1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Perf support for the Statistical Profiling Extension, introduced as
4 * part of ARMv8.2.
5 *
6 * Copyright (C) 2016 ARM Limited
7 *
8 * Author: Will Deacon <will.deacon@arm.com>
9 */
10
11 #define PMUNAME "arm_spe"
12 #define DRVNAME PMUNAME "_pmu"
13 #define pr_fmt(fmt) DRVNAME ": " fmt
14
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41
42 /*
43 * Cache if the event is allowed to trace Context information.
44 * This allows us to perform the check, i.e, perf_allow_kernel(),
45 * in the context of the event owner, once, during the event_init().
46 */
47 #define SPE_PMU_HW_FLAGS_CX 0x00001
48
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50
set_spe_event_has_cx(struct perf_event * event)51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel(&event->attr))
54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56
get_spe_event_has_cx(struct perf_event * event)57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61
62 #define ARM_SPE_BUF_PAD_BYTE 0
63
64 struct arm_spe_pmu_buf {
65 int nr_pages;
66 bool snapshot;
67 void *base;
68 };
69
70 struct arm_spe_pmu {
71 struct pmu pmu;
72 struct platform_device *pdev;
73 cpumask_t supported_cpus;
74 struct hlist_node hotplug_node;
75
76 int irq; /* PPI */
77 u16 pmsver;
78 u16 min_period;
79 u16 counter_sz;
80
81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3)
85 #define SPE_PMU_FEAT_LDS (1UL << 4)
86 #define SPE_PMU_FEAT_ERND (1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6)
88 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63)
89 u64 features;
90
91 u16 max_record_sz;
92 u16 align;
93 struct perf_output_handle __percpu *handle;
94 };
95
96 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
97
98 /* Convert a free-running index from perf into an SPE buffer offset */
99 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
100
101 /* Keep track of our dynamic hotplug state */
102 static enum cpuhp_state arm_spe_pmu_online;
103
104 enum arm_spe_pmu_buf_fault_action {
105 SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
106 SPE_PMU_BUF_FAULT_ACT_FATAL,
107 SPE_PMU_BUF_FAULT_ACT_OK,
108 };
109
110 /* This sysfs gunk was really good fun to write. */
111 enum arm_spe_pmu_capabilities {
112 SPE_PMU_CAP_ARCH_INST = 0,
113 SPE_PMU_CAP_ERND,
114 SPE_PMU_CAP_FEAT_MAX,
115 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
116 SPE_PMU_CAP_MIN_IVAL,
117 };
118
119 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
120 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
121 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND,
122 };
123
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)124 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
125 {
126 if (cap < SPE_PMU_CAP_FEAT_MAX)
127 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
128
129 switch (cap) {
130 case SPE_PMU_CAP_CNT_SZ:
131 return spe_pmu->counter_sz;
132 case SPE_PMU_CAP_MIN_IVAL:
133 return spe_pmu->min_period;
134 default:
135 WARN(1, "unknown cap %d\n", cap);
136 }
137
138 return 0;
139 }
140
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)141 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
142 struct device_attribute *attr,
143 char *buf)
144 {
145 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
146 struct dev_ext_attribute *ea =
147 container_of(attr, struct dev_ext_attribute, attr);
148 int cap = (long)ea->var;
149
150 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
151 }
152
153 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \
154 &((struct dev_ext_attribute[]) { \
155 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \
156 })[0].attr.attr
157
158 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \
159 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
160
161 static struct attribute *arm_spe_pmu_cap_attr[] = {
162 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
163 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
164 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
165 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
166 NULL,
167 };
168
169 static const struct attribute_group arm_spe_pmu_cap_group = {
170 .name = "caps",
171 .attrs = arm_spe_pmu_cap_attr,
172 };
173
174 /* User ABI */
175 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */
176 #define ATTR_CFG_FLD_ts_enable_LO 0
177 #define ATTR_CFG_FLD_ts_enable_HI 0
178 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */
179 #define ATTR_CFG_FLD_pa_enable_LO 1
180 #define ATTR_CFG_FLD_pa_enable_HI 1
181 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */
182 #define ATTR_CFG_FLD_pct_enable_LO 2
183 #define ATTR_CFG_FLD_pct_enable_HI 2
184 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */
185 #define ATTR_CFG_FLD_jitter_LO 16
186 #define ATTR_CFG_FLD_jitter_HI 16
187 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */
188 #define ATTR_CFG_FLD_branch_filter_LO 32
189 #define ATTR_CFG_FLD_branch_filter_HI 32
190 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */
191 #define ATTR_CFG_FLD_load_filter_LO 33
192 #define ATTR_CFG_FLD_load_filter_HI 33
193 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */
194 #define ATTR_CFG_FLD_store_filter_LO 34
195 #define ATTR_CFG_FLD_store_filter_HI 34
196
197 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */
198 #define ATTR_CFG_FLD_event_filter_LO 0
199 #define ATTR_CFG_FLD_event_filter_HI 63
200
201 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */
202 #define ATTR_CFG_FLD_min_latency_LO 0
203 #define ATTR_CFG_FLD_min_latency_HI 11
204
205 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */
206 #define ATTR_CFG_FLD_inv_event_filter_LO 0
207 #define ATTR_CFG_FLD_inv_event_filter_HI 63
208
209 /* Why does everything I do descend into this? */
210 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
211 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
212
213 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \
214 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
215
216 #define GEN_PMU_FORMAT_ATTR(name) \
217 PMU_FORMAT_ATTR(name, \
218 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \
219 ATTR_CFG_FLD_##name##_LO, \
220 ATTR_CFG_FLD_##name##_HI))
221
222 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \
223 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
224
225 #define ATTR_CFG_GET_FLD(attr, name) \
226 _ATTR_CFG_GET_FLD(attr, \
227 ATTR_CFG_FLD_##name##_CFG, \
228 ATTR_CFG_FLD_##name##_LO, \
229 ATTR_CFG_FLD_##name##_HI)
230
231 GEN_PMU_FORMAT_ATTR(ts_enable);
232 GEN_PMU_FORMAT_ATTR(pa_enable);
233 GEN_PMU_FORMAT_ATTR(pct_enable);
234 GEN_PMU_FORMAT_ATTR(jitter);
235 GEN_PMU_FORMAT_ATTR(branch_filter);
236 GEN_PMU_FORMAT_ATTR(load_filter);
237 GEN_PMU_FORMAT_ATTR(store_filter);
238 GEN_PMU_FORMAT_ATTR(event_filter);
239 GEN_PMU_FORMAT_ATTR(inv_event_filter);
240 GEN_PMU_FORMAT_ATTR(min_latency);
241
242 static struct attribute *arm_spe_pmu_formats_attr[] = {
243 &format_attr_ts_enable.attr,
244 &format_attr_pa_enable.attr,
245 &format_attr_pct_enable.attr,
246 &format_attr_jitter.attr,
247 &format_attr_branch_filter.attr,
248 &format_attr_load_filter.attr,
249 &format_attr_store_filter.attr,
250 &format_attr_event_filter.attr,
251 &format_attr_inv_event_filter.attr,
252 &format_attr_min_latency.attr,
253 NULL,
254 };
255
arm_spe_pmu_format_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)256 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
257 struct attribute *attr,
258 int unused)
259 {
260 struct device *dev = kobj_to_dev(kobj);
261 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
262
263 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
264 return 0;
265
266 return attr->mode;
267 }
268
269 static const struct attribute_group arm_spe_pmu_format_group = {
270 .name = "format",
271 .is_visible = arm_spe_pmu_format_attr_is_visible,
272 .attrs = arm_spe_pmu_formats_attr,
273 };
274
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)275 static ssize_t cpumask_show(struct device *dev,
276 struct device_attribute *attr, char *buf)
277 {
278 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
279
280 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
281 }
282 static DEVICE_ATTR_RO(cpumask);
283
284 static struct attribute *arm_spe_pmu_attrs[] = {
285 &dev_attr_cpumask.attr,
286 NULL,
287 };
288
289 static const struct attribute_group arm_spe_pmu_group = {
290 .attrs = arm_spe_pmu_attrs,
291 };
292
293 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
294 &arm_spe_pmu_group,
295 &arm_spe_pmu_cap_group,
296 &arm_spe_pmu_format_group,
297 NULL,
298 };
299
300 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)301 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
302 {
303 struct perf_event_attr *attr = &event->attr;
304 u64 reg = 0;
305
306 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
307 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
308 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
309
310 if (!attr->exclude_user)
311 reg |= PMSCR_EL1_E0SPE;
312
313 if (!attr->exclude_kernel)
314 reg |= PMSCR_EL1_E1SPE;
315
316 if (get_spe_event_has_cx(event))
317 reg |= PMSCR_EL1_CX;
318
319 return reg;
320 }
321
arm_spe_event_sanitise_period(struct perf_event * event)322 static void arm_spe_event_sanitise_period(struct perf_event *event)
323 {
324 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
325 u64 period = event->hw.sample_period;
326 u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
327
328 if (period < spe_pmu->min_period)
329 period = spe_pmu->min_period;
330 else if (period > max_period)
331 period = max_period;
332 else
333 period &= max_period;
334
335 event->hw.sample_period = period;
336 }
337
arm_spe_event_to_pmsirr(struct perf_event * event)338 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
339 {
340 struct perf_event_attr *attr = &event->attr;
341 u64 reg = 0;
342
343 arm_spe_event_sanitise_period(event);
344
345 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
346 reg |= event->hw.sample_period;
347
348 return reg;
349 }
350
arm_spe_event_to_pmsfcr(struct perf_event * event)351 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
352 {
353 struct perf_event_attr *attr = &event->attr;
354 u64 reg = 0;
355
356 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
357 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
358 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
359
360 if (reg)
361 reg |= PMSFCR_EL1_FT;
362
363 if (ATTR_CFG_GET_FLD(attr, event_filter))
364 reg |= PMSFCR_EL1_FE;
365
366 if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
367 reg |= PMSFCR_EL1_FnE;
368
369 if (ATTR_CFG_GET_FLD(attr, min_latency))
370 reg |= PMSFCR_EL1_FL;
371
372 return reg;
373 }
374
arm_spe_event_to_pmsevfr(struct perf_event * event)375 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
376 {
377 struct perf_event_attr *attr = &event->attr;
378 return ATTR_CFG_GET_FLD(attr, event_filter);
379 }
380
arm_spe_event_to_pmsnevfr(struct perf_event * event)381 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
382 {
383 struct perf_event_attr *attr = &event->attr;
384 return ATTR_CFG_GET_FLD(attr, inv_event_filter);
385 }
386
arm_spe_event_to_pmslatfr(struct perf_event * event)387 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
388 {
389 struct perf_event_attr *attr = &event->attr;
390 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
391 }
392
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)393 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
394 {
395 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
396 u64 head = PERF_IDX2OFF(handle->head, buf);
397
398 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
399 if (!buf->snapshot)
400 perf_aux_output_skip(handle, len);
401 }
402
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)403 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
404 {
405 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
406 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407 u64 head = PERF_IDX2OFF(handle->head, buf);
408 u64 limit = buf->nr_pages * PAGE_SIZE;
409
410 /*
411 * The trace format isn't parseable in reverse, so clamp
412 * the limit to half of the buffer size in snapshot mode
413 * so that the worst case is half a buffer of records, as
414 * opposed to a single record.
415 */
416 if (head < limit >> 1)
417 limit >>= 1;
418
419 /*
420 * If we're within max_record_sz of the limit, we must
421 * pad, move the head index and recompute the limit.
422 */
423 if (limit - head < spe_pmu->max_record_sz) {
424 arm_spe_pmu_pad_buf(handle, limit - head);
425 handle->head = PERF_IDX2OFF(limit, buf);
426 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
427 }
428
429 return limit;
430 }
431
__arm_spe_pmu_next_off(struct perf_output_handle * handle)432 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
433 {
434 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
435 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
436 const u64 bufsize = buf->nr_pages * PAGE_SIZE;
437 u64 limit = bufsize;
438 u64 head, tail, wakeup;
439
440 /*
441 * The head can be misaligned for two reasons:
442 *
443 * 1. The hardware left PMBPTR pointing to the first byte after
444 * a record when generating a buffer management event.
445 *
446 * 2. We used perf_aux_output_skip to consume handle->size bytes
447 * and CIRC_SPACE was used to compute the size, which always
448 * leaves one entry free.
449 *
450 * Deal with this by padding to the next alignment boundary and
451 * moving the head index. If we run out of buffer space, we'll
452 * reduce handle->size to zero and end up reporting truncation.
453 */
454 head = PERF_IDX2OFF(handle->head, buf);
455 if (!IS_ALIGNED(head, spe_pmu->align)) {
456 unsigned long delta = roundup(head, spe_pmu->align) - head;
457
458 delta = min(delta, handle->size);
459 arm_spe_pmu_pad_buf(handle, delta);
460 head = PERF_IDX2OFF(handle->head, buf);
461 }
462
463 /* If we've run out of free space, then nothing more to do */
464 if (!handle->size)
465 goto no_space;
466
467 /* Compute the tail and wakeup indices now that we've aligned head */
468 tail = PERF_IDX2OFF(handle->head + handle->size, buf);
469 wakeup = PERF_IDX2OFF(handle->wakeup, buf);
470
471 /*
472 * Avoid clobbering unconsumed data. We know we have space, so
473 * if we see head == tail we know that the buffer is empty. If
474 * head > tail, then there's nothing to clobber prior to
475 * wrapping.
476 */
477 if (head < tail)
478 limit = round_down(tail, PAGE_SIZE);
479
480 /*
481 * Wakeup may be arbitrarily far into the future. If it's not in
482 * the current generation, either we'll wrap before hitting it,
483 * or it's in the past and has been handled already.
484 *
485 * If there's a wakeup before we wrap, arrange to be woken up by
486 * the page boundary following it. Keep the tail boundary if
487 * that's lower.
488 */
489 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
490 limit = min(limit, round_up(wakeup, PAGE_SIZE));
491
492 if (limit > head)
493 return limit;
494
495 arm_spe_pmu_pad_buf(handle, handle->size);
496 no_space:
497 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
498 perf_aux_output_end(handle, 0);
499 return 0;
500 }
501
arm_spe_pmu_next_off(struct perf_output_handle * handle)502 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
503 {
504 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
505 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
506 u64 limit = __arm_spe_pmu_next_off(handle);
507 u64 head = PERF_IDX2OFF(handle->head, buf);
508
509 /*
510 * If the head has come too close to the end of the buffer,
511 * then pad to the end and recompute the limit.
512 */
513 if (limit && (limit - head < spe_pmu->max_record_sz)) {
514 arm_spe_pmu_pad_buf(handle, limit - head);
515 limit = __arm_spe_pmu_next_off(handle);
516 }
517
518 return limit;
519 }
520
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)521 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
522 struct perf_event *event)
523 {
524 u64 base, limit;
525 struct arm_spe_pmu_buf *buf;
526
527 /* Start a new aux session */
528 buf = perf_aux_output_begin(handle, event);
529 if (!buf) {
530 event->hw.state |= PERF_HES_STOPPED;
531 /*
532 * We still need to clear the limit pointer, since the
533 * profiler might only be disabled by virtue of a fault.
534 */
535 limit = 0;
536 goto out_write_limit;
537 }
538
539 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
540 : arm_spe_pmu_next_off(handle);
541 if (limit)
542 limit |= PMBLIMITR_EL1_E;
543
544 limit += (u64)buf->base;
545 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
546 write_sysreg_s(base, SYS_PMBPTR_EL1);
547
548 out_write_limit:
549 write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
550 }
551
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)552 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
553 {
554 struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
555 u64 offset, size;
556
557 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
558 size = offset - PERF_IDX2OFF(handle->head, buf);
559
560 if (buf->snapshot)
561 handle->head = offset;
562
563 perf_aux_output_end(handle, size);
564 }
565
arm_spe_pmu_disable_and_drain_local(void)566 static void arm_spe_pmu_disable_and_drain_local(void)
567 {
568 /* Disable profiling at EL0 and EL1 */
569 write_sysreg_s(0, SYS_PMSCR_EL1);
570 isb();
571
572 /* Drain any buffered data */
573 psb_csync();
574 dsb(nsh);
575
576 /* Disable the profiling buffer */
577 write_sysreg_s(0, SYS_PMBLIMITR_EL1);
578 isb();
579 }
580
581 /* IRQ handling */
582 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)583 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
584 {
585 const char *err_str;
586 u64 pmbsr;
587 enum arm_spe_pmu_buf_fault_action ret;
588
589 /*
590 * Ensure new profiling data is visible to the CPU and any external
591 * aborts have been resolved.
592 */
593 psb_csync();
594 dsb(nsh);
595
596 /* Ensure hardware updates to PMBPTR_EL1 are visible */
597 isb();
598
599 /* Service required? */
600 pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
601 if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
602 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
603
604 /*
605 * If we've lost data, disable profiling and also set the PARTIAL
606 * flag to indicate that the last record is corrupted.
607 */
608 if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
609 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
610 PERF_AUX_FLAG_PARTIAL);
611
612 /* Report collisions to userspace so that it can up the period */
613 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
614 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
615
616 /* We only expect buffer management events */
617 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
618 case PMBSR_EL1_EC_BUF:
619 /* Handled below */
620 break;
621 case PMBSR_EL1_EC_FAULT_S1:
622 case PMBSR_EL1_EC_FAULT_S2:
623 err_str = "Unexpected buffer fault";
624 goto out_err;
625 default:
626 err_str = "Unknown error code";
627 goto out_err;
628 }
629
630 /* Buffer management event */
631 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
632 case PMBSR_EL1_BUF_BSC_FULL:
633 ret = SPE_PMU_BUF_FAULT_ACT_OK;
634 goto out_stop;
635 default:
636 err_str = "Unknown buffer status code";
637 }
638
639 out_err:
640 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
641 err_str, smp_processor_id(), pmbsr,
642 read_sysreg_s(SYS_PMBPTR_EL1),
643 read_sysreg_s(SYS_PMBLIMITR_EL1));
644 ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
645
646 out_stop:
647 arm_spe_perf_aux_output_end(handle);
648 return ret;
649 }
650
arm_spe_pmu_irq_handler(int irq,void * dev)651 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
652 {
653 struct perf_output_handle *handle = dev;
654 struct perf_event *event = handle->event;
655 enum arm_spe_pmu_buf_fault_action act;
656
657 if (!perf_get_aux(handle))
658 return IRQ_NONE;
659
660 act = arm_spe_pmu_buf_get_fault_act(handle);
661 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
662 return IRQ_NONE;
663
664 /*
665 * Ensure perf callbacks have completed, which may disable the
666 * profiling buffer in response to a TRUNCATION flag.
667 */
668 irq_work_run();
669
670 switch (act) {
671 case SPE_PMU_BUF_FAULT_ACT_FATAL:
672 /*
673 * If a fatal exception occurred then leaving the profiling
674 * buffer enabled is a recipe waiting to happen. Since
675 * fatal faults don't always imply truncation, make sure
676 * that the profiling buffer is disabled explicitly before
677 * clearing the syndrome register.
678 */
679 arm_spe_pmu_disable_and_drain_local();
680 break;
681 case SPE_PMU_BUF_FAULT_ACT_OK:
682 /*
683 * We handled the fault (the buffer was full), so resume
684 * profiling as long as we didn't detect truncation.
685 * PMBPTR might be misaligned, but we'll burn that bridge
686 * when we get to it.
687 */
688 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
689 arm_spe_perf_aux_output_begin(handle, event);
690 isb();
691 }
692 break;
693 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
694 /* We've seen you before, but GCC has the memory of a sieve. */
695 break;
696 }
697
698 /* The buffer pointers are now sane, so resume profiling. */
699 write_sysreg_s(0, SYS_PMBSR_EL1);
700 return IRQ_HANDLED;
701 }
702
arm_spe_pmsevfr_res0(u16 pmsver)703 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
704 {
705 switch (pmsver) {
706 case ID_AA64DFR0_EL1_PMSVer_IMP:
707 return PMSEVFR_EL1_RES0_IMP;
708 case ID_AA64DFR0_EL1_PMSVer_V1P1:
709 return PMSEVFR_EL1_RES0_V1P1;
710 case ID_AA64DFR0_EL1_PMSVer_V1P2:
711 /* Return the highest version we support in default */
712 default:
713 return PMSEVFR_EL1_RES0_V1P2;
714 }
715 }
716
717 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)718 static int arm_spe_pmu_event_init(struct perf_event *event)
719 {
720 u64 reg;
721 struct perf_event_attr *attr = &event->attr;
722 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
723
724 /* This is, of course, deeply driver-specific */
725 if (attr->type != event->pmu->type)
726 return -ENOENT;
727
728 if (event->cpu >= 0 &&
729 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
730 return -ENOENT;
731
732 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
733 return -EOPNOTSUPP;
734
735 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
736 return -EOPNOTSUPP;
737
738 if (attr->exclude_idle)
739 return -EOPNOTSUPP;
740
741 /*
742 * Feedback-directed frequency throttling doesn't work when we
743 * have a buffer of samples. We'd need to manually count the
744 * samples in the buffer when it fills up and adjust the event
745 * count to reflect that. Instead, just force the user to specify
746 * a sample period.
747 */
748 if (attr->freq)
749 return -EINVAL;
750
751 reg = arm_spe_event_to_pmsfcr(event);
752 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
753 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
754 return -EOPNOTSUPP;
755
756 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
757 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
758 return -EOPNOTSUPP;
759
760 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
761 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
762 return -EOPNOTSUPP;
763
764 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
765 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
766 return -EOPNOTSUPP;
767
768 set_spe_event_has_cx(event);
769 reg = arm_spe_event_to_pmscr(event);
770 if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))
771 return perf_allow_kernel(&event->attr);
772
773 return 0;
774 }
775
arm_spe_pmu_start(struct perf_event * event,int flags)776 static void arm_spe_pmu_start(struct perf_event *event, int flags)
777 {
778 u64 reg;
779 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
780 struct hw_perf_event *hwc = &event->hw;
781 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
782
783 hwc->state = 0;
784 arm_spe_perf_aux_output_begin(handle, event);
785 if (hwc->state)
786 return;
787
788 reg = arm_spe_event_to_pmsfcr(event);
789 write_sysreg_s(reg, SYS_PMSFCR_EL1);
790
791 reg = arm_spe_event_to_pmsevfr(event);
792 write_sysreg_s(reg, SYS_PMSEVFR_EL1);
793
794 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
795 reg = arm_spe_event_to_pmsnevfr(event);
796 write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
797 }
798
799 reg = arm_spe_event_to_pmslatfr(event);
800 write_sysreg_s(reg, SYS_PMSLATFR_EL1);
801
802 if (flags & PERF_EF_RELOAD) {
803 reg = arm_spe_event_to_pmsirr(event);
804 write_sysreg_s(reg, SYS_PMSIRR_EL1);
805 isb();
806 reg = local64_read(&hwc->period_left);
807 write_sysreg_s(reg, SYS_PMSICR_EL1);
808 }
809
810 reg = arm_spe_event_to_pmscr(event);
811 isb();
812 write_sysreg_s(reg, SYS_PMSCR_EL1);
813 }
814
arm_spe_pmu_stop(struct perf_event * event,int flags)815 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
816 {
817 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
818 struct hw_perf_event *hwc = &event->hw;
819 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
820
821 /* If we're already stopped, then nothing to do */
822 if (hwc->state & PERF_HES_STOPPED)
823 return;
824
825 /* Stop all trace generation */
826 arm_spe_pmu_disable_and_drain_local();
827
828 if (flags & PERF_EF_UPDATE) {
829 /*
830 * If there's a fault pending then ensure we contain it
831 * to this buffer, since we might be on the context-switch
832 * path.
833 */
834 if (perf_get_aux(handle)) {
835 enum arm_spe_pmu_buf_fault_action act;
836
837 act = arm_spe_pmu_buf_get_fault_act(handle);
838 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
839 arm_spe_perf_aux_output_end(handle);
840 else
841 write_sysreg_s(0, SYS_PMBSR_EL1);
842 }
843
844 /*
845 * This may also contain ECOUNT, but nobody else should
846 * be looking at period_left, since we forbid frequency
847 * based sampling.
848 */
849 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
850 hwc->state |= PERF_HES_UPTODATE;
851 }
852
853 hwc->state |= PERF_HES_STOPPED;
854 }
855
arm_spe_pmu_add(struct perf_event * event,int flags)856 static int arm_spe_pmu_add(struct perf_event *event, int flags)
857 {
858 int ret = 0;
859 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
860 struct hw_perf_event *hwc = &event->hw;
861 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
862
863 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
864 return -ENOENT;
865
866 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
867
868 if (flags & PERF_EF_START) {
869 arm_spe_pmu_start(event, PERF_EF_RELOAD);
870 if (hwc->state & PERF_HES_STOPPED)
871 ret = -EINVAL;
872 }
873
874 return ret;
875 }
876
arm_spe_pmu_del(struct perf_event * event,int flags)877 static void arm_spe_pmu_del(struct perf_event *event, int flags)
878 {
879 arm_spe_pmu_stop(event, PERF_EF_UPDATE);
880 }
881
arm_spe_pmu_read(struct perf_event * event)882 static void arm_spe_pmu_read(struct perf_event *event)
883 {
884 }
885
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)886 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
887 int nr_pages, bool snapshot)
888 {
889 int i, cpu = event->cpu;
890 struct page **pglist;
891 struct arm_spe_pmu_buf *buf;
892
893 /* We need at least two pages for this to work. */
894 if (nr_pages < 2)
895 return NULL;
896
897 /*
898 * We require an even number of pages for snapshot mode, so that
899 * we can effectively treat the buffer as consisting of two equal
900 * parts and give userspace a fighting chance of getting some
901 * useful data out of it.
902 */
903 if (snapshot && (nr_pages & 1))
904 return NULL;
905
906 if (cpu == -1)
907 cpu = raw_smp_processor_id();
908
909 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
910 if (!buf)
911 return NULL;
912
913 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
914 if (!pglist)
915 goto out_free_buf;
916
917 for (i = 0; i < nr_pages; ++i)
918 pglist[i] = virt_to_page(pages[i]);
919
920 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
921 if (!buf->base)
922 goto out_free_pglist;
923
924 buf->nr_pages = nr_pages;
925 buf->snapshot = snapshot;
926
927 kfree(pglist);
928 return buf;
929
930 out_free_pglist:
931 kfree(pglist);
932 out_free_buf:
933 kfree(buf);
934 return NULL;
935 }
936
arm_spe_pmu_free_aux(void * aux)937 static void arm_spe_pmu_free_aux(void *aux)
938 {
939 struct arm_spe_pmu_buf *buf = aux;
940
941 vunmap(buf->base);
942 kfree(buf);
943 }
944
945 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)946 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
947 {
948 static atomic_t pmu_idx = ATOMIC_INIT(-1);
949
950 int idx;
951 char *name;
952 struct device *dev = &spe_pmu->pdev->dev;
953
954 spe_pmu->pmu = (struct pmu) {
955 .module = THIS_MODULE,
956 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
957 .attr_groups = arm_spe_pmu_attr_groups,
958 /*
959 * We hitch a ride on the software context here, so that
960 * we can support per-task profiling (which is not possible
961 * with the invalid context as it doesn't get sched callbacks).
962 * This requires that userspace either uses a dummy event for
963 * perf_event_open, since the aux buffer is not setup until
964 * a subsequent mmap, or creates the profiling event in a
965 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
966 * once the buffer has been created.
967 */
968 .task_ctx_nr = perf_sw_context,
969 .event_init = arm_spe_pmu_event_init,
970 .add = arm_spe_pmu_add,
971 .del = arm_spe_pmu_del,
972 .start = arm_spe_pmu_start,
973 .stop = arm_spe_pmu_stop,
974 .read = arm_spe_pmu_read,
975 .setup_aux = arm_spe_pmu_setup_aux,
976 .free_aux = arm_spe_pmu_free_aux,
977 };
978
979 idx = atomic_inc_return(&pmu_idx);
980 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
981 if (!name) {
982 dev_err(dev, "failed to allocate name for pmu %d\n", idx);
983 return -ENOMEM;
984 }
985
986 return perf_pmu_register(&spe_pmu->pmu, name, -1);
987 }
988
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)989 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
990 {
991 perf_pmu_unregister(&spe_pmu->pmu);
992 }
993
__arm_spe_pmu_dev_probe(void * info)994 static void __arm_spe_pmu_dev_probe(void *info)
995 {
996 int fld;
997 u64 reg;
998 struct arm_spe_pmu *spe_pmu = info;
999 struct device *dev = &spe_pmu->pdev->dev;
1000
1001 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1002 ID_AA64DFR0_EL1_PMSVer_SHIFT);
1003 if (!fld) {
1004 dev_err(dev,
1005 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1006 fld, smp_processor_id());
1007 return;
1008 }
1009 spe_pmu->pmsver = (u16)fld;
1010
1011 /* Read PMBIDR first to determine whether or not we have access */
1012 reg = read_sysreg_s(SYS_PMBIDR_EL1);
1013 if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1014 dev_err(dev,
1015 "profiling buffer owned by higher exception level\n");
1016 return;
1017 }
1018
1019 /* Minimum alignment. If it's out-of-range, then fail the probe */
1020 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1021 spe_pmu->align = 1 << fld;
1022 if (spe_pmu->align > SZ_2K) {
1023 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1024 fld, smp_processor_id());
1025 return;
1026 }
1027
1028 /* It's now safe to read PMSIDR and figure out what we've got */
1029 reg = read_sysreg_s(SYS_PMSIDR_EL1);
1030 if (FIELD_GET(PMSIDR_EL1_FE, reg))
1031 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1032
1033 if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1034 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1035
1036 if (FIELD_GET(PMSIDR_EL1_FT, reg))
1037 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1038
1039 if (FIELD_GET(PMSIDR_EL1_FL, reg))
1040 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1041
1042 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1043 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1044
1045 if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1046 spe_pmu->features |= SPE_PMU_FEAT_LDS;
1047
1048 if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1049 spe_pmu->features |= SPE_PMU_FEAT_ERND;
1050
1051 /* This field has a spaced out encoding, so just use a look-up */
1052 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1053 switch (fld) {
1054 case PMSIDR_EL1_INTERVAL_256:
1055 spe_pmu->min_period = 256;
1056 break;
1057 case PMSIDR_EL1_INTERVAL_512:
1058 spe_pmu->min_period = 512;
1059 break;
1060 case PMSIDR_EL1_INTERVAL_768:
1061 spe_pmu->min_period = 768;
1062 break;
1063 case PMSIDR_EL1_INTERVAL_1024:
1064 spe_pmu->min_period = 1024;
1065 break;
1066 case PMSIDR_EL1_INTERVAL_1536:
1067 spe_pmu->min_period = 1536;
1068 break;
1069 case PMSIDR_EL1_INTERVAL_2048:
1070 spe_pmu->min_period = 2048;
1071 break;
1072 case PMSIDR_EL1_INTERVAL_3072:
1073 spe_pmu->min_period = 3072;
1074 break;
1075 default:
1076 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1077 fld);
1078 fallthrough;
1079 case PMSIDR_EL1_INTERVAL_4096:
1080 spe_pmu->min_period = 4096;
1081 }
1082
1083 /* Maximum record size. If it's out-of-range, then fail the probe */
1084 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1085 spe_pmu->max_record_sz = 1 << fld;
1086 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1087 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1088 fld, smp_processor_id());
1089 return;
1090 }
1091
1092 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1093 switch (fld) {
1094 default:
1095 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1096 fld);
1097 fallthrough;
1098 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1099 spe_pmu->counter_sz = 12;
1100 break;
1101 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1102 spe_pmu->counter_sz = 16;
1103 }
1104
1105 dev_info(dev,
1106 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1107 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1108 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1109
1110 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1111 }
1112
__arm_spe_pmu_reset_local(void)1113 static void __arm_spe_pmu_reset_local(void)
1114 {
1115 /*
1116 * This is probably overkill, as we have no idea where we're
1117 * draining any buffered data to...
1118 */
1119 arm_spe_pmu_disable_and_drain_local();
1120
1121 /* Reset the buffer base pointer */
1122 write_sysreg_s(0, SYS_PMBPTR_EL1);
1123 isb();
1124
1125 /* Clear any pending management interrupts */
1126 write_sysreg_s(0, SYS_PMBSR_EL1);
1127 isb();
1128 }
1129
__arm_spe_pmu_setup_one(void * info)1130 static void __arm_spe_pmu_setup_one(void *info)
1131 {
1132 struct arm_spe_pmu *spe_pmu = info;
1133
1134 __arm_spe_pmu_reset_local();
1135 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1136 }
1137
__arm_spe_pmu_stop_one(void * info)1138 static void __arm_spe_pmu_stop_one(void *info)
1139 {
1140 struct arm_spe_pmu *spe_pmu = info;
1141
1142 disable_percpu_irq(spe_pmu->irq);
1143 __arm_spe_pmu_reset_local();
1144 }
1145
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1146 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1147 {
1148 struct arm_spe_pmu *spe_pmu;
1149
1150 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1151 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1152 return 0;
1153
1154 __arm_spe_pmu_setup_one(spe_pmu);
1155 return 0;
1156 }
1157
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1158 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1159 {
1160 struct arm_spe_pmu *spe_pmu;
1161
1162 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1163 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1164 return 0;
1165
1166 __arm_spe_pmu_stop_one(spe_pmu);
1167 return 0;
1168 }
1169
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1170 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1171 {
1172 int ret;
1173 cpumask_t *mask = &spe_pmu->supported_cpus;
1174
1175 /* Make sure we probe the hardware on a relevant CPU */
1176 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1);
1177 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1178 return -ENXIO;
1179
1180 /* Request our PPIs (note that the IRQ is still disabled) */
1181 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1182 spe_pmu->handle);
1183 if (ret)
1184 return ret;
1185
1186 /*
1187 * Register our hotplug notifier now so we don't miss any events.
1188 * This will enable the IRQ for any supported CPUs that are already
1189 * up.
1190 */
1191 ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1192 &spe_pmu->hotplug_node);
1193 if (ret)
1194 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1195
1196 return ret;
1197 }
1198
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1199 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1200 {
1201 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1202 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1203 }
1204
1205 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1206 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1207 {
1208 struct platform_device *pdev = spe_pmu->pdev;
1209 int irq = platform_get_irq(pdev, 0);
1210
1211 if (irq < 0)
1212 return -ENXIO;
1213
1214 if (!irq_is_percpu(irq)) {
1215 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1216 return -EINVAL;
1217 }
1218
1219 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1220 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1221 return -EINVAL;
1222 }
1223
1224 spe_pmu->irq = irq;
1225 return 0;
1226 }
1227
1228 static const struct of_device_id arm_spe_pmu_of_match[] = {
1229 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1230 { /* Sentinel */ },
1231 };
1232 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1233
1234 static const struct platform_device_id arm_spe_match[] = {
1235 { ARMV8_SPE_PDEV_NAME, 0},
1236 { }
1237 };
1238 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1239
arm_spe_pmu_device_probe(struct platform_device * pdev)1240 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1241 {
1242 int ret;
1243 struct arm_spe_pmu *spe_pmu;
1244 struct device *dev = &pdev->dev;
1245
1246 /*
1247 * If kernelspace is unmapped when running at EL0, then the SPE
1248 * buffer will fault and prematurely terminate the AUX session.
1249 */
1250 if (arm64_kernel_unmapped_at_el0()) {
1251 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1252 return -EPERM;
1253 }
1254
1255 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1256 if (!spe_pmu)
1257 return -ENOMEM;
1258
1259 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1260 if (!spe_pmu->handle)
1261 return -ENOMEM;
1262
1263 spe_pmu->pdev = pdev;
1264 platform_set_drvdata(pdev, spe_pmu);
1265
1266 ret = arm_spe_pmu_irq_probe(spe_pmu);
1267 if (ret)
1268 goto out_free_handle;
1269
1270 ret = arm_spe_pmu_dev_init(spe_pmu);
1271 if (ret)
1272 goto out_free_handle;
1273
1274 ret = arm_spe_pmu_perf_init(spe_pmu);
1275 if (ret)
1276 goto out_teardown_dev;
1277
1278 return 0;
1279
1280 out_teardown_dev:
1281 arm_spe_pmu_dev_teardown(spe_pmu);
1282 out_free_handle:
1283 free_percpu(spe_pmu->handle);
1284 return ret;
1285 }
1286
arm_spe_pmu_device_remove(struct platform_device * pdev)1287 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1288 {
1289 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1290
1291 arm_spe_pmu_perf_destroy(spe_pmu);
1292 arm_spe_pmu_dev_teardown(spe_pmu);
1293 free_percpu(spe_pmu->handle);
1294 return 0;
1295 }
1296
1297 static struct platform_driver arm_spe_pmu_driver = {
1298 .id_table = arm_spe_match,
1299 .driver = {
1300 .name = DRVNAME,
1301 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1302 .suppress_bind_attrs = true,
1303 },
1304 .probe = arm_spe_pmu_device_probe,
1305 .remove = arm_spe_pmu_device_remove,
1306 };
1307
arm_spe_pmu_init(void)1308 static int __init arm_spe_pmu_init(void)
1309 {
1310 int ret;
1311
1312 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1313 arm_spe_pmu_cpu_startup,
1314 arm_spe_pmu_cpu_teardown);
1315 if (ret < 0)
1316 return ret;
1317 arm_spe_pmu_online = ret;
1318
1319 ret = platform_driver_register(&arm_spe_pmu_driver);
1320 if (ret)
1321 cpuhp_remove_multi_state(arm_spe_pmu_online);
1322
1323 return ret;
1324 }
1325
arm_spe_pmu_exit(void)1326 static void __exit arm_spe_pmu_exit(void)
1327 {
1328 platform_driver_unregister(&arm_spe_pmu_driver);
1329 cpuhp_remove_multi_state(arm_spe_pmu_online);
1330 }
1331
1332 module_init(arm_spe_pmu_init);
1333 module_exit(arm_spe_pmu_exit);
1334
1335 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1336 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1337 MODULE_LICENSE("GPL v2");
1338