xref: /openbmc/linux/drivers/iio/accel/adxl355_core.c (revision d3532d69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ADXL355 3-Axis Digital Accelerometer IIO core driver
4  *
5  * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com>
6  *
7  * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf
8  */
9 
10 #include <linux/bits.h>
11 #include <linux/bitfield.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/trigger.h>
15 #include <linux/iio/triggered_buffer.h>
16 #include <linux/iio/trigger_consumer.h>
17 #include <linux/limits.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/property.h>
22 #include <linux/regmap.h>
23 #include <linux/units.h>
24 
25 #include <asm/unaligned.h>
26 
27 #include "adxl355.h"
28 
29 /* ADXL355 Register Definitions */
30 #define ADXL355_DEVID_AD_REG		0x00
31 #define ADXL355_DEVID_MST_REG		0x01
32 #define ADXL355_PARTID_REG		0x02
33 #define ADXL355_STATUS_REG		0x04
34 #define ADXL355_FIFO_ENTRIES_REG	0x05
35 #define ADXL355_TEMP2_REG		0x06
36 #define ADXL355_XDATA3_REG		0x08
37 #define ADXL355_YDATA3_REG		0x0B
38 #define ADXL355_ZDATA3_REG		0x0E
39 #define ADXL355_FIFO_DATA_REG		0x11
40 #define ADXL355_OFFSET_X_H_REG		0x1E
41 #define ADXL355_OFFSET_Y_H_REG		0x20
42 #define ADXL355_OFFSET_Z_H_REG		0x22
43 #define ADXL355_ACT_EN_REG		0x24
44 #define ADXL355_ACT_THRESH_H_REG	0x25
45 #define ADXL355_ACT_THRESH_L_REG	0x26
46 #define ADXL355_ACT_COUNT_REG		0x27
47 #define ADXL355_FILTER_REG		0x28
48 #define  ADXL355_FILTER_ODR_MSK GENMASK(3, 0)
49 #define  ADXL355_FILTER_HPF_MSK	GENMASK(6, 4)
50 #define ADXL355_FIFO_SAMPLES_REG	0x29
51 #define ADXL355_INT_MAP_REG		0x2A
52 #define ADXL355_SYNC_REG		0x2B
53 #define ADXL355_RANGE_REG		0x2C
54 #define ADXL355_POWER_CTL_REG		0x2D
55 #define  ADXL355_POWER_CTL_MODE_MSK	GENMASK(1, 0)
56 #define  ADXL355_POWER_CTL_DRDY_MSK	BIT(2)
57 #define ADXL355_SELF_TEST_REG		0x2E
58 #define ADXL355_RESET_REG		0x2F
59 
60 #define ADXL355_DEVID_AD_VAL		0xAD
61 #define ADXL355_DEVID_MST_VAL		0x1D
62 #define ADXL355_PARTID_VAL		0xED
63 #define ADXL359_PARTID_VAL		0xE9
64 #define ADXL355_RESET_CODE		0x52
65 
66 static const struct regmap_range adxl355_read_reg_range[] = {
67 	regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG),
68 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG),
69 };
70 
71 const struct regmap_access_table adxl355_readable_regs_tbl = {
72 	.yes_ranges = adxl355_read_reg_range,
73 	.n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range),
74 };
75 EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, IIO_ADXL355);
76 
77 static const struct regmap_range adxl355_write_reg_range[] = {
78 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG),
79 };
80 
81 const struct regmap_access_table adxl355_writeable_regs_tbl = {
82 	.yes_ranges = adxl355_write_reg_range,
83 	.n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range),
84 };
85 EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, IIO_ADXL355);
86 
87 const struct adxl355_chip_info adxl35x_chip_info[] = {
88 	[ADXL355] = {
89 		.name = "adxl355",
90 		.part_id = ADXL355_PARTID_VAL,
91 		/*
92 		 * At +/- 2g with 20-bit resolution, scale is given in datasheet
93 		 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2.
94 		 */
95 		.accel_scale = {
96 			.integer = 0,
97 			.decimal = 38245,
98 		},
99 		/*
100 		 * The datasheet defines an intercept of 1885 LSB at 25 degC
101 		 * and a slope of -9.05 LSB/C. The following formula can be used
102 		 * to find the temperature:
103 		 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow
104 		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
105 		 * Hence using some rearranging we get the scale as -110.497238
106 		 * and offset as -2111.25.
107 		 */
108 		.temp_offset = {
109 			.integer =  -2111,
110 			.decimal = 250000,
111 		},
112 	},
113 	[ADXL359] = {
114 		.name = "adxl359",
115 		.part_id = ADXL359_PARTID_VAL,
116 		/*
117 		 * At +/- 10g with 20-bit resolution, scale is given in datasheet
118 		 * as 19.5ug/LSB = 0.0000195 * 9.80665 = 0.0.00019122967 m/s^2.
119 		 */
120 		.accel_scale = {
121 			.integer = 0,
122 			.decimal = 191229,
123 		},
124 		/*
125 		 * The datasheet defines an intercept of 1852 LSB at 25 degC
126 		 * and a slope of -9.05 LSB/C. The following formula can be used
127 		 * to find the temperature:
128 		 * Temp = ((RAW - 1852)/(-9.05)) + 25 but this doesn't follow
129 		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
130 		 * Hence using some rearranging we get the scale as -110.497238
131 		 * and offset as -2079.25.
132 		 */
133 		.temp_offset = {
134 			.integer = -2079,
135 			.decimal = 250000,
136 		},
137 	},
138 };
139 EXPORT_SYMBOL_NS_GPL(adxl35x_chip_info, IIO_ADXL355);
140 
141 enum adxl355_op_mode {
142 	ADXL355_MEASUREMENT,
143 	ADXL355_STANDBY,
144 	ADXL355_TEMP_OFF,
145 };
146 
147 enum adxl355_odr {
148 	ADXL355_ODR_4000HZ,
149 	ADXL355_ODR_2000HZ,
150 	ADXL355_ODR_1000HZ,
151 	ADXL355_ODR_500HZ,
152 	ADXL355_ODR_250HZ,
153 	ADXL355_ODR_125HZ,
154 	ADXL355_ODR_62_5HZ,
155 	ADXL355_ODR_31_25HZ,
156 	ADXL355_ODR_15_625HZ,
157 	ADXL355_ODR_7_813HZ,
158 	ADXL355_ODR_3_906HZ,
159 };
160 
161 enum adxl355_hpf_3db {
162 	ADXL355_HPF_OFF,
163 	ADXL355_HPF_24_7,
164 	ADXL355_HPF_6_2084,
165 	ADXL355_HPF_1_5545,
166 	ADXL355_HPF_0_3862,
167 	ADXL355_HPF_0_0954,
168 	ADXL355_HPF_0_0238,
169 };
170 
171 static const int adxl355_odr_table[][2] = {
172 	[0] = {4000, 0},
173 	[1] = {2000, 0},
174 	[2] = {1000, 0},
175 	[3] = {500, 0},
176 	[4] = {250, 0},
177 	[5] = {125, 0},
178 	[6] = {62, 500000},
179 	[7] = {31, 250000},
180 	[8] = {15, 625000},
181 	[9] = {7, 813000},
182 	[10] = {3, 906000},
183 };
184 
185 static const int adxl355_hpf_3db_multipliers[] = {
186 	0,
187 	247000,
188 	62084,
189 	15545,
190 	3862,
191 	954,
192 	238,
193 };
194 
195 enum adxl355_chans {
196 	chan_x, chan_y, chan_z,
197 };
198 
199 struct adxl355_chan_info {
200 	u8 data_reg;
201 	u8 offset_reg;
202 };
203 
204 static const struct adxl355_chan_info adxl355_chans[] = {
205 	[chan_x] = {
206 		.data_reg = ADXL355_XDATA3_REG,
207 		.offset_reg = ADXL355_OFFSET_X_H_REG
208 	},
209 	[chan_y] = {
210 		.data_reg = ADXL355_YDATA3_REG,
211 		.offset_reg = ADXL355_OFFSET_Y_H_REG
212 	},
213 	[chan_z] = {
214 		.data_reg = ADXL355_ZDATA3_REG,
215 		.offset_reg = ADXL355_OFFSET_Z_H_REG
216 	},
217 };
218 
219 struct adxl355_data {
220 	const struct adxl355_chip_info *chip_info;
221 	struct regmap *regmap;
222 	struct device *dev;
223 	struct mutex lock; /* lock to protect op_mode */
224 	enum adxl355_op_mode op_mode;
225 	enum adxl355_odr odr;
226 	enum adxl355_hpf_3db hpf_3db;
227 	int calibbias[3];
228 	int adxl355_hpf_3db_table[7][2];
229 	struct iio_trigger *dready_trig;
230 	union {
231 		u8 transf_buf[3];
232 		struct {
233 			u8 buf[14];
234 			s64 ts;
235 		} buffer;
236 	} __aligned(IIO_DMA_MINALIGN);
237 };
238 
adxl355_set_op_mode(struct adxl355_data * data,enum adxl355_op_mode op_mode)239 static int adxl355_set_op_mode(struct adxl355_data *data,
240 			       enum adxl355_op_mode op_mode)
241 {
242 	int ret;
243 
244 	if (data->op_mode == op_mode)
245 		return 0;
246 
247 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
248 				 ADXL355_POWER_CTL_MODE_MSK, op_mode);
249 	if (ret)
250 		return ret;
251 
252 	data->op_mode = op_mode;
253 
254 	return ret;
255 }
256 
adxl355_data_rdy_trigger_set_state(struct iio_trigger * trig,bool state)257 static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig,
258 					      bool state)
259 {
260 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
261 	struct adxl355_data *data = iio_priv(indio_dev);
262 	int ret;
263 
264 	mutex_lock(&data->lock);
265 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
266 				 ADXL355_POWER_CTL_DRDY_MSK,
267 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK,
268 					    state ? 0 : 1));
269 	mutex_unlock(&data->lock);
270 
271 	return ret;
272 }
273 
adxl355_fill_3db_frequency_table(struct adxl355_data * data)274 static void adxl355_fill_3db_frequency_table(struct adxl355_data *data)
275 {
276 	u32 multiplier;
277 	u64 div, rem;
278 	u64 odr;
279 	int i;
280 
281 	odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) +
282 			      adxl355_odr_table[data->odr][1];
283 
284 	for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) {
285 		multiplier = adxl355_hpf_3db_multipliers[i];
286 		div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0),
287 				    TERA * 100, &rem);
288 
289 		data->adxl355_hpf_3db_table[i][0] = div;
290 		data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100);
291 	}
292 }
293 
adxl355_setup(struct adxl355_data * data)294 static int adxl355_setup(struct adxl355_data *data)
295 {
296 	unsigned int regval;
297 	int ret;
298 
299 	ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, &regval);
300 	if (ret)
301 		return ret;
302 
303 	if (regval != ADXL355_DEVID_AD_VAL) {
304 		dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval);
305 		return -ENODEV;
306 	}
307 
308 	ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, &regval);
309 	if (ret)
310 		return ret;
311 
312 	if (regval != ADXL355_DEVID_MST_VAL) {
313 		dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval);
314 		return -ENODEV;
315 	}
316 
317 	ret = regmap_read(data->regmap, ADXL355_PARTID_REG, &regval);
318 	if (ret)
319 		return ret;
320 
321 	if (regval != ADXL355_PARTID_VAL)
322 		dev_warn(data->dev, "Invalid DEV ID 0x%02x\n", regval);
323 
324 	/*
325 	 * Perform a software reset to make sure the device is in a consistent
326 	 * state after start-up.
327 	 */
328 	ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE);
329 	if (ret)
330 		return ret;
331 
332 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
333 				 ADXL355_POWER_CTL_DRDY_MSK,
334 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1));
335 	if (ret)
336 		return ret;
337 
338 	adxl355_fill_3db_frequency_table(data);
339 
340 	return adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
341 }
342 
adxl355_get_temp_data(struct adxl355_data * data,u8 addr)343 static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr)
344 {
345 	return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2);
346 }
347 
adxl355_read_axis(struct adxl355_data * data,u8 addr)348 static int adxl355_read_axis(struct adxl355_data *data, u8 addr)
349 {
350 	int ret;
351 
352 	ret = regmap_bulk_read(data->regmap, addr, data->transf_buf,
353 			       ARRAY_SIZE(data->transf_buf));
354 	if (ret)
355 		return ret;
356 
357 	return get_unaligned_be24(data->transf_buf);
358 }
359 
adxl355_find_match(const int (* freq_tbl)[2],const int n,const int val,const int val2)360 static int adxl355_find_match(const int (*freq_tbl)[2], const int n,
361 			      const int val, const int val2)
362 {
363 	int i;
364 
365 	for (i = 0; i < n; i++) {
366 		if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
367 			return i;
368 	}
369 
370 	return -EINVAL;
371 }
372 
adxl355_set_odr(struct adxl355_data * data,enum adxl355_odr odr)373 static int adxl355_set_odr(struct adxl355_data *data,
374 			   enum adxl355_odr odr)
375 {
376 	int ret;
377 
378 	mutex_lock(&data->lock);
379 
380 	if (data->odr == odr) {
381 		mutex_unlock(&data->lock);
382 		return 0;
383 	}
384 
385 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
386 	if (ret)
387 		goto err_unlock;
388 
389 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
390 				 ADXL355_FILTER_ODR_MSK,
391 				 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr));
392 	if (ret)
393 		goto err_set_opmode;
394 
395 	data->odr = odr;
396 	adxl355_fill_3db_frequency_table(data);
397 
398 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
399 	if (ret)
400 		goto err_set_opmode;
401 
402 	mutex_unlock(&data->lock);
403 	return 0;
404 
405 err_set_opmode:
406 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
407 err_unlock:
408 	mutex_unlock(&data->lock);
409 	return ret;
410 }
411 
adxl355_set_hpf_3db(struct adxl355_data * data,enum adxl355_hpf_3db hpf)412 static int adxl355_set_hpf_3db(struct adxl355_data *data,
413 			       enum adxl355_hpf_3db hpf)
414 {
415 	int ret;
416 
417 	mutex_lock(&data->lock);
418 
419 	if (data->hpf_3db == hpf) {
420 		mutex_unlock(&data->lock);
421 		return 0;
422 	}
423 
424 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
425 	if (ret)
426 		goto err_unlock;
427 
428 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
429 				 ADXL355_FILTER_HPF_MSK,
430 				 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf));
431 	if (ret)
432 		goto err_set_opmode;
433 
434 	data->hpf_3db = hpf;
435 
436 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
437 	if (ret)
438 		goto err_set_opmode;
439 
440 	mutex_unlock(&data->lock);
441 	return 0;
442 
443 err_set_opmode:
444 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
445 err_unlock:
446 	mutex_unlock(&data->lock);
447 	return ret;
448 }
449 
adxl355_set_calibbias(struct adxl355_data * data,enum adxl355_chans chan,int calibbias)450 static int adxl355_set_calibbias(struct adxl355_data *data,
451 				 enum adxl355_chans chan, int calibbias)
452 {
453 	int ret;
454 
455 	mutex_lock(&data->lock);
456 
457 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
458 	if (ret)
459 		goto err_unlock;
460 
461 	put_unaligned_be16(calibbias, data->transf_buf);
462 	ret = regmap_bulk_write(data->regmap,
463 				adxl355_chans[chan].offset_reg,
464 				data->transf_buf, 2);
465 	if (ret)
466 		goto err_set_opmode;
467 
468 	data->calibbias[chan] = calibbias;
469 
470 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
471 	if (ret)
472 		goto err_set_opmode;
473 
474 	mutex_unlock(&data->lock);
475 	return 0;
476 
477 err_set_opmode:
478 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
479 err_unlock:
480 	mutex_unlock(&data->lock);
481 	return ret;
482 }
483 
adxl355_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)484 static int adxl355_read_raw(struct iio_dev *indio_dev,
485 			    struct iio_chan_spec const *chan,
486 			    int *val, int *val2, long mask)
487 {
488 	struct adxl355_data *data = iio_priv(indio_dev);
489 	int ret;
490 
491 	switch (mask) {
492 	case IIO_CHAN_INFO_RAW:
493 		switch (chan->type) {
494 		case IIO_TEMP:
495 			ret = adxl355_get_temp_data(data, chan->address);
496 			if (ret < 0)
497 				return ret;
498 			*val = get_unaligned_be16(data->transf_buf);
499 
500 			return IIO_VAL_INT;
501 		case IIO_ACCEL:
502 			ret = adxl355_read_axis(data, adxl355_chans[
503 						chan->address].data_reg);
504 			if (ret < 0)
505 				return ret;
506 			*val = sign_extend32(ret >> chan->scan_type.shift,
507 					     chan->scan_type.realbits - 1);
508 			return IIO_VAL_INT;
509 		default:
510 			return -EINVAL;
511 		}
512 
513 	case IIO_CHAN_INFO_SCALE:
514 		switch (chan->type) {
515 		case IIO_TEMP:
516 			/*
517 			 * Temperature scale is -110.497238.
518 			 * See the detailed explanation in adxl35x_chip_info
519 			 * definition above.
520 			 */
521 			*val = -110;
522 			*val2 = 497238;
523 			return IIO_VAL_INT_PLUS_MICRO;
524 		case IIO_ACCEL:
525 			*val = data->chip_info->accel_scale.integer;
526 			*val2 = data->chip_info->accel_scale.decimal;
527 			return IIO_VAL_INT_PLUS_NANO;
528 		default:
529 			return -EINVAL;
530 		}
531 	case IIO_CHAN_INFO_OFFSET:
532 		*val = data->chip_info->temp_offset.integer;
533 		*val2 = data->chip_info->temp_offset.decimal;
534 		return IIO_VAL_INT_PLUS_MICRO;
535 	case IIO_CHAN_INFO_CALIBBIAS:
536 		*val = sign_extend32(data->calibbias[chan->address], 15);
537 		return IIO_VAL_INT;
538 	case IIO_CHAN_INFO_SAMP_FREQ:
539 		*val = adxl355_odr_table[data->odr][0];
540 		*val2 = adxl355_odr_table[data->odr][1];
541 		return IIO_VAL_INT_PLUS_MICRO;
542 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
543 		*val = data->adxl355_hpf_3db_table[data->hpf_3db][0];
544 		*val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1];
545 		return IIO_VAL_INT_PLUS_MICRO;
546 	default:
547 		return -EINVAL;
548 	}
549 }
550 
adxl355_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)551 static int adxl355_write_raw(struct iio_dev *indio_dev,
552 			     struct iio_chan_spec const *chan,
553 			     int val, int val2, long mask)
554 {
555 	struct adxl355_data *data = iio_priv(indio_dev);
556 	int odr_idx, hpf_idx, calibbias;
557 
558 	switch (mask) {
559 	case IIO_CHAN_INFO_SAMP_FREQ:
560 		odr_idx = adxl355_find_match(adxl355_odr_table,
561 					     ARRAY_SIZE(adxl355_odr_table),
562 					     val, val2);
563 		if (odr_idx < 0)
564 			return odr_idx;
565 
566 		return adxl355_set_odr(data, odr_idx);
567 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
568 		hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table,
569 					ARRAY_SIZE(data->adxl355_hpf_3db_table),
570 					     val, val2);
571 		if (hpf_idx < 0)
572 			return hpf_idx;
573 
574 		return adxl355_set_hpf_3db(data, hpf_idx);
575 	case IIO_CHAN_INFO_CALIBBIAS:
576 		calibbias = clamp_t(int, val, S16_MIN, S16_MAX);
577 
578 		return adxl355_set_calibbias(data, chan->address, calibbias);
579 	default:
580 		return -EINVAL;
581 	}
582 }
583 
adxl355_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)584 static int adxl355_read_avail(struct iio_dev *indio_dev,
585 			      struct iio_chan_spec const *chan,
586 			      const int **vals, int *type, int *length,
587 			      long mask)
588 {
589 	struct adxl355_data *data = iio_priv(indio_dev);
590 
591 	switch (mask) {
592 	case IIO_CHAN_INFO_SAMP_FREQ:
593 		*vals = (const int *)adxl355_odr_table;
594 		*type = IIO_VAL_INT_PLUS_MICRO;
595 		/* Values are stored in a 2D matrix */
596 		*length = ARRAY_SIZE(adxl355_odr_table) * 2;
597 
598 		return IIO_AVAIL_LIST;
599 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
600 		*vals = (const int *)data->adxl355_hpf_3db_table;
601 		*type = IIO_VAL_INT_PLUS_MICRO;
602 		/* Values are stored in a 2D matrix */
603 		*length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2;
604 
605 		return IIO_AVAIL_LIST;
606 	default:
607 		return -EINVAL;
608 	}
609 }
610 
611 static const unsigned long adxl355_avail_scan_masks[] = {
612 	GENMASK(3, 0),
613 	0
614 };
615 
616 static const struct iio_info adxl355_info = {
617 	.read_raw	= adxl355_read_raw,
618 	.write_raw	= adxl355_write_raw,
619 	.read_avail	= &adxl355_read_avail,
620 };
621 
622 static const struct iio_trigger_ops adxl355_trigger_ops = {
623 	.set_trigger_state = &adxl355_data_rdy_trigger_set_state,
624 	.validate_device = &iio_trigger_validate_own_device,
625 };
626 
adxl355_trigger_handler(int irq,void * p)627 static irqreturn_t adxl355_trigger_handler(int irq, void *p)
628 {
629 	struct iio_poll_func *pf = p;
630 	struct iio_dev *indio_dev = pf->indio_dev;
631 	struct adxl355_data *data = iio_priv(indio_dev);
632 	int ret;
633 
634 	mutex_lock(&data->lock);
635 
636 	/*
637 	 * data->buffer is used both for triggered buffer support
638 	 * and read/write_raw(), hence, it has to be zeroed here before usage.
639 	 */
640 	data->buffer.buf[0] = 0;
641 
642 	/*
643 	 * The acceleration data is 24 bits and big endian. It has to be saved
644 	 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer.
645 	 * The buf array is 14 bytes as it includes 3x4=12 bytes for
646 	 * accelaration data of x, y, and z axis. It also includes 2 bytes for
647 	 * temperature data.
648 	 */
649 	ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG,
650 			       &data->buffer.buf[1], 3);
651 	if (ret)
652 		goto out_unlock_notify;
653 
654 	ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG,
655 			       &data->buffer.buf[5], 3);
656 	if (ret)
657 		goto out_unlock_notify;
658 
659 	ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG,
660 			       &data->buffer.buf[9], 3);
661 	if (ret)
662 		goto out_unlock_notify;
663 
664 	ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG,
665 			       &data->buffer.buf[12], 2);
666 	if (ret)
667 		goto out_unlock_notify;
668 
669 	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
670 					   pf->timestamp);
671 
672 out_unlock_notify:
673 	mutex_unlock(&data->lock);
674 	iio_trigger_notify_done(indio_dev->trig);
675 
676 	return IRQ_HANDLED;
677 }
678 
679 #define ADXL355_ACCEL_CHANNEL(index, reg, axis) {			\
680 	.type = IIO_ACCEL,						\
681 	.address = reg,							\
682 	.modified = 1,							\
683 	.channel2 = IIO_MOD_##axis,					\
684 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
685 			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
686 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
687 				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
688 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
689 	.info_mask_shared_by_type_available =				\
690 		BIT(IIO_CHAN_INFO_SAMP_FREQ) |				\
691 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
692 	.scan_index = index,						\
693 	.scan_type = {							\
694 		.sign = 's',						\
695 		.realbits = 20,						\
696 		.storagebits = 32,					\
697 		.shift = 4,						\
698 		.endianness = IIO_BE,					\
699 	}								\
700 }
701 
702 static const struct iio_chan_spec adxl355_channels[] = {
703 	ADXL355_ACCEL_CHANNEL(0, chan_x, X),
704 	ADXL355_ACCEL_CHANNEL(1, chan_y, Y),
705 	ADXL355_ACCEL_CHANNEL(2, chan_z, Z),
706 	{
707 		.type = IIO_TEMP,
708 		.address = ADXL355_TEMP2_REG,
709 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
710 				      BIT(IIO_CHAN_INFO_SCALE) |
711 				      BIT(IIO_CHAN_INFO_OFFSET),
712 		.scan_index = 3,
713 		.scan_type = {
714 			.sign = 's',
715 			.realbits = 12,
716 			.storagebits = 16,
717 			.endianness = IIO_BE,
718 		},
719 	},
720 	IIO_CHAN_SOFT_TIMESTAMP(4),
721 };
722 
adxl355_probe_trigger(struct iio_dev * indio_dev,int irq)723 static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq)
724 {
725 	struct adxl355_data *data = iio_priv(indio_dev);
726 	int ret;
727 
728 	data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
729 						   indio_dev->name,
730 						   iio_device_id(indio_dev));
731 	if (!data->dready_trig)
732 		return -ENOMEM;
733 
734 	data->dready_trig->ops = &adxl355_trigger_ops;
735 	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
736 
737 	ret = devm_request_irq(data->dev, irq,
738 			       &iio_trigger_generic_data_rdy_poll,
739 			       IRQF_ONESHOT, "adxl355_irq", data->dready_trig);
740 	if (ret)
741 		return dev_err_probe(data->dev, ret, "request irq %d failed\n",
742 				     irq);
743 
744 	ret = devm_iio_trigger_register(data->dev, data->dready_trig);
745 	if (ret) {
746 		dev_err(data->dev, "iio trigger register failed\n");
747 		return ret;
748 	}
749 
750 	indio_dev->trig = iio_trigger_get(data->dready_trig);
751 
752 	return 0;
753 }
754 
adxl355_core_probe(struct device * dev,struct regmap * regmap,const struct adxl355_chip_info * chip_info)755 int adxl355_core_probe(struct device *dev, struct regmap *regmap,
756 		       const struct adxl355_chip_info *chip_info)
757 {
758 	struct adxl355_data *data;
759 	struct iio_dev *indio_dev;
760 	int ret;
761 	int irq;
762 
763 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
764 	if (!indio_dev)
765 		return -ENOMEM;
766 
767 	data = iio_priv(indio_dev);
768 	data->regmap = regmap;
769 	data->dev = dev;
770 	data->op_mode = ADXL355_STANDBY;
771 	data->chip_info = chip_info;
772 	mutex_init(&data->lock);
773 
774 	indio_dev->name = chip_info->name;
775 	indio_dev->info = &adxl355_info;
776 	indio_dev->modes = INDIO_DIRECT_MODE;
777 	indio_dev->channels = adxl355_channels;
778 	indio_dev->num_channels = ARRAY_SIZE(adxl355_channels);
779 	indio_dev->available_scan_masks = adxl355_avail_scan_masks;
780 
781 	ret = adxl355_setup(data);
782 	if (ret) {
783 		dev_err(dev, "ADXL355 setup failed\n");
784 		return ret;
785 	}
786 
787 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
788 					      &iio_pollfunc_store_time,
789 					      &adxl355_trigger_handler, NULL);
790 	if (ret) {
791 		dev_err(dev, "iio triggered buffer setup failed\n");
792 		return ret;
793 	}
794 
795 	irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY");
796 	if (irq > 0) {
797 		ret = adxl355_probe_trigger(indio_dev, irq);
798 		if (ret)
799 			return ret;
800 	}
801 
802 	return devm_iio_device_register(dev, indio_dev);
803 }
804 EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, IIO_ADXL355);
805 
806 MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>");
807 MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver");
808 MODULE_LICENSE("GPL v2");
809