xref: /openbmc/linux/drivers/edac/i5000_edac.c (revision cdd38c5f1ce4398ec58fec95904b75824daab7b5)
1  /*
2   * Intel 5000(P/V/X) class Memory Controllers kernel module
3   *
4   * This file may be distributed under the terms of the
5   * GNU General Public License.
6   *
7   * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8   *	norsk5@xmission.com
9   *
10   * This module is based on the following document:
11   *
12   * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13   * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
14   *
15   */
16  
17  #include <linux/module.h>
18  #include <linux/init.h>
19  #include <linux/pci.h>
20  #include <linux/pci_ids.h>
21  #include <linux/slab.h>
22  #include <linux/edac.h>
23  #include <asm/mmzone.h>
24  
25  #include "edac_module.h"
26  
27  /*
28   * Alter this version for the I5000 module when modifications are made
29   */
30  #define I5000_REVISION    " Ver: 2.0.12"
31  #define EDAC_MOD_STR      "i5000_edac"
32  
33  #define i5000_printk(level, fmt, arg...) \
34          edac_printk(level, "i5000", fmt, ##arg)
35  
36  #define i5000_mc_printk(mci, level, fmt, arg...) \
37          edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38  
39  #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40  #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
41  #endif
42  #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43  #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
44  #endif
45  
46  /* Device 16,
47   * Function 0: System Address
48   * Function 1: Memory Branch Map, Control, Errors Register
49   * Function 2: FSB Error Registers
50   *
51   * All 3 functions of Device 16 (0,1,2) share the SAME DID
52   */
53  #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
54  
55  /* OFFSETS for Function 0 */
56  
57  /* OFFSETS for Function 1 */
58  #define		AMBASE			0x48
59  #define		MAXCH			0x56
60  #define		MAXDIMMPERCH		0x57
61  #define		TOLM			0x6C
62  #define		REDMEMB			0x7C
63  #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
64  #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
65  #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
66  #define		MIR0			0x80
67  #define		MIR1			0x84
68  #define		MIR2			0x88
69  #define		AMIR0			0x8C
70  #define		AMIR1			0x90
71  #define		AMIR2			0x94
72  
73  #define		FERR_FAT_FBD		0x98
74  #define		NERR_FAT_FBD		0x9C
75  #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
76  #define			FERR_FAT_FBDCHAN 0x30000000
77  #define			FERR_FAT_M3ERR	0x00000004
78  #define			FERR_FAT_M2ERR	0x00000002
79  #define			FERR_FAT_M1ERR	0x00000001
80  #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81  						FERR_FAT_M2ERR | \
82  						FERR_FAT_M3ERR)
83  
84  #define		FERR_NF_FBD		0xA0
85  
86  /* Thermal and SPD or BFD errors */
87  #define			FERR_NF_M28ERR	0x01000000
88  #define			FERR_NF_M27ERR	0x00800000
89  #define			FERR_NF_M26ERR	0x00400000
90  #define			FERR_NF_M25ERR	0x00200000
91  #define			FERR_NF_M24ERR	0x00100000
92  #define			FERR_NF_M23ERR	0x00080000
93  #define			FERR_NF_M22ERR	0x00040000
94  #define			FERR_NF_M21ERR	0x00020000
95  
96  /* Correctable errors */
97  #define			FERR_NF_M20ERR	0x00010000
98  #define			FERR_NF_M19ERR	0x00008000
99  #define			FERR_NF_M18ERR	0x00004000
100  #define			FERR_NF_M17ERR	0x00002000
101  
102  /* Non-Retry or redundant Retry errors */
103  #define			FERR_NF_M16ERR	0x00001000
104  #define			FERR_NF_M15ERR	0x00000800
105  #define			FERR_NF_M14ERR	0x00000400
106  #define			FERR_NF_M13ERR	0x00000200
107  
108  /* Uncorrectable errors */
109  #define			FERR_NF_M12ERR	0x00000100
110  #define			FERR_NF_M11ERR	0x00000080
111  #define			FERR_NF_M10ERR	0x00000040
112  #define			FERR_NF_M9ERR	0x00000020
113  #define			FERR_NF_M8ERR	0x00000010
114  #define			FERR_NF_M7ERR	0x00000008
115  #define			FERR_NF_M6ERR	0x00000004
116  #define			FERR_NF_M5ERR	0x00000002
117  #define			FERR_NF_M4ERR	0x00000001
118  
119  #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
120  							FERR_NF_M11ERR | \
121  							FERR_NF_M10ERR | \
122  							FERR_NF_M9ERR | \
123  							FERR_NF_M8ERR | \
124  							FERR_NF_M7ERR | \
125  							FERR_NF_M6ERR | \
126  							FERR_NF_M5ERR | \
127  							FERR_NF_M4ERR)
128  #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
129  							FERR_NF_M19ERR | \
130  							FERR_NF_M18ERR | \
131  							FERR_NF_M17ERR)
132  #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
133  							FERR_NF_M28ERR)
134  #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135  							FERR_NF_M25ERR | \
136  							FERR_NF_M24ERR | \
137  							FERR_NF_M23ERR)
138  #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
139  #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
140  #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
141  							FERR_NF_M14ERR | \
142  							FERR_NF_M15ERR)
143  
144  #define		NERR_NF_FBD		0xA4
145  #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
146  							FERR_NF_CORRECTABLE | \
147  							FERR_NF_DIMM_SPARE | \
148  							FERR_NF_THERMAL | \
149  							FERR_NF_SPD_PROTOCOL | \
150  							FERR_NF_NORTH_CRC | \
151  							FERR_NF_NON_RETRY)
152  
153  #define		EMASK_FBD		0xA8
154  #define			EMASK_FBD_M28ERR	0x08000000
155  #define			EMASK_FBD_M27ERR	0x04000000
156  #define			EMASK_FBD_M26ERR	0x02000000
157  #define			EMASK_FBD_M25ERR	0x01000000
158  #define			EMASK_FBD_M24ERR	0x00800000
159  #define			EMASK_FBD_M23ERR	0x00400000
160  #define			EMASK_FBD_M22ERR	0x00200000
161  #define			EMASK_FBD_M21ERR	0x00100000
162  #define			EMASK_FBD_M20ERR	0x00080000
163  #define			EMASK_FBD_M19ERR	0x00040000
164  #define			EMASK_FBD_M18ERR	0x00020000
165  #define			EMASK_FBD_M17ERR	0x00010000
166  
167  #define			EMASK_FBD_M15ERR	0x00004000
168  #define			EMASK_FBD_M14ERR	0x00002000
169  #define			EMASK_FBD_M13ERR	0x00001000
170  #define			EMASK_FBD_M12ERR	0x00000800
171  #define			EMASK_FBD_M11ERR	0x00000400
172  #define			EMASK_FBD_M10ERR	0x00000200
173  #define			EMASK_FBD_M9ERR		0x00000100
174  #define			EMASK_FBD_M8ERR		0x00000080
175  #define			EMASK_FBD_M7ERR		0x00000040
176  #define			EMASK_FBD_M6ERR		0x00000020
177  #define			EMASK_FBD_M5ERR		0x00000010
178  #define			EMASK_FBD_M4ERR		0x00000008
179  #define			EMASK_FBD_M3ERR		0x00000004
180  #define			EMASK_FBD_M2ERR		0x00000002
181  #define			EMASK_FBD_M1ERR		0x00000001
182  
183  #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
184  							EMASK_FBD_M2ERR | \
185  							EMASK_FBD_M3ERR)
186  
187  #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
188  							EMASK_FBD_M5ERR | \
189  							EMASK_FBD_M6ERR | \
190  							EMASK_FBD_M7ERR | \
191  							EMASK_FBD_M8ERR | \
192  							EMASK_FBD_M9ERR | \
193  							EMASK_FBD_M10ERR | \
194  							EMASK_FBD_M11ERR | \
195  							EMASK_FBD_M12ERR)
196  #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
197  							EMASK_FBD_M18ERR | \
198  							EMASK_FBD_M19ERR | \
199  							EMASK_FBD_M20ERR)
200  #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
201  							EMASK_FBD_M28ERR)
202  #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
203  							EMASK_FBD_M25ERR | \
204  							EMASK_FBD_M24ERR | \
205  							EMASK_FBD_M23ERR)
206  #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
207  #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
208  #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
209  							EMASK_FBD_M14ERR | \
210  							EMASK_FBD_M13ERR)
211  
212  #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
213  					ENABLE_EMASK_FBD_NORTH_CRC | \
214  					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215  					ENABLE_EMASK_FBD_THERMALS | \
216  					ENABLE_EMASK_FBD_DIMM_SPARE | \
217  					ENABLE_EMASK_FBD_FATAL_ERRORS | \
218  					ENABLE_EMASK_FBD_CORRECTABLE | \
219  					ENABLE_EMASK_FBD_UNCORRECTABLE)
220  
221  #define		ERR0_FBD		0xAC
222  #define		ERR1_FBD		0xB0
223  #define		ERR2_FBD		0xB4
224  #define		MCERR_FBD		0xB8
225  #define		NRECMEMA		0xBE
226  #define			NREC_BANK(x)		(((x)>>12) & 0x7)
227  #define			NREC_RDWR(x)		(((x)>>11) & 1)
228  #define			NREC_RANK(x)		(((x)>>8) & 0x7)
229  #define		NRECMEMB		0xC0
230  #define			NREC_CAS(x)		(((x)>>16) & 0xFFF)
231  #define			NREC_RAS(x)		((x) & 0x7FFF)
232  #define		NRECFGLOG		0xC4
233  #define		NREEECFBDA		0xC8
234  #define		NREEECFBDB		0xCC
235  #define		NREEECFBDC		0xD0
236  #define		NREEECFBDD		0xD4
237  #define		NREEECFBDE		0xD8
238  #define		REDMEMA			0xDC
239  #define		RECMEMA			0xE2
240  #define			REC_BANK(x)		(((x)>>12) & 0x7)
241  #define			REC_RDWR(x)		(((x)>>11) & 1)
242  #define			REC_RANK(x)		(((x)>>8) & 0x7)
243  #define		RECMEMB			0xE4
244  #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
245  #define			REC_RAS(x)		((x) & 0x7FFF)
246  #define		RECFGLOG		0xE8
247  #define		RECFBDA			0xEC
248  #define		RECFBDB			0xF0
249  #define		RECFBDC			0xF4
250  #define		RECFBDD			0xF8
251  #define		RECFBDE			0xFC
252  
253  /* OFFSETS for Function 2 */
254  
255  /*
256   * Device 21,
257   * Function 0: Memory Map Branch 0
258   *
259   * Device 22,
260   * Function 0: Memory Map Branch 1
261   */
262  #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
263  #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
264  
265  #define AMB_PRESENT_0	0x64
266  #define AMB_PRESENT_1	0x66
267  #define MTR0		0x80
268  #define MTR1		0x84
269  #define MTR2		0x88
270  #define MTR3		0x8C
271  
272  #define NUM_MTRS		4
273  #define CHANNELS_PER_BRANCH	2
274  #define MAX_BRANCHES		2
275  
276  /* Defines to extract the various fields from the
277   *	MTRx - Memory Technology Registers
278   */
279  #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
280  #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
281  #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
282  #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
283  #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
284  #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
285  #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
286  #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
287  #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
288  #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
289  
290  /* enables the report of miscellaneous messages as CE errors - default off */
291  static int misc_messages;
292  
293  /* Enumeration of supported devices */
294  enum i5000_chips {
295  	I5000P = 0,
296  	I5000V = 1,		/* future */
297  	I5000X = 2		/* future */
298  };
299  
300  /* Device name and register DID (Device ID) */
301  struct i5000_dev_info {
302  	const char *ctl_name;	/* name for this device */
303  	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
304  };
305  
306  /* Table of devices attributes supported by this driver */
307  static const struct i5000_dev_info i5000_devs[] = {
308  	[I5000P] = {
309  		.ctl_name = "I5000",
310  		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
311  	},
312  };
313  
314  struct i5000_dimm_info {
315  	int megabytes;		/* size, 0 means not present  */
316  	int dual_rank;
317  };
318  
319  #define	MAX_CHANNELS	6	/* max possible channels */
320  #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
321  
322  /* driver private data structure */
323  struct i5000_pvt {
324  	struct pci_dev *system_address;	/* 16.0 */
325  	struct pci_dev *branchmap_werrors;	/* 16.1 */
326  	struct pci_dev *fsb_error_regs;	/* 16.2 */
327  	struct pci_dev *branch_0;	/* 21.0 */
328  	struct pci_dev *branch_1;	/* 22.0 */
329  
330  	u16 tolm;		/* top of low memory */
331  	union {
332  		u64 ambase;		/* AMB BAR */
333  		struct {
334  			u32 ambase_bottom;
335  			u32 ambase_top;
336  		} u __packed;
337  	};
338  
339  	u16 mir0, mir1, mir2;
340  
341  	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
342  	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
343  	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
344  
345  	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
346  	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
347  	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
348  
349  	/* DIMM information matrix, allocating architecture maximums */
350  	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
351  
352  	/* Actual values for this controller */
353  	int maxch;		/* Max channels */
354  	int maxdimmperch;	/* Max DIMMs per channel */
355  };
356  
357  /* I5000 MCH error information retrieved from Hardware */
358  struct i5000_error_info {
359  
360  	/* These registers are always read from the MC */
361  	u32 ferr_fat_fbd;	/* First Errors Fatal */
362  	u32 nerr_fat_fbd;	/* Next Errors Fatal */
363  	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
364  	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
365  
366  	/* These registers are input ONLY if there was a Recoverable  Error */
367  	u32 redmemb;		/* Recoverable Mem Data Error log B */
368  	u16 recmema;		/* Recoverable Mem Error log A */
369  	u32 recmemb;		/* Recoverable Mem Error log B */
370  
371  	/* These registers are input ONLY if there was a
372  	 * Non-Recoverable Error */
373  	u16 nrecmema;		/* Non-Recoverable Mem log A */
374  	u32 nrecmemb;		/* Non-Recoverable Mem log B */
375  
376  };
377  
378  static struct edac_pci_ctl_info *i5000_pci;
379  
380  /*
381   *	i5000_get_error_info	Retrieve the hardware error information from
382   *				the hardware and cache it in the 'info'
383   *				structure
384   */
i5000_get_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info)385  static void i5000_get_error_info(struct mem_ctl_info *mci,
386  				 struct i5000_error_info *info)
387  {
388  	struct i5000_pvt *pvt;
389  	u32 value;
390  
391  	pvt = mci->pvt_info;
392  
393  	/* read in the 1st FATAL error register */
394  	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
395  
396  	/* Mask only the bits that the doc says are valid
397  	 */
398  	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
399  
400  	/* If there is an error, then read in the */
401  	/* NEXT FATAL error register and the Memory Error Log Register A */
402  	if (value & FERR_FAT_MASK) {
403  		info->ferr_fat_fbd = value;
404  
405  		/* harvest the various error data we need */
406  		pci_read_config_dword(pvt->branchmap_werrors,
407  				NERR_FAT_FBD, &info->nerr_fat_fbd);
408  		pci_read_config_word(pvt->branchmap_werrors,
409  				NRECMEMA, &info->nrecmema);
410  		pci_read_config_dword(pvt->branchmap_werrors,
411  				NRECMEMB, &info->nrecmemb);
412  
413  		/* Clear the error bits, by writing them back */
414  		pci_write_config_dword(pvt->branchmap_werrors,
415  				FERR_FAT_FBD, value);
416  	} else {
417  		info->ferr_fat_fbd = 0;
418  		info->nerr_fat_fbd = 0;
419  		info->nrecmema = 0;
420  		info->nrecmemb = 0;
421  	}
422  
423  	/* read in the 1st NON-FATAL error register */
424  	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
425  
426  	/* If there is an error, then read in the 1st NON-FATAL error
427  	 * register as well */
428  	if (value & FERR_NF_MASK) {
429  		info->ferr_nf_fbd = value;
430  
431  		/* harvest the various error data we need */
432  		pci_read_config_dword(pvt->branchmap_werrors,
433  				NERR_NF_FBD, &info->nerr_nf_fbd);
434  		pci_read_config_word(pvt->branchmap_werrors,
435  				RECMEMA, &info->recmema);
436  		pci_read_config_dword(pvt->branchmap_werrors,
437  				RECMEMB, &info->recmemb);
438  		pci_read_config_dword(pvt->branchmap_werrors,
439  				REDMEMB, &info->redmemb);
440  
441  		/* Clear the error bits, by writing them back */
442  		pci_write_config_dword(pvt->branchmap_werrors,
443  				FERR_NF_FBD, value);
444  	} else {
445  		info->ferr_nf_fbd = 0;
446  		info->nerr_nf_fbd = 0;
447  		info->recmema = 0;
448  		info->recmemb = 0;
449  		info->redmemb = 0;
450  	}
451  }
452  
453  /*
454   * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
455   * 					struct i5000_error_info *info,
456   * 					int handle_errors);
457   *
458   *	handle the Intel FATAL errors, if any
459   */
i5000_process_fatal_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info,int handle_errors)460  static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
461  					struct i5000_error_info *info,
462  					int handle_errors)
463  {
464  	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
465  	char *specific = NULL;
466  	u32 allErrors;
467  	int channel;
468  	int bank;
469  	int rank;
470  	int rdwr;
471  	int ras, cas;
472  
473  	/* mask off the Error bits that are possible */
474  	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
475  	if (!allErrors)
476  		return;		/* if no error, return now */
477  
478  	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
479  
480  	/* Use the NON-Recoverable macros to extract data */
481  	bank = NREC_BANK(info->nrecmema);
482  	rank = NREC_RANK(info->nrecmema);
483  	rdwr = NREC_RDWR(info->nrecmema);
484  	ras = NREC_RAS(info->nrecmemb);
485  	cas = NREC_CAS(info->nrecmemb);
486  
487  	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
488  		 rank, channel, bank,
489  		 rdwr ? "Write" : "Read", ras, cas);
490  
491  	/* Only 1 bit will be on */
492  	switch (allErrors) {
493  	case FERR_FAT_M1ERR:
494  		specific = "Alert on non-redundant retry or fast "
495  				"reset timeout";
496  		break;
497  	case FERR_FAT_M2ERR:
498  		specific = "Northbound CRC error on non-redundant "
499  				"retry";
500  		break;
501  	case FERR_FAT_M3ERR:
502  		{
503  		static int done;
504  
505  		/*
506  		 * This error is generated to inform that the intelligent
507  		 * throttling is disabled and the temperature passed the
508  		 * specified middle point. Since this is something the BIOS
509  		 * should take care of, we'll warn only once to avoid
510  		 * worthlessly flooding the log.
511  		 */
512  		if (done)
513  			return;
514  		done++;
515  
516  		specific = ">Tmid Thermal event with intelligent "
517  			   "throttling disabled";
518  		}
519  		break;
520  	}
521  
522  	/* Form out message */
523  	snprintf(msg, sizeof(msg),
524  		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
525  		 bank, ras, cas, allErrors, specific);
526  
527  	/* Call the helper to output message */
528  	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
529  			     channel >> 1, channel & 1, rank,
530  			     rdwr ? "Write error" : "Read error",
531  			     msg);
532  }
533  
534  /*
535   * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
536   * 				struct i5000_error_info *info,
537   * 				int handle_errors);
538   *
539   *	handle the Intel NON-FATAL errors, if any
540   */
i5000_process_nonfatal_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info,int handle_errors)541  static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
542  					struct i5000_error_info *info,
543  					int handle_errors)
544  {
545  	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
546  	char *specific = NULL;
547  	u32 allErrors;
548  	u32 ue_errors;
549  	u32 ce_errors;
550  	u32 misc_errors;
551  	int branch;
552  	int channel;
553  	int bank;
554  	int rank;
555  	int rdwr;
556  	int ras, cas;
557  
558  	/* mask off the Error bits that are possible */
559  	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
560  	if (!allErrors)
561  		return;		/* if no error, return now */
562  
563  	/* ONLY ONE of the possible error bits will be set, as per the docs */
564  	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
565  	if (ue_errors) {
566  		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
567  
568  		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
569  
570  		/*
571  		 * According with i5000 datasheet, bit 28 has no significance
572  		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
573  		 */
574  		channel = branch & 2;
575  
576  		bank = NREC_BANK(info->nrecmema);
577  		rank = NREC_RANK(info->nrecmema);
578  		rdwr = NREC_RDWR(info->nrecmema);
579  		ras = NREC_RAS(info->nrecmemb);
580  		cas = NREC_CAS(info->nrecmemb);
581  
582  		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
583  			 rank, channel, channel + 1, branch >> 1, bank,
584  			 rdwr ? "Write" : "Read", ras, cas);
585  
586  		switch (ue_errors) {
587  		case FERR_NF_M12ERR:
588  			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
589  			break;
590  		case FERR_NF_M11ERR:
591  			specific = "Non-Aliased Uncorrectable Spare-Copy "
592  					"Data ECC";
593  			break;
594  		case FERR_NF_M10ERR:
595  			specific = "Non-Aliased Uncorrectable Mirrored Demand "
596  					"Data ECC";
597  			break;
598  		case FERR_NF_M9ERR:
599  			specific = "Non-Aliased Uncorrectable Non-Mirrored "
600  					"Demand Data ECC";
601  			break;
602  		case FERR_NF_M8ERR:
603  			specific = "Aliased Uncorrectable Patrol Data ECC";
604  			break;
605  		case FERR_NF_M7ERR:
606  			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
607  			break;
608  		case FERR_NF_M6ERR:
609  			specific = "Aliased Uncorrectable Mirrored Demand "
610  					"Data ECC";
611  			break;
612  		case FERR_NF_M5ERR:
613  			specific = "Aliased Uncorrectable Non-Mirrored Demand "
614  					"Data ECC";
615  			break;
616  		case FERR_NF_M4ERR:
617  			specific = "Uncorrectable Data ECC on Replay";
618  			break;
619  		}
620  
621  		/* Form out message */
622  		snprintf(msg, sizeof(msg),
623  			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
624  			 rank, bank, ras, cas, ue_errors, specific);
625  
626  		/* Call the helper to output message */
627  		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
628  				channel >> 1, -1, rank,
629  				rdwr ? "Write error" : "Read error",
630  				msg);
631  	}
632  
633  	/* Check correctable errors */
634  	ce_errors = allErrors & FERR_NF_CORRECTABLE;
635  	if (ce_errors) {
636  		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
637  
638  		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
639  
640  		channel = 0;
641  		if (REC_ECC_LOCATOR_ODD(info->redmemb))
642  			channel = 1;
643  
644  		/* Convert channel to be based from zero, instead of
645  		 * from branch base of 0 */
646  		channel += branch;
647  
648  		bank = REC_BANK(info->recmema);
649  		rank = REC_RANK(info->recmema);
650  		rdwr = REC_RDWR(info->recmema);
651  		ras = REC_RAS(info->recmemb);
652  		cas = REC_CAS(info->recmemb);
653  
654  		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
655  			 rank, channel, branch >> 1, bank,
656  			 rdwr ? "Write" : "Read", ras, cas);
657  
658  		switch (ce_errors) {
659  		case FERR_NF_M17ERR:
660  			specific = "Correctable Non-Mirrored Demand Data ECC";
661  			break;
662  		case FERR_NF_M18ERR:
663  			specific = "Correctable Mirrored Demand Data ECC";
664  			break;
665  		case FERR_NF_M19ERR:
666  			specific = "Correctable Spare-Copy Data ECC";
667  			break;
668  		case FERR_NF_M20ERR:
669  			specific = "Correctable Patrol Data ECC";
670  			break;
671  		}
672  
673  		/* Form out message */
674  		snprintf(msg, sizeof(msg),
675  			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
676  			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
677  			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
678  			 specific);
679  
680  		/* Call the helper to output message */
681  		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
682  				channel >> 1, channel % 2, rank,
683  				rdwr ? "Write error" : "Read error",
684  				msg);
685  	}
686  
687  	if (!misc_messages)
688  		return;
689  
690  	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
691  				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
692  	if (misc_errors) {
693  		switch (misc_errors) {
694  		case FERR_NF_M13ERR:
695  			specific = "Non-Retry or Redundant Retry FBD Memory "
696  					"Alert or Redundant Fast Reset Timeout";
697  			break;
698  		case FERR_NF_M14ERR:
699  			specific = "Non-Retry or Redundant Retry FBD "
700  					"Configuration Alert";
701  			break;
702  		case FERR_NF_M15ERR:
703  			specific = "Non-Retry or Redundant Retry FBD "
704  					"Northbound CRC error on read data";
705  			break;
706  		case FERR_NF_M21ERR:
707  			specific = "FBD Northbound CRC error on "
708  					"FBD Sync Status";
709  			break;
710  		case FERR_NF_M22ERR:
711  			specific = "SPD protocol error";
712  			break;
713  		case FERR_NF_M27ERR:
714  			specific = "DIMM-spare copy started";
715  			break;
716  		case FERR_NF_M28ERR:
717  			specific = "DIMM-spare copy completed";
718  			break;
719  		}
720  		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
721  
722  		/* Form out message */
723  		snprintf(msg, sizeof(msg),
724  			 "Err=%#x (%s)", misc_errors, specific);
725  
726  		/* Call the helper to output message */
727  		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
728  				branch >> 1, -1, -1,
729  				"Misc error", msg);
730  	}
731  }
732  
733  /*
734   *	i5000_process_error_info	Process the error info that is
735   *	in the 'info' structure, previously retrieved from hardware
736   */
i5000_process_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info,int handle_errors)737  static void i5000_process_error_info(struct mem_ctl_info *mci,
738  				struct i5000_error_info *info,
739  				int handle_errors)
740  {
741  	/* First handle any fatal errors that occurred */
742  	i5000_process_fatal_error_info(mci, info, handle_errors);
743  
744  	/* now handle any non-fatal errors that occurred */
745  	i5000_process_nonfatal_error_info(mci, info, handle_errors);
746  }
747  
748  /*
749   *	i5000_clear_error	Retrieve any error from the hardware
750   *				but do NOT process that error.
751   *				Used for 'clearing' out of previous errors
752   *				Called by the Core module.
753   */
i5000_clear_error(struct mem_ctl_info * mci)754  static void i5000_clear_error(struct mem_ctl_info *mci)
755  {
756  	struct i5000_error_info info;
757  
758  	i5000_get_error_info(mci, &info);
759  }
760  
761  /*
762   *	i5000_check_error	Retrieve and process errors reported by the
763   *				hardware. Called by the Core module.
764   */
i5000_check_error(struct mem_ctl_info * mci)765  static void i5000_check_error(struct mem_ctl_info *mci)
766  {
767  	struct i5000_error_info info;
768  
769  	i5000_get_error_info(mci, &info);
770  	i5000_process_error_info(mci, &info, 1);
771  }
772  
773  /*
774   *	i5000_get_devices	Find and perform 'get' operation on the MCH's
775   *			device/functions we want to reference for this driver
776   *
777   *			Need to 'get' device 16 func 1 and func 2
778   */
i5000_get_devices(struct mem_ctl_info * mci,int dev_idx)779  static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
780  {
781  	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
782  	struct i5000_pvt *pvt;
783  	struct pci_dev *pdev;
784  
785  	pvt = mci->pvt_info;
786  
787  	/* Attempt to 'get' the MCH register we want */
788  	pdev = NULL;
789  	while (1) {
790  		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
791  				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
792  
793  		/* End of list, leave */
794  		if (pdev == NULL) {
795  			i5000_printk(KERN_ERR,
796  				"'system address,Process Bus' "
797  				"device not found:"
798  				"vendor 0x%x device 0x%x FUNC 1 "
799  				"(broken BIOS?)\n",
800  				PCI_VENDOR_ID_INTEL,
801  				PCI_DEVICE_ID_INTEL_I5000_DEV16);
802  
803  			return 1;
804  		}
805  
806  		/* Scan for device 16 func 1 */
807  		if (PCI_FUNC(pdev->devfn) == 1)
808  			break;
809  	}
810  
811  	pvt->branchmap_werrors = pdev;
812  
813  	/* Attempt to 'get' the MCH register we want */
814  	pdev = NULL;
815  	while (1) {
816  		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
817  				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
818  
819  		if (pdev == NULL) {
820  			i5000_printk(KERN_ERR,
821  				"MC: 'branchmap,control,errors' "
822  				"device not found:"
823  				"vendor 0x%x device 0x%x Func 2 "
824  				"(broken BIOS?)\n",
825  				PCI_VENDOR_ID_INTEL,
826  				PCI_DEVICE_ID_INTEL_I5000_DEV16);
827  
828  			pci_dev_put(pvt->branchmap_werrors);
829  			return 1;
830  		}
831  
832  		/* Scan for device 16 func 1 */
833  		if (PCI_FUNC(pdev->devfn) == 2)
834  			break;
835  	}
836  
837  	pvt->fsb_error_regs = pdev;
838  
839  	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
840  		 pci_name(pvt->system_address),
841  		 pvt->system_address->vendor, pvt->system_address->device);
842  	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
843  		 pci_name(pvt->branchmap_werrors),
844  		 pvt->branchmap_werrors->vendor,
845  		 pvt->branchmap_werrors->device);
846  	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
847  		 pci_name(pvt->fsb_error_regs),
848  		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
849  
850  	pdev = NULL;
851  	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
852  			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
853  
854  	if (pdev == NULL) {
855  		i5000_printk(KERN_ERR,
856  			"MC: 'BRANCH 0' device not found:"
857  			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
858  			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
859  
860  		pci_dev_put(pvt->branchmap_werrors);
861  		pci_dev_put(pvt->fsb_error_regs);
862  		return 1;
863  	}
864  
865  	pvt->branch_0 = pdev;
866  
867  	/* If this device claims to have more than 2 channels then
868  	 * fetch Branch 1's information
869  	 */
870  	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
871  		pdev = NULL;
872  		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
873  				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
874  
875  		if (pdev == NULL) {
876  			i5000_printk(KERN_ERR,
877  				"MC: 'BRANCH 1' device not found:"
878  				"vendor 0x%x device 0x%x Func 0 "
879  				"(broken BIOS?)\n",
880  				PCI_VENDOR_ID_INTEL,
881  				PCI_DEVICE_ID_I5000_BRANCH_1);
882  
883  			pci_dev_put(pvt->branchmap_werrors);
884  			pci_dev_put(pvt->fsb_error_regs);
885  			pci_dev_put(pvt->branch_0);
886  			return 1;
887  		}
888  
889  		pvt->branch_1 = pdev;
890  	}
891  
892  	return 0;
893  }
894  
895  /*
896   *	i5000_put_devices	'put' all the devices that we have
897   *				reserved via 'get'
898   */
i5000_put_devices(struct mem_ctl_info * mci)899  static void i5000_put_devices(struct mem_ctl_info *mci)
900  {
901  	struct i5000_pvt *pvt;
902  
903  	pvt = mci->pvt_info;
904  
905  	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
906  	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
907  	pci_dev_put(pvt->branch_0);	/* DEV 21 */
908  
909  	/* Only if more than 2 channels do we release the second branch */
910  	if (pvt->maxch >= CHANNELS_PER_BRANCH)
911  		pci_dev_put(pvt->branch_1);	/* DEV 22 */
912  }
913  
914  /*
915   *	determine_amb_resent
916   *
917   *		the information is contained in NUM_MTRS different registers
918   *		determineing which of the NUM_MTRS requires knowing
919   *		which channel is in question
920   *
921   *	2 branches, each with 2 channels
922   *		b0_ambpresent0 for channel '0'
923   *		b0_ambpresent1 for channel '1'
924   *		b1_ambpresent0 for channel '2'
925   *		b1_ambpresent1 for channel '3'
926   */
determine_amb_present_reg(struct i5000_pvt * pvt,int channel)927  static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
928  {
929  	int amb_present;
930  
931  	if (channel < CHANNELS_PER_BRANCH) {
932  		if (channel & 0x1)
933  			amb_present = pvt->b0_ambpresent1;
934  		else
935  			amb_present = pvt->b0_ambpresent0;
936  	} else {
937  		if (channel & 0x1)
938  			amb_present = pvt->b1_ambpresent1;
939  		else
940  			amb_present = pvt->b1_ambpresent0;
941  	}
942  
943  	return amb_present;
944  }
945  
946  /*
947   * determine_mtr(pvt, csrow, channel)
948   *
949   *	return the proper MTR register as determine by the csrow and channel desired
950   */
determine_mtr(struct i5000_pvt * pvt,int slot,int channel)951  static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
952  {
953  	int mtr;
954  
955  	if (channel < CHANNELS_PER_BRANCH)
956  		mtr = pvt->b0_mtr[slot];
957  	else
958  		mtr = pvt->b1_mtr[slot];
959  
960  	return mtr;
961  }
962  
963  /*
964   */
decode_mtr(int slot_row,u16 mtr)965  static void decode_mtr(int slot_row, u16 mtr)
966  {
967  	int ans;
968  
969  	ans = MTR_DIMMS_PRESENT(mtr);
970  
971  	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
972  		 slot_row, mtr, ans ? "" : "NOT ");
973  	if (!ans)
974  		return;
975  
976  	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
977  	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
978  	edac_dbg(2, "\t\tNUMRANK: %s\n",
979  		 MTR_DIMM_RANK(mtr) ? "double" : "single");
980  	edac_dbg(2, "\t\tNUMROW: %s\n",
981  		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
982  		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
983  		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
984  		 "reserved");
985  	edac_dbg(2, "\t\tNUMCOL: %s\n",
986  		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
987  		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
988  		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
989  		 "reserved");
990  }
991  
handle_channel(struct i5000_pvt * pvt,int slot,int channel,struct i5000_dimm_info * dinfo)992  static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
993  			struct i5000_dimm_info *dinfo)
994  {
995  	int mtr;
996  	int amb_present_reg;
997  	int addrBits;
998  
999  	mtr = determine_mtr(pvt, slot, channel);
1000  	if (MTR_DIMMS_PRESENT(mtr)) {
1001  		amb_present_reg = determine_amb_present_reg(pvt, channel);
1002  
1003  		/* Determine if there is a DIMM present in this DIMM slot */
1004  		if (amb_present_reg) {
1005  			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006  
1007  			/* Start with the number of bits for a Bank
1008  				* on the DRAM */
1009  			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010  			/* Add the number of ROW bits */
1011  			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012  			/* add the number of COLUMN bits */
1013  			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014  
1015  			/* Dual-rank memories have twice the size */
1016  			if (dinfo->dual_rank)
1017  				addrBits++;
1018  
1019  			addrBits += 6;	/* add 64 bits per DIMM */
1020  			addrBits -= 20;	/* divide by 2^^20 */
1021  			addrBits -= 3;	/* 8 bits per bytes */
1022  
1023  			dinfo->megabytes = 1 << addrBits;
1024  		}
1025  	}
1026  }
1027  
1028  /*
1029   *	calculate_dimm_size
1030   *
1031   *	also will output a DIMM matrix map, if debug is enabled, for viewing
1032   *	how the DIMMs are populated
1033   */
calculate_dimm_size(struct i5000_pvt * pvt)1034  static void calculate_dimm_size(struct i5000_pvt *pvt)
1035  {
1036  	struct i5000_dimm_info *dinfo;
1037  	int slot, channel, branch;
1038  	char *p, *mem_buffer;
1039  	int space, n;
1040  
1041  	/* ================= Generate some debug output ================= */
1042  	space = PAGE_SIZE;
1043  	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044  	if (p == NULL) {
1045  		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046  			__FILE__, __func__);
1047  		return;
1048  	}
1049  
1050  	/* Scan all the actual slots
1051  	 * and calculate the information for each DIMM
1052  	 * Start with the highest slot first, to display it first
1053  	 * and work toward the 0th slot
1054  	 */
1055  	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056  
1057  		/* on an odd slot, first output a 'boundary' marker,
1058  		 * then reset the message buffer  */
1059  		if (slot & 0x1) {
1060  			n = snprintf(p, space, "--------------------------"
1061  				"--------------------------------");
1062  			p += n;
1063  			space -= n;
1064  			edac_dbg(2, "%s\n", mem_buffer);
1065  			p = mem_buffer;
1066  			space = PAGE_SIZE;
1067  		}
1068  		n = snprintf(p, space, "slot %2d    ", slot);
1069  		p += n;
1070  		space -= n;
1071  
1072  		for (channel = 0; channel < pvt->maxch; channel++) {
1073  			dinfo = &pvt->dimm_info[slot][channel];
1074  			handle_channel(pvt, slot, channel, dinfo);
1075  			if (dinfo->megabytes)
1076  				n = snprintf(p, space, "%4d MB %dR| ",
1077  					     dinfo->megabytes, dinfo->dual_rank + 1);
1078  			else
1079  				n = snprintf(p, space, "%4d MB   | ", 0);
1080  			p += n;
1081  			space -= n;
1082  		}
1083  		p += n;
1084  		space -= n;
1085  		edac_dbg(2, "%s\n", mem_buffer);
1086  		p = mem_buffer;
1087  		space = PAGE_SIZE;
1088  	}
1089  
1090  	/* Output the last bottom 'boundary' marker */
1091  	n = snprintf(p, space, "--------------------------"
1092  		"--------------------------------");
1093  	p += n;
1094  	space -= n;
1095  	edac_dbg(2, "%s\n", mem_buffer);
1096  	p = mem_buffer;
1097  	space = PAGE_SIZE;
1098  
1099  	/* now output the 'channel' labels */
1100  	n = snprintf(p, space, "           ");
1101  	p += n;
1102  	space -= n;
1103  	for (channel = 0; channel < pvt->maxch; channel++) {
1104  		n = snprintf(p, space, "channel %d | ", channel);
1105  		p += n;
1106  		space -= n;
1107  	}
1108  	edac_dbg(2, "%s\n", mem_buffer);
1109  	p = mem_buffer;
1110  	space = PAGE_SIZE;
1111  
1112  	n = snprintf(p, space, "           ");
1113  	p += n;
1114  	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115  		n = snprintf(p, space, "       branch %d       | ", branch);
1116  		p += n;
1117  		space -= n;
1118  	}
1119  
1120  	/* output the last message and free buffer */
1121  	edac_dbg(2, "%s\n", mem_buffer);
1122  	kfree(mem_buffer);
1123  }
1124  
1125  /*
1126   *	i5000_get_mc_regs	read in the necessary registers and
1127   *				cache locally
1128   *
1129   *			Fills in the private data members
1130   */
i5000_get_mc_regs(struct mem_ctl_info * mci)1131  static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132  {
1133  	struct i5000_pvt *pvt;
1134  	u32 actual_tolm;
1135  	u16 limit;
1136  	int slot_row;
1137  	int way0, way1;
1138  
1139  	pvt = mci->pvt_info;
1140  
1141  	pci_read_config_dword(pvt->system_address, AMBASE,
1142  			&pvt->u.ambase_bottom);
1143  	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144  			&pvt->u.ambase_top);
1145  
1146  	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1147  		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148  
1149  	/* Get the Branch Map regs */
1150  	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151  	pvt->tolm >>= 12;
1152  	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153  		 pvt->tolm, pvt->tolm);
1154  
1155  	actual_tolm = pvt->tolm << 28;
1156  	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157  		 actual_tolm, actual_tolm);
1158  
1159  	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160  	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161  	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162  
1163  	/* Get the MIR[0-2] regs */
1164  	limit = (pvt->mir0 >> 4) & 0x0FFF;
1165  	way0 = pvt->mir0 & 0x1;
1166  	way1 = pvt->mir0 & 0x2;
1167  	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1168  		 limit, way1, way0);
1169  	limit = (pvt->mir1 >> 4) & 0x0FFF;
1170  	way0 = pvt->mir1 & 0x1;
1171  	way1 = pvt->mir1 & 0x2;
1172  	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1173  		 limit, way1, way0);
1174  	limit = (pvt->mir2 >> 4) & 0x0FFF;
1175  	way0 = pvt->mir2 & 0x1;
1176  	way1 = pvt->mir2 & 0x2;
1177  	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1178  		 limit, way1, way0);
1179  
1180  	/* Get the MTR[0-3] regs */
1181  	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182  		int where = MTR0 + (slot_row * sizeof(u32));
1183  
1184  		pci_read_config_word(pvt->branch_0, where,
1185  				&pvt->b0_mtr[slot_row]);
1186  
1187  		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188  			 slot_row, where, pvt->b0_mtr[slot_row]);
1189  
1190  		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191  			pci_read_config_word(pvt->branch_1, where,
1192  					&pvt->b1_mtr[slot_row]);
1193  			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194  				 slot_row, where, pvt->b1_mtr[slot_row]);
1195  		} else {
1196  			pvt->b1_mtr[slot_row] = 0;
1197  		}
1198  	}
1199  
1200  	/* Read and dump branch 0's MTRs */
1201  	edac_dbg(2, "Memory Technology Registers:\n");
1202  	edac_dbg(2, "   Branch 0:\n");
1203  	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204  		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205  	}
1206  	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207  			&pvt->b0_ambpresent0);
1208  	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209  	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210  			&pvt->b0_ambpresent1);
1211  	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212  
1213  	/* Only if we have 2 branchs (4 channels) */
1214  	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215  		pvt->b1_ambpresent0 = 0;
1216  		pvt->b1_ambpresent1 = 0;
1217  	} else {
1218  		/* Read and dump  branch 1's MTRs */
1219  		edac_dbg(2, "   Branch 1:\n");
1220  		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221  			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222  		}
1223  		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224  				&pvt->b1_ambpresent0);
1225  		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226  			 pvt->b1_ambpresent0);
1227  		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228  				&pvt->b1_ambpresent1);
1229  		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230  			 pvt->b1_ambpresent1);
1231  	}
1232  
1233  	/* Go and determine the size of each DIMM and place in an
1234  	 * orderly matrix */
1235  	calculate_dimm_size(pvt);
1236  }
1237  
1238  /*
1239   *	i5000_init_csrows	Initialize the 'csrows' table within
1240   *				the mci control	structure with the
1241   *				addressing of memory.
1242   *
1243   *	return:
1244   *		0	success
1245   *		1	no actual memory found on this MC
1246   */
i5000_init_csrows(struct mem_ctl_info * mci)1247  static int i5000_init_csrows(struct mem_ctl_info *mci)
1248  {
1249  	struct i5000_pvt *pvt;
1250  	struct dimm_info *dimm;
1251  	int empty;
1252  	int max_csrows;
1253  	int mtr;
1254  	int csrow_megs;
1255  	int channel;
1256  	int slot;
1257  
1258  	pvt = mci->pvt_info;
1259  	max_csrows = pvt->maxdimmperch * 2;
1260  
1261  	empty = 1;		/* Assume NO memory */
1262  
1263  	/*
1264  	 * FIXME: The memory layout used to map slot/channel into the
1265  	 * real memory architecture is weird: branch+slot are "csrows"
1266  	 * and channel is channel. That required an extra array (dimm_info)
1267  	 * to map the dimms. A good cleanup would be to remove this array,
1268  	 * and do a loop here with branch, channel, slot
1269  	 */
1270  	for (slot = 0; slot < max_csrows; slot++) {
1271  		for (channel = 0; channel < pvt->maxch; channel++) {
1272  
1273  			mtr = determine_mtr(pvt, slot, channel);
1274  
1275  			if (!MTR_DIMMS_PRESENT(mtr))
1276  				continue;
1277  
1278  			dimm = edac_get_dimm(mci, channel / MAX_BRANCHES,
1279  					     channel % MAX_BRANCHES, slot);
1280  
1281  			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1282  			dimm->grain = 8;
1283  
1284  			/* Assume DDR2 for now */
1285  			dimm->mtype = MEM_FB_DDR2;
1286  
1287  			/* ask what device type on this row */
1288  			if (MTR_DRAM_WIDTH(mtr) == 8)
1289  				dimm->dtype = DEV_X8;
1290  			else
1291  				dimm->dtype = DEV_X4;
1292  
1293  			dimm->edac_mode = EDAC_S8ECD8ED;
1294  			dimm->nr_pages = csrow_megs << 8;
1295  		}
1296  
1297  		empty = 0;
1298  	}
1299  
1300  	return empty;
1301  }
1302  
1303  /*
1304   *	i5000_enable_error_reporting
1305   *			Turn on the memory reporting features of the hardware
1306   */
i5000_enable_error_reporting(struct mem_ctl_info * mci)1307  static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1308  {
1309  	struct i5000_pvt *pvt;
1310  	u32 fbd_error_mask;
1311  
1312  	pvt = mci->pvt_info;
1313  
1314  	/* Read the FBD Error Mask Register */
1315  	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1316  			&fbd_error_mask);
1317  
1318  	/* Enable with a '0' */
1319  	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1320  
1321  	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1322  			fbd_error_mask);
1323  }
1324  
1325  /*
1326   * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1327   *
1328   *	ask the device how many channels are present and how many CSROWS
1329   *	 as well
1330   */
i5000_get_dimm_and_channel_counts(struct pci_dev * pdev,int * num_dimms_per_channel,int * num_channels)1331  static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1332  					int *num_dimms_per_channel,
1333  					int *num_channels)
1334  {
1335  	u8 value;
1336  
1337  	/* Need to retrieve just how many channels and dimms per channel are
1338  	 * supported on this memory controller
1339  	 */
1340  	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1341  	*num_dimms_per_channel = (int)value;
1342  
1343  	pci_read_config_byte(pdev, MAXCH, &value);
1344  	*num_channels = (int)value;
1345  }
1346  
1347  /*
1348   *	i5000_probe1	Probe for ONE instance of device to see if it is
1349   *			present.
1350   *	return:
1351   *		0 for FOUND a device
1352   *		< 0 for error code
1353   */
i5000_probe1(struct pci_dev * pdev,int dev_idx)1354  static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1355  {
1356  	struct mem_ctl_info *mci;
1357  	struct edac_mc_layer layers[3];
1358  	struct i5000_pvt *pvt;
1359  	int num_channels;
1360  	int num_dimms_per_channel;
1361  
1362  	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1363  		 pdev->bus->number,
1364  		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1365  
1366  	/* We only are looking for func 0 of the set */
1367  	if (PCI_FUNC(pdev->devfn) != 0)
1368  		return -ENODEV;
1369  
1370  	/* Ask the devices for the number of CSROWS and CHANNELS so
1371  	 * that we can calculate the memory resources, etc
1372  	 *
1373  	 * The Chipset will report what it can handle which will be greater
1374  	 * or equal to what the motherboard manufacturer will implement.
1375  	 *
1376  	 * As we don't have a motherboard identification routine to determine
1377  	 * actual number of slots/dimms per channel, we thus utilize the
1378  	 * resource as specified by the chipset. Thus, we might have
1379  	 * have more DIMMs per channel than actually on the mobo, but this
1380  	 * allows the driver to support up to the chipset max, without
1381  	 * some fancy mobo determination.
1382  	 */
1383  	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1384  					&num_channels);
1385  
1386  	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
1387  		 num_channels, num_dimms_per_channel);
1388  
1389  	/* allocate a new MC control structure */
1390  
1391  	layers[0].type = EDAC_MC_LAYER_BRANCH;
1392  	layers[0].size = MAX_BRANCHES;
1393  	layers[0].is_virt_csrow = false;
1394  	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1395  	layers[1].size = num_channels / MAX_BRANCHES;
1396  	layers[1].is_virt_csrow = false;
1397  	layers[2].type = EDAC_MC_LAYER_SLOT;
1398  	layers[2].size = num_dimms_per_channel;
1399  	layers[2].is_virt_csrow = true;
1400  	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1401  	if (mci == NULL)
1402  		return -ENOMEM;
1403  
1404  	edac_dbg(0, "MC: mci = %p\n", mci);
1405  
1406  	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1407  
1408  	pvt = mci->pvt_info;
1409  	pvt->system_address = pdev;	/* Record this device in our private */
1410  	pvt->maxch = num_channels;
1411  	pvt->maxdimmperch = num_dimms_per_channel;
1412  
1413  	/* 'get' the pci devices we want to reserve for our use */
1414  	if (i5000_get_devices(mci, dev_idx))
1415  		goto fail0;
1416  
1417  	/* Time to get serious */
1418  	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1419  
1420  	mci->mc_idx = 0;
1421  	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1422  	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1423  	mci->edac_cap = EDAC_FLAG_NONE;
1424  	mci->mod_name = "i5000_edac.c";
1425  	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1426  	mci->dev_name = pci_name(pdev);
1427  	mci->ctl_page_to_phys = NULL;
1428  
1429  	/* Set the function pointer to an actual operation function */
1430  	mci->edac_check = i5000_check_error;
1431  
1432  	/* initialize the MC control structure 'csrows' table
1433  	 * with the mapping and control information */
1434  	if (i5000_init_csrows(mci)) {
1435  		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1436  		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1437  	} else {
1438  		edac_dbg(1, "MC: Enable error reporting now\n");
1439  		i5000_enable_error_reporting(mci);
1440  	}
1441  
1442  	/* add this new MC control structure to EDAC's list of MCs */
1443  	if (edac_mc_add_mc(mci)) {
1444  		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1445  		/* FIXME: perhaps some code should go here that disables error
1446  		 * reporting if we just enabled it
1447  		 */
1448  		goto fail1;
1449  	}
1450  
1451  	i5000_clear_error(mci);
1452  
1453  	/* allocating generic PCI control info */
1454  	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1455  	if (!i5000_pci) {
1456  		printk(KERN_WARNING
1457  			"%s(): Unable to create PCI control\n",
1458  			__func__);
1459  		printk(KERN_WARNING
1460  			"%s(): PCI error report via EDAC not setup\n",
1461  			__func__);
1462  	}
1463  
1464  	return 0;
1465  
1466  	/* Error exit unwinding stack */
1467  fail1:
1468  
1469  	i5000_put_devices(mci);
1470  
1471  fail0:
1472  	edac_mc_free(mci);
1473  	return -ENODEV;
1474  }
1475  
1476  /*
1477   *	i5000_init_one	constructor for one instance of device
1478   *
1479   * 	returns:
1480   *		negative on error
1481   *		count (>= 0)
1482   */
i5000_init_one(struct pci_dev * pdev,const struct pci_device_id * id)1483  static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1484  {
1485  	int rc;
1486  
1487  	edac_dbg(0, "MC:\n");
1488  
1489  	/* wake up device */
1490  	rc = pci_enable_device(pdev);
1491  	if (rc)
1492  		return rc;
1493  
1494  	/* now probe and enable the device */
1495  	return i5000_probe1(pdev, id->driver_data);
1496  }
1497  
1498  /*
1499   *	i5000_remove_one	destructor for one instance of device
1500   *
1501   */
i5000_remove_one(struct pci_dev * pdev)1502  static void i5000_remove_one(struct pci_dev *pdev)
1503  {
1504  	struct mem_ctl_info *mci;
1505  
1506  	edac_dbg(0, "\n");
1507  
1508  	if (i5000_pci)
1509  		edac_pci_release_generic_ctl(i5000_pci);
1510  
1511  	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1512  		return;
1513  
1514  	/* retrieve references to resources, and free those resources */
1515  	i5000_put_devices(mci);
1516  	edac_mc_free(mci);
1517  }
1518  
1519  /*
1520   *	pci_device_id	table for which devices we are looking for
1521   *
1522   *	The "E500P" device is the first device supported.
1523   */
1524  static const struct pci_device_id i5000_pci_tbl[] = {
1525  	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1526  	 .driver_data = I5000P},
1527  
1528  	{0,}			/* 0 terminated list. */
1529  };
1530  
1531  MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1532  
1533  /*
1534   *	i5000_driver	pci_driver structure for this module
1535   *
1536   */
1537  static struct pci_driver i5000_driver = {
1538  	.name = KBUILD_BASENAME,
1539  	.probe = i5000_init_one,
1540  	.remove = i5000_remove_one,
1541  	.id_table = i5000_pci_tbl,
1542  };
1543  
1544  /*
1545   *	i5000_init		Module entry function
1546   *			Try to initialize this module for its devices
1547   */
i5000_init(void)1548  static int __init i5000_init(void)
1549  {
1550  	int pci_rc;
1551  
1552  	edac_dbg(2, "MC:\n");
1553  
1554  	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1555  	opstate_init();
1556  
1557  	pci_rc = pci_register_driver(&i5000_driver);
1558  
1559  	return (pci_rc < 0) ? pci_rc : 0;
1560  }
1561  
1562  /*
1563   *	i5000_exit()	Module exit function
1564   *			Unregister the driver
1565   */
i5000_exit(void)1566  static void __exit i5000_exit(void)
1567  {
1568  	edac_dbg(2, "MC:\n");
1569  	pci_unregister_driver(&i5000_driver);
1570  }
1571  
1572  module_init(i5000_init);
1573  module_exit(i5000_exit);
1574  
1575  MODULE_LICENSE("GPL");
1576  MODULE_AUTHOR("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1577  MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " I5000_REVISION);
1578  
1579  module_param(edac_op_state, int, 0444);
1580  MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1581  module_param(misc_messages, int, 0444);
1582  MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1583