xref: /openbmc/linux/include/linux/minmax.h (revision 9487d93f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MINMAX_H
3 #define _LINUX_MINMAX_H
4 
5 #include <linux/build_bug.h>
6 #include <linux/compiler.h>
7 #include <linux/const.h>
8 #include <linux/types.h>
9 
10 /*
11  * min()/max()/clamp() macros must accomplish three things:
12  *
13  * - Avoid multiple evaluations of the arguments (so side-effects like
14  *   "x++" happen only once) when non-constant.
15  * - Retain result as a constant expressions when called with only
16  *   constant expressions (to avoid tripping VLA warnings in stack
17  *   allocation usage).
18  * - Perform signed v unsigned type-checking (to generate compile
19  *   errors instead of nasty runtime surprises).
20  * - Unsigned char/short are always promoted to signed int and can be
21  *   compared against signed or unsigned arguments.
22  * - Unsigned arguments can be compared against non-negative signed constants.
23  * - Comparison of a signed argument against an unsigned constant fails
24  *   even if the constant is below __INT_MAX__ and could be cast to int.
25  */
26 #define __typecheck(x, y) \
27 	(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
28 
29 /* is_signed_type() isn't a constexpr for pointer types */
30 #define __is_signed(x) 								\
31 	__builtin_choose_expr(__is_constexpr(is_signed_type(typeof(x))),	\
32 		is_signed_type(typeof(x)), 0)
33 
34 /* True for a non-negative signed int constant */
35 #define __is_noneg_int(x)	\
36 	(__builtin_choose_expr(__is_constexpr(x) && __is_signed(x), x, -1) >= 0)
37 
38 #define __types_ok(x, y) 					\
39 	(__is_signed(x) == __is_signed(y) ||			\
40 		__is_signed((x) + 0) == __is_signed((y) + 0) ||	\
41 		__is_noneg_int(x) || __is_noneg_int(y))
42 
43 #define __cmp_op_min <
44 #define __cmp_op_max >
45 
46 #define __cmp(op, x, y)	((x) __cmp_op_##op (y) ? (x) : (y))
47 
48 #define __cmp_once(op, x, y, unique_x, unique_y) ({	\
49 	typeof(x) unique_x = (x);			\
50 	typeof(y) unique_y = (y);			\
51 	static_assert(__types_ok(x, y),			\
52 		#op "(" #x ", " #y ") signedness error, fix types or consider u" #op "() before " #op "_t()"); \
53 	__cmp(op, unique_x, unique_y); })
54 
55 #define __careful_cmp(op, x, y)					\
56 	__builtin_choose_expr(__is_constexpr((x) - (y)),	\
57 		__cmp(op, x, y),				\
58 		__cmp_once(op, x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y)))
59 
60 #define __clamp(val, lo, hi)	\
61 	((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
62 
63 #define __clamp_once(val, lo, hi, unique_val, unique_lo, unique_hi) ({		\
64 	typeof(val) unique_val = (val);						\
65 	typeof(lo) unique_lo = (lo);						\
66 	typeof(hi) unique_hi = (hi);						\
67 	static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), 	\
68 			(lo) <= (hi), true),					\
69 		"clamp() low limit " #lo " greater than high limit " #hi);	\
70 	static_assert(__types_ok(val, lo), "clamp() 'lo' signedness error");	\
71 	static_assert(__types_ok(val, hi), "clamp() 'hi' signedness error");	\
72 	__clamp(unique_val, unique_lo, unique_hi); })
73 
74 #define __careful_clamp(val, lo, hi) ({					\
75 	__builtin_choose_expr(__is_constexpr((val) - (lo) + (hi)),	\
76 		__clamp(val, lo, hi),					\
77 		__clamp_once(val, lo, hi, __UNIQUE_ID(__val),		\
78 			     __UNIQUE_ID(__lo), __UNIQUE_ID(__hi))); })
79 
80 /**
81  * min - return minimum of two values of the same or compatible types
82  * @x: first value
83  * @y: second value
84  */
85 #define min(x, y)	__careful_cmp(min, x, y)
86 
87 /**
88  * max - return maximum of two values of the same or compatible types
89  * @x: first value
90  * @y: second value
91  */
92 #define max(x, y)	__careful_cmp(max, x, y)
93 
94 /**
95  * umin - return minimum of two non-negative values
96  *   Signed types are zero extended to match a larger unsigned type.
97  * @x: first value
98  * @y: second value
99  */
100 #define umin(x, y)	\
101 	__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
102 
103 /**
104  * umax - return maximum of two non-negative values
105  * @x: first value
106  * @y: second value
107  */
108 #define umax(x, y)	\
109 	__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
110 
111 /**
112  * min3 - return minimum of three values
113  * @x: first value
114  * @y: second value
115  * @z: third value
116  */
117 #define min3(x, y, z) min((typeof(x))min(x, y), z)
118 
119 /**
120  * max3 - return maximum of three values
121  * @x: first value
122  * @y: second value
123  * @z: third value
124  */
125 #define max3(x, y, z) max((typeof(x))max(x, y), z)
126 
127 /**
128  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
129  * @x: value1
130  * @y: value2
131  */
132 #define min_not_zero(x, y) ({			\
133 	typeof(x) __x = (x);			\
134 	typeof(y) __y = (y);			\
135 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
136 
137 /**
138  * clamp - return a value clamped to a given range with strict typechecking
139  * @val: current value
140  * @lo: lowest allowable value
141  * @hi: highest allowable value
142  *
143  * This macro does strict typechecking of @lo/@hi to make sure they are of the
144  * same type as @val.  See the unnecessary pointer comparisons.
145  */
146 #define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
147 
148 /*
149  * ..and if you can't take the strict
150  * types, you can specify one yourself.
151  *
152  * Or not use min/max/clamp at all, of course.
153  */
154 
155 /**
156  * min_t - return minimum of two values, using the specified type
157  * @type: data type to use
158  * @x: first value
159  * @y: second value
160  */
161 #define min_t(type, x, y)	__careful_cmp(min, (type)(x), (type)(y))
162 
163 /**
164  * max_t - return maximum of two values, using the specified type
165  * @type: data type to use
166  * @x: first value
167  * @y: second value
168  */
169 #define max_t(type, x, y)	__careful_cmp(max, (type)(x), (type)(y))
170 
171 /*
172  * Do not check the array parameter using __must_be_array().
173  * In the following legit use-case where the "array" passed is a simple pointer,
174  * __must_be_array() will return a failure.
175  * --- 8< ---
176  * int *buff
177  * ...
178  * min = min_array(buff, nb_items);
179  * --- 8< ---
180  *
181  * The first typeof(&(array)[0]) is needed in order to support arrays of both
182  * 'int *buff' and 'int buff[N]' types.
183  *
184  * The array can be an array of const items.
185  * typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
186  * to discard the const qualifier for the __element variable.
187  */
188 #define __minmax_array(op, array, len) ({				\
189 	typeof(&(array)[0]) __array = (array);				\
190 	typeof(len) __len = (len);					\
191 	__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
192 	while (__len--)							\
193 		__element = op(__element, __array[__len]);		\
194 	__element; })
195 
196 /**
197  * min_array - return minimum of values present in an array
198  * @array: array
199  * @len: array length
200  *
201  * Note that @len must not be zero (empty array).
202  */
203 #define min_array(array, len) __minmax_array(min, array, len)
204 
205 /**
206  * max_array - return maximum of values present in an array
207  * @array: array
208  * @len: array length
209  *
210  * Note that @len must not be zero (empty array).
211  */
212 #define max_array(array, len) __minmax_array(max, array, len)
213 
214 /**
215  * clamp_t - return a value clamped to a given range using a given type
216  * @type: the type of variable to use
217  * @val: current value
218  * @lo: minimum allowable value
219  * @hi: maximum allowable value
220  *
221  * This macro does no typechecking and uses temporary variables of type
222  * @type to make all the comparisons.
223  */
224 #define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
225 
226 /**
227  * clamp_val - return a value clamped to a given range using val's type
228  * @val: current value
229  * @lo: minimum allowable value
230  * @hi: maximum allowable value
231  *
232  * This macro does no typechecking and uses temporary variables of whatever
233  * type the input argument @val is.  This is useful when @val is an unsigned
234  * type and @lo and @hi are literals that will otherwise be assigned a signed
235  * integer type.
236  */
237 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
238 
in_range64(u64 val,u64 start,u64 len)239 static inline bool in_range64(u64 val, u64 start, u64 len)
240 {
241 	return (val - start) < len;
242 }
243 
in_range32(u32 val,u32 start,u32 len)244 static inline bool in_range32(u32 val, u32 start, u32 len)
245 {
246 	return (val - start) < len;
247 }
248 
249 /**
250  * in_range - Determine if a value lies within a range.
251  * @val: Value to test.
252  * @start: First value in range.
253  * @len: Number of values in range.
254  *
255  * This is more efficient than "if (start <= val && val < (start + len))".
256  * It also gives a different answer if @start + @len overflows the size of
257  * the type by a sufficient amount to encompass @val.  Decide for yourself
258  * which behaviour you want, or prove that start + len never overflow.
259  * Do not blindly replace one form with the other.
260  */
261 #define in_range(val, start, len)					\
262 	((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ?	\
263 		in_range32(val, start, len) : in_range64(val, start, len))
264 
265 /**
266  * swap - swap values of @a and @b
267  * @a: first value
268  * @b: second value
269  */
270 #define swap(a, b) \
271 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
272 
273 #endif	/* _LINUX_MINMAX_H */
274