1
2 /* from valgrind tests */
3
4 /* ================ sha1.c ================ */
5 /*
6 SHA-1 in C
7 By Steve Reid <steve@edmweb.com>
8 100% Public Domain
9
10 Test Vectors (from FIPS PUB 180-1)
11 "abc"
12 A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
13 "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
14 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
15 A million repetitions of "a"
16 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
17 */
18
19 /* #define LITTLE_ENDIAN * This should be #define'd already, if true. */
20 /* #define SHA1HANDSOFF * Copies data before messing with it. */
21
22 #define SHA1HANDSOFF
23
24 #include <stdio.h>
25 #include <string.h>
26 #include <stdint.h>
27
28 /* ================ sha1.h ================ */
29 /*
30 SHA-1 in C
31 By Steve Reid <steve@edmweb.com>
32 100% Public Domain
33 */
34
35 typedef struct {
36 uint32_t state[5];
37 uint32_t count[2];
38 unsigned char buffer[64];
39 } SHA1_CTX;
40
41 void SHA1Transform(uint32_t state[5], const unsigned char buffer[64]);
42 void SHA1Init(SHA1_CTX* context);
43 void SHA1Update(SHA1_CTX* context, const unsigned char* data, uint32_t len);
44 void SHA1Final(unsigned char digest[20], SHA1_CTX* context);
45 /* ================ end of sha1.h ================ */
46
47 #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
48
49 /* blk0() and blk() perform the initial expand. */
50 /* I got the idea of expanding during the round function from SSLeay */
51 #if BYTE_ORDER == LITTLE_ENDIAN
52 #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
53 |(rol(block->l[i],8)&0x00FF00FF))
54 #elif BYTE_ORDER == BIG_ENDIAN
55 #define blk0(i) block->l[i]
56 #else
57 #error "Endianness not defined!"
58 #endif
59 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
60 ^block->l[(i+2)&15]^block->l[i&15],1))
61
62 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
63 #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
64 #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
65 #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
66 #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
67 #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
68
69
70 /* Hash a single 512-bit block. This is the core of the algorithm. */
71
SHA1Transform(uint32_t state[5],const unsigned char buffer[64])72 void SHA1Transform(uint32_t state[5], const unsigned char buffer[64])
73 {
74 uint32_t a, b, c, d, e;
75 typedef union {
76 unsigned char c[64];
77 uint32_t l[16];
78 } CHAR64LONG16;
79 #ifdef SHA1HANDSOFF
80 CHAR64LONG16 block[1]; /* use array to appear as a pointer */
81 memcpy(block, buffer, 64);
82 #else
83 /* The following had better never be used because it causes the
84 * pointer-to-const buffer to be cast into a pointer to non-const.
85 * And the result is written through. I threw a "const" in, hoping
86 * this will cause a diagnostic.
87 */
88 CHAR64LONG16* block = (const CHAR64LONG16*)buffer;
89 #endif
90 /* Copy context->state[] to working vars */
91 a = state[0];
92 b = state[1];
93 c = state[2];
94 d = state[3];
95 e = state[4];
96 /* 4 rounds of 20 operations each. Loop unrolled. */
97 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
98 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
99 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
100 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
101 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
102 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
103 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
104 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
105 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
106 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
107 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
108 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
109 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
110 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
111 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
112 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
113 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
114 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
115 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
116 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
117 /* Add the working vars back into context.state[] */
118 state[0] += a;
119 state[1] += b;
120 state[2] += c;
121 state[3] += d;
122 state[4] += e;
123 /* Wipe variables */
124 a = b = c = d = e = 0;
125 #ifdef SHA1HANDSOFF
126 memset(block, '\0', sizeof(block));
127 #endif
128 }
129
130
131 /* SHA1Init - Initialize new context */
132
SHA1Init(SHA1_CTX * context)133 void SHA1Init(SHA1_CTX* context)
134 {
135 /* SHA1 initialization constants */
136 context->state[0] = 0x67452301;
137 context->state[1] = 0xEFCDAB89;
138 context->state[2] = 0x98BADCFE;
139 context->state[3] = 0x10325476;
140 context->state[4] = 0xC3D2E1F0;
141 context->count[0] = context->count[1] = 0;
142 }
143
144
145 /* Run your data through this. */
146
SHA1Update(SHA1_CTX * context,const unsigned char * data,uint32_t len)147 void SHA1Update(SHA1_CTX* context, const unsigned char* data, uint32_t len)
148 {
149 uint32_t i;
150 uint32_t j;
151
152 j = context->count[0];
153 if ((context->count[0] += len << 3) < j)
154 context->count[1]++;
155 context->count[1] += (len>>29);
156 j = (j >> 3) & 63;
157 if ((j + len) > 63) {
158 memcpy(&context->buffer[j], data, (i = 64-j));
159 SHA1Transform(context->state, context->buffer);
160 for ( ; i + 63 < len; i += 64) {
161 SHA1Transform(context->state, &data[i]);
162 }
163 j = 0;
164 }
165 else i = 0;
166 memcpy(&context->buffer[j], &data[i], len - i);
167 }
168
169
170 /* Add padding and return the message digest. */
171
SHA1Final(unsigned char digest[20],SHA1_CTX * context)172 void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
173 {
174 unsigned i;
175 unsigned char finalcount[8];
176 unsigned char c;
177
178 #if 0 /* untested "improvement" by DHR */
179 /* Convert context->count to a sequence of bytes
180 * in finalcount. Second element first, but
181 * big-endian order within element.
182 * But we do it all backwards.
183 */
184 unsigned char *fcp = &finalcount[8];
185
186 for (i = 0; i < 2; i++)
187 {
188 uint32_t t = context->count[i];
189 int j;
190
191 for (j = 0; j < 4; t >>= 8, j++)
192 *--fcp = (unsigned char) t;
193 }
194 #else
195 for (i = 0; i < 8; i++) {
196 finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
197 >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
198 }
199 #endif
200 c = 0200;
201 SHA1Update(context, &c, 1);
202 while ((context->count[0] & 504) != 448) {
203 c = 0000;
204 SHA1Update(context, &c, 1);
205 }
206 SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
207 for (i = 0; i < 20; i++) {
208 digest[i] = (unsigned char)
209 ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
210 }
211 /* Wipe variables */
212 memset(context, '\0', sizeof(*context));
213 memset(&finalcount, '\0', sizeof(finalcount));
214 }
215 /* ================ end of sha1.c ================ */
216
217 #define BUFSIZE 4096
218
219 int
main(int argc,char ** argv)220 main(int argc, char **argv)
221 {
222 SHA1_CTX ctx;
223 unsigned char hash[20], buf[BUFSIZE];
224 int i;
225
226 for(i=0;i<BUFSIZE;i++)
227 buf[i] = i;
228
229 SHA1Init(&ctx);
230 for(i=0;i<1000;i++)
231 SHA1Update(&ctx, buf, BUFSIZE);
232 SHA1Final(hash, &ctx);
233
234 printf("SHA1=");
235 for(i=0;i<20;i++)
236 printf("%02x", hash[i]);
237 printf("\n");
238 return 0;
239 }
240