  3) Size of the address region to be mapped
220   *
221   * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is
222   * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3
223   * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This
224   * is populated in epf_ntb_alloc_peer_mem() in this driver.
225   *
226   * The address and size of the PCI address region that has to be mapped would
227   * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is
228   * connected to HOST2.
229   *
230   * Please note Memory window1 (MW1) and Doorbell registers together will be
231   * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's
232   * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1],
233   * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2].
234   */
epf_ntb_configure_mw(struct epf_ntb * ntb,enum pci_epc_interface_type type,u32 mw)235  static int epf_ntb_configure_mw(struct epf_ntb *ntb,
236  				enum pci_epc_interface_type type, u32 mw)
237  {
238  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
239  	struct pci_epf_bar *peer_epf_bar;
240  	enum pci_barno peer_barno;
241  	struct epf_ntb_ctrl *ctrl;
242  	phys_addr_t phys_addr;
243  	u8 func_no, vfunc_no;
244  	struct pci_epc *epc;
245  	u64 addr, size;
246  	int ret = 0;
247  
248  	ntb_epc = ntb->epc[type];
249  	epc = ntb_epc->epc;
250  
251  	peer_ntb_epc = ntb->epc[!type];
252  	peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
253  	peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
254  
255  	phys_addr = peer_epf_bar->phys_addr;
256  	ctrl = ntb_epc->reg;
257  	addr = ctrl->addr;
258  	size = ctrl->size;
259  	if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
260  		phys_addr += ctrl->mw1_offset;
261  
262  	if (size > ntb->mws_size[mw]) {
263  		dev_err(&epc->dev,
264  			"%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n",
265  			pci_epc_interface_string(type), mw, size,
266  			ntb->mws_size[mw]);
267  		ret = -EINVAL;
268  		goto err_invalid_size;
269  	}
270  
271  	func_no = ntb_epc->func_no;
272  	vfunc_no = ntb_epc->vfunc_no;
273  
274  	ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, addr, size);
275  	if (ret)
276  		dev_err(&epc->dev,
277  			"%s intf: Failed to map memory window %d address\n",
278  			pci_epc_interface_string(type), mw);
279  
280  err_invalid_size:
281  
282  	return ret;
283  }
284  
285  /**
286   * epf_ntb_teardown_mw() - Teardown the configured OB ATU
287   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
288   * @type: PRIMARY interface or SECONDARY interface
289   * @mw: Index of the memory window (either 0, 1, 2 or 3)
290   *
291   * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
292   * pci_epc_unmap_addr()
293   */
epf_ntb_teardown_mw(struct epf_ntb * ntb,enum pci_epc_interface_type type,u32 mw)294  static void epf_ntb_teardown_mw(struct epf_ntb *ntb,
295  				enum pci_epc_interface_type type, u32 mw)
296  {
297  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
298  	struct pci_epf_bar *peer_epf_bar;
299  	enum pci_barno peer_barno;
300  	struct epf_ntb_ctrl *ctrl;
301  	phys_addr_t phys_addr;
302  	u8 func_no, vfunc_no;
303  	struct pci_epc *epc;
304  
305  	ntb_epc = ntb->epc[type];
306  	epc = ntb_epc->epc;
307  
308  	peer_ntb_epc = ntb->epc[!type];
309  	peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
310  	peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
311  
312  	phys_addr = peer_epf_bar->phys_addr;
313  	ctrl = ntb_epc->reg;
314  	if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
315  		phys_addr += ctrl->mw1_offset;
316  	func_no = ntb_epc->func_no;
317  	vfunc_no = ntb_epc->vfunc_no;
318  
319  	pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
320  }
321  
322  /**
323   * epf_ntb_configure_msi() - Map OB address space to MSI address
324   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
325   * @type: PRIMARY interface or SECONDARY interface
326   * @db_count: Number of doorbell interrupts to map
327   *
328   *+-----------------+    +----->+----------------+-----------+-----------------+
329   *|       BAR0      |    |      |   Doorbell 1   +---+------->   MSI ADDRESS   |
330   *+-----------------+    |      +----------------+   |       +-----------------+
331   *|       BAR1      |    |      |   Doorbell 2   +---+       |                 |
332   *+-----------------+----+      +----------------+   |       |                 |
333   *|       BAR2      |           |   Doorbell 3   +---+       |                 |
334   *+-----------------+----+      +----------------+   |       |                 |
335   *|       BAR3      |    |      |   Doorbell 4   +---+       |                 |
336   *+-----------------+    |      |----------------+           |                 |
337   *|       BAR4      |    |      |                |           |                 |
338   *+-----------------+    |      |      MW1       |           |                 |
339   *|       BAR5      |    |      |                |           |                 |
340   *+-----------------+    +----->-----------------+           |                 |
341   *  EP CONTROLLER 1             |                |           |                 |
342   *                              |                |           |                 |
343   *                              +----------------+           +-----------------+
344   *                     (A)       EP CONTROLLER 2             |                 |
345   *                                 (OB SPACE)                |                 |
346   *                                                           |      MW1        |
347   *                                                           |                 |
348   *                                                           |                 |
349   *                                                   (B)     +-----------------+
350   *                                                           |                 |
351   *                                                           |                 |
352   *                                                           |                 |
353   *                                                           |                 |
354   *                                                           |                 |
355   *                                                           +-----------------+
356   *                                                           PCI Address Space
357   *                                                           (Managed by HOST2)
358   *
359   *
360   * This function performs stage (B) in the above diagram (see Doorbell 1,
361   * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
362   * doorbell to MSI address in PCI address space.
363   *
364   * This operation requires 3 parameters
365   *  1) Address reserved for doorbell in the outbound address space
366   *  2) MSI-X address in the PCIe Address space
367   *  3) Number of MSI-X interrupts that has to be configured
368   *
369   * The address in the outbound address space (for the Doorbell) is stored in
370   * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
371   * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
372   * with address for MW1.
373   *
374   * pci_epc_map_msi_irq() takes the MSI address from MSI capability register
375   * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI
376   * address.
377   *
378   * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt
379   * in db_data of the peer's control region. This helps the peer to raise
380   * doorbell of the other host by writing db_data to the BAR corresponding to
381   * BAR_DB_MW1.
382   */
epf_ntb_configure_msi(struct epf_ntb * ntb,enum pci_epc_interface_type type,u16 db_count)383  static int epf_ntb_configure_msi(struct epf_ntb *ntb,
384  				 enum pci_epc_interface_type type, u16 db_count)
385  {
386  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
387  	u32 db_entry_size, db_data, db_offset;
388  	struct pci_epf_bar *peer_epf_bar;
389  	struct epf_ntb_ctrl *peer_ctrl;
390  	enum pci_barno peer_barno;
391  	phys_addr_t phys_addr;
392  	u8 func_no, vfunc_no;
393  	struct pci_epc *epc;
394  	int ret, i;
395  
396  	ntb_epc = ntb->epc[type];
397  	epc = ntb_epc->epc;
398  
399  	peer_ntb_epc = ntb->epc[!type];
400  	peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
401  	peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
402  	peer_ctrl = peer_ntb_epc->reg;
403  	db_entry_size = peer_ctrl->db_entry_size;
404  
405  	phys_addr = peer_epf_bar->phys_addr;
406  	func_no = ntb_epc->func_no;
407  	vfunc_no = ntb_epc->vfunc_no;
408  
409  	ret = pci_epc_map_msi_irq(epc, func_no, vfunc_no, phys_addr, db_count,
410  				  db_entry_size, &db_data, &db_offset);
411  	if (ret) {
412  		dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n",
413  			pci_epc_interface_string(type));
414  		return ret;
415  	}
416  
417  	for (i = 0; i < db_count; i++) {
418  		peer_ctrl->db_data[i] = db_data | i;
419  		peer_ctrl->db_offset[i] = db_offset;
420  	}
421  
422  	return 0;
423  }
424  
425  /**
426   * epf_ntb_configure_msix() - Map OB address space to MSI-X address
427   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
428   * @type: PRIMARY interface or SECONDARY interface
429   * @db_count: Number of doorbell interrupts to map
430   *
431   *+-----------------+    +----->+----------------+-----------+-----------------+
432   *|       BAR0      |    |      |   Doorbell 1   +-----------> MSI-X ADDRESS 1 |
433   *+-----------------+    |      +----------------+           +-----------------+
434   *|       BAR1      |    |      |   Doorbell 2   +---------+ |                 |
435   *+-----------------+----+      +----------------+         | |                 |
436   *|       BAR2      |           |   Doorbell 3   +-------+ | +-----------------+
437   *+-----------------+----+      +----------------+       | +-> MSI-X ADDRESS 2 |
438   *|       BAR3      |    |      |   Doorbell 4   +-----+ |   +-----------------+
439   *+-----------------+    |      |----------------+     | |   |                 |
440   *|       BAR4      |    |      |                |     | |   +-----------------+
441   *+-----------------+    |      |      MW1       +     | +-->+ MSI-X ADDRESS 3||
442   *|       BAR5      |    |      |                |     |     +-----------------+
443   *+-----------------+    +----->-----------------+     |     |                 |
444   *  EP CONTROLLER 1             |                |     |     +-----------------+
445   *                              |                |     +---->+ MSI-X ADDRESS 4 |
446   *                              +----------------+           +-----------------+
447   *                     (A)       EP CONTROLLER 2             |                 |
448   *                                 (OB SPACE)                |                 |
449   *                                                           |      MW1        |
450   *                                                           |                 |
451   *                                                           |                 |
452   *                                                   (B)     +-----------------+
453   *                                                           |                 |
454   *                                                           |                 |
455   *                                                           |                 |
456   *                                                           |                 |
457   *                                                           |                 |
458   *                                                           +-----------------+
459   *                                                           PCI Address Space
460   *                                                           (Managed by HOST2)
461   *
462   * This function performs stage (B) in the above diagram (see Doorbell 1,
463   * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
464   * doorbell to MSI-X address in PCI address space.
465   *
466   * This operation requires 3 parameters
467   *  1) Address reserved for doorbell in the outbound address space
468   *  2) MSI-X address in the PCIe Address space
469   *  3) Number of MSI-X interrupts that has to be configured
470   *
471   * The address in the outbound address space (for the Doorbell) is stored in
472   * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
473   * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
474   * with address for MW1.
475   *
476   * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and
477   * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected
478   * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the
479   * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix()
480   * gets the MSI-X address and data.
481   *
482   * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt
483   * in db_data of the peer's control region. This helps the peer to raise
484   * doorbell of the other host by writing db_data to the BAR corresponding to
485   * BAR_DB_MW1.
486   */
epf_ntb_configure_msix(struct epf_ntb * ntb,enum pci_epc_interface_type type,u16 db_count)487  static int epf_ntb_configure_msix(struct epf_ntb *ntb,
488  				  enum pci_epc_interface_type type,
489  				  u16 db_count)
490  {
491  	const struct pci_epc_features *epc_features;
492  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
493  	struct pci_epf_bar *peer_epf_bar, *epf_bar;
494  	struct pci_epf_msix_tbl *msix_tbl;
495  	struct epf_ntb_ctrl *peer_ctrl;
496  	u32 db_entry_size, msg_data;
497  	enum pci_barno peer_barno;
498  	phys_addr_t phys_addr;
499  	u8 func_no, vfunc_no;
500  	struct pci_epc *epc;
501  	size_t align;
502  	u64 msg_addr;
503  	int ret, i;
504  
505  	ntb_epc = ntb->epc[type];
506  	epc = ntb_epc->epc;
507  
508  	epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar];
509  	msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset;
510  
511  	peer_ntb_epc = ntb->epc[!type];
512  	peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
513  	peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
514  	phys_addr = peer_epf_bar->phys_addr;
515  	peer_ctrl = peer_ntb_epc->reg;
516  	epc_features = ntb_epc->epc_features;
517  	align = epc_features->align;
518  
519  	func_no = ntb_epc->func_no;
520  	vfunc_no = ntb_epc->vfunc_no;
521  	db_entry_size = peer_ctrl->db_entry_size;
522  
523  	for (i = 0; i < db_count; i++) {
524  		msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align);
525  		msg_data = msix_tbl[i].msg_data;
526  		ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, msg_addr,
527  				       db_entry_size);
528  		if (ret) {
529  			dev_err(&epc->dev,
530  				"%s intf: Failed to configure MSI-X IRQ\n",
531  				pci_epc_interface_string(type));
532  			return ret;
533  		}
534  		phys_addr = phys_addr + db_entry_size;
535  		peer_ctrl->db_data[i] = msg_data;
536  		peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1);
537  	}
538  	ntb_epc->is_msix = true;
539  
540  	return 0;
541  }
542  
543  /**
544   * epf_ntb_configure_db() - Configure the Outbound Address Space for one host
545   *   to ring the doorbell of other host
546   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
547   * @type: PRIMARY interface or SECONDARY interface
548   * @db_count: Count of the number of doorbells that has to be configured
549   * @msix: Indicates whether MSI-X or MSI should be used
550   *
551   * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for
552   * one HOST to ring the doorbell of other HOST.
553   */
epf_ntb_configure_db(struct epf_ntb * ntb,enum pci_epc_interface_type type,u16 db_count,bool msix)554  static int epf_ntb_configure_db(struct epf_ntb *ntb,
555  				enum pci_epc_interface_type type,
556  				u16 db_count, bool msix)
557  {
558  	struct epf_ntb_epc *ntb_epc;
559  	struct pci_epc *epc;
560  	int ret;
561  
562  	if (db_count > MAX_DB_COUNT)
563  		return -EINVAL;
564  
565  	ntb_epc = ntb->epc[type];
566  	epc = ntb_epc->epc;
567  
568  	if (msix)
569  		ret = epf_ntb_configure_msix(ntb, type, db_count);
570  	else
571  		ret = epf_ntb_configure_msi(ntb, type, db_count);
572  
573  	if (ret)
574  		dev_err(&epc->dev, "%s intf: Failed to configure DB\n",
575  			pci_epc_interface_string(type));
576  
577  	return ret;
578  }
579  
580  /**
581   * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X
582   *   address
583   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
584   * @type: PRIMARY interface or SECONDARY interface
585   *
586   * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address.
587   */
588  static void
epf_ntb_teardown_db(struct epf_ntb * ntb,enum pci_epc_interface_type type)589  epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type)
590  {
591  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
592  	struct pci_epf_bar *peer_epf_bar;
593  	enum pci_barno peer_barno;
594  	phys_addr_t phys_addr;
595  	u8 func_no, vfunc_no;
596  	struct pci_epc *epc;
597  
598  	ntb_epc = ntb->epc[type];
599  	epc = ntb_epc->epc;
600  
601  	peer_ntb_epc = ntb->epc[!type];
602  	peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
603  	peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
604  	phys_addr = peer_epf_bar->phys_addr;
605  	func_no = ntb_epc->func_no;
606  	vfunc_no = ntb_epc->vfunc_no;
607  
608  	pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
609  }
610  
611  /**
612   * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
613   * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY)
614   *
615   * Workqueue function that gets invoked for the two epf_ntb_epc
616   * periodically (once every 5ms) to see if it has received any commands
617   * from NTB host. The host can send commands to configure doorbell or
618   * configure memory window or to update link status.
619   */
epf_ntb_cmd_handler(struct work_struct * work)620  static void epf_ntb_cmd_handler(struct work_struct *work)
621  {
622  	enum pci_epc_interface_type type;
623  	struct epf_ntb_epc *ntb_epc;
624  	struct epf_ntb_ctrl *ctrl;
625  	u32 command, argument;
626  	struct epf_ntb *ntb;
627  	struct device *dev;
628  	u16 db_count;
629  	bool is_msix;
630  	int ret;
631  
632  	ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work);
633  	ctrl = ntb_epc->reg;
634  	command = ctrl->command;
635  	if (!command)
636  		goto reset_handler;
637  	argument = ctrl->argument;
638  
639  	ctrl->command = 0;
640  	ctrl->argument = 0;
641  
642  	ctrl = ntb_epc->reg;
643  	type = ntb_epc->type;
644  	ntb = ntb_epc->epf_ntb;
645  	dev = &ntb->epf->dev;
646  
647  	switch (command) {
648  	case COMMAND_CONFIGURE_DOORBELL:
649  		db_count = argument & DB_COUNT_MASK;
650  		is_msix = argument & MSIX_ENABLE;
651  		ret = epf_ntb_configure_db(ntb, type, db_count, is_msix);
652  		if (ret < 0)
653  			ctrl->command_status = COMMAND_STATUS_ERROR;
654  		else
655  			ctrl->command_status = COMMAND_STATUS_OK;
656  		break;
657  	case COMMAND_TEARDOWN_DOORBELL:
658  		epf_ntb_teardown_db(ntb, type);
659  		ctrl->command_status = COMMAND_STATUS_OK;
660  		break;
661  	case COMMAND_CONFIGURE_MW:
662  		ret = epf_ntb_configure_mw(ntb, type, argument);
663  		if (ret < 0)
664  			ctrl->command_status = COMMAND_STATUS_ERROR;
665  		else
666  			ctrl->command_status = COMMAND_STATUS_OK;
667  		break;
668  	case COMMAND_TEARDOWN_MW:
669  		epf_ntb_teardown_mw(ntb, type, argument);
670  		ctrl->command_status = COMMAND_STATUS_OK;
671  		break;
672  	case COMMAND_LINK_UP:
673  		ntb_epc->linkup = true;
674  		if (ntb->epc[PRIMARY_INTERFACE]->linkup &&
675  		    ntb->epc[SECONDARY_INTERFACE]->linkup) {
676  			ret = epf_ntb_link_up(ntb, true);
677  			if (ret < 0)
678  				ctrl->command_status = COMMAND_STATUS_ERROR;
679  			else
680  				ctrl->command_status = COMMAND_STATUS_OK;
681  			goto reset_handler;
682  		}
683  		ctrl->command_status = COMMAND_STATUS_OK;
684  		break;
685  	case COMMAND_LINK_DOWN:
686  		ntb_epc->linkup = false;
687  		ret = epf_ntb_link_up(ntb, false);
688  		if (ret < 0)
689  			ctrl->command_status = COMMAND_STATUS_ERROR;
690  		else
691  			ctrl->command_status = COMMAND_STATUS_OK;
692  		break;
693  	default:
694  		dev_err(dev, "%s intf UNKNOWN command: %d\n",
695  			pci_epc_interface_string(type), command);
696  		break;
697  	}
698  
699  reset_handler:
700  	queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler,
701  			   msecs_to_jiffies(5));
702  }
703  
704  /**
705   * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR
706   * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
707   *	     address.
708   *
709   *+-----------------+------->+------------------+        +-----------------+
710   *|       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
711   *+-----------------+----+   +------------------+<-------+-----------------+
712   *|       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
713   *+-----------------+    +-->+------------------+<-------+-----------------+
714   *|       BAR2      |            Local Memory            |       BAR2      |
715   *+-----------------+                                    +-----------------+
716   *|       BAR3      |                                    |       BAR3      |
717   *+-----------------+                                    +-----------------+
718   *|       BAR4      |                                    |       BAR4      |
719   *+-----------------+                                    +-----------------+
720   *|       BAR5      |                                    |       BAR5      |
721   *+-----------------+                                    +-----------------+
722   *  EP CONTROLLER 1                                        EP CONTROLLER 2
723   *
724   * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
725   * region. While BAR1 is the default peer scratchpad BAR, an NTB could have
726   * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
727   * This function can get the exact BAR used for peer scratchpad from
728   * epf_ntb_bar[BAR_PEER_SPAD].
729   *
730   * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
731   * gets the address of peer scratchpad from
732   * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
733   */
epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc * ntb_epc)734  static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc)
735  {
736  	struct pci_epf_bar *epf_bar;
737  	enum pci_barno barno;
738  	u8 func_no, vfunc_no;
739  	struct pci_epc *epc;
740  
741  	epc = ntb_epc->epc;
742  	func_no = ntb_epc->func_no;
743  	vfunc_no = ntb_epc->vfunc_no;
744  	barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
745  	epf_bar = &ntb_epc->epf_bar[barno];
746  	pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
747  }
748  
749  /**
750   * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR
751   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
752   * @type: PRIMARY interface or SECONDARY interface
753   *
754   *+-----------------+------->+------------------+        +-----------------+
755   *|       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
756   *+-----------------+----+   +------------------+<-------+-----------------+
757   *|       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
758   *+-----------------+    +-->+------------------+<-------+-----------------+
759   *|       BAR2      |            Local Memory            |       BAR2      |
760   *+-----------------+                                    +-----------------+
761   *|       BAR3      |                                    |       BAR3      |
762   *+-----------------+                                    +-----------------+
763   *|       BAR4      |                                    |       BAR4      |
764   *+-----------------+                                    +-----------------+
765   *|       BAR5      |                                    |       BAR5      |
766   *+-----------------+                                    +-----------------+
767   *  EP CONTROLLER 1                                        EP CONTROLLER 2
768   *
769   * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
770   * region. While BAR1 is the default peer scratchpad BAR, an NTB could have
771   * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
772   * This function can get the exact BAR used for peer scratchpad from
773   * epf_ntb_bar[BAR_PEER_SPAD].
774   *
775   * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
776   * gets the address of peer scratchpad from
777   * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
778   */
epf_ntb_peer_spad_bar_set(struct epf_ntb * ntb,enum pci_epc_interface_type type)779  static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb,
780  				     enum pci_epc_interface_type type)
781  {
782  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
783  	struct pci_epf_bar *peer_epf_bar, *epf_bar;
784  	enum pci_barno peer_barno, barno;
785  	u32 peer_spad_offset;
786  	u8 func_no, vfunc_no;
787  	struct pci_epc *epc;
788  	struct device *dev;
789  	int ret;
790  
791  	dev = &ntb->epf->dev;
792  
793  	peer_ntb_epc = ntb->epc[!type];
794  	peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG];
795  	peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
796  
797  	ntb_epc = ntb->epc[type];
798  	barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
799  	epf_bar = &ntb_epc->epf_bar[barno];
800  	func_no = ntb_epc->func_no;
801  	vfunc_no = ntb_epc->vfunc_no;
802  	epc = ntb_epc->epc;
803  
804  	peer_spad_offset = peer_ntb_epc->reg->spad_offset;
805  	epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset;
806  	epf_bar->size = peer_ntb_epc->spad_size;
807  	epf_bar->barno = barno;
808  	epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
809  
810  	ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
811  	if (ret) {
812  		dev_err(dev, "%s intf: peer SPAD BAR set failed\n",
813  			pci_epc_interface_string(type));
814  		return ret;
815  	}
816  
817  	return 0;
818  }
819  
820  /**
821   * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
822   * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
823   *	     address.
824   *
825   * +-----------------+------->+------------------+        +-----------------+
826   * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
827   * +-----------------+----+   +------------------+<-------+-----------------+
828   * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
829   * +-----------------+    +-->+------------------+<-------+-----------------+
830   * |       BAR2      |            Local Memory            |       BAR2      |
831   * +-----------------+                                    +-----------------+
832   * |       BAR3      |                                    |       BAR3      |
833   * +-----------------+                                    +-----------------+
834   * |       BAR4      |                                    |       BAR4      |
835   * +-----------------+                                    +-----------------+
836   * |       BAR5      |                                    |       BAR5      |
837   * +-----------------+                                    +-----------------+
838   *   EP CONTROLLER 1                                        EP CONTROLLER 2
839   *
840   * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
841   * self scratchpad region (removes inbound ATU configuration). While BAR0 is
842   * the default self scratchpad BAR, an NTB could have other BARs for self
843   * scratchpad (because of reserved BARs). This function can get the exact BAR
844   * used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
845   *
846   * Please note the self scratchpad region and config region is combined to
847   * a single region and mapped using the same BAR. Also note HOST2's peer
848   * scratchpad is HOST1's self scratchpad.
849   */
epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc * ntb_epc)850  static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc)
851  {
852  	struct pci_epf_bar *epf_bar;
853  	enum pci_barno barno;
854  	u8 func_no, vfunc_no;
855  	struct pci_epc *epc;
856  
857  	epc = ntb_epc->epc;
858  	func_no = ntb_epc->func_no;
859  	vfunc_no = ntb_epc->vfunc_no;
860  	barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
861  	epf_bar = &ntb_epc->epf_bar[barno];
862  	pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
863  }
864  
865  /**
866   * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
867   * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
868   *	     address.
869   *
870   * +-----------------+------->+------------------+        +-----------------+
871   * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
872   * +-----------------+----+   +------------------+<-------+-----------------+
873   * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
874   * +-----------------+    +-->+------------------+<-------+-----------------+
875   * |       BAR2      |            Local Memory            |       BAR2      |
876   * +-----------------+                                    +-----------------+
877   * |       BAR3      |                                    |       BAR3      |
878   * +-----------------+                                    +-----------------+
879   * |       BAR4      |                                    |       BAR4      |
880   * +-----------------+                                    +-----------------+
881   * |       BAR5      |                                    |       BAR5      |
882   * +-----------------+                                    +-----------------+
883   *   EP CONTROLLER 1                                        EP CONTROLLER 2
884   *
885   * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
886   * self scratchpad region. While BAR0 is the default self scratchpad BAR, an
887   * NTB could have other BARs for self scratchpad (because of reserved BARs).
888   * This function can get the exact BAR used for self scratchpad from
889   * epf_ntb_bar[BAR_CONFIG].
890   *
891   * Please note the self scratchpad region and config region is combined to
892   * a single region and mapped using the same BAR. Also note HOST2's peer
893   * scratchpad is HOST1's self scratchpad.
894   */
epf_ntb_config_sspad_bar_set(struct epf_ntb_epc * ntb_epc)895  static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc)
896  {
897  	struct pci_epf_bar *epf_bar;
898  	enum pci_barno barno;
899  	u8 func_no, vfunc_no;
900  	struct epf_ntb *ntb;
901  	struct pci_epc *epc;
902  	struct device *dev;
903  	int ret;
904  
905  	ntb = ntb_epc->epf_ntb;
906  	dev = &ntb->epf->dev;
907  
908  	epc = ntb_epc->epc;
909  	func_no = ntb_epc->func_no;
910  	vfunc_no = ntb_epc->vfunc_no;
911  	barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
912  	epf_bar = &ntb_epc->epf_bar[barno];
913  
914  	ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
915  	if (ret) {
916  		dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n",
917  			pci_epc_interface_string(ntb_epc->type));
918  		return ret;
919  	}
920  
921  	return 0;
922  }
923  
924  /**
925   * epf_ntb_config_spad_bar_free() - Free the physical memory associated with
926   *   config + scratchpad region
927   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
928   *
929   * +-----------------+------->+------------------+        +-----------------+
930   * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
931   * +-----------------+----+   +------------------+<-------+-----------------+
932   * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
933   * +-----------------+    +-->+------------------+<-------+-----------------+
934   * |       BAR2      |            Local Memory            |       BAR2      |
935   * +-----------------+                                    +-----------------+
936   * |       BAR3      |                                    |       BAR3      |
937   * +-----------------+                                    +-----------------+
938   * |       BAR4      |                                    |       BAR4      |
939   * +-----------------+                                    +-----------------+
940   * |       BAR5      |                                    |       BAR5      |
941   * +-----------------+                                    +-----------------+
942   *   EP CONTROLLER 1                                        EP CONTROLLER 2
943   *
944   * Free the Local Memory mentioned in the above diagram. After invoking this
945   * function, any of config + self scratchpad region of HOST1 or peer scratchpad
946   * region of HOST2 should not be accessed.
947   */
epf_ntb_config_spad_bar_free(struct epf_ntb * ntb)948  static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
949  {
950  	enum pci_epc_interface_type type;
951  	struct epf_ntb_epc *ntb_epc;
952  	enum pci_barno barno;
953  	struct pci_epf *epf;
954  
955  	epf = ntb->epf;
956  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
957  		ntb_epc = ntb->epc[type];
958  		barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
959  		if (ntb_epc->reg)
960  			pci_epf_free_space(epf, ntb_epc->reg, barno, type);
961  	}
962  }
963  
964  /**
965   * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
966   *   region
967   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
968   * @type: PRIMARY interface or SECONDARY interface
969   *
970   * +-----------------+------->+------------------+        +-----------------+
971   * |       BAR0      |        |  CONFIG REGION   |        |       BAR0      |
972   * +-----------------+----+   +------------------+<-------+-----------------+
973   * |       BAR1      |    |   |SCRATCHPAD REGION |        |       BAR1      |
974   * +-----------------+    +-->+------------------+<-------+-----------------+
975   * |       BAR2      |            Local Memory            |       BAR2      |
976   * +-----------------+                                    +-----------------+
977   * |       BAR3      |                                    |       BAR3      |
978   * +-----------------+                                    +-----------------+
979   * |       BAR4      |                                    |       BAR4      |
980   * +-----------------+                                    +-----------------+
981   * |       BAR5      |                                    |       BAR5      |
982   * +-----------------+                                    +-----------------+
983   *   EP CONTROLLER 1                                        EP CONTROLLER 2
984   *
985   * Allocate the Local Memory mentioned in the above diagram. The size of
986   * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
987   * is obtained from "spad-count" configfs entry.
988   *
989   * The size of both config region and scratchpad region has to be aligned,
990   * since the scratchpad region will also be mapped as PEER SCRATCHPAD of
991   * other host using a separate BAR.
992   */
epf_ntb_config_spad_bar_alloc(struct epf_ntb * ntb,enum pci_epc_interface_type type)993  static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb,
994  					 enum pci_epc_interface_type type)
995  {
996  	const struct pci_epc_features *peer_epc_features, *epc_features;
997  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
998  	size_t msix_table_size, pba_size, align;
999  	enum pci_barno peer_barno, barno;
1000  	struct epf_ntb_ctrl *ctrl;
1001  	u32 spad_size, ctrl_size;
1002  	u64 size, peer_size;
1003  	struct pci_epf *epf;
1004  	struct device *dev;
1005  	bool msix_capable;
1006  	u32 spad_count;
1007  	void *base;
1008  
1009  	epf = ntb->epf;
1010  	dev = &epf->dev;
1011  	ntb_epc = ntb->epc[type];
1012  
1013  	epc_features = ntb_epc->epc_features;
1014  	barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
1015  	size = epc_features->bar_fixed_size[barno];
1016  	align = epc_features->align;
1017  
1018  	peer_ntb_epc = ntb->epc[!type];
1019  	peer_epc_features = peer_ntb_epc->epc_features;
1020  	peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
1021  	peer_size = peer_epc_features->bar_fixed_size[peer_barno];
1022  
1023  	/* Check if epc_features is populated incorrectly */
1024  	if ((!IS_ALIGNED(size, align)))
1025  		return -EINVAL;
1026  
1027  	spad_count = ntb->spad_count;
1028  
1029  	ctrl_size = sizeof(struct epf_ntb_ctrl);
1030  	spad_size = spad_count * 4;
1031  
1032  	msix_capable = epc_features->msix_capable;
1033  	if (msix_capable) {
1034  		msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count;
1035  		ctrl_size = ALIGN(ctrl_size, 8);
1036  		ntb_epc->msix_table_offset = ctrl_size;
1037  		ntb_epc->msix_bar = barno;
1038  		/* Align to QWORD or 8 Bytes */
1039  		pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8);
1040  		ctrl_size = ctrl_size + msix_table_size + pba_size;
1041  	}
1042  
1043  	if (!align) {
1044  		ctrl_size = roundup_pow_of_two(ctrl_size);
1045  		spad_size = roundup_pow_of_two(spad_size);
1046  	} else {
1047  		ctrl_size = ALIGN(ctrl_size, align);
1048  		spad_size = ALIGN(spad_size, align);
1049  	}
1050  
1051  	if (peer_size) {
1052  		if (peer_size < spad_size)
1053  			spad_count = peer_size / 4;
1054  		spad_size = peer_size;
1055  	}
1056  
1057  	/*
1058  	 * In order to make sure SPAD offset is aligned to its size,
1059  	 * expand control region size to the size of SPAD if SPAD size
1060  	 * is greater than control region size.
1061  	 */
1062  	if (spad_size > ctrl_size)
1063  		ctrl_size = spad_size;
1064  
1065  	if (!size)
1066  		size = ctrl_size + spad_size;
1067  	else if (size < ctrl_size + spad_size)
1068  		return -EINVAL;
1069  
1070  	base = pci_epf_alloc_space(epf, size, barno, align, type);
1071  	if (!base) {
1072  		dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n",
1073  			pci_epc_interface_string(type));
1074  		return -ENOMEM;
1075  	}
1076  
1077  	ntb_epc->reg = base;
1078  
1079  	ctrl = ntb_epc->reg;
1080  	ctrl->spad_offset = ctrl_size;
1081  	ctrl->spad_count = spad_count;
1082  	ctrl->num_mws = ntb->num_mws;
1083  	ctrl->db_entry_size = align ? align : 4;
1084  	ntb_epc->spad_size = spad_size;
1085  
1086  	return 0;
1087  }
1088  
1089  /**
1090   * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config +
1091   *   scratchpad region for each of PRIMARY and SECONDARY interface
1092   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1093   *
1094   * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for
1095   * config + scratchpad region for a specific interface
1096   */
epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb * ntb)1097  static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb)
1098  {
1099  	enum pci_epc_interface_type type;
1100  	struct device *dev;
1101  	int ret;
1102  
1103  	dev = &ntb->epf->dev;
1104  
1105  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1106  		ret = epf_ntb_config_spad_bar_alloc(ntb, type);
1107  		if (ret) {
1108  			dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n",
1109  				pci_epc_interface_string(type));
1110  			return ret;
1111  		}
1112  	}
1113  
1114  	return 0;
1115  }
1116  
1117  /**
1118   * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address
1119   *   space
1120   * @ntb_epc: EPC associated with one of the HOST which holds peers outbound
1121   *   address regions
1122   *
1123   * +-----------------+    +---->+----------------+-----------+-----------------+
1124   * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1125   * +-----------------+    |     +----------------+           +-----------------+
1126   * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1127   * +-----------------+----+     +----------------+         | |                 |
1128   * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1129   * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1130   * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1131   * +-----------------+    |     |----------------+     | |   |                 |
1132   * |       BAR4      |    |     |                |     | |   +-----------------+
1133   * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1134   * |       BAR5      |    |     |                |   | |     +-----------------+
1135   * +-----------------+    +---->-----------------+   | |     |                 |
1136   *   EP CONTROLLER 1            |                |   | |     +-----------------+
1137   *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1138   *                              +----------------+   |       +-----------------+
1139   *                      (A)      EP CONTROLLER 2     |       |                 |
1140   *                                 (OB SPACE)        |       |                 |
1141   *                                                   +------->      MW1        |
1142   *                                                           |                 |
1143   *                                                           |                 |
1144   *                                                   (B)     +-----------------+
1145   *                                                           |                 |
1146   *                                                           |                 |
1147   *                                                           |                 |
1148   *                                                           |                 |
1149   *                                                           |                 |
1150   *                                                           +-----------------+
1151   *                                                           PCI Address Space
1152   *                                                           (Managed by HOST2)
1153   *
1154   * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram.
1155   * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3,
1156   * MW4).
1157   */
epf_ntb_free_peer_mem(struct epf_ntb_epc * ntb_epc)1158  static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc)
1159  {
1160  	struct pci_epf_bar *epf_bar;
1161  	void __iomem *mw_addr;
1162  	phys_addr_t phys_addr;
1163  	enum epf_ntb_bar bar;
1164  	enum pci_barno barno;
1165  	struct pci_epc *epc;
1166  	size_t size;
1167  
1168  	epc = ntb_epc->epc;
1169  
1170  	for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
1171  		barno = ntb_epc->epf_ntb_bar[bar];
1172  		mw_addr = ntb_epc->mw_addr[barno];
1173  		epf_bar = &ntb_epc->epf_bar[barno];
1174  		phys_addr = epf_bar->phys_addr;
1175  		size = epf_bar->size;
1176  		if (mw_addr) {
1177  			pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size);
1178  			ntb_epc->mw_addr[barno] = NULL;
1179  		}
1180  	}
1181  }
1182  
1183  /**
1184   * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR
1185   * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
1186   *   address
1187   *
1188   * +-----------------+    +---->+----------------+-----------+-----------------+
1189   * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1190   * +-----------------+    |     +----------------+           +-----------------+
1191   * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1192   * +-----------------+----+     +----------------+         | |                 |
1193   * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1194   * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1195   * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1196   * +-----------------+    |     |----------------+     | |   |                 |
1197   * |       BAR4      |    |     |                |     | |   +-----------------+
1198   * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1199   * |       BAR5      |    |     |                |   | |     +-----------------+
1200   * +-----------------+    +---->-----------------+   | |     |                 |
1201   *   EP CONTROLLER 1            |                |   | |     +-----------------+
1202   *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1203   *                              +----------------+   |       +-----------------+
1204   *                      (A)      EP CONTROLLER 2     |       |                 |
1205   *                                 (OB SPACE)        |       |                 |
1206   *                                                   +------->      MW1        |
1207   *                                                           |                 |
1208   *                                                           |                 |
1209   *                                                   (B)     +-----------------+
1210   *                                                           |                 |
1211   *                                                           |                 |
1212   *                                                           |                 |
1213   *                                                           |                 |
1214   *                                                           |                 |
1215   *                                                           +-----------------+
1216   *                                                           PCI Address Space
1217   *                                                           (Managed by HOST2)
1218   *
1219   * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above
1220   * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2
1221   * BAR, MW3 BAR and MW4 BAR).
1222   */
epf_ntb_db_mw_bar_clear(struct epf_ntb_epc * ntb_epc)1223  static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc)
1224  {
1225  	struct pci_epf_bar *epf_bar;
1226  	enum epf_ntb_bar bar;
1227  	enum pci_barno barno;
1228  	u8 func_no, vfunc_no;
1229  	struct pci_epc *epc;
1230  
1231  	epc = ntb_epc->epc;
1232  
1233  	func_no = ntb_epc->func_no;
1234  	vfunc_no = ntb_epc->vfunc_no;
1235  
1236  	for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
1237  		barno = ntb_epc->epf_ntb_bar[bar];
1238  		epf_bar = &ntb_epc->epf_bar[barno];
1239  		pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
1240  	}
1241  }
1242  
1243  /**
1244   * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory
1245   *   allocated in peers outbound address space
1246   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1247   * @type: PRIMARY interface or SECONDARY interface
1248   *
1249   * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and
1250   * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory.
1251   */
epf_ntb_db_mw_bar_cleanup(struct epf_ntb * ntb,enum pci_epc_interface_type type)1252  static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb,
1253  				      enum pci_epc_interface_type type)
1254  {
1255  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
1256  
1257  	ntb_epc = ntb->epc[type];
1258  	peer_ntb_epc = ntb->epc[!type];
1259  
1260  	epf_ntb_db_mw_bar_clear(ntb_epc);
1261  	epf_ntb_free_peer_mem(peer_ntb_epc);
1262  }
1263  
1264  /**
1265   * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capability
1266   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1267   * @type: PRIMARY interface or SECONDARY interface
1268   *
1269   * Configure MSI/MSI-X capability for each interface with number of
1270   * interrupts equal to "db_count" configfs entry.
1271   */
epf_ntb_configure_interrupt(struct epf_ntb * ntb,enum pci_epc_interface_type type)1272  static int epf_ntb_configure_interrupt(struct epf_ntb *ntb,
1273  				       enum pci_epc_interface_type type)
1274  {
1275  	const struct pci_epc_features *epc_features;
1276  	bool msix_capable, msi_capable;
1277  	struct epf_ntb_epc *ntb_epc;
1278  	u8 func_no, vfunc_no;
1279  	struct pci_epc *epc;
1280  	struct device *dev;
1281  	u32 db_count;
1282  	int ret;
1283  
1284  	ntb_epc = ntb->epc[type];
1285  	dev = &ntb->epf->dev;
1286  
1287  	epc_features = ntb_epc->epc_features;
1288  	msix_capable = epc_features->msix_capable;
1289  	msi_capable = epc_features->msi_capable;
1290  
1291  	if (!(msix_capable || msi_capable)) {
1292  		dev_err(dev, "MSI or MSI-X is required for doorbell\n");
1293  		return -EINVAL;
1294  	}
1295  
1296  	func_no = ntb_epc->func_no;
1297  	vfunc_no = ntb_epc->vfunc_no;
1298  
1299  	db_count = ntb->db_count;
1300  	if (db_count > MAX_DB_COUNT) {
1301  		dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
1302  		return -EINVAL;
1303  	}
1304  
1305  	ntb->db_count = db_count;
1306  	epc = ntb_epc->epc;
1307  
1308  	if (msi_capable) {
1309  		ret = pci_epc_set_msi(epc, func_no, vfunc_no, db_count);
1310  		if (ret) {
1311  			dev_err(dev, "%s intf: MSI configuration failed\n",
1312  				pci_epc_interface_string(type));
1313  			return ret;
1314  		}
1315  	}
1316  
1317  	if (msix_capable) {
1318  		ret = pci_epc_set_msix(epc, func_no, vfunc_no, db_count,
1319  				       ntb_epc->msix_bar,
1320  				       ntb_epc->msix_table_offset);
1321  		if (ret) {
1322  			dev_err(dev, "MSI configuration failed\n");
1323  			return ret;
1324  		}
1325  	}
1326  
1327  	return 0;
1328  }
1329  
1330  /**
1331   * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space
1332   * @dev: The PCI device.
1333   * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound
1334   *   address
1335   * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be
1336   *   BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4)
1337   * @peer_ntb_epc: EPC associated with HOST whose outbound address space is
1338   *   used by @ntb_epc
1339   * @size: Size of the address region that has to be allocated in peers OB SPACE
1340   *
1341   *
1342   * +-----------------+    +---->+----------------+-----------+-----------------+
1343   * |       BAR0      |    |     |   Doorbell 1   +-----------> MSI|X ADDRESS 1 |
1344   * +-----------------+    |     +----------------+           +-----------------+
1345   * |       BAR1      |    |     |   Doorbell 2   +---------+ |                 |
1346   * +-----------------+----+     +----------------+         | |                 |
1347   * |       BAR2      |          |   Doorbell 3   +-------+ | +-----------------+
1348   * +-----------------+----+     +----------------+       | +-> MSI|X ADDRESS 2 |
1349   * |       BAR3      |    |     |   Doorbell 4   +-----+ |   +-----------------+
1350   * +-----------------+    |     |----------------+     | |   |                 |
1351   * |       BAR4      |    |     |                |     | |   +-----------------+
1352   * +-----------------+    |     |      MW1       +---+ | +-->+ MSI|X ADDRESS 3||
1353   * |       BAR5      |    |     |                |   | |     +-----------------+
1354   * +-----------------+    +---->-----------------+   | |     |                 |
1355   *   EP CONTROLLER 1            |                |   | |     +-----------------+
1356   *                              |                |   | +---->+ MSI|X ADDRESS 4 |
1357   *                              +----------------+   |       +-----------------+
1358   *                      (A)      EP CONTROLLER 2     |       |                 |
1359   *                                 (OB SPACE)        |       |                 |
1360   *                                                   +------->      MW1        |
1361   *                                                           |                 |
1362   *                                                           |                 |
1363   *                                                   (B)     +-----------------+
1364   *                                                           |                 |
1365   *                                                           |                 |
1366   *                                                           |                 |
1367   *                                                           |                 |
1368   *                                                           |                 |
1369   *                                                           +-----------------+
1370   *                                                           PCI Address Space
1371   *                                                           (Managed by HOST2)
1372   *
1373   * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate
1374   * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4).
1375   */
epf_ntb_alloc_peer_mem(struct device * dev,struct epf_ntb_epc * ntb_epc,enum epf_ntb_bar bar,struct epf_ntb_epc * peer_ntb_epc,size_t size)1376  static int epf_ntb_alloc_peer_mem(struct device *dev,
1377  				  struct epf_ntb_epc *ntb_epc,
1378  				  enum epf_ntb_bar bar,
1379  				  struct epf_ntb_epc *peer_ntb_epc,
1380  				  size_t size)
1381  {
1382  	const struct pci_epc_features *epc_features;
1383  	struct pci_epf_bar *epf_bar;
1384  	struct pci_epc *peer_epc;
1385  	phys_addr_t phys_addr;
1386  	void __iomem *mw_addr;
1387  	enum pci_barno barno;
1388  	size_t align;
1389  
1390  	epc_features = ntb_epc->epc_features;
1391  	align = epc_features->align;
1392  
1393  	if (size < 128)
1394  		size = 128;
1395  
1396  	if (align)
1397  		size = ALIGN(size, align);
1398  	else
1399  		size = roundup_pow_of_two(size);
1400  
1401  	peer_epc = peer_ntb_epc->epc;
1402  	mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size);
1403  	if (!mw_addr) {
1404  		dev_err(dev, "%s intf: Failed to allocate OB address\n",
1405  			pci_epc_interface_string(peer_ntb_epc->type));
1406  		return -ENOMEM;
1407  	}
1408  
1409  	barno = ntb_epc->epf_ntb_bar[bar];
1410  	epf_bar = &ntb_epc->epf_bar[barno];
1411  	ntb_epc->mw_addr[barno] = mw_addr;
1412  
1413  	epf_bar->phys_addr = phys_addr;
1414  	epf_bar->size = size;
1415  	epf_bar->barno = barno;
1416  	epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
1417  
1418  	return 0;
1419  }
1420  
1421  /**
1422   * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs
1423   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1424   * @type: PRIMARY interface or SECONDARY interface
1425   *
1426   * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates
1427   * memory in OB address space of HOST2 and configures BAR of HOST1
1428   */
epf_ntb_db_mw_bar_init(struct epf_ntb * ntb,enum pci_epc_interface_type type)1429  static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb,
1430  				  enum pci_epc_interface_type type)
1431  {
1432  	const struct pci_epc_features *epc_features;
1433  	struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
1434  	struct pci_epf_bar *epf_bar;
1435  	struct epf_ntb_ctrl *ctrl;
1436  	u32 num_mws, db_count;
1437  	enum epf_ntb_bar bar;
1438  	enum pci_barno barno;
1439  	u8 func_no, vfunc_no;
1440  	struct pci_epc *epc;
1441  	struct device *dev;
1442  	size_t align;
1443  	int ret, i;
1444  	u64 size;
1445  
1446  	ntb_epc = ntb->epc[type];
1447  	peer_ntb_epc = ntb->epc[!type];
1448  
1449  	dev = &ntb->epf->dev;
1450  	epc_features = ntb_epc->epc_features;
1451  	align = epc_features->align;
1452  	func_no = ntb_epc->func_no;
1453  	vfunc_no = ntb_epc->vfunc_no;
1454  	epc = ntb_epc->epc;
1455  	num_mws = ntb->num_mws;
1456  	db_count = ntb->db_count;
1457  
1458  	for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) {
1459  		if (bar == BAR_DB_MW1) {
1460  			align = align ? align : 4;
1461  			size = db_count * align;
1462  			size = ALIGN(size, ntb->mws_size[i]);
1463  			ctrl = ntb_epc->reg;
1464  			ctrl->mw1_offset = size;
1465  			size += ntb->mws_size[i];
1466  		} else {
1467  			size = ntb->mws_size[i];
1468  		}
1469  
1470  		ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar,
1471  					     peer_ntb_epc, size);
1472  		if (ret) {
1473  			dev_err(dev, "%s intf: DoorBell mem alloc failed\n",
1474  				pci_epc_interface_string(type));
1475  			goto err_alloc_peer_mem;
1476  		}
1477  
1478  		barno = ntb_epc->epf_ntb_bar[bar];
1479  		epf_bar = &ntb_epc->epf_bar[barno];
1480  
1481  		ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
1482  		if (ret) {
1483  			dev_err(dev, "%s intf: DoorBell BAR set failed\n",
1484  				pci_epc_interface_string(type));
1485  			goto err_alloc_peer_mem;
1486  		}
1487  	}
1488  
1489  	return 0;
1490  
1491  err_alloc_peer_mem:
1492  	epf_ntb_db_mw_bar_cleanup(ntb, type);
1493  
1494  	return ret;
1495  }
1496  
1497  /**
1498   * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface
1499   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1500   * @type: PRIMARY interface or SECONDARY interface
1501   *
1502   * Unbind NTB function device from EPC and relinquish reference to pci_epc
1503   * for each of the interface.
1504   */
epf_ntb_epc_destroy_interface(struct epf_ntb * ntb,enum pci_epc_interface_type type)1505  static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb,
1506  					  enum pci_epc_interface_type type)
1507  {
1508  	struct epf_ntb_epc *ntb_epc;
1509  	struct pci_epc *epc;
1510  	struct pci_epf *epf;
1511  
1512  	if (type < 0)
1513  		return;
1514  
1515  	epf = ntb->epf;
1516  	ntb_epc = ntb->epc[type];
1517  	if (!ntb_epc)
1518  		return;
1519  	epc = ntb_epc->epc;
1520  	pci_epc_remove_epf(epc, epf, type);
1521  	pci_epc_put(epc);
1522  }
1523  
1524  /**
1525   * epf_ntb_epc_destroy() - Cleanup NTB EPC interface
1526   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1527   *
1528   * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
1529   */
epf_ntb_epc_destroy(struct epf_ntb * ntb)1530  static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
1531  {
1532  	enum pci_epc_interface_type type;
1533  
1534  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
1535  		epf_ntb_epc_destroy_interface(ntb, type);
1536  }
1537  
1538  /**
1539   * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface
1540   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1541   * @epc: struct pci_epc to which a particular NTB interface should be associated
1542   * @type: PRIMARY interface or SECONDARY interface
1543   *
1544   * Allocate memory for NTB EPC interface and initialize it.
1545   */
epf_ntb_epc_create_interface(struct epf_ntb * ntb,struct pci_epc * epc,enum pci_epc_interface_type type)1546  static int epf_ntb_epc_create_interface(struct epf_ntb *ntb,
1547  					struct pci_epc *epc,
1548  					enum pci_epc_interface_type type)
1549  {
1550  	const struct pci_epc_features *epc_features;
1551  	struct pci_epf_bar *epf_bar;
1552  	struct epf_ntb_epc *ntb_epc;
1553  	u8 func_no, vfunc_no;
1554  	struct pci_epf *epf;
1555  	struct device *dev;
1556  
1557  	dev = &ntb->epf->dev;
1558  
1559  	ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL);
1560  	if (!ntb_epc)
1561  		return -ENOMEM;
1562  
1563  	epf = ntb->epf;
1564  	vfunc_no = epf->vfunc_no;
1565  	if (type == PRIMARY_INTERFACE) {
1566  		func_no = epf->func_no;
1567  		epf_bar = epf->bar;
1568  	} else {
1569  		func_no = epf->sec_epc_func_no;
1570  		epf_bar = epf->sec_epc_bar;
1571  	}
1572  
1573  	ntb_epc->linkup = false;
1574  	ntb_epc->epc = epc;
1575  	ntb_epc->func_no = func_no;
1576  	ntb_epc->vfunc_no = vfunc_no;
1577  	ntb_epc->type = type;
1578  	ntb_epc->epf_bar = epf_bar;
1579  	ntb_epc->epf_ntb = ntb;
1580  
1581  	epc_features = pci_epc_get_features(epc, func_no, vfunc_no);
1582  	if (!epc_features)
1583  		return -EINVAL;
1584  	ntb_epc->epc_features = epc_features;
1585  
1586  	ntb->epc[type] = ntb_epc;
1587  
1588  	return 0;
1589  }
1590  
1591  /**
1592   * epf_ntb_epc_create() - Create and initialize NTB EPC interface
1593   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1594   *
1595   * Get a reference to EPC device and bind NTB function device to that EPC
1596   * for each of the interface. It is also a wrapper to
1597   * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface
1598   * and initialize it
1599   */
epf_ntb_epc_create(struct epf_ntb * ntb)1600  static int epf_ntb_epc_create(struct epf_ntb *ntb)
1601  {
1602  	struct pci_epf *epf;
1603  	struct device *dev;
1604  	int ret;
1605  
1606  	epf = ntb->epf;
1607  	dev = &epf->dev;
1608  
1609  	ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE);
1610  	if (ret) {
1611  		dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n");
1612  		return ret;
1613  	}
1614  
1615  	ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc,
1616  					   SECONDARY_INTERFACE);
1617  	if (ret) {
1618  		dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n");
1619  		goto err_epc_create;
1620  	}
1621  
1622  	return 0;
1623  
1624  err_epc_create:
1625  	epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE);
1626  
1627  	return ret;
1628  }
1629  
1630  /**
1631   * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of
1632   *   the NTB constructs (scratchpad region, doorbell, memorywindow)
1633   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1634   * @type: PRIMARY interface or SECONDARY interface
1635   *
1636   * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD,
1637   * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4.
1638   */
epf_ntb_init_epc_bar_interface(struct epf_ntb * ntb,enum pci_epc_interface_type type)1639  static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb,
1640  					  enum pci_epc_interface_type type)
1641  {
1642  	const struct pci_epc_features *epc_features;
1643  	struct epf_ntb_epc *ntb_epc;
1644  	enum pci_barno barno;
1645  	enum epf_ntb_bar bar;
1646  	struct device *dev;
1647  	u32 num_mws;
1648  	int i;
1649  
1650  	barno = BAR_0;
1651  	ntb_epc = ntb->epc[type];
1652  	num_mws = ntb->num_mws;
1653  	dev = &ntb->epf->dev;
1654  	epc_features = ntb_epc->epc_features;
1655  
1656  	/* These are required BARs which are mandatory for NTB functionality */
1657  	for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) {
1658  		barno = pci_epc_get_next_free_bar(epc_features, barno);
1659  		if (barno < 0) {
1660  			dev_err(dev, "%s intf: Fail to get NTB function BAR\n",
1661  				pci_epc_interface_string(type));
1662  			return barno;
1663  		}
1664  		ntb_epc->epf_ntb_bar[bar] = barno;
1665  	}
1666  
1667  	/* These are optional BARs which don't impact NTB functionality */
1668  	for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) {
1669  		barno = pci_epc_get_next_free_bar(epc_features, barno);
1670  		if (barno < 0) {
1671  			ntb->num_mws = i;
1672  			dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
1673  		}
1674  		ntb_epc->epf_ntb_bar[bar] = barno;
1675  	}
1676  
1677  	return 0;
1678  }
1679  
1680  /**
1681   * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
1682   * constructs (scratchpad region, doorbell, memorywindow)
1683   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1684   *
1685   * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs
1686   * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2,
1687   * BAR_MW3 and BAR_MW4 for all the interfaces.
1688   */
epf_ntb_init_epc_bar(struct epf_ntb * ntb)1689  static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
1690  {
1691  	enum pci_epc_interface_type type;
1692  	struct device *dev;
1693  	int ret;
1694  
1695  	dev = &ntb->epf->dev;
1696  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1697  		ret = epf_ntb_init_epc_bar_interface(ntb, type);
1698  		if (ret) {
1699  			dev_err(dev, "Fail to init EPC bar for %s interface\n",
1700  				pci_epc_interface_string(type));
1701  			return ret;
1702  		}
1703  	}
1704  
1705  	return 0;
1706  }
1707  
1708  /**
1709   * epf_ntb_epc_init_interface() - Initialize NTB interface
1710   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1711   * @type: PRIMARY interface or SECONDARY interface
1712   *
1713   * Wrapper to initialize a particular EPC interface and start the workqueue
1714   * to check for commands from host. This function will write to the
1715   * EP controller HW for configuring it.
1716   */
epf_ntb_epc_init_interface(struct epf_ntb * ntb,enum pci_epc_interface_type type)1717  static int epf_ntb_epc_init_interface(struct epf_ntb *ntb,
1718  				      enum pci_epc_interface_type type)
1719  {
1720  	struct epf_ntb_epc *ntb_epc;
1721  	u8 func_no, vfunc_no;
1722  	struct pci_epc *epc;
1723  	struct pci_epf *epf;
1724  	struct device *dev;
1725  	int ret;
1726  
1727  	ntb_epc = ntb->epc[type];
1728  	epf = ntb->epf;
1729  	dev = &epf->dev;
1730  	epc = ntb_epc->epc;
1731  	func_no = ntb_epc->func_no;
1732  	vfunc_no = ntb_epc->vfunc_no;
1733  
1734  	ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]);
1735  	if (ret) {
1736  		dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n",
1737  			pci_epc_interface_string(type));
1738  		return ret;
1739  	}
1740  
1741  	ret = epf_ntb_peer_spad_bar_set(ntb, type);
1742  	if (ret) {
1743  		dev_err(dev, "%s intf: Peer SPAD BAR init failed\n",
1744  			pci_epc_interface_string(type));
1745  		goto err_peer_spad_bar_init;
1746  	}
1747  
1748  	ret = epf_ntb_configure_interrupt(ntb, type);
1749  	if (ret) {
1750  		dev_err(dev, "%s intf: Interrupt configuration failed\n",
1751  			pci_epc_interface_string(type));
1752  		goto err_peer_spad_bar_init;
1753  	}
1754  
1755  	ret = epf_ntb_db_mw_bar_init(ntb, type);
1756  	if (ret) {
1757  		dev_err(dev, "%s intf: DB/MW BAR init failed\n",
1758  			pci_epc_interface_string(type));
1759  		goto err_db_mw_bar_init;
1760  	}
1761  
1762  	if (vfunc_no <= 1) {
1763  		ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
1764  		if (ret) {
1765  			dev_err(dev, "%s intf: Configuration header write failed\n",
1766  				pci_epc_interface_string(type));
1767  			goto err_write_header;
1768  		}
1769  	}
1770  
1771  	INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler);
1772  	queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work);
1773  
1774  	return 0;
1775  
1776  err_write_header:
1777  	epf_ntb_db_mw_bar_cleanup(ntb, type);
1778  
1779  err_db_mw_bar_init:
1780  	epf_ntb_peer_spad_bar_clear(ntb->epc[type]);
1781  
1782  err_peer_spad_bar_init:
1783  	epf_ntb_config_sspad_bar_clear(ntb->epc[type]);
1784  
1785  	return ret;
1786  }
1787  
1788  /**
1789   * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface
1790   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1791   * @type: PRIMARY interface or SECONDARY interface
1792   *
1793   * Wrapper to cleanup a particular NTB interface.
1794   */
epf_ntb_epc_cleanup_interface(struct epf_ntb * ntb,enum pci_epc_interface_type type)1795  static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb,
1796  					  enum pci_epc_interface_type type)
1797  {
1798  	struct epf_ntb_epc *ntb_epc;
1799  
1800  	if (type < 0)
1801  		return;
1802  
1803  	ntb_epc = ntb->epc[type];
1804  	cancel_delayed_work(&ntb_epc->cmd_handler);
1805  	epf_ntb_db_mw_bar_cleanup(ntb, type);
1806  	epf_ntb_peer_spad_bar_clear(ntb_epc);
1807  	epf_ntb_config_sspad_bar_clear(ntb_epc);
1808  }
1809  
1810  /**
1811   * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
1812   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1813   *
1814   * Wrapper to cleanup all NTB interfaces.
1815   */
epf_ntb_epc_cleanup(struct epf_ntb * ntb)1816  static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
1817  {
1818  	enum pci_epc_interface_type type;
1819  
1820  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
1821  		epf_ntb_epc_cleanup_interface(ntb, type);
1822  }
1823  
1824  /**
1825   * epf_ntb_epc_init() - Initialize all NTB interfaces
1826   * @ntb: NTB device that facilitates communication between HOST1 and HOST2
1827   *
1828   * Wrapper to initialize all NTB interface and start the workqueue
1829   * to check for commands from host.
1830   */
epf_ntb_epc_init(struct epf_ntb * ntb)1831  static int epf_ntb_epc_init(struct epf_ntb *ntb)
1832  {
1833  	enum pci_epc_interface_type type;
1834  	struct device *dev;
1835  	int ret;
1836  
1837  	dev = &ntb->epf->dev;
1838  
1839  	for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
1840  		ret = epf_ntb_epc_init_interface(ntb, type);
1841  		if (ret) {
1842  			dev_err(dev, "%s intf: Failed to initialize\n",
1843  				pci_epc_interface_string(type));
1844  			goto err_init_type;
1845  		}
1846  	}
1847  
1848  	return 0;
1849  
1850  err_init_type:
1851  	epf_ntb_epc_cleanup_interface(ntb, type - 1);
1852  
1853  	return ret;
1854  }
1855  
1856  /**
1857   * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
1858   * @epf: NTB endpoint function device
1859   *
1860   * Initialize both the endpoint controllers associated with NTB function device.
1861   * Invoked when a primary interface or secondary interface is bound to EPC
1862   * device. This function will succeed only when EPC is bound to both the
1863   * interfaces.
1864   */
epf_ntb_bind(struct pci_epf * epf)1865  static int epf_ntb_bind(struct pci_epf *epf)
1866  {
1867  	struct epf_ntb *ntb = epf_get_drvdata(epf);
1868  	struct device *dev = &epf->dev;
1869  	int ret;
1870  
1871  	if (!epf->epc) {
1872  		dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
1873  		return 0;
1874  	}
1875  
1876  	if (!epf->sec_epc) {
1877  		dev_dbg(dev, "SECONDARY EPC interface not yet bound\n");
1878  		return 0;
1879  	}
1880  
1881  	ret = epf_ntb_epc_create(ntb);
1882  	if (ret) {
1883  		dev_err(dev, "Failed to create NTB EPC\n");
1884  		return ret;
1885  	}
1886  
1887  	ret = epf_ntb_init_epc_bar(ntb);
1888  	if (ret) {
1889  		dev_err(dev, "Failed to create NTB EPC\n");
1890  		goto err_bar_init;
1891  	}
1892  
1893  	ret = epf_ntb_config_spad_bar_alloc_interface(ntb);
1894  	if (ret) {
1895  		dev_err(dev, "Failed to allocate BAR memory\n");
1896  		goto err_bar_alloc;
1897  	}
1898  
1899  	ret = epf_ntb_epc_init(ntb);
1900  	if (ret) {
1901  		dev_err(dev, "Failed to initialize EPC\n");
1902  		goto err_bar_alloc;
1903  	}
1904  
1905  	epf_set_drvdata(epf, ntb);
1906  
1907  	return 0;
1908  
1909  err_bar_alloc:
1910  	epf_ntb_config_spad_bar_free(ntb);
1911  
1912  err_bar_init:
1913  	epf_ntb_epc_destroy(ntb);
1914  
1915  	return ret;
1916  }
1917  
1918  /**
1919   * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
1920   * @epf: NTB endpoint function device
1921   *
1922   * Cleanup the initialization from epf_ntb_bind()
1923   */
epf_ntb_unbind(struct pci_epf * epf)1924  static void epf_ntb_unbind(struct pci_epf *epf)
1925  {
1926  	struct epf_ntb *ntb = epf_get_drvdata(epf);
1927  
1928  	epf_ntb_epc_cleanup(ntb);
1929  	epf_ntb_config_spad_bar_free(ntb);
1930  	epf_ntb_epc_destroy(ntb);
1931  }
1932  
1933  #define EPF_NTB_R(_name)						\
1934  static ssize_t epf_ntb_##_name##_show(struct config_item *item,		\
1935  				      char *page)			\
1936  {									\
1937  	struct config_group *group = to_config_group(item);		\
1938  	struct epf_ntb *ntb = to_epf_ntb(group);			\
1939  									\
1940  	return sysfs_emit(page, "%d\n", ntb->_name);			\
1941  }
1942  
1943  #define EPF_NTB_W(_name)						\
1944  static ssize_t epf_ntb_##_name##_store(struct config_item *item,	\
1945  				       const char *page, size_t len)	\
1946  {									\
1947  	struct config_group *group = to_config_group(item);		\
1948  	struct epf_ntb *ntb = to_epf_ntb(group);			\
1949  	u32 val;							\
1950  									\
1951  	if (kstrtou32(page, 0, &val) < 0)				\
1952  		return -EINVAL;						\
1953  									\
1954  	ntb->_name = val;						\
1955  									\
1956  	return len;							\
1957  }
1958  
1959  #define EPF_NTB_MW_R(_name)						\
1960  static ssize_t epf_ntb_##_name##_show(struct config_item *item,		\
1961  				      char *page)			\
1962  {									\
1963  	struct config_group *group = to_config_group(item);		\
1964  	struct epf_ntb *ntb = to_epf_ntb(group);			\
1965  	int win_no;							\
1966  									\
1967  	sscanf(#_name, "mw%d", &win_no);				\
1968  									\
1969  	return sysfs_emit(page, "%lld\n", ntb->mws_size[win_no - 1]);	\
1970  }
1971  
1972  #define EPF_NTB_MW_W(_name)						\
1973  static ssize_t epf_ntb_##_name##_store(struct config_item *item,	\
1974  				       const char *page, size_t len)	\
1975  {									\
1976  	struct config_group *group = to_config_group(item);		\
1977  	struct epf_ntb *ntb = to_epf_ntb(group);			\
1978  	struct device *dev = &ntb->epf->dev;				\
1979  	int win_no;							\
1980  	u64 val;							\
1981  									\
1982  	if (kstrtou64(page, 0, &val) < 0)				\
1983  		return -EINVAL;						\
1984  									\
1985  	if (sscanf(#_name, "mw%d", &win_no) != 1)			\
1986  		return -EINVAL;						\
1987  									\
1988  	if (ntb->num_mws < win_no) {					\
1989  		dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
1990  		return -EINVAL;						\
1991  	}								\
1992  									\
1993  	ntb->mws_size[win_no - 1] = val;				\
1994  									\
1995  	return len;							\
1996  }
1997  
epf_ntb_num_mws_store(struct config_item * item,const char * page,size_t len)1998  static ssize_t epf_ntb_num_mws_store(struct config_item *item,
1999  				     const char *page, size_t len)
2000  {
2001  	struct config_group *group = to_config_group(item);
2002  	struct epf_ntb *ntb = to_epf_ntb(group);
2003  	u32 val;
2004  
2005  	if (kstrtou32(page, 0, &val) < 0)
2006  		return -EINVAL;
2007  
2008  	if (val > MAX_MW)
2009  		return -EINVAL;
2010  
2011  	ntb->num_mws = val;
2012  
2013  	return len;
2014  }
2015  
2016  EPF_NTB_R(spad_count)
2017  EPF_NTB_W(spad_count)
2018  EPF_NTB_R(db_count)
2019  EPF_NTB_W(db_count)
2020  EPF_NTB_R(num_mws)
2021  EPF_NTB_MW_R(mw1)
2022  EPF_NTB_MW_W(mw1)
2023  EPF_NTB_MW_R(mw2)
2024  EPF_NTB_MW_W(mw2)
2025  EPF_NTB_MW_R(mw3)
2026  EPF_NTB_MW_W(mw3)
2027  EPF_NTB_MW_R(mw4)
2028  EPF_NTB_MW_W(mw4)
2029  
2030  CONFIGFS_ATTR(epf_ntb_, spad_count);
2031  CONFIGFS_ATTR(epf_ntb_, db_count);
2032  CONFIGFS_ATTR(epf_ntb_, num_mws);
2033  CONFIGFS_ATTR(epf_ntb_, mw1);
2034  CONFIGFS_ATTR(epf_ntb_, mw2);
2035  CONFIGFS_ATTR(epf_ntb_, mw3);
2036  CONFIGFS_ATTR(epf_ntb_, mw4);
2037  
2038  static struct configfs_attribute *epf_ntb_attrs[] = {
2039  	&epf_ntb_attr_spad_count,
2040  	&epf_ntb_attr_db_count,
2041  	&epf_ntb_attr_num_mws,
2042  	&epf_ntb_attr_mw1,
2043  	&epf_ntb_attr_mw2,
2044  	&epf_ntb_attr_mw3,
2045  	&epf_ntb_attr_mw4,
2046  	NULL,
2047  };
2048  
2049  static const struct config_item_type ntb_group_type = {
2050  	.ct_attrs	= epf_ntb_attrs,
2051  	.ct_owner	= THIS_MODULE,
2052  };
2053  
2054  /**
2055   * epf_ntb_add_cfs() - Add configfs directory specific to NTB
2056   * @epf: NTB endpoint function device
2057   * @group: A pointer to the config_group structure referencing a group of
2058   *	   config_items of a specific type that belong to a specific sub-system.
2059   *
2060   * Add configfs directory specific to NTB. This directory will hold
2061   * NTB specific properties like db_count, spad_count, num_mws etc.,
2062   */
epf_ntb_add_cfs(struct pci_epf * epf,struct config_group * group)2063  static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
2064  					    struct config_group *group)
2065  {
2066  	struct epf_ntb *ntb = epf_get_drvdata(epf);
2067  	struct config_group *ntb_group = &ntb->group;
2068  	struct device *dev = &epf->dev;
2069  
2070  	config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
2071  
2072  	return ntb_group;
2073  }
2074  
2075  /**
2076   * epf_ntb_probe() - Probe NTB function driver
2077   * @epf: NTB endpoint function device
2078   * @id: NTB endpoint function device ID
2079   *
2080   * Probe NTB function driver when endpoint function bus detects a NTB
2081   * endpoint function.
2082   */
epf_ntb_probe(struct pci_epf * epf,const struct pci_epf_device_id * id)2083  static int epf_ntb_probe(struct pci_epf *epf,
2084  			 const struct pci_epf_device_id *id)
2085  {
2086  	struct epf_ntb *ntb;
2087  	struct device *dev;
2088  
2089  	dev = &epf->dev;
2090  
2091  	ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
2092  	if (!ntb)
2093  		return -ENOMEM;
2094  
2095  	epf->header = &epf_ntb_header;
2096  	ntb->epf = epf;
2097  	epf_set_drvdata(epf, ntb);
2098  
2099  	return 0;
2100  }
2101  
2102  static struct pci_epf_ops epf_ntb_ops = {
2103  	.bind	= epf_ntb_bind,
2104  	.unbind	= epf_ntb_unbind,
2105  	.add_cfs = epf_ntb_add_cfs,
2106  };
2107  
2108  static const struct pci_epf_device_id epf_ntb_ids[] = {
2109  	{
2110  		.name = "pci_epf_ntb",
2111  	},
2112  	{},
2113  };
2114  
2115  static struct pci_epf_driver epf_ntb_driver = {
2116  	.driver.name	= "pci_epf_ntb",
2117  	.probe		= epf_ntb_probe,
2118  	.id_table	= epf_ntb_ids,
2119  	.ops		= &epf_ntb_ops,
2120  	.owner		= THIS_MODULE,
2121  };
2122  
epf_ntb_init(void)2123  static int __init epf_ntb_init(void)
2124  {
2125  	int ret;
2126  
2127  	kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
2128  					    WQ_HIGHPRI, 0);
2129  	ret = pci_epf_register_driver(&epf_ntb_driver);
2130  	if (ret) {
2131  		destroy_workqueue(kpcintb_workqueue);
2132  		pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
2133  		return ret;
2134  	}
2135  
2136  	return 0;
2137  }
2138  module_init(epf_ntb_init);
2139  
epf_ntb_exit(void)2140  static void __exit epf_ntb_exit(void)
2141  {
2142  	pci_epf_unregister_driver(&epf_ntb_driver);
2143  	destroy_workqueue(kpcintb_workqueue);
2144  }
2145  module_exit(epf_ntb_exit);
2146  
2147  MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
2148  MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
2149  MODULE_LICENSE("GPL v2");
2150