xref: /openbmc/linux/rust/kernel/str.rs (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  // SPDX-License-Identifier: GPL-2.0
2  
3  //! String representations.
4  
5  use alloc::alloc::AllocError;
6  use alloc::vec::Vec;
7  use core::fmt::{self, Write};
8  use core::ops::{self, Deref, Index};
9  
10  use crate::{
11      bindings,
12      error::{code::*, Error},
13  };
14  
15  /// Byte string without UTF-8 validity guarantee.
16  ///
17  /// `BStr` is simply an alias to `[u8]`, but has a more evident semantical meaning.
18  pub type BStr = [u8];
19  
20  /// Creates a new [`BStr`] from a string literal.
21  ///
22  /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
23  /// characters can be included.
24  ///
25  /// # Examples
26  ///
27  /// ```
28  /// # use kernel::b_str;
29  /// # use kernel::str::BStr;
30  /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
31  /// ```
32  #[macro_export]
33  macro_rules! b_str {
34      ($str:literal) => {{
35          const S: &'static str = $str;
36          const C: &'static $crate::str::BStr = S.as_bytes();
37          C
38      }};
39  }
40  
41  /// Possible errors when using conversion functions in [`CStr`].
42  #[derive(Debug, Clone, Copy)]
43  pub enum CStrConvertError {
44      /// Supplied bytes contain an interior `NUL`.
45      InteriorNul,
46  
47      /// Supplied bytes are not terminated by `NUL`.
48      NotNulTerminated,
49  }
50  
51  impl From<CStrConvertError> for Error {
52      #[inline]
from(_: CStrConvertError) -> Error53      fn from(_: CStrConvertError) -> Error {
54          EINVAL
55      }
56  }
57  
58  /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
59  /// end.
60  ///
61  /// Used for interoperability with kernel APIs that take C strings.
62  #[repr(transparent)]
63  pub struct CStr([u8]);
64  
65  impl CStr {
66      /// Returns the length of this string excluding `NUL`.
67      #[inline]
len(&self) -> usize68      pub const fn len(&self) -> usize {
69          self.len_with_nul() - 1
70      }
71  
72      /// Returns the length of this string with `NUL`.
73      #[inline]
len_with_nul(&self) -> usize74      pub const fn len_with_nul(&self) -> usize {
75          // SAFETY: This is one of the invariant of `CStr`.
76          // We add a `unreachable_unchecked` here to hint the optimizer that
77          // the value returned from this function is non-zero.
78          if self.0.is_empty() {
79              unsafe { core::hint::unreachable_unchecked() };
80          }
81          self.0.len()
82      }
83  
84      /// Returns `true` if the string only includes `NUL`.
85      #[inline]
is_empty(&self) -> bool86      pub const fn is_empty(&self) -> bool {
87          self.len() == 0
88      }
89  
90      /// Wraps a raw C string pointer.
91      ///
92      /// # Safety
93      ///
94      /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
95      /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
96      /// must not be mutated.
97      #[inline]
from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self98      pub unsafe fn from_char_ptr<'a>(ptr: *const core::ffi::c_char) -> &'a Self {
99          // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
100          // to a `NUL`-terminated C string.
101          let len = unsafe { bindings::strlen(ptr) } + 1;
102          // SAFETY: Lifetime guaranteed by the safety precondition.
103          let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len as _) };
104          // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
105          // As we have added 1 to `len`, the last byte is known to be `NUL`.
106          unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
107      }
108  
109      /// Creates a [`CStr`] from a `[u8]`.
110      ///
111      /// The provided slice must be `NUL`-terminated, does not contain any
112      /// interior `NUL` bytes.
from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError>113      pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
114          if bytes.is_empty() {
115              return Err(CStrConvertError::NotNulTerminated);
116          }
117          if bytes[bytes.len() - 1] != 0 {
118              return Err(CStrConvertError::NotNulTerminated);
119          }
120          let mut i = 0;
121          // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
122          // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
123          while i + 1 < bytes.len() {
124              if bytes[i] == 0 {
125                  return Err(CStrConvertError::InteriorNul);
126              }
127              i += 1;
128          }
129          // SAFETY: We just checked that all properties hold.
130          Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
131      }
132  
133      /// Creates a [`CStr`] from a `[u8]` without performing any additional
134      /// checks.
135      ///
136      /// # Safety
137      ///
138      /// `bytes` *must* end with a `NUL` byte, and should only have a single
139      /// `NUL` byte (or the string will be truncated).
140      #[inline]
from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr141      pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
142          // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
143          unsafe { core::mem::transmute(bytes) }
144      }
145  
146      /// Returns a C pointer to the string.
147      #[inline]
as_char_ptr(&self) -> *const core::ffi::c_char148      pub const fn as_char_ptr(&self) -> *const core::ffi::c_char {
149          self.0.as_ptr() as _
150      }
151  
152      /// Convert the string to a byte slice without the trailing 0 byte.
153      #[inline]
as_bytes(&self) -> &[u8]154      pub fn as_bytes(&self) -> &[u8] {
155          &self.0[..self.len()]
156      }
157  
158      /// Convert the string to a byte slice containing the trailing 0 byte.
159      #[inline]
as_bytes_with_nul(&self) -> &[u8]160      pub const fn as_bytes_with_nul(&self) -> &[u8] {
161          &self.0
162      }
163  
164      /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
165      ///
166      /// If the contents of the [`CStr`] are valid UTF-8 data, this
167      /// function will return the corresponding [`&str`] slice. Otherwise,
168      /// it will return an error with details of where UTF-8 validation failed.
169      ///
170      /// # Examples
171      ///
172      /// ```
173      /// # use kernel::str::CStr;
174      /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
175      /// assert_eq!(cstr.to_str(), Ok("foo"));
176      /// ```
177      #[inline]
to_str(&self) -> Result<&str, core::str::Utf8Error>178      pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
179          core::str::from_utf8(self.as_bytes())
180      }
181  
182      /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
183      /// valid UTF-8.
184      ///
185      /// # Safety
186      ///
187      /// The contents must be valid UTF-8.
188      ///
189      /// # Examples
190      ///
191      /// ```
192      /// # use kernel::c_str;
193      /// # use kernel::str::CStr;
194      /// // SAFETY: String literals are guaranteed to be valid UTF-8
195      /// // by the Rust compiler.
196      /// let bar = c_str!("ツ");
197      /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
198      /// ```
199      #[inline]
as_str_unchecked(&self) -> &str200      pub unsafe fn as_str_unchecked(&self) -> &str {
201          unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
202      }
203  
204      /// Convert this [`CStr`] into a [`CString`] by allocating memory and
205      /// copying over the string data.
to_cstring(&self) -> Result<CString, AllocError>206      pub fn to_cstring(&self) -> Result<CString, AllocError> {
207          CString::try_from(self)
208      }
209  }
210  
211  impl fmt::Display for CStr {
212      /// Formats printable ASCII characters, escaping the rest.
213      ///
214      /// ```
215      /// # use kernel::c_str;
216      /// # use kernel::fmt;
217      /// # use kernel::str::CStr;
218      /// # use kernel::str::CString;
219      /// let penguin = c_str!("��");
220      /// let s = CString::try_from_fmt(fmt!("{}", penguin)).unwrap();
221      /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
222      ///
223      /// let ascii = c_str!("so \"cool\"");
224      /// let s = CString::try_from_fmt(fmt!("{}", ascii)).unwrap();
225      /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
226      /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result227      fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
228          for &c in self.as_bytes() {
229              if (0x20..0x7f).contains(&c) {
230                  // Printable character.
231                  f.write_char(c as char)?;
232              } else {
233                  write!(f, "\\x{:02x}", c)?;
234              }
235          }
236          Ok(())
237      }
238  }
239  
240  impl fmt::Debug for CStr {
241      /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
242      ///
243      /// ```
244      /// # use kernel::c_str;
245      /// # use kernel::fmt;
246      /// # use kernel::str::CStr;
247      /// # use kernel::str::CString;
248      /// let penguin = c_str!("��");
249      /// let s = CString::try_from_fmt(fmt!("{:?}", penguin)).unwrap();
250      /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
251      ///
252      /// // Embedded double quotes are escaped.
253      /// let ascii = c_str!("so \"cool\"");
254      /// let s = CString::try_from_fmt(fmt!("{:?}", ascii)).unwrap();
255      /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
256      /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result257      fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
258          f.write_str("\"")?;
259          for &c in self.as_bytes() {
260              match c {
261                  // Printable characters.
262                  b'\"' => f.write_str("\\\"")?,
263                  0x20..=0x7e => f.write_char(c as char)?,
264                  _ => write!(f, "\\x{:02x}", c)?,
265              }
266          }
267          f.write_str("\"")
268      }
269  }
270  
271  impl AsRef<BStr> for CStr {
272      #[inline]
as_ref(&self) -> &BStr273      fn as_ref(&self) -> &BStr {
274          self.as_bytes()
275      }
276  }
277  
278  impl Deref for CStr {
279      type Target = BStr;
280  
281      #[inline]
deref(&self) -> &Self::Target282      fn deref(&self) -> &Self::Target {
283          self.as_bytes()
284      }
285  }
286  
287  impl Index<ops::RangeFrom<usize>> for CStr {
288      type Output = CStr;
289  
290      #[inline]
index(&self, index: ops::RangeFrom<usize>) -> &Self::Output291      fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
292          // Delegate bounds checking to slice.
293          // Assign to _ to mute clippy's unnecessary operation warning.
294          let _ = &self.as_bytes()[index.start..];
295          // SAFETY: We just checked the bounds.
296          unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
297      }
298  }
299  
300  impl Index<ops::RangeFull> for CStr {
301      type Output = CStr;
302  
303      #[inline]
index(&self, _index: ops::RangeFull) -> &Self::Output304      fn index(&self, _index: ops::RangeFull) -> &Self::Output {
305          self
306      }
307  }
308  
309  mod private {
310      use core::ops;
311  
312      // Marker trait for index types that can be forward to `BStr`.
313      pub trait CStrIndex {}
314  
315      impl CStrIndex for usize {}
316      impl CStrIndex for ops::Range<usize> {}
317      impl CStrIndex for ops::RangeInclusive<usize> {}
318      impl CStrIndex for ops::RangeToInclusive<usize> {}
319  }
320  
321  impl<Idx> Index<Idx> for CStr
322  where
323      Idx: private::CStrIndex,
324      BStr: Index<Idx>,
325  {
326      type Output = <BStr as Index<Idx>>::Output;
327  
328      #[inline]
index(&self, index: Idx) -> &Self::Output329      fn index(&self, index: Idx) -> &Self::Output {
330          &self.as_bytes()[index]
331      }
332  }
333  
334  /// Creates a new [`CStr`] from a string literal.
335  ///
336  /// The string literal should not contain any `NUL` bytes.
337  ///
338  /// # Examples
339  ///
340  /// ```
341  /// # use kernel::c_str;
342  /// # use kernel::str::CStr;
343  /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
344  /// ```
345  #[macro_export]
346  macro_rules! c_str {
347      ($str:expr) => {{
348          const S: &str = concat!($str, "\0");
349          const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
350              Ok(v) => v,
351              Err(_) => panic!("string contains interior NUL"),
352          };
353          C
354      }};
355  }
356  
357  #[cfg(test)]
358  mod tests {
359      use super::*;
360  
361      #[test]
test_cstr_to_str()362      fn test_cstr_to_str() {
363          let good_bytes = b"\xf0\x9f\xa6\x80\0";
364          let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
365          let checked_str = checked_cstr.to_str().unwrap();
366          assert_eq!(checked_str, "��");
367      }
368  
369      #[test]
370      #[should_panic]
test_cstr_to_str_panic()371      fn test_cstr_to_str_panic() {
372          let bad_bytes = b"\xc3\x28\0";
373          let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
374          checked_cstr.to_str().unwrap();
375      }
376  
377      #[test]
test_cstr_as_str_unchecked()378      fn test_cstr_as_str_unchecked() {
379          let good_bytes = b"\xf0\x9f\x90\xA7\0";
380          let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
381          let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
382          assert_eq!(unchecked_str, "��");
383      }
384  }
385  
386  /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
387  ///
388  /// It does not fail if callers write past the end of the buffer so that they can calculate the
389  /// size required to fit everything.
390  ///
391  /// # Invariants
392  ///
393  /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
394  /// is less than `end`.
395  pub(crate) struct RawFormatter {
396      // Use `usize` to use `saturating_*` functions.
397      beg: usize,
398      pos: usize,
399      end: usize,
400  }
401  
402  impl RawFormatter {
403      /// Creates a new instance of [`RawFormatter`] with an empty buffer.
new() -> Self404      fn new() -> Self {
405          // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
406          Self {
407              beg: 0,
408              pos: 0,
409              end: 0,
410          }
411      }
412  
413      /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
414      ///
415      /// # Safety
416      ///
417      /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
418      /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
from_ptrs(pos: *mut u8, end: *mut u8) -> Self419      pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
420          // INVARIANT: The safety requirements guarantee the type invariants.
421          Self {
422              beg: pos as _,
423              pos: pos as _,
424              end: end as _,
425          }
426      }
427  
428      /// Creates a new instance of [`RawFormatter`] with the given buffer.
429      ///
430      /// # Safety
431      ///
432      /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
433      /// for the lifetime of the returned [`RawFormatter`].
from_buffer(buf: *mut u8, len: usize) -> Self434      pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
435          let pos = buf as usize;
436          // INVARIANT: We ensure that `end` is never less then `buf`, and the safety requirements
437          // guarantees that the memory region is valid for writes.
438          Self {
439              pos,
440              beg: pos,
441              end: pos.saturating_add(len),
442          }
443      }
444  
445      /// Returns the current insert position.
446      ///
447      /// N.B. It may point to invalid memory.
pos(&self) -> *mut u8448      pub(crate) fn pos(&self) -> *mut u8 {
449          self.pos as _
450      }
451  
452      /// Return the number of bytes written to the formatter.
bytes_written(&self) -> usize453      pub(crate) fn bytes_written(&self) -> usize {
454          self.pos - self.beg
455      }
456  }
457  
458  impl fmt::Write for RawFormatter {
write_str(&mut self, s: &str) -> fmt::Result459      fn write_str(&mut self, s: &str) -> fmt::Result {
460          // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
461          // don't want it to wrap around to 0.
462          let pos_new = self.pos.saturating_add(s.len());
463  
464          // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
465          let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
466  
467          if len_to_copy > 0 {
468              // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
469              // yet, so it is valid for write per the type invariants.
470              unsafe {
471                  core::ptr::copy_nonoverlapping(
472                      s.as_bytes().as_ptr(),
473                      self.pos as *mut u8,
474                      len_to_copy,
475                  )
476              };
477          }
478  
479          self.pos = pos_new;
480          Ok(())
481      }
482  }
483  
484  /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
485  ///
486  /// Fails if callers attempt to write more than will fit in the buffer.
487  pub(crate) struct Formatter(RawFormatter);
488  
489  impl Formatter {
490      /// Creates a new instance of [`Formatter`] with the given buffer.
491      ///
492      /// # Safety
493      ///
494      /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
495      /// for the lifetime of the returned [`Formatter`].
from_buffer(buf: *mut u8, len: usize) -> Self496      pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
497          // SAFETY: The safety requirements of this function satisfy those of the callee.
498          Self(unsafe { RawFormatter::from_buffer(buf, len) })
499      }
500  }
501  
502  impl Deref for Formatter {
503      type Target = RawFormatter;
504  
deref(&self) -> &Self::Target505      fn deref(&self) -> &Self::Target {
506          &self.0
507      }
508  }
509  
510  impl fmt::Write for Formatter {
write_str(&mut self, s: &str) -> fmt::Result511      fn write_str(&mut self, s: &str) -> fmt::Result {
512          self.0.write_str(s)?;
513  
514          // Fail the request if we go past the end of the buffer.
515          if self.0.pos > self.0.end {
516              Err(fmt::Error)
517          } else {
518              Ok(())
519          }
520      }
521  }
522  
523  /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
524  ///
525  /// Used for interoperability with kernel APIs that take C strings.
526  ///
527  /// # Invariants
528  ///
529  /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
530  ///
531  /// # Examples
532  ///
533  /// ```
534  /// use kernel::{str::CString, fmt};
535  ///
536  /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20)).unwrap();
537  /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
538  ///
539  /// let tmp = "testing";
540  /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123)).unwrap();
541  /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
542  ///
543  /// // This fails because it has an embedded `NUL` byte.
544  /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
545  /// assert_eq!(s.is_ok(), false);
546  /// ```
547  pub struct CString {
548      buf: Vec<u8>,
549  }
550  
551  impl CString {
552      /// Creates an instance of [`CString`] from the given formatted arguments.
try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error>553      pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
554          // Calculate the size needed (formatted string plus `NUL` terminator).
555          let mut f = RawFormatter::new();
556          f.write_fmt(args)?;
557          f.write_str("\0")?;
558          let size = f.bytes_written();
559  
560          // Allocate a vector with the required number of bytes, and write to it.
561          let mut buf = Vec::try_with_capacity(size)?;
562          // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
563          let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
564          f.write_fmt(args)?;
565          f.write_str("\0")?;
566  
567          // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
568          // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
569          unsafe { buf.set_len(f.bytes_written()) };
570  
571          // Check that there are no `NUL` bytes before the end.
572          // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
573          // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
574          // so `f.bytes_written() - 1` doesn't underflow.
575          let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, (f.bytes_written() - 1) as _) };
576          if !ptr.is_null() {
577              return Err(EINVAL);
578          }
579  
580          // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
581          // exist in the buffer.
582          Ok(Self { buf })
583      }
584  }
585  
586  impl Deref for CString {
587      type Target = CStr;
588  
deref(&self) -> &Self::Target589      fn deref(&self) -> &Self::Target {
590          // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
591          // other `NUL` bytes exist.
592          unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
593      }
594  }
595  
596  impl<'a> TryFrom<&'a CStr> for CString {
597      type Error = AllocError;
598  
try_from(cstr: &'a CStr) -> Result<CString, AllocError>599      fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
600          let mut buf = Vec::new();
601  
602          buf.try_extend_from_slice(cstr.as_bytes_with_nul())
603              .map_err(|_| AllocError)?;
604  
605          // INVARIANT: The `CStr` and `CString` types have the same invariants for
606          // the string data, and we copied it over without changes.
607          Ok(CString { buf })
608      }
609  }
610  
611  /// A convenience alias for [`core::format_args`].
612  #[macro_export]
613  macro_rules! fmt {
614      ($($f:tt)*) => ( core::format_args!($($f)*) )
615  }
616