1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FORTIFY_STRING_H_
3 #define _LINUX_FORTIFY_STRING_H_
4
5 #include <linux/bug.h>
6 #include <linux/const.h>
7 #include <linux/limits.h>
8
9 #define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
10 #define __RENAME(x) __asm__(#x)
11
12 void fortify_panic(const char *name) __noreturn __cold;
13 void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
14 void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
15 void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
16 void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
17 void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
18
19 #define __compiletime_strlen(p) \
20 ({ \
21 char *__p = (char *)(p); \
22 size_t __ret = SIZE_MAX; \
23 const size_t __p_size = __member_size(p); \
24 if (__p_size != SIZE_MAX && \
25 __builtin_constant_p(*__p)) { \
26 size_t __p_len = __p_size - 1; \
27 if (__builtin_constant_p(__p[__p_len]) && \
28 __p[__p_len] == '\0') \
29 __ret = __builtin_strlen(__p); \
30 } \
31 __ret; \
32 })
33
34 #if defined(__SANITIZE_ADDRESS__)
35
36 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
37 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
38 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
39 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
40 #elif defined(CONFIG_KASAN_GENERIC)
41 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__asan_memset);
42 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memmove);
43 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__asan_memcpy);
44 #else /* CONFIG_KASAN_SW_TAGS */
45 extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(__hwasan_memset);
46 extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memmove);
47 extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(__hwasan_memcpy);
48 #endif
49
50 extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
51 extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
52 extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
53 extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
54 extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
55 extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
56 extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
57
58 #else
59
60 #if defined(__SANITIZE_MEMORY__)
61 /*
62 * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the
63 * corresponding __msan_XXX functions.
64 */
65 #include <linux/kmsan_string.h>
66 #define __underlying_memcpy __msan_memcpy
67 #define __underlying_memmove __msan_memmove
68 #define __underlying_memset __msan_memset
69 #else
70 #define __underlying_memcpy __builtin_memcpy
71 #define __underlying_memmove __builtin_memmove
72 #define __underlying_memset __builtin_memset
73 #endif
74
75 #define __underlying_memchr __builtin_memchr
76 #define __underlying_memcmp __builtin_memcmp
77 #define __underlying_strcat __builtin_strcat
78 #define __underlying_strcpy __builtin_strcpy
79 #define __underlying_strlen __builtin_strlen
80 #define __underlying_strncat __builtin_strncat
81 #define __underlying_strncpy __builtin_strncpy
82
83 #endif
84
85 /**
86 * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
87 *
88 * @dst: Destination memory address to write to
89 * @src: Source memory address to read from
90 * @bytes: How many bytes to write to @dst from @src
91 * @justification: Free-form text or comment describing why the use is needed
92 *
93 * This should be used for corner cases where the compiler cannot do the
94 * right thing, or during transitions between APIs, etc. It should be used
95 * very rarely, and includes a place for justification detailing where bounds
96 * checking has happened, and why existing solutions cannot be employed.
97 */
98 #define unsafe_memcpy(dst, src, bytes, justification) \
99 __underlying_memcpy(dst, src, bytes)
100
101 /*
102 * Clang's use of __builtin_*object_size() within inlines needs hinting via
103 * __pass_*object_size(). The preference is to only ever use type 1 (member
104 * size, rather than struct size), but there remain some stragglers using
105 * type 0 that will be converted in the future.
106 */
107 #if __has_builtin(__builtin_dynamic_object_size)
108 #define POS __pass_dynamic_object_size(1)
109 #define POS0 __pass_dynamic_object_size(0)
110 #define __struct_size(p) __builtin_dynamic_object_size(p, 0)
111 #define __member_size(p) __builtin_dynamic_object_size(p, 1)
112 #else
113 #define POS __pass_object_size(1)
114 #define POS0 __pass_object_size(0)
115 #define __struct_size(p) __builtin_object_size(p, 0)
116 #define __member_size(p) __builtin_object_size(p, 1)
117 #endif
118
119 #define __compiletime_lessthan(bounds, length) ( \
120 __builtin_constant_p((bounds) < (length)) && \
121 (bounds) < (length) \
122 )
123
124 /**
125 * strncpy - Copy a string to memory with non-guaranteed NUL padding
126 *
127 * @p: pointer to destination of copy
128 * @q: pointer to NUL-terminated source string to copy
129 * @size: bytes to write at @p
130 *
131 * If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
132 * and @p will NOT be NUL-terminated
133 *
134 * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
135 * will be written to @p until @size total bytes have been written.
136 *
137 * Do not use this function. While FORTIFY_SOURCE tries to avoid
138 * over-reads of @q, it cannot defend against writing unterminated
139 * results to @p. Using strncpy() remains ambiguous and fragile.
140 * Instead, please choose an alternative, so that the expectation
141 * of @p's contents is unambiguous:
142 *
143 * +--------------------+--------------------+------------+
144 * | **p** needs to be: | padded to **size** | not padded |
145 * +====================+====================+============+
146 * | NUL-terminated | strscpy_pad() | strscpy() |
147 * +--------------------+--------------------+------------+
148 * | not NUL-terminated | strtomem_pad() | strtomem() |
149 * +--------------------+--------------------+------------+
150 *
151 * Note strscpy*()'s differing return values for detecting truncation,
152 * and strtomem*()'s expectation that the destination is marked with
153 * __nonstring when it is a character array.
154 *
155 */
156 __FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
strncpy(char * const POS p,const char * q,__kernel_size_t size)157 char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
158 {
159 const size_t p_size = __member_size(p);
160
161 if (__compiletime_lessthan(p_size, size))
162 __write_overflow();
163 if (p_size < size)
164 fortify_panic(__func__);
165 return __underlying_strncpy(p, q, size);
166 }
167
168 extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
169 /**
170 * strnlen - Return bounded count of characters in a NUL-terminated string
171 *
172 * @p: pointer to NUL-terminated string to count.
173 * @maxlen: maximum number of characters to count.
174 *
175 * Returns number of characters in @p (NOT including the final NUL), or
176 * @maxlen, if no NUL has been found up to there.
177 *
178 */
strnlen(const char * const POS p,__kernel_size_t maxlen)179 __FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
180 {
181 const size_t p_size = __member_size(p);
182 const size_t p_len = __compiletime_strlen(p);
183 size_t ret;
184
185 /* We can take compile-time actions when maxlen is const. */
186 if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) {
187 /* If p is const, we can use its compile-time-known len. */
188 if (maxlen >= p_size)
189 return p_len;
190 }
191
192 /* Do not check characters beyond the end of p. */
193 ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
194 if (p_size <= ret && maxlen != ret)
195 fortify_panic(__func__);
196 return ret;
197 }
198
199 /*
200 * Defined after fortified strnlen to reuse it. However, it must still be
201 * possible for strlen() to be used on compile-time strings for use in
202 * static initializers (i.e. as a constant expression).
203 */
204 /**
205 * strlen - Return count of characters in a NUL-terminated string
206 *
207 * @p: pointer to NUL-terminated string to count.
208 *
209 * Do not use this function unless the string length is known at
210 * compile-time. When @p is unterminated, this function may crash
211 * or return unexpected counts that could lead to memory content
212 * exposures. Prefer strnlen().
213 *
214 * Returns number of characters in @p (NOT including the final NUL).
215 *
216 */
217 #define strlen(p) \
218 __builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \
219 __builtin_strlen(p), __fortify_strlen(p))
220 __FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
__fortify_strlen(const char * const POS p)221 __kernel_size_t __fortify_strlen(const char * const POS p)
222 {
223 const size_t p_size = __member_size(p);
224 __kernel_size_t ret;
225
226 /* Give up if we don't know how large p is. */
227 if (p_size == SIZE_MAX)
228 return __underlying_strlen(p);
229 ret = strnlen(p, p_size);
230 if (p_size <= ret)
231 fortify_panic(__func__);
232 return ret;
233 }
234
235 /* Defined after fortified strlen() to reuse it. */
236 extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy);
237 /**
238 * strlcpy - Copy a string into another string buffer
239 *
240 * @p: pointer to destination of copy
241 * @q: pointer to NUL-terminated source string to copy
242 * @size: maximum number of bytes to write at @p
243 *
244 * If strlen(@q) >= @size, the copy of @q will be truncated at
245 * @size - 1 bytes. @p will always be NUL-terminated.
246 *
247 * Do not use this function. While FORTIFY_SOURCE tries to avoid
248 * over-reads when calculating strlen(@q), it is still possible.
249 * Prefer strscpy(), though note its different return values for
250 * detecting truncation.
251 *
252 * Returns total number of bytes written to @p, including terminating NUL.
253 *
254 */
strlcpy(char * const POS p,const char * const POS q,size_t size)255 __FORTIFY_INLINE size_t strlcpy(char * const POS p, const char * const POS q, size_t size)
256 {
257 const size_t p_size = __member_size(p);
258 const size_t q_size = __member_size(q);
259 size_t q_len; /* Full count of source string length. */
260 size_t len; /* Count of characters going into destination. */
261
262 if (p_size == SIZE_MAX && q_size == SIZE_MAX)
263 return __real_strlcpy(p, q, size);
264 q_len = strlen(q);
265 len = (q_len >= size) ? size - 1 : q_len;
266 if (__builtin_constant_p(size) && __builtin_constant_p(q_len) && size) {
267 /* Write size is always larger than destination. */
268 if (len >= p_size)
269 __write_overflow();
270 }
271 if (size) {
272 if (len >= p_size)
273 fortify_panic(__func__);
274 __underlying_memcpy(p, q, len);
275 p[len] = '\0';
276 }
277 return q_len;
278 }
279
280 /* Defined after fortified strnlen() to reuse it. */
281 extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(strscpy);
282 /**
283 * strscpy - Copy a C-string into a sized buffer
284 *
285 * @p: Where to copy the string to
286 * @q: Where to copy the string from
287 * @size: Size of destination buffer
288 *
289 * Copy the source string @q, or as much of it as fits, into the destination
290 * @p buffer. The behavior is undefined if the string buffers overlap. The
291 * destination @p buffer is always NUL terminated, unless it's zero-sized.
292 *
293 * Preferred to strlcpy() since the API doesn't require reading memory
294 * from the source @q string beyond the specified @size bytes, and since
295 * the return value is easier to error-check than strlcpy()'s.
296 * In addition, the implementation is robust to the string changing out
297 * from underneath it, unlike the current strlcpy() implementation.
298 *
299 * Preferred to strncpy() since it always returns a valid string, and
300 * doesn't unnecessarily force the tail of the destination buffer to be
301 * zero padded. If padding is desired please use strscpy_pad().
302 *
303 * Returns the number of characters copied in @p (not including the
304 * trailing %NUL) or -E2BIG if @size is 0 or the copy of @q was truncated.
305 */
strscpy(char * const POS p,const char * const POS q,size_t size)306 __FORTIFY_INLINE ssize_t strscpy(char * const POS p, const char * const POS q, size_t size)
307 {
308 /* Use string size rather than possible enclosing struct size. */
309 const size_t p_size = __member_size(p);
310 const size_t q_size = __member_size(q);
311 size_t len;
312
313 /* If we cannot get size of p and q default to call strscpy. */
314 if (p_size == SIZE_MAX && q_size == SIZE_MAX)
315 return __real_strscpy(p, q, size);
316
317 /*
318 * If size can be known at compile time and is greater than
319 * p_size, generate a compile time write overflow error.
320 */
321 if (__compiletime_lessthan(p_size, size))
322 __write_overflow();
323
324 /* Short-circuit for compile-time known-safe lengths. */
325 if (__compiletime_lessthan(p_size, SIZE_MAX)) {
326 len = __compiletime_strlen(q);
327
328 if (len < SIZE_MAX && __compiletime_lessthan(len, size)) {
329 __underlying_memcpy(p, q, len + 1);
330 return len;
331 }
332 }
333
334 /*
335 * This call protects from read overflow, because len will default to q
336 * length if it smaller than size.
337 */
338 len = strnlen(q, size);
339 /*
340 * If len equals size, we will copy only size bytes which leads to
341 * -E2BIG being returned.
342 * Otherwise we will copy len + 1 because of the final '\O'.
343 */
344 len = len == size ? size : len + 1;
345
346 /*
347 * Generate a runtime write overflow error if len is greater than
348 * p_size.
349 */
350 if (len > p_size)
351 fortify_panic(__func__);
352
353 /*
354 * We can now safely call vanilla strscpy because we are protected from:
355 * 1. Read overflow thanks to call to strnlen().
356 * 2. Write overflow thanks to above ifs.
357 */
358 return __real_strscpy(p, q, len);
359 }
360
361 /* Defined after fortified strlen() to reuse it. */
362 extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat);
363 /**
364 * strlcat - Append a string to an existing string
365 *
366 * @p: pointer to %NUL-terminated string to append to
367 * @q: pointer to %NUL-terminated string to append from
368 * @avail: Maximum bytes available in @p
369 *
370 * Appends %NUL-terminated string @q after the %NUL-terminated
371 * string at @p, but will not write beyond @avail bytes total,
372 * potentially truncating the copy from @q. @p will stay
373 * %NUL-terminated only if a %NUL already existed within
374 * the @avail bytes of @p. If so, the resulting number of
375 * bytes copied from @q will be at most "@avail - strlen(@p) - 1".
376 *
377 * Do not use this function. While FORTIFY_SOURCE tries to avoid
378 * read and write overflows, this is only possible when the sizes
379 * of @p and @q are known to the compiler. Prefer building the
380 * string with formatting, via scnprintf(), seq_buf, or similar.
381 *
382 * Returns total bytes that _would_ have been contained by @p
383 * regardless of truncation, similar to snprintf(). If return
384 * value is >= @avail, the string has been truncated.
385 *
386 */
387 __FORTIFY_INLINE
strlcat(char * const POS p,const char * const POS q,size_t avail)388 size_t strlcat(char * const POS p, const char * const POS q, size_t avail)
389 {
390 const size_t p_size = __member_size(p);
391 const size_t q_size = __member_size(q);
392 size_t p_len, copy_len;
393 size_t actual, wanted;
394
395 /* Give up immediately if both buffer sizes are unknown. */
396 if (p_size == SIZE_MAX && q_size == SIZE_MAX)
397 return __real_strlcat(p, q, avail);
398
399 p_len = strnlen(p, avail);
400 copy_len = strlen(q);
401 wanted = actual = p_len + copy_len;
402
403 /* Cannot append any more: report truncation. */
404 if (avail <= p_len)
405 return wanted;
406
407 /* Give up if string is already overflowed. */
408 if (p_size <= p_len)
409 fortify_panic(__func__);
410
411 if (actual >= avail) {
412 copy_len = avail - p_len - 1;
413 actual = p_len + copy_len;
414 }
415
416 /* Give up if copy will overflow. */
417 if (p_size <= actual)
418 fortify_panic(__func__);
419 __underlying_memcpy(p + p_len, q, copy_len);
420 p[actual] = '\0';
421
422 return wanted;
423 }
424
425 /* Defined after fortified strlcat() to reuse it. */
426 /**
427 * strcat - Append a string to an existing string
428 *
429 * @p: pointer to NUL-terminated string to append to
430 * @q: pointer to NUL-terminated source string to append from
431 *
432 * Do not use this function. While FORTIFY_SOURCE tries to avoid
433 * read and write overflows, this is only possible when the
434 * destination buffer size is known to the compiler. Prefer
435 * building the string with formatting, via scnprintf() or similar.
436 * At the very least, use strncat().
437 *
438 * Returns @p.
439 *
440 */
441 __FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
strcat(char * const POS p,const char * q)442 char *strcat(char * const POS p, const char *q)
443 {
444 const size_t p_size = __member_size(p);
445
446 if (strlcat(p, q, p_size) >= p_size)
447 fortify_panic(__func__);
448 return p;
449 }
450
451 /**
452 * strncat - Append a string to an existing string
453 *
454 * @p: pointer to NUL-terminated string to append to
455 * @q: pointer to source string to append from
456 * @count: Maximum bytes to read from @q
457 *
458 * Appends at most @count bytes from @q (stopping at the first
459 * NUL byte) after the NUL-terminated string at @p. @p will be
460 * NUL-terminated.
461 *
462 * Do not use this function. While FORTIFY_SOURCE tries to avoid
463 * read and write overflows, this is only possible when the sizes
464 * of @p and @q are known to the compiler. Prefer building the
465 * string with formatting, via scnprintf() or similar.
466 *
467 * Returns @p.
468 *
469 */
470 /* Defined after fortified strlen() and strnlen() to reuse them. */
471 __FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
strncat(char * const POS p,const char * const POS q,__kernel_size_t count)472 char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
473 {
474 const size_t p_size = __member_size(p);
475 const size_t q_size = __member_size(q);
476 size_t p_len, copy_len;
477
478 if (p_size == SIZE_MAX && q_size == SIZE_MAX)
479 return __underlying_strncat(p, q, count);
480 p_len = strlen(p);
481 copy_len = strnlen(q, count);
482 if (p_size < p_len + copy_len + 1)
483 fortify_panic(__func__);
484 __underlying_memcpy(p + p_len, q, copy_len);
485 p[p_len + copy_len] = '\0';
486 return p;
487 }
488
fortify_memset_chk(__kernel_size_t size,const size_t p_size,const size_t p_size_field)489 __FORTIFY_INLINE void fortify_memset_chk(__kernel_size_t size,
490 const size_t p_size,
491 const size_t p_size_field)
492 {
493 if (__builtin_constant_p(size)) {
494 /*
495 * Length argument is a constant expression, so we
496 * can perform compile-time bounds checking where
497 * buffer sizes are also known at compile time.
498 */
499
500 /* Error when size is larger than enclosing struct. */
501 if (__compiletime_lessthan(p_size_field, p_size) &&
502 __compiletime_lessthan(p_size, size))
503 __write_overflow();
504
505 /* Warn when write size is larger than dest field. */
506 if (__compiletime_lessthan(p_size_field, size))
507 __write_overflow_field(p_size_field, size);
508 }
509 /*
510 * At this point, length argument may not be a constant expression,
511 * so run-time bounds checking can be done where buffer sizes are
512 * known. (This is not an "else" because the above checks may only
513 * be compile-time warnings, and we want to still warn for run-time
514 * overflows.)
515 */
516
517 /*
518 * Always stop accesses beyond the struct that contains the
519 * field, when the buffer's remaining size is known.
520 * (The SIZE_MAX test is to optimize away checks where the buffer
521 * lengths are unknown.)
522 */
523 if (p_size != SIZE_MAX && p_size < size)
524 fortify_panic("memset");
525 }
526
527 #define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \
528 size_t __fortify_size = (size_t)(size); \
529 fortify_memset_chk(__fortify_size, p_size, p_size_field), \
530 __underlying_memset(p, c, __fortify_size); \
531 })
532
533 /*
534 * __struct_size() vs __member_size() must be captured here to avoid
535 * evaluating argument side-effects further into the macro layers.
536 */
537 #ifndef CONFIG_KMSAN
538 #define memset(p, c, s) __fortify_memset_chk(p, c, s, \
539 __struct_size(p), __member_size(p))
540 #endif
541
542 /*
543 * To make sure the compiler can enforce protection against buffer overflows,
544 * memcpy(), memmove(), and memset() must not be used beyond individual
545 * struct members. If you need to copy across multiple members, please use
546 * struct_group() to create a named mirror of an anonymous struct union.
547 * (e.g. see struct sk_buff.) Read overflow checking is currently only
548 * done when a write overflow is also present, or when building with W=1.
549 *
550 * Mitigation coverage matrix
551 * Bounds checking at:
552 * +-------+-------+-------+-------+
553 * | Compile time | Run time |
554 * memcpy() argument sizes: | write | read | write | read |
555 * dest source length +-------+-------+-------+-------+
556 * memcpy(known, known, constant) | y | y | n/a | n/a |
557 * memcpy(known, unknown, constant) | y | n | n/a | V |
558 * memcpy(known, known, dynamic) | n | n | B | B |
559 * memcpy(known, unknown, dynamic) | n | n | B | V |
560 * memcpy(unknown, known, constant) | n | y | V | n/a |
561 * memcpy(unknown, unknown, constant) | n | n | V | V |
562 * memcpy(unknown, known, dynamic) | n | n | V | B |
563 * memcpy(unknown, unknown, dynamic) | n | n | V | V |
564 * +-------+-------+-------+-------+
565 *
566 * y = perform deterministic compile-time bounds checking
567 * n = cannot perform deterministic compile-time bounds checking
568 * n/a = no run-time bounds checking needed since compile-time deterministic
569 * B = can perform run-time bounds checking (currently unimplemented)
570 * V = vulnerable to run-time overflow (will need refactoring to solve)
571 *
572 */
fortify_memcpy_chk(__kernel_size_t size,const size_t p_size,const size_t q_size,const size_t p_size_field,const size_t q_size_field,const char * func)573 __FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size,
574 const size_t p_size,
575 const size_t q_size,
576 const size_t p_size_field,
577 const size_t q_size_field,
578 const char *func)
579 {
580 if (__builtin_constant_p(size)) {
581 /*
582 * Length argument is a constant expression, so we
583 * can perform compile-time bounds checking where
584 * buffer sizes are also known at compile time.
585 */
586
587 /* Error when size is larger than enclosing struct. */
588 if (__compiletime_lessthan(p_size_field, p_size) &&
589 __compiletime_lessthan(p_size, size))
590 __write_overflow();
591 if (__compiletime_lessthan(q_size_field, q_size) &&
592 __compiletime_lessthan(q_size, size))
593 __read_overflow2();
594
595 /* Warn when write size argument larger than dest field. */
596 if (__compiletime_lessthan(p_size_field, size))
597 __write_overflow_field(p_size_field, size);
598 /*
599 * Warn for source field over-read when building with W=1
600 * or when an over-write happened, so both can be fixed at
601 * the same time.
602 */
603 if ((IS_ENABLED(KBUILD_EXTRA_WARN1) ||
604 __compiletime_lessthan(p_size_field, size)) &&
605 __compiletime_lessthan(q_size_field, size))
606 __read_overflow2_field(q_size_field, size);
607 }
608 /*
609 * At this point, length argument may not be a constant expression,
610 * so run-time bounds checking can be done where buffer sizes are
611 * known. (This is not an "else" because the above checks may only
612 * be compile-time warnings, and we want to still warn for run-time
613 * overflows.)
614 */
615
616 /*
617 * Always stop accesses beyond the struct that contains the
618 * field, when the buffer's remaining size is known.
619 * (The SIZE_MAX test is to optimize away checks where the buffer
620 * lengths are unknown.)
621 */
622 if ((p_size != SIZE_MAX && p_size < size) ||
623 (q_size != SIZE_MAX && q_size < size))
624 fortify_panic(func);
625
626 /*
627 * Warn when writing beyond destination field size.
628 *
629 * We must ignore p_size_field == 0 for existing 0-element
630 * fake flexible arrays, until they are all converted to
631 * proper flexible arrays.
632 *
633 * The implementation of __builtin_*object_size() behaves
634 * like sizeof() when not directly referencing a flexible
635 * array member, which means there will be many bounds checks
636 * that will appear at run-time, without a way for them to be
637 * detected at compile-time (as can be done when the destination
638 * is specifically the flexible array member).
639 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
640 */
641 if (p_size_field != 0 && p_size_field != SIZE_MAX &&
642 p_size != p_size_field && p_size_field < size)
643 return true;
644
645 return false;
646 }
647
648 #define __fortify_memcpy_chk(p, q, size, p_size, q_size, \
649 p_size_field, q_size_field, op) ({ \
650 const size_t __fortify_size = (size_t)(size); \
651 const size_t __p_size = (p_size); \
652 const size_t __q_size = (q_size); \
653 const size_t __p_size_field = (p_size_field); \
654 const size_t __q_size_field = (q_size_field); \
655 WARN_ONCE(fortify_memcpy_chk(__fortify_size, __p_size, \
656 __q_size, __p_size_field, \
657 __q_size_field, #op), \
658 #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \
659 __fortify_size, \
660 "field \"" #p "\" at " __FILE__ ":" __stringify(__LINE__), \
661 __p_size_field); \
662 __underlying_##op(p, q, __fortify_size); \
663 })
664
665 /*
666 * Notes about compile-time buffer size detection:
667 *
668 * With these types...
669 *
670 * struct middle {
671 * u16 a;
672 * u8 middle_buf[16];
673 * int b;
674 * };
675 * struct end {
676 * u16 a;
677 * u8 end_buf[16];
678 * };
679 * struct flex {
680 * int a;
681 * u8 flex_buf[];
682 * };
683 *
684 * void func(TYPE *ptr) { ... }
685 *
686 * Cases where destination size cannot be currently detected:
687 * - the size of ptr's object (seemingly by design, gcc & clang fail):
688 * __builtin_object_size(ptr, 1) == SIZE_MAX
689 * - the size of flexible arrays in ptr's obj (by design, dynamic size):
690 * __builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX
691 * - the size of ANY array at the end of ptr's obj (gcc and clang bug):
692 * __builtin_object_size(ptr->end_buf, 1) == SIZE_MAX
693 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
694 *
695 * Cases where destination size is currently detected:
696 * - the size of non-array members within ptr's object:
697 * __builtin_object_size(ptr->a, 1) == 2
698 * - the size of non-flexible-array in the middle of ptr's obj:
699 * __builtin_object_size(ptr->middle_buf, 1) == 16
700 *
701 */
702
703 /*
704 * __struct_size() vs __member_size() must be captured here to avoid
705 * evaluating argument side-effects further into the macro layers.
706 */
707 #define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \
708 __struct_size(p), __struct_size(q), \
709 __member_size(p), __member_size(q), \
710 memcpy)
711 #define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \
712 __struct_size(p), __struct_size(q), \
713 __member_size(p), __member_size(q), \
714 memmove)
715
716 extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
memscan(void * const POS0 p,int c,__kernel_size_t size)717 __FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
718 {
719 const size_t p_size = __struct_size(p);
720
721 if (__compiletime_lessthan(p_size, size))
722 __read_overflow();
723 if (p_size < size)
724 fortify_panic(__func__);
725 return __real_memscan(p, c, size);
726 }
727
728 __FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
memcmp(const void * const POS0 p,const void * const POS0 q,__kernel_size_t size)729 int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
730 {
731 const size_t p_size = __struct_size(p);
732 const size_t q_size = __struct_size(q);
733
734 if (__builtin_constant_p(size)) {
735 if (__compiletime_lessthan(p_size, size))
736 __read_overflow();
737 if (__compiletime_lessthan(q_size, size))
738 __read_overflow2();
739 }
740 if (p_size < size || q_size < size)
741 fortify_panic(__func__);
742 return __underlying_memcmp(p, q, size);
743 }
744
745 __FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
memchr(const void * const POS0 p,int c,__kernel_size_t size)746 void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
747 {
748 const size_t p_size = __struct_size(p);
749
750 if (__compiletime_lessthan(p_size, size))
751 __read_overflow();
752 if (p_size < size)
753 fortify_panic(__func__);
754 return __underlying_memchr(p, c, size);
755 }
756
757 void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
memchr_inv(const void * const POS0 p,int c,size_t size)758 __FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
759 {
760 const size_t p_size = __struct_size(p);
761
762 if (__compiletime_lessthan(p_size, size))
763 __read_overflow();
764 if (p_size < size)
765 fortify_panic(__func__);
766 return __real_memchr_inv(p, c, size);
767 }
768
769 extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup)
770 __realloc_size(2);
kmemdup(const void * const POS0 p,size_t size,gfp_t gfp)771 __FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp)
772 {
773 const size_t p_size = __struct_size(p);
774
775 if (__compiletime_lessthan(p_size, size))
776 __read_overflow();
777 if (p_size < size)
778 fortify_panic(__func__);
779 return __real_kmemdup(p, size, gfp);
780 }
781
782 /**
783 * strcpy - Copy a string into another string buffer
784 *
785 * @p: pointer to destination of copy
786 * @q: pointer to NUL-terminated source string to copy
787 *
788 * Do not use this function. While FORTIFY_SOURCE tries to avoid
789 * overflows, this is only possible when the sizes of @q and @p are
790 * known to the compiler. Prefer strscpy(), though note its different
791 * return values for detecting truncation.
792 *
793 * Returns @p.
794 *
795 */
796 /* Defined after fortified strlen to reuse it. */
797 __FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
strcpy(char * const POS p,const char * const POS q)798 char *strcpy(char * const POS p, const char * const POS q)
799 {
800 const size_t p_size = __member_size(p);
801 const size_t q_size = __member_size(q);
802 size_t size;
803
804 /* If neither buffer size is known, immediately give up. */
805 if (__builtin_constant_p(p_size) &&
806 __builtin_constant_p(q_size) &&
807 p_size == SIZE_MAX && q_size == SIZE_MAX)
808 return __underlying_strcpy(p, q);
809 size = strlen(q) + 1;
810 /* Compile-time check for const size overflow. */
811 if (__compiletime_lessthan(p_size, size))
812 __write_overflow();
813 /* Run-time check for dynamic size overflow. */
814 if (p_size < size)
815 fortify_panic(__func__);
816 __underlying_memcpy(p, q, size);
817 return p;
818 }
819
820 /* Don't use these outside the FORITFY_SOURCE implementation */
821 #undef __underlying_memchr
822 #undef __underlying_memcmp
823 #undef __underlying_strcat
824 #undef __underlying_strcpy
825 #undef __underlying_strlen
826 #undef __underlying_strncat
827 #undef __underlying_strncpy
828
829 #undef POS
830 #undef POS0
831
832 #endif /* _LINUX_FORTIFY_STRING_H_ */
833