1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests
4 *
5 * Copyright (C) 2022, Red Hat, Inc.
6 *
7 */
8
9 #define _GNU_SOURCE /* for program_invocation_short_name */
10 #include <asm/barrier.h>
11 #include <pthread.h>
12 #include <inttypes.h>
13
14 #include "kvm_util.h"
15 #include "processor.h"
16 #include "hyperv.h"
17 #include "test_util.h"
18 #include "vmx.h"
19
20 #define WORKER_VCPU_ID_1 2
21 #define WORKER_VCPU_ID_2 65
22
23 #define NTRY 100
24 #define NTEST_PAGES 2
25
26 struct hv_vpset {
27 u64 format;
28 u64 valid_bank_mask;
29 u64 bank_contents[];
30 };
31
32 enum HV_GENERIC_SET_FORMAT {
33 HV_GENERIC_SET_SPARSE_4K,
34 HV_GENERIC_SET_ALL,
35 };
36
37 #define HV_FLUSH_ALL_PROCESSORS BIT(0)
38 #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1)
39 #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2)
40 #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3)
41
42 /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
43 struct hv_tlb_flush {
44 u64 address_space;
45 u64 flags;
46 u64 processor_mask;
47 u64 gva_list[];
48 } __packed;
49
50 /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
51 struct hv_tlb_flush_ex {
52 u64 address_space;
53 u64 flags;
54 struct hv_vpset hv_vp_set;
55 u64 gva_list[];
56 } __packed;
57
58 /*
59 * Pass the following info to 'workers' and 'sender'
60 * - Hypercall page's GVA
61 * - Hypercall page's GPA
62 * - Test pages GVA
63 * - GVAs of the test pages' PTEs
64 */
65 struct test_data {
66 vm_vaddr_t hcall_gva;
67 vm_paddr_t hcall_gpa;
68 vm_vaddr_t test_pages;
69 vm_vaddr_t test_pages_pte[NTEST_PAGES];
70 };
71
72 /* 'Worker' vCPU code checking the contents of the test page */
worker_guest_code(vm_vaddr_t test_data)73 static void worker_guest_code(vm_vaddr_t test_data)
74 {
75 struct test_data *data = (struct test_data *)test_data;
76 u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX);
77 void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES;
78 u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64));
79 u64 expected, val;
80
81 x2apic_enable();
82 wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
83
84 for (;;) {
85 cpu_relax();
86
87 expected = READ_ONCE(*this_cpu);
88
89 /*
90 * Make sure the value in the test page is read after reading
91 * the expectation for the first time. Pairs with wmb() in
92 * prepare_to_test().
93 */
94 rmb();
95
96 val = READ_ONCE(*(u64 *)data->test_pages);
97
98 /*
99 * Make sure the value in the test page is read after before
100 * reading the expectation for the second time. Pairs with wmb()
101 * post_test().
102 */
103 rmb();
104
105 /*
106 * '0' indicates the sender is between iterations, wait until
107 * the sender is ready for this vCPU to start checking again.
108 */
109 if (!expected)
110 continue;
111
112 /*
113 * Re-read the per-vCPU byte to ensure the sender didn't move
114 * onto a new iteration.
115 */
116 if (expected != READ_ONCE(*this_cpu))
117 continue;
118
119 GUEST_ASSERT(val == expected);
120 }
121 }
122
123 /*
124 * Write per-CPU info indicating what each 'worker' CPU is supposed to see in
125 * test page. '0' means don't check.
126 */
set_expected_val(void * addr,u64 val,int vcpu_id)127 static void set_expected_val(void *addr, u64 val, int vcpu_id)
128 {
129 void *exp_page = addr + PAGE_SIZE * NTEST_PAGES;
130
131 *(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val;
132 }
133
134 /*
135 * Update PTEs swapping two test pages.
136 * TODO: use swap()/xchg() when these are provided.
137 */
swap_two_test_pages(vm_paddr_t pte_gva1,vm_paddr_t pte_gva2)138 static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2)
139 {
140 uint64_t tmp = *(uint64_t *)pte_gva1;
141
142 *(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2;
143 *(uint64_t *)pte_gva2 = tmp;
144 }
145
146 /*
147 * TODO: replace the silly NOP loop with a proper udelay() implementation.
148 */
do_delay(void)149 static inline void do_delay(void)
150 {
151 int i;
152
153 for (i = 0; i < 1000000; i++)
154 asm volatile("nop");
155 }
156
157 /*
158 * Prepare to test: 'disable' workers by setting the expectation to '0',
159 * clear hypercall input page and then swap two test pages.
160 */
prepare_to_test(struct test_data * data)161 static inline void prepare_to_test(struct test_data *data)
162 {
163 /* Clear hypercall input page */
164 memset((void *)data->hcall_gva, 0, PAGE_SIZE);
165
166 /* 'Disable' workers */
167 set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1);
168 set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2);
169
170 /* Make sure workers are 'disabled' before we swap PTEs. */
171 wmb();
172
173 /* Make sure workers have enough time to notice */
174 do_delay();
175
176 /* Swap test page mappings */
177 swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]);
178 }
179
180 /*
181 * Finalize the test: check hypercall resule set the expected val for
182 * 'worker' CPUs and give them some time to test.
183 */
post_test(struct test_data * data,u64 exp1,u64 exp2)184 static inline void post_test(struct test_data *data, u64 exp1, u64 exp2)
185 {
186 /* Make sure we change the expectation after swapping PTEs */
187 wmb();
188
189 /* Set the expectation for workers, '0' means don't test */
190 set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1);
191 set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2);
192
193 /* Make sure workers have enough time to test */
194 do_delay();
195 }
196
197 #define TESTVAL1 0x0101010101010101
198 #define TESTVAL2 0x0202020202020202
199
200 /* Main vCPU doing the test */
sender_guest_code(vm_vaddr_t test_data)201 static void sender_guest_code(vm_vaddr_t test_data)
202 {
203 struct test_data *data = (struct test_data *)test_data;
204 struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva;
205 struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva;
206 vm_paddr_t hcall_gpa = data->hcall_gpa;
207 int i, stage = 1;
208
209 wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
210 wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa);
211
212 /* "Slow" hypercalls */
213
214 GUEST_SYNC(stage++);
215
216 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
217 for (i = 0; i < NTRY; i++) {
218 prepare_to_test(data);
219 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
220 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
221 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
222 hcall_gpa + PAGE_SIZE);
223 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
224 }
225
226 GUEST_SYNC(stage++);
227
228 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
229 for (i = 0; i < NTRY; i++) {
230 prepare_to_test(data);
231 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
232 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
233 flush->gva_list[0] = (u64)data->test_pages;
234 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
235 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
236 hcall_gpa, hcall_gpa + PAGE_SIZE);
237 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
238 }
239
240 GUEST_SYNC(stage++);
241
242 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
243 for (i = 0; i < NTRY; i++) {
244 prepare_to_test(data);
245 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
246 HV_FLUSH_ALL_PROCESSORS;
247 flush->processor_mask = 0;
248 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
249 hcall_gpa + PAGE_SIZE);
250 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
251 }
252
253 GUEST_SYNC(stage++);
254
255 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
256 for (i = 0; i < NTRY; i++) {
257 prepare_to_test(data);
258 flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
259 HV_FLUSH_ALL_PROCESSORS;
260 flush->gva_list[0] = (u64)data->test_pages;
261 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
262 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
263 hcall_gpa, hcall_gpa + PAGE_SIZE);
264 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
265 i % 2 ? TESTVAL1 : TESTVAL2);
266 }
267
268 GUEST_SYNC(stage++);
269
270 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
271 for (i = 0; i < NTRY; i++) {
272 prepare_to_test(data);
273 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
274 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
275 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
276 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
277 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
278 (1 << HV_HYPERCALL_VARHEAD_OFFSET),
279 hcall_gpa, hcall_gpa + PAGE_SIZE);
280 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
281 }
282
283 GUEST_SYNC(stage++);
284
285 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
286 for (i = 0; i < NTRY; i++) {
287 prepare_to_test(data);
288 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
289 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
290 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
291 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
292 /* bank_contents and gva_list occupy the same space, thus [1] */
293 flush_ex->gva_list[1] = (u64)data->test_pages;
294 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
295 (1 << HV_HYPERCALL_VARHEAD_OFFSET) |
296 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
297 hcall_gpa, hcall_gpa + PAGE_SIZE);
298 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
299 }
300
301 GUEST_SYNC(stage++);
302
303 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
304 for (i = 0; i < NTRY; i++) {
305 prepare_to_test(data);
306 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
307 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
308 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
309 BIT_ULL(WORKER_VCPU_ID_1 / 64);
310 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
311 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
312 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
313 (2 << HV_HYPERCALL_VARHEAD_OFFSET),
314 hcall_gpa, hcall_gpa + PAGE_SIZE);
315 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
316 i % 2 ? TESTVAL1 : TESTVAL2);
317 }
318
319 GUEST_SYNC(stage++);
320
321 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
322 for (i = 0; i < NTRY; i++) {
323 prepare_to_test(data);
324 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
325 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
326 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
327 BIT_ULL(WORKER_VCPU_ID_2 / 64);
328 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
329 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
330 /* bank_contents and gva_list occupy the same space, thus [2] */
331 flush_ex->gva_list[2] = (u64)data->test_pages;
332 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
333 (2 << HV_HYPERCALL_VARHEAD_OFFSET) |
334 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
335 hcall_gpa, hcall_gpa + PAGE_SIZE);
336 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
337 i % 2 ? TESTVAL1 : TESTVAL2);
338 }
339
340 GUEST_SYNC(stage++);
341
342 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
343 for (i = 0; i < NTRY; i++) {
344 prepare_to_test(data);
345 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
346 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
347 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
348 hcall_gpa, hcall_gpa + PAGE_SIZE);
349 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
350 i % 2 ? TESTVAL1 : TESTVAL2);
351 }
352
353 GUEST_SYNC(stage++);
354
355 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
356 for (i = 0; i < NTRY; i++) {
357 prepare_to_test(data);
358 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
359 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
360 flush_ex->gva_list[0] = (u64)data->test_pages;
361 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
362 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
363 hcall_gpa, hcall_gpa + PAGE_SIZE);
364 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
365 i % 2 ? TESTVAL1 : TESTVAL2);
366 }
367
368 /* "Fast" hypercalls */
369
370 GUEST_SYNC(stage++);
371
372 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
373 for (i = 0; i < NTRY; i++) {
374 prepare_to_test(data);
375 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
376 hyperv_write_xmm_input(&flush->processor_mask, 1);
377 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
378 HV_HYPERCALL_FAST_BIT, 0x0,
379 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
380 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
381 }
382
383 GUEST_SYNC(stage++);
384
385 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
386 for (i = 0; i < NTRY; i++) {
387 prepare_to_test(data);
388 flush->processor_mask = BIT(WORKER_VCPU_ID_1);
389 flush->gva_list[0] = (u64)data->test_pages;
390 hyperv_write_xmm_input(&flush->processor_mask, 1);
391 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
392 HV_HYPERCALL_FAST_BIT |
393 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
394 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
395 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
396 }
397
398 GUEST_SYNC(stage++);
399
400 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
401 for (i = 0; i < NTRY; i++) {
402 prepare_to_test(data);
403 hyperv_write_xmm_input(&flush->processor_mask, 1);
404 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
405 HV_HYPERCALL_FAST_BIT, 0x0,
406 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
407 HV_FLUSH_ALL_PROCESSORS);
408 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
409 i % 2 ? TESTVAL1 : TESTVAL2);
410 }
411
412 GUEST_SYNC(stage++);
413
414 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
415 for (i = 0; i < NTRY; i++) {
416 prepare_to_test(data);
417 flush->gva_list[0] = (u64)data->test_pages;
418 hyperv_write_xmm_input(&flush->processor_mask, 1);
419 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
420 HV_HYPERCALL_FAST_BIT |
421 (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0,
422 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
423 HV_FLUSH_ALL_PROCESSORS);
424 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
425 i % 2 ? TESTVAL1 : TESTVAL2);
426 }
427
428 GUEST_SYNC(stage++);
429
430 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
431 for (i = 0; i < NTRY; i++) {
432 prepare_to_test(data);
433 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
434 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
435 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
436 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
437 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
438 HV_HYPERCALL_FAST_BIT |
439 (1 << HV_HYPERCALL_VARHEAD_OFFSET),
440 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
441 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
442 }
443
444 GUEST_SYNC(stage++);
445
446 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
447 for (i = 0; i < NTRY; i++) {
448 prepare_to_test(data);
449 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
450 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
451 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
452 /* bank_contents and gva_list occupy the same space, thus [1] */
453 flush_ex->gva_list[1] = (u64)data->test_pages;
454 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
455 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
456 HV_HYPERCALL_FAST_BIT |
457 (1 << HV_HYPERCALL_VARHEAD_OFFSET) |
458 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
459 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
460 post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
461 }
462
463 GUEST_SYNC(stage++);
464
465 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
466 for (i = 0; i < NTRY; i++) {
467 prepare_to_test(data);
468 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
469 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
470 BIT_ULL(WORKER_VCPU_ID_1 / 64);
471 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
472 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
473 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
474 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
475 HV_HYPERCALL_FAST_BIT |
476 (2 << HV_HYPERCALL_VARHEAD_OFFSET),
477 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
478 post_test(data, i % 2 ? TESTVAL1 :
479 TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
480 }
481
482 GUEST_SYNC(stage++);
483
484 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
485 for (i = 0; i < NTRY; i++) {
486 prepare_to_test(data);
487 flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
488 flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
489 BIT_ULL(WORKER_VCPU_ID_2 / 64);
490 flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
491 flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
492 /* bank_contents and gva_list occupy the same space, thus [2] */
493 flush_ex->gva_list[2] = (u64)data->test_pages;
494 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3);
495 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
496 HV_HYPERCALL_FAST_BIT |
497 (2 << HV_HYPERCALL_VARHEAD_OFFSET) |
498 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
499 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
500 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
501 i % 2 ? TESTVAL1 : TESTVAL2);
502 }
503
504 GUEST_SYNC(stage++);
505
506 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
507 for (i = 0; i < NTRY; i++) {
508 prepare_to_test(data);
509 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
510 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
511 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
512 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
513 HV_HYPERCALL_FAST_BIT,
514 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
515 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
516 i % 2 ? TESTVAL1 : TESTVAL2);
517 }
518
519 GUEST_SYNC(stage++);
520
521 /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
522 for (i = 0; i < NTRY; i++) {
523 prepare_to_test(data);
524 flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
525 flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
526 flush_ex->gva_list[0] = (u64)data->test_pages;
527 hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
528 hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
529 HV_HYPERCALL_FAST_BIT |
530 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
531 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
532 post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
533 i % 2 ? TESTVAL1 : TESTVAL2);
534 }
535
536 GUEST_DONE();
537 }
538
vcpu_thread(void * arg)539 static void *vcpu_thread(void *arg)
540 {
541 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg;
542 struct ucall uc;
543 int old;
544 int r;
545
546 r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
547 TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d",
548 vcpu->id, r);
549
550 vcpu_run(vcpu);
551 TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
552
553 switch (get_ucall(vcpu, &uc)) {
554 case UCALL_ABORT:
555 REPORT_GUEST_ASSERT(uc);
556 /* NOT REACHED */
557 default:
558 TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id);
559 }
560
561 return NULL;
562 }
563
cancel_join_vcpu_thread(pthread_t thread,struct kvm_vcpu * vcpu)564 static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu)
565 {
566 void *retval;
567 int r;
568
569 r = pthread_cancel(thread);
570 TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d",
571 vcpu->id, r);
572
573 r = pthread_join(thread, &retval);
574 TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d",
575 vcpu->id, r);
576 TEST_ASSERT(retval == PTHREAD_CANCELED,
577 "expected retval=%p, got %p", PTHREAD_CANCELED,
578 retval);
579 }
580
main(int argc,char * argv[])581 int main(int argc, char *argv[])
582 {
583 struct kvm_vm *vm;
584 struct kvm_vcpu *vcpu[3];
585 pthread_t threads[2];
586 vm_vaddr_t test_data_page, gva;
587 vm_paddr_t gpa;
588 uint64_t *pte;
589 struct test_data *data;
590 struct ucall uc;
591 int stage = 1, r, i;
592
593 vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code);
594
595 /* Test data page */
596 test_data_page = vm_vaddr_alloc_page(vm);
597 data = (struct test_data *)addr_gva2hva(vm, test_data_page);
598
599 /* Hypercall input/output */
600 data->hcall_gva = vm_vaddr_alloc_pages(vm, 2);
601 data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva);
602 memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE);
603
604 /*
605 * Test pages: the first one is filled with '0x01's, the second with '0x02's
606 * and the test will swap their mappings. The third page keeps the indication
607 * about the current state of mappings.
608 */
609 data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1);
610 for (i = 0; i < NTEST_PAGES; i++)
611 memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i),
612 (u8)(i + 1), PAGE_SIZE);
613 set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1);
614 set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2);
615
616 /*
617 * Get PTE pointers for test pages and map them inside the guest.
618 * Use separate page for each PTE for simplicity.
619 */
620 gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR);
621 for (i = 0; i < NTEST_PAGES; i++) {
622 pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE);
623 gpa = addr_hva2gpa(vm, pte);
624 __virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K);
625 data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK);
626 }
627
628 /*
629 * Sender vCPU which performs the test: swaps test pages, sets expectation
630 * for 'workers' and issues TLB flush hypercalls.
631 */
632 vcpu_args_set(vcpu[0], 1, test_data_page);
633 vcpu_set_hv_cpuid(vcpu[0]);
634
635 /* Create worker vCPUs which check the contents of the test pages */
636 vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code);
637 vcpu_args_set(vcpu[1], 1, test_data_page);
638 vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1);
639 vcpu_set_hv_cpuid(vcpu[1]);
640
641 vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code);
642 vcpu_args_set(vcpu[2], 1, test_data_page);
643 vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2);
644 vcpu_set_hv_cpuid(vcpu[2]);
645
646 r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]);
647 TEST_ASSERT(!r, "pthread_create() failed");
648
649 r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]);
650 TEST_ASSERT(!r, "pthread_create() failed");
651
652 while (true) {
653 vcpu_run(vcpu[0]);
654 TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO);
655
656 switch (get_ucall(vcpu[0], &uc)) {
657 case UCALL_SYNC:
658 TEST_ASSERT(uc.args[1] == stage,
659 "Unexpected stage: %ld (%d expected)\n",
660 uc.args[1], stage);
661 break;
662 case UCALL_ABORT:
663 REPORT_GUEST_ASSERT(uc);
664 /* NOT REACHED */
665 case UCALL_DONE:
666 goto done;
667 default:
668 TEST_FAIL("Unknown ucall %lu", uc.cmd);
669 }
670
671 stage++;
672 }
673
674 done:
675 cancel_join_vcpu_thread(threads[0], vcpu[1]);
676 cancel_join_vcpu_thread(threads[1], vcpu[2]);
677 kvm_vm_free(vm);
678
679 return 0;
680 }
681