1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "system/kvm.h"
36 #include "system/dma.h"
37 #include "system/system.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_FL_LEVEL(pe) \
52 (4 + (((pe)->val[2] >> 2) & VTD_SM_PASID_ENTRY_FLPM))
53 #define VTD_PE_GET_SL_LEVEL(pe) \
54 (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
55
56 /*
57 * PCI bus number (or SID) is not reliable since the device is usaully
58 * initialized before guest can configure the PCI bridge
59 * (SECONDARY_BUS_NUMBER).
60 */
61 struct vtd_as_key {
62 PCIBus *bus;
63 uint8_t devfn;
64 uint32_t pasid;
65 };
66
67 /* bus/devfn is PCI device's real BDF not the aliased one */
68 struct vtd_hiod_key {
69 PCIBus *bus;
70 uint8_t devfn;
71 };
72
73 struct vtd_as_raw_key {
74 uint16_t sid;
75 uint32_t pasid;
76 };
77
78 struct vtd_iotlb_key {
79 uint64_t gfn;
80 uint32_t pasid;
81 uint16_t sid;
82 uint8_t level;
83 };
84
85 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
86 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
87
vtd_panic_require_caching_mode(void)88 static void vtd_panic_require_caching_mode(void)
89 {
90 error_report("We need to set caching-mode=on for intel-iommu to enable "
91 "device assignment with IOMMU protection.");
92 exit(1);
93 }
94
vtd_define_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val,uint64_t wmask,uint64_t w1cmask)95 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
96 uint64_t wmask, uint64_t w1cmask)
97 {
98 stq_le_p(&s->csr[addr], val);
99 stq_le_p(&s->wmask[addr], wmask);
100 stq_le_p(&s->w1cmask[addr], w1cmask);
101 }
102
vtd_define_quad_wo(IntelIOMMUState * s,hwaddr addr,uint64_t mask)103 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
104 {
105 stq_le_p(&s->womask[addr], mask);
106 }
107
vtd_define_long(IntelIOMMUState * s,hwaddr addr,uint32_t val,uint32_t wmask,uint32_t w1cmask)108 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
109 uint32_t wmask, uint32_t w1cmask)
110 {
111 stl_le_p(&s->csr[addr], val);
112 stl_le_p(&s->wmask[addr], wmask);
113 stl_le_p(&s->w1cmask[addr], w1cmask);
114 }
115
vtd_define_long_wo(IntelIOMMUState * s,hwaddr addr,uint32_t mask)116 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
117 {
118 stl_le_p(&s->womask[addr], mask);
119 }
120
121 /* "External" get/set operations */
vtd_set_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val)122 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
123 {
124 uint64_t oldval = ldq_le_p(&s->csr[addr]);
125 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
126 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
127 stq_le_p(&s->csr[addr],
128 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
129 }
130
vtd_set_long(IntelIOMMUState * s,hwaddr addr,uint32_t val)131 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
132 {
133 uint32_t oldval = ldl_le_p(&s->csr[addr]);
134 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
135 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
136 stl_le_p(&s->csr[addr],
137 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
138 }
139
vtd_get_quad(IntelIOMMUState * s,hwaddr addr)140 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
141 {
142 uint64_t val = ldq_le_p(&s->csr[addr]);
143 uint64_t womask = ldq_le_p(&s->womask[addr]);
144 return val & ~womask;
145 }
146
vtd_get_long(IntelIOMMUState * s,hwaddr addr)147 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
148 {
149 uint32_t val = ldl_le_p(&s->csr[addr]);
150 uint32_t womask = ldl_le_p(&s->womask[addr]);
151 return val & ~womask;
152 }
153
154 /* "Internal" get/set operations */
vtd_get_quad_raw(IntelIOMMUState * s,hwaddr addr)155 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
156 {
157 return ldq_le_p(&s->csr[addr]);
158 }
159
vtd_get_long_raw(IntelIOMMUState * s,hwaddr addr)160 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
161 {
162 return ldl_le_p(&s->csr[addr]);
163 }
164
vtd_set_quad_raw(IntelIOMMUState * s,hwaddr addr,uint64_t val)165 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
166 {
167 stq_le_p(&s->csr[addr], val);
168 }
169
vtd_set_clear_mask_long(IntelIOMMUState * s,hwaddr addr,uint32_t clear,uint32_t mask)170 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
171 uint32_t clear, uint32_t mask)
172 {
173 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
174 stl_le_p(&s->csr[addr], new_val);
175 return new_val;
176 }
177
vtd_set_clear_mask_quad(IntelIOMMUState * s,hwaddr addr,uint64_t clear,uint64_t mask)178 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
179 uint64_t clear, uint64_t mask)
180 {
181 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
182 stq_le_p(&s->csr[addr], new_val);
183 return new_val;
184 }
185
vtd_iommu_lock(IntelIOMMUState * s)186 static inline void vtd_iommu_lock(IntelIOMMUState *s)
187 {
188 qemu_mutex_lock(&s->iommu_lock);
189 }
190
vtd_iommu_unlock(IntelIOMMUState * s)191 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
192 {
193 qemu_mutex_unlock(&s->iommu_lock);
194 }
195
vtd_update_scalable_state(IntelIOMMUState * s)196 static void vtd_update_scalable_state(IntelIOMMUState *s)
197 {
198 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
199
200 if (s->scalable_mode) {
201 s->root_scalable = val & VTD_RTADDR_SMT;
202 }
203 }
204
vtd_update_iq_dw(IntelIOMMUState * s)205 static void vtd_update_iq_dw(IntelIOMMUState *s)
206 {
207 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
208
209 if (s->ecap & VTD_ECAP_SMTS &&
210 val & VTD_IQA_DW_MASK) {
211 s->iq_dw = true;
212 } else {
213 s->iq_dw = false;
214 }
215 }
216
217 /* Whether the address space needs to notify new mappings */
vtd_as_has_map_notifier(VTDAddressSpace * as)218 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
219 {
220 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
221 }
222
223 /* GHashTable functions */
vtd_iotlb_equal(gconstpointer v1,gconstpointer v2)224 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
225 {
226 const struct vtd_iotlb_key *key1 = v1;
227 const struct vtd_iotlb_key *key2 = v2;
228
229 return key1->sid == key2->sid &&
230 key1->pasid == key2->pasid &&
231 key1->level == key2->level &&
232 key1->gfn == key2->gfn;
233 }
234
vtd_iotlb_hash(gconstpointer v)235 static guint vtd_iotlb_hash(gconstpointer v)
236 {
237 const struct vtd_iotlb_key *key = v;
238 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
239 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
240 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
241
242 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
243 }
244
vtd_as_equal(gconstpointer v1,gconstpointer v2)245 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
246 {
247 const struct vtd_as_key *key1 = v1;
248 const struct vtd_as_key *key2 = v2;
249
250 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
251 (key1->pasid == key2->pasid);
252 }
253
254 /*
255 * Note that we use pointer to PCIBus as the key, so hashing/shifting
256 * based on the pointer value is intended. Note that we deal with
257 * collisions through vtd_as_equal().
258 */
vtd_as_hash(gconstpointer v)259 static guint vtd_as_hash(gconstpointer v)
260 {
261 const struct vtd_as_key *key = v;
262 guint value = (guint)(uintptr_t)key->bus;
263
264 return (guint)(value << 8 | key->devfn);
265 }
266
267 /* Same implementation as vtd_as_hash() */
vtd_hiod_hash(gconstpointer v)268 static guint vtd_hiod_hash(gconstpointer v)
269 {
270 return vtd_as_hash(v);
271 }
272
vtd_hiod_equal(gconstpointer v1,gconstpointer v2)273 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
274 {
275 const struct vtd_hiod_key *key1 = v1;
276 const struct vtd_hiod_key *key2 = v2;
277
278 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
279 }
280
vtd_hiod_destroy(gpointer v)281 static void vtd_hiod_destroy(gpointer v)
282 {
283 object_unref(v);
284 }
285
vtd_hash_remove_by_domain(gpointer key,gpointer value,gpointer user_data)286 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
287 gpointer user_data)
288 {
289 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
290 uint16_t domain_id = *(uint16_t *)user_data;
291 return entry->domain_id == domain_id;
292 }
293
294 /* The shift of an addr for a certain level of paging structure */
vtd_pt_level_shift(uint32_t level)295 static inline uint32_t vtd_pt_level_shift(uint32_t level)
296 {
297 assert(level != 0);
298 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_LEVEL_BITS;
299 }
300
vtd_pt_level_page_mask(uint32_t level)301 static inline uint64_t vtd_pt_level_page_mask(uint32_t level)
302 {
303 return ~((1ULL << vtd_pt_level_shift(level)) - 1);
304 }
305
vtd_hash_remove_by_page(gpointer key,gpointer value,gpointer user_data)306 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
307 gpointer user_data)
308 {
309 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
310 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
311 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
312 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
313
314 if (entry->domain_id != info->domain_id) {
315 return false;
316 }
317
318 /*
319 * According to spec, IOTLB entries caching first-stage (PGTT=001b) or
320 * nested (PGTT=011b) mapping associated with specified domain-id are
321 * invalidated. Nested isn't supported yet, so only need to check 001b.
322 */
323 if (entry->pgtt == VTD_SM_PASID_ENTRY_FLT) {
324 return true;
325 }
326
327 return (entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb;
328 }
329
vtd_hash_remove_by_page_piotlb(gpointer key,gpointer value,gpointer user_data)330 static gboolean vtd_hash_remove_by_page_piotlb(gpointer key, gpointer value,
331 gpointer user_data)
332 {
333 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
334 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
335 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
336 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
337
338 /*
339 * According to spec, PASID-based-IOTLB Invalidation in page granularity
340 * doesn't invalidate IOTLB entries caching second-stage (PGTT=010b)
341 * or pass-through (PGTT=100b) mappings. Nested isn't supported yet,
342 * so only need to check first-stage (PGTT=001b) mappings.
343 */
344 if (entry->pgtt != VTD_SM_PASID_ENTRY_FLT) {
345 return false;
346 }
347
348 return entry->domain_id == info->domain_id && entry->pasid == info->pasid &&
349 ((entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb);
350 }
351
352 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
353 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
354 */
vtd_reset_context_cache_locked(IntelIOMMUState * s)355 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
356 {
357 VTDAddressSpace *vtd_as;
358 GHashTableIter as_it;
359
360 trace_vtd_context_cache_reset();
361
362 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
363
364 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
365 vtd_as->context_cache_entry.context_cache_gen = 0;
366 }
367 s->context_cache_gen = 1;
368 }
369
370 /* Must be called with IOMMU lock held. */
vtd_reset_iotlb_locked(IntelIOMMUState * s)371 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
372 {
373 assert(s->iotlb);
374 g_hash_table_remove_all(s->iotlb);
375 }
376
vtd_reset_iotlb(IntelIOMMUState * s)377 static void vtd_reset_iotlb(IntelIOMMUState *s)
378 {
379 vtd_iommu_lock(s);
380 vtd_reset_iotlb_locked(s);
381 vtd_iommu_unlock(s);
382 }
383
vtd_reset_caches(IntelIOMMUState * s)384 static void vtd_reset_caches(IntelIOMMUState *s)
385 {
386 vtd_iommu_lock(s);
387 vtd_reset_iotlb_locked(s);
388 vtd_reset_context_cache_locked(s);
389 vtd_iommu_unlock(s);
390 }
391
vtd_get_iotlb_gfn(hwaddr addr,uint32_t level)392 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
393 {
394 return (addr & vtd_pt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
395 }
396
397 /* Must be called with IOMMU lock held */
vtd_lookup_iotlb(IntelIOMMUState * s,uint16_t source_id,uint32_t pasid,hwaddr addr)398 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
399 uint32_t pasid, hwaddr addr)
400 {
401 struct vtd_iotlb_key key;
402 VTDIOTLBEntry *entry;
403 unsigned level;
404
405 for (level = VTD_PT_LEVEL; level < VTD_PML4_LEVEL; level++) {
406 key.gfn = vtd_get_iotlb_gfn(addr, level);
407 key.level = level;
408 key.sid = source_id;
409 key.pasid = pasid;
410 entry = g_hash_table_lookup(s->iotlb, &key);
411 if (entry) {
412 goto out;
413 }
414 }
415
416 out:
417 return entry;
418 }
419
420 /* Must be with IOMMU lock held */
vtd_update_iotlb(IntelIOMMUState * s,uint16_t source_id,uint16_t domain_id,hwaddr addr,uint64_t pte,uint8_t access_flags,uint32_t level,uint32_t pasid,uint8_t pgtt)421 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
422 uint16_t domain_id, hwaddr addr, uint64_t pte,
423 uint8_t access_flags, uint32_t level,
424 uint32_t pasid, uint8_t pgtt)
425 {
426 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
427 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
428 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
429
430 trace_vtd_iotlb_page_update(source_id, addr, pte, domain_id);
431 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
432 trace_vtd_iotlb_reset("iotlb exceeds size limit");
433 vtd_reset_iotlb_locked(s);
434 }
435
436 entry->gfn = gfn;
437 entry->domain_id = domain_id;
438 entry->pte = pte;
439 entry->access_flags = access_flags;
440 entry->mask = vtd_pt_level_page_mask(level);
441 entry->pasid = pasid;
442 entry->pgtt = pgtt;
443
444 key->gfn = gfn;
445 key->sid = source_id;
446 key->level = level;
447 key->pasid = pasid;
448
449 g_hash_table_replace(s->iotlb, key, entry);
450 }
451
452 /* Given the reg addr of both the message data and address, generate an
453 * interrupt via MSI.
454 */
vtd_generate_interrupt(IntelIOMMUState * s,hwaddr mesg_addr_reg,hwaddr mesg_data_reg)455 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
456 hwaddr mesg_data_reg)
457 {
458 MSIMessage msi;
459
460 assert(mesg_data_reg < DMAR_REG_SIZE);
461 assert(mesg_addr_reg < DMAR_REG_SIZE);
462
463 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
464 msi.data = vtd_get_long_raw(s, mesg_data_reg);
465
466 trace_vtd_irq_generate(msi.address, msi.data);
467
468 apic_get_class(NULL)->send_msi(&msi);
469 }
470
471 /* Generate a fault event to software via MSI if conditions are met.
472 * Notice that the value of FSTS_REG being passed to it should be the one
473 * before any update.
474 */
vtd_generate_fault_event(IntelIOMMUState * s,uint32_t pre_fsts)475 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
476 {
477 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
478 pre_fsts & VTD_FSTS_IQE) {
479 error_report_once("There are previous interrupt conditions "
480 "to be serviced by software, fault event "
481 "is not generated");
482 return;
483 }
484 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
485 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
486 error_report_once("Interrupt Mask set, irq is not generated");
487 } else {
488 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
489 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
490 }
491 }
492
493 /* Check if the Fault (F) field of the Fault Recording Register referenced by
494 * @index is Set.
495 */
vtd_is_frcd_set(IntelIOMMUState * s,uint16_t index)496 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
497 {
498 /* Each reg is 128-bit */
499 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
500 addr += 8; /* Access the high 64-bit half */
501
502 assert(index < DMAR_FRCD_REG_NR);
503
504 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
505 }
506
507 /* Update the PPF field of Fault Status Register.
508 * Should be called whenever change the F field of any fault recording
509 * registers.
510 */
vtd_update_fsts_ppf(IntelIOMMUState * s)511 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
512 {
513 uint32_t i;
514 uint32_t ppf_mask = 0;
515
516 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517 if (vtd_is_frcd_set(s, i)) {
518 ppf_mask = VTD_FSTS_PPF;
519 break;
520 }
521 }
522 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
523 trace_vtd_fsts_ppf(!!ppf_mask);
524 }
525
vtd_set_frcd_and_update_ppf(IntelIOMMUState * s,uint16_t index)526 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
527 {
528 /* Each reg is 128-bit */
529 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
530 addr += 8; /* Access the high 64-bit half */
531
532 assert(index < DMAR_FRCD_REG_NR);
533
534 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
535 vtd_update_fsts_ppf(s);
536 }
537
538 /* Must not update F field now, should be done later */
vtd_record_frcd(IntelIOMMUState * s,uint16_t index,uint64_t hi,uint64_t lo)539 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
540 uint64_t hi, uint64_t lo)
541 {
542 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
543
544 assert(index < DMAR_FRCD_REG_NR);
545
546 vtd_set_quad_raw(s, frcd_reg_addr, lo);
547 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
548
549 trace_vtd_frr_new(index, hi, lo);
550 }
551
552 /* Try to collapse multiple pending faults from the same requester */
vtd_try_collapse_fault(IntelIOMMUState * s,uint16_t source_id)553 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
554 {
555 uint32_t i;
556 uint64_t frcd_reg;
557 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
558
559 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
560 frcd_reg = vtd_get_quad_raw(s, addr);
561 if ((frcd_reg & VTD_FRCD_F) &&
562 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
563 return true;
564 }
565 addr += 16; /* 128-bit for each */
566 }
567 return false;
568 }
569
570 /* Log and report an DMAR (address translation) fault to software */
vtd_report_frcd_fault(IntelIOMMUState * s,uint64_t source_id,uint64_t hi,uint64_t lo)571 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
572 uint64_t hi, uint64_t lo)
573 {
574 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
575
576 if (fsts_reg & VTD_FSTS_PFO) {
577 error_report_once("New fault is not recorded due to "
578 "Primary Fault Overflow");
579 return;
580 }
581
582 if (vtd_try_collapse_fault(s, source_id)) {
583 error_report_once("New fault is not recorded due to "
584 "compression of faults");
585 return;
586 }
587
588 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
589 error_report_once("Next Fault Recording Reg is used, "
590 "new fault is not recorded, set PFO field");
591 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
592 return;
593 }
594
595 vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
596
597 if (fsts_reg & VTD_FSTS_PPF) {
598 error_report_once("There are pending faults already, "
599 "fault event is not generated");
600 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
601 s->next_frcd_reg++;
602 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
603 s->next_frcd_reg = 0;
604 }
605 } else {
606 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
607 VTD_FSTS_FRI(s->next_frcd_reg));
608 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
609 s->next_frcd_reg++;
610 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
611 s->next_frcd_reg = 0;
612 }
613 /* This case actually cause the PPF to be Set.
614 * So generate fault event (interrupt).
615 */
616 vtd_generate_fault_event(s, fsts_reg);
617 }
618 }
619
620 /* Log and report an DMAR (address translation) fault to software */
vtd_report_dmar_fault(IntelIOMMUState * s,uint16_t source_id,hwaddr addr,VTDFaultReason fault,bool is_write,bool is_pasid,uint32_t pasid)621 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
622 hwaddr addr, VTDFaultReason fault,
623 bool is_write, bool is_pasid,
624 uint32_t pasid)
625 {
626 uint64_t hi, lo;
627
628 assert(fault < VTD_FR_MAX);
629
630 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
631
632 lo = VTD_FRCD_FI(addr);
633 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
634 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
635 if (!is_write) {
636 hi |= VTD_FRCD_T;
637 }
638
639 vtd_report_frcd_fault(s, source_id, hi, lo);
640 }
641
642
vtd_report_ir_fault(IntelIOMMUState * s,uint64_t source_id,VTDFaultReason fault,uint16_t index)643 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
644 VTDFaultReason fault, uint16_t index)
645 {
646 uint64_t hi, lo;
647
648 lo = VTD_FRCD_IR_IDX(index);
649 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
650
651 vtd_report_frcd_fault(s, source_id, hi, lo);
652 }
653
654 /* Handle Invalidation Queue Errors of queued invalidation interface error
655 * conditions.
656 */
vtd_handle_inv_queue_error(IntelIOMMUState * s)657 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
658 {
659 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
660
661 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
662 vtd_generate_fault_event(s, fsts_reg);
663 }
664
665 /* Set the IWC field and try to generate an invalidation completion interrupt */
vtd_generate_completion_event(IntelIOMMUState * s)666 static void vtd_generate_completion_event(IntelIOMMUState *s)
667 {
668 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
669 trace_vtd_inv_desc_wait_irq("One pending, skip current");
670 return;
671 }
672 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
673 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
674 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
675 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
676 "new event not generated");
677 return;
678 } else {
679 /* Generate the interrupt event */
680 trace_vtd_inv_desc_wait_irq("Generating complete event");
681 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
682 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
683 }
684 }
685
vtd_root_entry_present(IntelIOMMUState * s,VTDRootEntry * re,uint8_t devfn)686 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
687 VTDRootEntry *re,
688 uint8_t devfn)
689 {
690 if (s->root_scalable && devfn > UINT8_MAX / 2) {
691 return re->hi & VTD_ROOT_ENTRY_P;
692 }
693
694 return re->lo & VTD_ROOT_ENTRY_P;
695 }
696
vtd_get_root_entry(IntelIOMMUState * s,uint8_t index,VTDRootEntry * re)697 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
698 VTDRootEntry *re)
699 {
700 dma_addr_t addr;
701
702 addr = s->root + index * sizeof(*re);
703 if (dma_memory_read(&address_space_memory, addr,
704 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
705 re->lo = 0;
706 return -VTD_FR_ROOT_TABLE_INV;
707 }
708 re->lo = le64_to_cpu(re->lo);
709 re->hi = le64_to_cpu(re->hi);
710 return 0;
711 }
712
vtd_ce_present(VTDContextEntry * context)713 static inline bool vtd_ce_present(VTDContextEntry *context)
714 {
715 return context->lo & VTD_CONTEXT_ENTRY_P;
716 }
717
vtd_get_context_entry_from_root(IntelIOMMUState * s,VTDRootEntry * re,uint8_t index,VTDContextEntry * ce)718 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
719 VTDRootEntry *re,
720 uint8_t index,
721 VTDContextEntry *ce)
722 {
723 dma_addr_t addr, ce_size;
724
725 /* we have checked that root entry is present */
726 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
727 VTD_CTX_ENTRY_LEGACY_SIZE;
728
729 if (s->root_scalable && index > UINT8_MAX / 2) {
730 index = index & (~VTD_DEVFN_CHECK_MASK);
731 addr = re->hi & VTD_ROOT_ENTRY_CTP;
732 } else {
733 addr = re->lo & VTD_ROOT_ENTRY_CTP;
734 }
735
736 addr = addr + index * ce_size;
737 if (dma_memory_read(&address_space_memory, addr,
738 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
739 return -VTD_FR_CONTEXT_TABLE_INV;
740 }
741
742 ce->lo = le64_to_cpu(ce->lo);
743 ce->hi = le64_to_cpu(ce->hi);
744 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
745 ce->val[2] = le64_to_cpu(ce->val[2]);
746 ce->val[3] = le64_to_cpu(ce->val[3]);
747 }
748 return 0;
749 }
750
vtd_ce_get_slpt_base(VTDContextEntry * ce)751 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
752 {
753 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
754 }
755
vtd_get_pte_addr(uint64_t pte,uint8_t aw)756 static inline uint64_t vtd_get_pte_addr(uint64_t pte, uint8_t aw)
757 {
758 return pte & VTD_PT_BASE_ADDR_MASK(aw);
759 }
760
761 /* Whether the pte indicates the address of the page frame */
vtd_is_last_pte(uint64_t pte,uint32_t level)762 static inline bool vtd_is_last_pte(uint64_t pte, uint32_t level)
763 {
764 return level == VTD_PT_LEVEL || (pte & VTD_PT_PAGE_SIZE_MASK);
765 }
766
767 /* Get the content of a pte located in @base_addr[@index] */
vtd_get_pte(dma_addr_t base_addr,uint32_t index)768 static uint64_t vtd_get_pte(dma_addr_t base_addr, uint32_t index)
769 {
770 uint64_t pte;
771
772 assert(index < VTD_PT_ENTRY_NR);
773
774 if (dma_memory_read(&address_space_memory,
775 base_addr + index * sizeof(pte),
776 &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) {
777 pte = (uint64_t)-1;
778 return pte;
779 }
780 pte = le64_to_cpu(pte);
781 return pte;
782 }
783
784 /* Given an iova and the level of paging structure, return the offset
785 * of current level.
786 */
vtd_iova_level_offset(uint64_t iova,uint32_t level)787 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
788 {
789 return (iova >> vtd_pt_level_shift(level)) &
790 ((1ULL << VTD_LEVEL_BITS) - 1);
791 }
792
793 /* Check Capability Register to see if the @level of page-table is supported */
vtd_is_sl_level_supported(IntelIOMMUState * s,uint32_t level)794 static inline bool vtd_is_sl_level_supported(IntelIOMMUState *s, uint32_t level)
795 {
796 return VTD_CAP_SAGAW_MASK & s->cap &
797 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
798 }
799
vtd_is_fl_level_supported(IntelIOMMUState * s,uint32_t level)800 static inline bool vtd_is_fl_level_supported(IntelIOMMUState *s, uint32_t level)
801 {
802 return level == VTD_PML4_LEVEL;
803 }
804
805 /* Return true if check passed, otherwise false */
vtd_pe_type_check(IntelIOMMUState * s,VTDPASIDEntry * pe)806 static inline bool vtd_pe_type_check(IntelIOMMUState *s, VTDPASIDEntry *pe)
807 {
808 switch (VTD_PE_GET_TYPE(pe)) {
809 case VTD_SM_PASID_ENTRY_FLT:
810 return !!(s->ecap & VTD_ECAP_FLTS);
811 case VTD_SM_PASID_ENTRY_SLT:
812 return !!(s->ecap & VTD_ECAP_SLTS);
813 case VTD_SM_PASID_ENTRY_NESTED:
814 /* Not support NESTED page table type yet */
815 return false;
816 case VTD_SM_PASID_ENTRY_PT:
817 return !!(s->ecap & VTD_ECAP_PT);
818 default:
819 /* Unknown type */
820 return false;
821 }
822 }
823
vtd_pdire_present(VTDPASIDDirEntry * pdire)824 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
825 {
826 return pdire->val & 1;
827 }
828
829 /**
830 * Caller of this function should check present bit if wants
831 * to use pdir entry for further usage except for fpd bit check.
832 */
vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDDirEntry * pdire)833 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
834 uint32_t pasid,
835 VTDPASIDDirEntry *pdire)
836 {
837 uint32_t index;
838 dma_addr_t addr, entry_size;
839
840 index = VTD_PASID_DIR_INDEX(pasid);
841 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
842 addr = pasid_dir_base + index * entry_size;
843 if (dma_memory_read(&address_space_memory, addr,
844 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
845 return -VTD_FR_PASID_DIR_ACCESS_ERR;
846 }
847
848 pdire->val = le64_to_cpu(pdire->val);
849
850 return 0;
851 }
852
vtd_pe_present(VTDPASIDEntry * pe)853 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
854 {
855 return pe->val[0] & VTD_PASID_ENTRY_P;
856 }
857
vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState * s,uint32_t pasid,dma_addr_t addr,VTDPASIDEntry * pe)858 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
859 uint32_t pasid,
860 dma_addr_t addr,
861 VTDPASIDEntry *pe)
862 {
863 uint8_t pgtt;
864 uint32_t index;
865 dma_addr_t entry_size;
866
867 index = VTD_PASID_TABLE_INDEX(pasid);
868 entry_size = VTD_PASID_ENTRY_SIZE;
869 addr = addr + index * entry_size;
870 if (dma_memory_read(&address_space_memory, addr,
871 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
872 return -VTD_FR_PASID_TABLE_ACCESS_ERR;
873 }
874 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
875 pe->val[i] = le64_to_cpu(pe->val[i]);
876 }
877
878 /* Do translation type check */
879 if (!vtd_pe_type_check(s, pe)) {
880 return -VTD_FR_PASID_TABLE_ENTRY_INV;
881 }
882
883 pgtt = VTD_PE_GET_TYPE(pe);
884 if (pgtt == VTD_SM_PASID_ENTRY_SLT &&
885 !vtd_is_sl_level_supported(s, VTD_PE_GET_SL_LEVEL(pe))) {
886 return -VTD_FR_PASID_TABLE_ENTRY_INV;
887 }
888
889 if (pgtt == VTD_SM_PASID_ENTRY_FLT &&
890 !vtd_is_fl_level_supported(s, VTD_PE_GET_FL_LEVEL(pe))) {
891 return -VTD_FR_PASID_TABLE_ENTRY_INV;
892 }
893
894 return 0;
895 }
896
897 /**
898 * Caller of this function should check present bit if wants
899 * to use pasid entry for further usage except for fpd bit check.
900 */
vtd_get_pe_from_pdire(IntelIOMMUState * s,uint32_t pasid,VTDPASIDDirEntry * pdire,VTDPASIDEntry * pe)901 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
902 uint32_t pasid,
903 VTDPASIDDirEntry *pdire,
904 VTDPASIDEntry *pe)
905 {
906 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
907
908 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
909 }
910
911 /**
912 * This function gets a pasid entry from a specified pasid
913 * table (includes dir and leaf table) with a specified pasid.
914 * Sanity check should be done to ensure return a present
915 * pasid entry to caller.
916 */
vtd_get_pe_from_pasid_table(IntelIOMMUState * s,dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDEntry * pe)917 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
918 dma_addr_t pasid_dir_base,
919 uint32_t pasid,
920 VTDPASIDEntry *pe)
921 {
922 int ret;
923 VTDPASIDDirEntry pdire;
924
925 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
926 pasid, &pdire);
927 if (ret) {
928 return ret;
929 }
930
931 if (!vtd_pdire_present(&pdire)) {
932 return -VTD_FR_PASID_DIR_ENTRY_P;
933 }
934
935 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
936 if (ret) {
937 return ret;
938 }
939
940 if (!vtd_pe_present(pe)) {
941 return -VTD_FR_PASID_ENTRY_P;
942 }
943
944 return 0;
945 }
946
vtd_ce_get_rid2pasid_entry(IntelIOMMUState * s,VTDContextEntry * ce,VTDPASIDEntry * pe,uint32_t pasid)947 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
948 VTDContextEntry *ce,
949 VTDPASIDEntry *pe,
950 uint32_t pasid)
951 {
952 dma_addr_t pasid_dir_base;
953 int ret = 0;
954
955 if (pasid == PCI_NO_PASID) {
956 pasid = VTD_CE_GET_RID2PASID(ce);
957 }
958 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
959 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
960
961 return ret;
962 }
963
vtd_ce_get_pasid_fpd(IntelIOMMUState * s,VTDContextEntry * ce,bool * pe_fpd_set,uint32_t pasid)964 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
965 VTDContextEntry *ce,
966 bool *pe_fpd_set,
967 uint32_t pasid)
968 {
969 int ret;
970 dma_addr_t pasid_dir_base;
971 VTDPASIDDirEntry pdire;
972 VTDPASIDEntry pe;
973
974 if (pasid == PCI_NO_PASID) {
975 pasid = VTD_CE_GET_RID2PASID(ce);
976 }
977 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
978
979 /*
980 * No present bit check since fpd is meaningful even
981 * if the present bit is clear.
982 */
983 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
984 if (ret) {
985 return ret;
986 }
987
988 if (pdire.val & VTD_PASID_DIR_FPD) {
989 *pe_fpd_set = true;
990 return 0;
991 }
992
993 if (!vtd_pdire_present(&pdire)) {
994 return -VTD_FR_PASID_DIR_ENTRY_P;
995 }
996
997 /*
998 * No present bit check since fpd is meaningful even
999 * if the present bit is clear.
1000 */
1001 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
1002 if (ret) {
1003 return ret;
1004 }
1005
1006 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
1007 *pe_fpd_set = true;
1008 }
1009
1010 return 0;
1011 }
1012
1013 /* Get the page-table level that hardware should use for the second-level
1014 * page-table walk from the Address Width field of context-entry.
1015 */
vtd_ce_get_level(VTDContextEntry * ce)1016 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
1017 {
1018 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
1019 }
1020
vtd_get_iova_level(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1021 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
1022 VTDContextEntry *ce,
1023 uint32_t pasid)
1024 {
1025 VTDPASIDEntry pe;
1026
1027 if (s->root_scalable) {
1028 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1029 if (s->flts) {
1030 return VTD_PE_GET_FL_LEVEL(&pe);
1031 } else {
1032 return VTD_PE_GET_SL_LEVEL(&pe);
1033 }
1034 }
1035
1036 return vtd_ce_get_level(ce);
1037 }
1038
vtd_ce_get_agaw(VTDContextEntry * ce)1039 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
1040 {
1041 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
1042 }
1043
vtd_get_iova_agaw(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1044 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
1045 VTDContextEntry *ce,
1046 uint32_t pasid)
1047 {
1048 VTDPASIDEntry pe;
1049
1050 if (s->root_scalable) {
1051 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1052 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
1053 }
1054
1055 return vtd_ce_get_agaw(ce);
1056 }
1057
vtd_ce_get_type(VTDContextEntry * ce)1058 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1059 {
1060 return ce->lo & VTD_CONTEXT_ENTRY_TT;
1061 }
1062
1063 /* Only for Legacy Mode. Return true if check passed, otherwise false */
vtd_ce_type_check(X86IOMMUState * x86_iommu,VTDContextEntry * ce)1064 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1065 VTDContextEntry *ce)
1066 {
1067 switch (vtd_ce_get_type(ce)) {
1068 case VTD_CONTEXT_TT_MULTI_LEVEL:
1069 /* Always supported */
1070 break;
1071 case VTD_CONTEXT_TT_DEV_IOTLB:
1072 if (!x86_iommu->dt_supported) {
1073 error_report_once("%s: DT specified but not supported", __func__);
1074 return false;
1075 }
1076 break;
1077 case VTD_CONTEXT_TT_PASS_THROUGH:
1078 if (!x86_iommu->pt_supported) {
1079 error_report_once("%s: PT specified but not supported", __func__);
1080 return false;
1081 }
1082 break;
1083 default:
1084 /* Unknown type */
1085 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1086 vtd_ce_get_type(ce));
1087 return false;
1088 }
1089 return true;
1090 }
1091
vtd_iova_limit(IntelIOMMUState * s,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1092 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1093 VTDContextEntry *ce, uint8_t aw,
1094 uint32_t pasid)
1095 {
1096 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1097 return 1ULL << MIN(ce_agaw, aw);
1098 }
1099
1100 /* Return true if IOVA passes range check, otherwise false. */
vtd_iova_sl_range_check(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1101 static inline bool vtd_iova_sl_range_check(IntelIOMMUState *s,
1102 uint64_t iova, VTDContextEntry *ce,
1103 uint8_t aw, uint32_t pasid)
1104 {
1105 /*
1106 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1107 * in CAP_REG and AW in context-entry.
1108 */
1109 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1110 }
1111
vtd_get_iova_pgtbl_base(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1112 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1113 VTDContextEntry *ce,
1114 uint32_t pasid)
1115 {
1116 VTDPASIDEntry pe;
1117
1118 if (s->root_scalable) {
1119 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1120 if (s->flts) {
1121 return pe.val[2] & VTD_SM_PASID_ENTRY_FLPTPTR;
1122 } else {
1123 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1124 }
1125 }
1126
1127 return vtd_ce_get_slpt_base(ce);
1128 }
1129
1130 /*
1131 * Rsvd field masks for spte:
1132 * vtd_spte_rsvd 4k pages
1133 * vtd_spte_rsvd_large large pages
1134 *
1135 * We support only 3-level and 4-level page tables (see vtd_init() which
1136 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1137 */
1138 #define VTD_SPTE_RSVD_LEN 5
1139 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1140 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1141
vtd_slpte_nonzero_rsvd(uint64_t slpte,uint32_t level)1142 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1143 {
1144 uint64_t rsvd_mask;
1145
1146 /*
1147 * We should have caught a guest-mis-programmed level earlier,
1148 * via vtd_is_sl_level_supported.
1149 */
1150 assert(level < VTD_SPTE_RSVD_LEN);
1151 /*
1152 * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1153 * checked by vtd_is_last_pte().
1154 */
1155 assert(level);
1156
1157 if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1158 (slpte & VTD_PT_PAGE_SIZE_MASK)) {
1159 /* large page */
1160 rsvd_mask = vtd_spte_rsvd_large[level];
1161 } else {
1162 rsvd_mask = vtd_spte_rsvd[level];
1163 }
1164
1165 return slpte & rsvd_mask;
1166 }
1167
1168 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1169 * of the translation, can be used for deciding the size of large page.
1170 */
vtd_iova_to_slpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * slptep,uint32_t * slpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1171 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1172 uint64_t iova, bool is_write,
1173 uint64_t *slptep, uint32_t *slpte_level,
1174 bool *reads, bool *writes, uint8_t aw_bits,
1175 uint32_t pasid)
1176 {
1177 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1178 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1179 uint32_t offset;
1180 uint64_t slpte;
1181 uint64_t access_right_check;
1182
1183 if (!vtd_iova_sl_range_check(s, iova, ce, aw_bits, pasid)) {
1184 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1185 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1186 return -VTD_FR_ADDR_BEYOND_MGAW;
1187 }
1188
1189 /* FIXME: what is the Atomics request here? */
1190 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1191
1192 while (true) {
1193 offset = vtd_iova_level_offset(iova, level);
1194 slpte = vtd_get_pte(addr, offset);
1195
1196 if (slpte == (uint64_t)-1) {
1197 error_report_once("%s: detected read error on DMAR slpte "
1198 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1199 __func__, iova, pasid);
1200 if (level == vtd_get_iova_level(s, ce, pasid)) {
1201 /* Invalid programming of context-entry */
1202 return -VTD_FR_CONTEXT_ENTRY_INV;
1203 } else {
1204 return -VTD_FR_PAGING_ENTRY_INV;
1205 }
1206 }
1207 *reads = (*reads) && (slpte & VTD_SL_R);
1208 *writes = (*writes) && (slpte & VTD_SL_W);
1209 if (!(slpte & access_right_check)) {
1210 error_report_once("%s: detected slpte permission error "
1211 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1212 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1213 PRIx32 ")", __func__, iova, level,
1214 slpte, is_write, pasid);
1215 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1216 }
1217 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1218 error_report_once("%s: detected splte reserve non-zero "
1219 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1220 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1221 __func__, iova, level, slpte, pasid);
1222 return -VTD_FR_PAGING_ENTRY_RSVD;
1223 }
1224
1225 if (vtd_is_last_pte(slpte, level)) {
1226 *slptep = slpte;
1227 *slpte_level = level;
1228 break;
1229 }
1230 addr = vtd_get_pte_addr(slpte, aw_bits);
1231 level--;
1232 }
1233
1234 return 0;
1235 }
1236
1237 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1238
1239 /**
1240 * Constant information used during page walking
1241 *
1242 * @hook_fn: hook func to be called when detected page
1243 * @private: private data to be passed into hook func
1244 * @notify_unmap: whether we should notify invalid entries
1245 * @as: VT-d address space of the device
1246 * @aw: maximum address width
1247 * @domain: domain ID of the page walk
1248 */
1249 typedef struct {
1250 VTDAddressSpace *as;
1251 vtd_page_walk_hook hook_fn;
1252 void *private;
1253 bool notify_unmap;
1254 uint8_t aw;
1255 uint16_t domain_id;
1256 } vtd_page_walk_info;
1257
vtd_page_walk_one(IOMMUTLBEvent * event,vtd_page_walk_info * info)1258 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1259 {
1260 VTDAddressSpace *as = info->as;
1261 vtd_page_walk_hook hook_fn = info->hook_fn;
1262 void *private = info->private;
1263 IOMMUTLBEntry *entry = &event->entry;
1264 DMAMap target = {
1265 .iova = entry->iova,
1266 .size = entry->addr_mask,
1267 .translated_addr = entry->translated_addr,
1268 .perm = entry->perm,
1269 };
1270 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1271
1272 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1273 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1274 return 0;
1275 }
1276
1277 assert(hook_fn);
1278
1279 /* Update local IOVA mapped ranges */
1280 if (event->type == IOMMU_NOTIFIER_MAP) {
1281 if (mapped) {
1282 /* If it's exactly the same translation, skip */
1283 if (!memcmp(mapped, &target, sizeof(target))) {
1284 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1285 entry->translated_addr);
1286 return 0;
1287 } else {
1288 /*
1289 * Translation changed. Normally this should not
1290 * happen, but it can happen when with buggy guest
1291 * OSes. Note that there will be a small window that
1292 * we don't have map at all. But that's the best
1293 * effort we can do. The ideal way to emulate this is
1294 * atomically modify the PTE to follow what has
1295 * changed, but we can't. One example is that vfio
1296 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1297 * interface to modify a mapping (meanwhile it seems
1298 * meaningless to even provide one). Anyway, let's
1299 * mark this as a TODO in case one day we'll have
1300 * a better solution.
1301 */
1302 IOMMUAccessFlags cache_perm = entry->perm;
1303 int ret;
1304
1305 /* Emulate an UNMAP */
1306 event->type = IOMMU_NOTIFIER_UNMAP;
1307 entry->perm = IOMMU_NONE;
1308 trace_vtd_page_walk_one(info->domain_id,
1309 entry->iova,
1310 entry->translated_addr,
1311 entry->addr_mask,
1312 entry->perm);
1313 ret = hook_fn(event, private);
1314 if (ret) {
1315 return ret;
1316 }
1317 /* Drop any existing mapping */
1318 iova_tree_remove(as->iova_tree, target);
1319 /* Recover the correct type */
1320 event->type = IOMMU_NOTIFIER_MAP;
1321 entry->perm = cache_perm;
1322 }
1323 }
1324 iova_tree_insert(as->iova_tree, &target);
1325 } else {
1326 if (!mapped) {
1327 /* Skip since we didn't map this range at all */
1328 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1329 return 0;
1330 }
1331 iova_tree_remove(as->iova_tree, target);
1332 }
1333
1334 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1335 entry->translated_addr, entry->addr_mask,
1336 entry->perm);
1337 return hook_fn(event, private);
1338 }
1339
1340 /**
1341 * vtd_page_walk_level - walk over specific level for IOVA range
1342 *
1343 * @addr: base GPA addr to start the walk
1344 * @start: IOVA range start address
1345 * @end: IOVA range end address (start <= addr < end)
1346 * @read: whether parent level has read permission
1347 * @write: whether parent level has write permission
1348 * @info: constant information for the page walk
1349 */
vtd_page_walk_level(dma_addr_t addr,uint64_t start,uint64_t end,uint32_t level,bool read,bool write,vtd_page_walk_info * info)1350 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1351 uint64_t end, uint32_t level, bool read,
1352 bool write, vtd_page_walk_info *info)
1353 {
1354 bool read_cur, write_cur, entry_valid;
1355 uint32_t offset;
1356 uint64_t slpte;
1357 uint64_t subpage_size, subpage_mask;
1358 IOMMUTLBEvent event;
1359 uint64_t iova = start;
1360 uint64_t iova_next;
1361 int ret = 0;
1362
1363 trace_vtd_page_walk_level(addr, level, start, end);
1364
1365 subpage_size = 1ULL << vtd_pt_level_shift(level);
1366 subpage_mask = vtd_pt_level_page_mask(level);
1367
1368 while (iova < end) {
1369 iova_next = (iova & subpage_mask) + subpage_size;
1370
1371 offset = vtd_iova_level_offset(iova, level);
1372 slpte = vtd_get_pte(addr, offset);
1373
1374 if (slpte == (uint64_t)-1) {
1375 trace_vtd_page_walk_skip_read(iova, iova_next);
1376 goto next;
1377 }
1378
1379 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1380 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1381 goto next;
1382 }
1383
1384 /* Permissions are stacked with parents' */
1385 read_cur = read && (slpte & VTD_SL_R);
1386 write_cur = write && (slpte & VTD_SL_W);
1387
1388 /*
1389 * As long as we have either read/write permission, this is a
1390 * valid entry. The rule works for both page entries and page
1391 * table entries.
1392 */
1393 entry_valid = read_cur | write_cur;
1394
1395 if (!vtd_is_last_pte(slpte, level) && entry_valid) {
1396 /*
1397 * This is a valid PDE (or even bigger than PDE). We need
1398 * to walk one further level.
1399 */
1400 ret = vtd_page_walk_level(vtd_get_pte_addr(slpte, info->aw),
1401 iova, MIN(iova_next, end), level - 1,
1402 read_cur, write_cur, info);
1403 } else {
1404 /*
1405 * This means we are either:
1406 *
1407 * (1) the real page entry (either 4K page, or huge page)
1408 * (2) the whole range is invalid
1409 *
1410 * In either case, we send an IOTLB notification down.
1411 */
1412 event.entry.target_as = &address_space_memory;
1413 event.entry.iova = iova & subpage_mask;
1414 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1415 event.entry.addr_mask = ~subpage_mask;
1416 /* NOTE: this is only meaningful if entry_valid == true */
1417 event.entry.translated_addr = vtd_get_pte_addr(slpte, info->aw);
1418 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1419 IOMMU_NOTIFIER_UNMAP;
1420 ret = vtd_page_walk_one(&event, info);
1421 }
1422
1423 if (ret < 0) {
1424 return ret;
1425 }
1426
1427 next:
1428 iova = iova_next;
1429 }
1430
1431 return 0;
1432 }
1433
1434 /**
1435 * vtd_page_walk - walk specific IOVA range, and call the hook
1436 *
1437 * @s: intel iommu state
1438 * @ce: context entry to walk upon
1439 * @start: IOVA address to start the walk
1440 * @end: IOVA range end address (start <= addr < end)
1441 * @info: page walking information struct
1442 */
vtd_page_walk(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t start,uint64_t end,vtd_page_walk_info * info,uint32_t pasid)1443 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1444 uint64_t start, uint64_t end,
1445 vtd_page_walk_info *info,
1446 uint32_t pasid)
1447 {
1448 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1449 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1450
1451 if (!vtd_iova_sl_range_check(s, start, ce, info->aw, pasid)) {
1452 return -VTD_FR_ADDR_BEYOND_MGAW;
1453 }
1454
1455 if (!vtd_iova_sl_range_check(s, end, ce, info->aw, pasid)) {
1456 /* Fix end so that it reaches the maximum */
1457 end = vtd_iova_limit(s, ce, info->aw, pasid);
1458 }
1459
1460 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1461 }
1462
vtd_root_entry_rsvd_bits_check(IntelIOMMUState * s,VTDRootEntry * re)1463 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1464 VTDRootEntry *re)
1465 {
1466 /* Legacy Mode reserved bits check */
1467 if (!s->root_scalable &&
1468 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1469 goto rsvd_err;
1470
1471 /* Scalable Mode reserved bits check */
1472 if (s->root_scalable &&
1473 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1474 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1475 goto rsvd_err;
1476
1477 return 0;
1478
1479 rsvd_err:
1480 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1481 ", lo=0x%"PRIx64,
1482 __func__, re->hi, re->lo);
1483 return -VTD_FR_ROOT_ENTRY_RSVD;
1484 }
1485
vtd_context_entry_rsvd_bits_check(IntelIOMMUState * s,VTDContextEntry * ce)1486 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1487 VTDContextEntry *ce)
1488 {
1489 if (!s->root_scalable &&
1490 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1491 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1492 error_report_once("%s: invalid context entry: hi=%"PRIx64
1493 ", lo=%"PRIx64" (reserved nonzero)",
1494 __func__, ce->hi, ce->lo);
1495 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1496 }
1497
1498 if (s->root_scalable &&
1499 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1500 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1501 ce->val[2] ||
1502 ce->val[3])) {
1503 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1504 ", val[2]=%"PRIx64
1505 ", val[1]=%"PRIx64
1506 ", val[0]=%"PRIx64" (reserved nonzero)",
1507 __func__, ce->val[3], ce->val[2],
1508 ce->val[1], ce->val[0]);
1509 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1510 }
1511
1512 return 0;
1513 }
1514
vtd_ce_rid2pasid_check(IntelIOMMUState * s,VTDContextEntry * ce)1515 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1516 VTDContextEntry *ce)
1517 {
1518 VTDPASIDEntry pe;
1519
1520 /*
1521 * Make sure in Scalable Mode, a present context entry
1522 * has valid rid2pasid setting, which includes valid
1523 * rid2pasid field and corresponding pasid entry setting
1524 */
1525 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1526 }
1527
1528 /* Map a device to its corresponding domain (context-entry) */
vtd_dev_to_context_entry(IntelIOMMUState * s,uint8_t bus_num,uint8_t devfn,VTDContextEntry * ce)1529 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1530 uint8_t devfn, VTDContextEntry *ce)
1531 {
1532 VTDRootEntry re;
1533 int ret_fr;
1534 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1535
1536 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1537 if (ret_fr) {
1538 return ret_fr;
1539 }
1540
1541 if (!vtd_root_entry_present(s, &re, devfn)) {
1542 /* Not error - it's okay we don't have root entry. */
1543 trace_vtd_re_not_present(bus_num);
1544 return -VTD_FR_ROOT_ENTRY_P;
1545 }
1546
1547 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1548 if (ret_fr) {
1549 return ret_fr;
1550 }
1551
1552 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1553 if (ret_fr) {
1554 return ret_fr;
1555 }
1556
1557 if (!vtd_ce_present(ce)) {
1558 /* Not error - it's okay we don't have context entry. */
1559 trace_vtd_ce_not_present(bus_num, devfn);
1560 return -VTD_FR_CONTEXT_ENTRY_P;
1561 }
1562
1563 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1564 if (ret_fr) {
1565 return ret_fr;
1566 }
1567
1568 /* Check if the programming of context-entry is valid */
1569 if (!s->root_scalable &&
1570 !vtd_is_sl_level_supported(s, vtd_ce_get_level(ce))) {
1571 error_report_once("%s: invalid context entry: hi=%"PRIx64
1572 ", lo=%"PRIx64" (level %d not supported)",
1573 __func__, ce->hi, ce->lo,
1574 vtd_ce_get_level(ce));
1575 return -VTD_FR_CONTEXT_ENTRY_INV;
1576 }
1577
1578 if (!s->root_scalable) {
1579 /* Do translation type check */
1580 if (!vtd_ce_type_check(x86_iommu, ce)) {
1581 /* Errors dumped in vtd_ce_type_check() */
1582 return -VTD_FR_CONTEXT_ENTRY_INV;
1583 }
1584 } else {
1585 /*
1586 * Check if the programming of context-entry.rid2pasid
1587 * and corresponding pasid setting is valid, and thus
1588 * avoids to check pasid entry fetching result in future
1589 * helper function calling.
1590 */
1591 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1592 if (ret_fr) {
1593 return ret_fr;
1594 }
1595 }
1596
1597 return 0;
1598 }
1599
vtd_sync_shadow_page_hook(const IOMMUTLBEvent * event,void * private)1600 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1601 void *private)
1602 {
1603 memory_region_notify_iommu(private, 0, *event);
1604 return 0;
1605 }
1606
vtd_get_domain_id(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1607 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1608 VTDContextEntry *ce,
1609 uint32_t pasid)
1610 {
1611 VTDPASIDEntry pe;
1612
1613 if (s->root_scalable) {
1614 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1615 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1616 }
1617
1618 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1619 }
1620
vtd_sync_shadow_page_table_range(VTDAddressSpace * vtd_as,VTDContextEntry * ce,hwaddr addr,hwaddr size)1621 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1622 VTDContextEntry *ce,
1623 hwaddr addr, hwaddr size)
1624 {
1625 IntelIOMMUState *s = vtd_as->iommu_state;
1626 vtd_page_walk_info info = {
1627 .hook_fn = vtd_sync_shadow_page_hook,
1628 .private = (void *)&vtd_as->iommu,
1629 .notify_unmap = true,
1630 .aw = s->aw_bits,
1631 .as = vtd_as,
1632 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1633 };
1634
1635 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1636 }
1637
vtd_address_space_sync(VTDAddressSpace * vtd_as)1638 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1639 {
1640 int ret;
1641 VTDContextEntry ce;
1642 IOMMUNotifier *n;
1643
1644 /* If no MAP notifier registered, we simply invalidate all the cache */
1645 if (!vtd_as_has_map_notifier(vtd_as)) {
1646 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1647 memory_region_unmap_iommu_notifier_range(n);
1648 }
1649 return 0;
1650 }
1651
1652 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1653 pci_bus_num(vtd_as->bus),
1654 vtd_as->devfn, &ce);
1655 if (ret) {
1656 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1657 /*
1658 * It's a valid scenario to have a context entry that is
1659 * not present. For example, when a device is removed
1660 * from an existing domain then the context entry will be
1661 * zeroed by the guest before it was put into another
1662 * domain. When this happens, instead of synchronizing
1663 * the shadow pages we should invalidate all existing
1664 * mappings and notify the backends.
1665 */
1666 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1667 vtd_address_space_unmap(vtd_as, n);
1668 }
1669 ret = 0;
1670 }
1671 return ret;
1672 }
1673
1674 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1675 }
1676
1677 /*
1678 * Check if specific device is configured to bypass address
1679 * translation for DMA requests. In Scalable Mode, bypass
1680 * 1st-level translation or 2nd-level translation, it depends
1681 * on PGTT setting.
1682 */
vtd_dev_pt_enabled(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1683 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1684 uint32_t pasid)
1685 {
1686 VTDPASIDEntry pe;
1687 int ret;
1688
1689 if (s->root_scalable) {
1690 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1691 if (ret) {
1692 /*
1693 * This error is guest triggerable. We should assumt PT
1694 * not enabled for safety.
1695 */
1696 return false;
1697 }
1698 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1699 }
1700
1701 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1702
1703 }
1704
vtd_as_pt_enabled(VTDAddressSpace * as)1705 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1706 {
1707 IntelIOMMUState *s;
1708 VTDContextEntry ce;
1709
1710 assert(as);
1711
1712 s = as->iommu_state;
1713 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1714 &ce)) {
1715 /*
1716 * Possibly failed to parse the context entry for some reason
1717 * (e.g., during init, or any guest configuration errors on
1718 * context entries). We should assume PT not enabled for
1719 * safety.
1720 */
1721 return false;
1722 }
1723
1724 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1725 }
1726
1727 /* Return whether the device is using IOMMU translation. */
vtd_switch_address_space(VTDAddressSpace * as)1728 static bool vtd_switch_address_space(VTDAddressSpace *as)
1729 {
1730 bool use_iommu, pt;
1731
1732 assert(as);
1733
1734 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1735 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1736
1737 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1738 VTD_PCI_SLOT(as->devfn),
1739 VTD_PCI_FUNC(as->devfn),
1740 use_iommu);
1741
1742 /*
1743 * It's possible that we reach here without BQL, e.g., when called
1744 * from vtd_pt_enable_fast_path(). However the memory APIs need
1745 * it. We'd better make sure we have had it already, or, take it.
1746 */
1747 BQL_LOCK_GUARD();
1748
1749 /* Turn off first then on the other */
1750 if (use_iommu) {
1751 memory_region_set_enabled(&as->nodmar, false);
1752 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1753 /*
1754 * vt-d spec v3.4 3.14:
1755 *
1756 * """
1757 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1758 * are translated normally like any other request-with-PASID
1759 * through DMA-remapping hardware.
1760 * """
1761 *
1762 * Need to disable ir for as with PASID.
1763 */
1764 if (as->pasid != PCI_NO_PASID) {
1765 memory_region_set_enabled(&as->iommu_ir, false);
1766 } else {
1767 memory_region_set_enabled(&as->iommu_ir, true);
1768 }
1769 } else {
1770 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1771 memory_region_set_enabled(&as->nodmar, true);
1772 }
1773
1774 /*
1775 * vtd-spec v3.4 3.14:
1776 *
1777 * """
1778 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1779 * translated normally like any other request-with-PASID through
1780 * DMA-remapping hardware. However, if such a request is processed
1781 * using pass-through translation, it will be blocked as described
1782 * in the paragraph below.
1783 *
1784 * Software must not program paging-structure entries to remap any
1785 * address to the interrupt address range. Untranslated requests
1786 * and translation requests that result in an address in the
1787 * interrupt range will be blocked with condition code LGN.4 or
1788 * SGN.8.
1789 * """
1790 *
1791 * We enable per as memory region (iommu_ir_fault) for catching
1792 * the translation for interrupt range through PASID + PT.
1793 */
1794 if (pt && as->pasid != PCI_NO_PASID) {
1795 memory_region_set_enabled(&as->iommu_ir_fault, true);
1796 } else {
1797 memory_region_set_enabled(&as->iommu_ir_fault, false);
1798 }
1799
1800 return use_iommu;
1801 }
1802
vtd_switch_address_space_all(IntelIOMMUState * s)1803 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1804 {
1805 VTDAddressSpace *vtd_as;
1806 GHashTableIter iter;
1807
1808 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1809 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1810 vtd_switch_address_space(vtd_as);
1811 }
1812 }
1813
1814 static const bool vtd_qualified_faults[] = {
1815 [VTD_FR_RESERVED] = false,
1816 [VTD_FR_ROOT_ENTRY_P] = false,
1817 [VTD_FR_CONTEXT_ENTRY_P] = true,
1818 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1819 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1820 [VTD_FR_WRITE] = true,
1821 [VTD_FR_READ] = true,
1822 [VTD_FR_PAGING_ENTRY_INV] = true,
1823 [VTD_FR_ROOT_TABLE_INV] = false,
1824 [VTD_FR_CONTEXT_TABLE_INV] = false,
1825 [VTD_FR_INTERRUPT_ADDR] = true,
1826 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1827 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1828 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1829 [VTD_FR_PASID_DIR_ACCESS_ERR] = false,
1830 [VTD_FR_PASID_DIR_ENTRY_P] = true,
1831 [VTD_FR_PASID_TABLE_ACCESS_ERR] = false,
1832 [VTD_FR_PASID_ENTRY_P] = true,
1833 [VTD_FR_PASID_TABLE_ENTRY_INV] = true,
1834 [VTD_FR_FS_PAGING_ENTRY_INV] = true,
1835 [VTD_FR_FS_PAGING_ENTRY_P] = true,
1836 [VTD_FR_FS_PAGING_ENTRY_RSVD] = true,
1837 [VTD_FR_PASID_ENTRY_FSPTPTR_INV] = true,
1838 [VTD_FR_FS_NON_CANONICAL] = true,
1839 [VTD_FR_FS_PAGING_ENTRY_US] = true,
1840 [VTD_FR_SM_WRITE] = true,
1841 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1842 [VTD_FR_FS_BIT_UPDATE_FAILED] = true,
1843 [VTD_FR_MAX] = false,
1844 };
1845
1846 /* To see if a fault condition is "qualified", which is reported to software
1847 * only if the FPD field in the context-entry used to process the faulting
1848 * request is 0.
1849 */
vtd_is_qualified_fault(VTDFaultReason fault)1850 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1851 {
1852 return vtd_qualified_faults[fault];
1853 }
1854
vtd_is_interrupt_addr(hwaddr addr)1855 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1856 {
1857 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1858 }
1859
vtd_find_as_by_sid_and_pasid(gpointer key,gpointer value,gpointer user_data)1860 static gboolean vtd_find_as_by_sid_and_pasid(gpointer key, gpointer value,
1861 gpointer user_data)
1862 {
1863 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1864 struct vtd_as_raw_key *target = (struct vtd_as_raw_key *)user_data;
1865 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1866
1867 return (as_key->pasid == target->pasid) && (sid == target->sid);
1868 }
1869
vtd_get_as_by_sid_and_pasid(IntelIOMMUState * s,uint16_t sid,uint32_t pasid)1870 static VTDAddressSpace *vtd_get_as_by_sid_and_pasid(IntelIOMMUState *s,
1871 uint16_t sid,
1872 uint32_t pasid)
1873 {
1874 struct vtd_as_raw_key key = {
1875 .sid = sid,
1876 .pasid = pasid
1877 };
1878
1879 return g_hash_table_find(s->vtd_address_spaces,
1880 vtd_find_as_by_sid_and_pasid, &key);
1881 }
1882
vtd_get_as_by_sid(IntelIOMMUState * s,uint16_t sid)1883 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1884 {
1885 return vtd_get_as_by_sid_and_pasid(s, sid, PCI_NO_PASID);
1886 }
1887
vtd_pt_enable_fast_path(IntelIOMMUState * s,uint16_t source_id)1888 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1889 {
1890 VTDAddressSpace *vtd_as;
1891 bool success = false;
1892
1893 vtd_as = vtd_get_as_by_sid(s, source_id);
1894 if (!vtd_as) {
1895 goto out;
1896 }
1897
1898 if (vtd_switch_address_space(vtd_as) == false) {
1899 /* We switched off IOMMU region successfully. */
1900 success = true;
1901 }
1902
1903 out:
1904 trace_vtd_pt_enable_fast_path(source_id, success);
1905 }
1906
1907 /*
1908 * Rsvd field masks for fpte:
1909 * vtd_fpte_rsvd 4k pages
1910 * vtd_fpte_rsvd_large large pages
1911 *
1912 * We support only 4-level page tables.
1913 */
1914 #define VTD_FPTE_RSVD_LEN 5
1915 static uint64_t vtd_fpte_rsvd[VTD_FPTE_RSVD_LEN];
1916 static uint64_t vtd_fpte_rsvd_large[VTD_FPTE_RSVD_LEN];
1917
vtd_flpte_nonzero_rsvd(uint64_t flpte,uint32_t level)1918 static bool vtd_flpte_nonzero_rsvd(uint64_t flpte, uint32_t level)
1919 {
1920 uint64_t rsvd_mask;
1921
1922 /*
1923 * We should have caught a guest-mis-programmed level earlier,
1924 * via vtd_is_fl_level_supported.
1925 */
1926 assert(level < VTD_FPTE_RSVD_LEN);
1927 /*
1928 * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and
1929 * checked by vtd_is_last_pte().
1930 */
1931 assert(level);
1932
1933 if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) &&
1934 (flpte & VTD_PT_PAGE_SIZE_MASK)) {
1935 /* large page */
1936 rsvd_mask = vtd_fpte_rsvd_large[level];
1937 } else {
1938 rsvd_mask = vtd_fpte_rsvd[level];
1939 }
1940
1941 return flpte & rsvd_mask;
1942 }
1943
vtd_flpte_present(uint64_t flpte)1944 static inline bool vtd_flpte_present(uint64_t flpte)
1945 {
1946 return !!(flpte & VTD_FL_P);
1947 }
1948
1949 /* Return true if IOVA is canonical, otherwise false. */
vtd_iova_fl_check_canonical(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint32_t pasid)1950 static bool vtd_iova_fl_check_canonical(IntelIOMMUState *s, uint64_t iova,
1951 VTDContextEntry *ce, uint32_t pasid)
1952 {
1953 uint64_t iova_limit = vtd_iova_limit(s, ce, s->aw_bits, pasid);
1954 uint64_t upper_bits_mask = ~(iova_limit - 1);
1955 uint64_t upper_bits = iova & upper_bits_mask;
1956 bool msb = ((iova & (iova_limit >> 1)) != 0);
1957
1958 if (msb) {
1959 return upper_bits == upper_bits_mask;
1960 } else {
1961 return !upper_bits;
1962 }
1963 }
1964
vtd_set_flag_in_pte(dma_addr_t base_addr,uint32_t index,uint64_t pte,uint64_t flag)1965 static MemTxResult vtd_set_flag_in_pte(dma_addr_t base_addr, uint32_t index,
1966 uint64_t pte, uint64_t flag)
1967 {
1968 if (pte & flag) {
1969 return MEMTX_OK;
1970 }
1971 pte |= flag;
1972 pte = cpu_to_le64(pte);
1973 return dma_memory_write(&address_space_memory,
1974 base_addr + index * sizeof(pte),
1975 &pte, sizeof(pte),
1976 MEMTXATTRS_UNSPECIFIED);
1977 }
1978
1979 /*
1980 * Given the @iova, get relevant @flptep. @flpte_level will be the last level
1981 * of the translation, can be used for deciding the size of large page.
1982 */
vtd_iova_to_flpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * flptep,uint32_t * flpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1983 static int vtd_iova_to_flpte(IntelIOMMUState *s, VTDContextEntry *ce,
1984 uint64_t iova, bool is_write,
1985 uint64_t *flptep, uint32_t *flpte_level,
1986 bool *reads, bool *writes, uint8_t aw_bits,
1987 uint32_t pasid)
1988 {
1989 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1990 uint32_t offset;
1991 uint64_t flpte, flag_ad = VTD_FL_A;
1992 *flpte_level = vtd_get_iova_level(s, ce, pasid);
1993
1994 if (!vtd_iova_fl_check_canonical(s, iova, ce, pasid)) {
1995 error_report_once("%s: detected non canonical IOVA (iova=0x%" PRIx64 ","
1996 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1997 return -VTD_FR_FS_NON_CANONICAL;
1998 }
1999
2000 while (true) {
2001 offset = vtd_iova_level_offset(iova, *flpte_level);
2002 flpte = vtd_get_pte(addr, offset);
2003
2004 if (flpte == (uint64_t)-1) {
2005 if (*flpte_level == vtd_get_iova_level(s, ce, pasid)) {
2006 /* Invalid programming of pasid-entry */
2007 return -VTD_FR_PASID_ENTRY_FSPTPTR_INV;
2008 } else {
2009 return -VTD_FR_FS_PAGING_ENTRY_INV;
2010 }
2011 }
2012
2013 if (!vtd_flpte_present(flpte)) {
2014 *reads = false;
2015 *writes = false;
2016 return -VTD_FR_FS_PAGING_ENTRY_P;
2017 }
2018
2019 /* No emulated device supports supervisor privilege request yet */
2020 if (!(flpte & VTD_FL_US)) {
2021 *reads = false;
2022 *writes = false;
2023 return -VTD_FR_FS_PAGING_ENTRY_US;
2024 }
2025
2026 *reads = true;
2027 *writes = (*writes) && (flpte & VTD_FL_RW);
2028 if (is_write && !(flpte & VTD_FL_RW)) {
2029 return -VTD_FR_SM_WRITE;
2030 }
2031 if (vtd_flpte_nonzero_rsvd(flpte, *flpte_level)) {
2032 error_report_once("%s: detected flpte reserved non-zero "
2033 "iova=0x%" PRIx64 ", level=0x%" PRIx32
2034 "flpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
2035 __func__, iova, *flpte_level, flpte, pasid);
2036 return -VTD_FR_FS_PAGING_ENTRY_RSVD;
2037 }
2038
2039 if (vtd_is_last_pte(flpte, *flpte_level) && is_write) {
2040 flag_ad |= VTD_FL_D;
2041 }
2042
2043 if (vtd_set_flag_in_pte(addr, offset, flpte, flag_ad) != MEMTX_OK) {
2044 return -VTD_FR_FS_BIT_UPDATE_FAILED;
2045 }
2046
2047 if (vtd_is_last_pte(flpte, *flpte_level)) {
2048 *flptep = flpte;
2049 return 0;
2050 }
2051
2052 addr = vtd_get_pte_addr(flpte, aw_bits);
2053 (*flpte_level)--;
2054 }
2055 }
2056
vtd_report_fault(IntelIOMMUState * s,int err,bool is_fpd_set,uint16_t source_id,hwaddr addr,bool is_write,bool is_pasid,uint32_t pasid)2057 static void vtd_report_fault(IntelIOMMUState *s,
2058 int err, bool is_fpd_set,
2059 uint16_t source_id,
2060 hwaddr addr,
2061 bool is_write,
2062 bool is_pasid,
2063 uint32_t pasid)
2064 {
2065 if (is_fpd_set && vtd_is_qualified_fault(err)) {
2066 trace_vtd_fault_disabled();
2067 } else {
2068 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
2069 is_pasid, pasid);
2070 }
2071 }
2072
2073 /* Map dev to context-entry then do a paging-structures walk to do a iommu
2074 * translation.
2075 *
2076 * Called from RCU critical section.
2077 *
2078 * @bus_num: The bus number
2079 * @devfn: The devfn, which is the combined of device and function number
2080 * @is_write: The access is a write operation
2081 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
2082 *
2083 * Returns true if translation is successful, otherwise false.
2084 */
vtd_do_iommu_translate(VTDAddressSpace * vtd_as,PCIBus * bus,uint8_t devfn,hwaddr addr,bool is_write,IOMMUTLBEntry * entry)2085 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
2086 uint8_t devfn, hwaddr addr, bool is_write,
2087 IOMMUTLBEntry *entry)
2088 {
2089 IntelIOMMUState *s = vtd_as->iommu_state;
2090 VTDContextEntry ce;
2091 uint8_t bus_num = pci_bus_num(bus);
2092 VTDContextCacheEntry *cc_entry;
2093 uint64_t pte, page_mask;
2094 uint32_t level = UINT32_MAX;
2095 uint32_t pasid = vtd_as->pasid;
2096 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
2097 int ret_fr;
2098 bool is_fpd_set = false;
2099 bool reads = true;
2100 bool writes = true;
2101 uint8_t access_flags, pgtt;
2102 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
2103 VTDIOTLBEntry *iotlb_entry;
2104 uint64_t xlat, size;
2105
2106 /*
2107 * We have standalone memory region for interrupt addresses, we
2108 * should never receive translation requests in this region.
2109 */
2110 assert(!vtd_is_interrupt_addr(addr));
2111
2112 vtd_iommu_lock(s);
2113
2114 cc_entry = &vtd_as->context_cache_entry;
2115
2116 /* Try to fetch pte from IOTLB, we don't need RID2PASID logic */
2117 if (!rid2pasid) {
2118 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2119 if (iotlb_entry) {
2120 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2121 iotlb_entry->domain_id);
2122 pte = iotlb_entry->pte;
2123 access_flags = iotlb_entry->access_flags;
2124 page_mask = iotlb_entry->mask;
2125 goto out;
2126 }
2127 }
2128
2129 /* Try to fetch context-entry from cache first */
2130 if (cc_entry->context_cache_gen == s->context_cache_gen) {
2131 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
2132 cc_entry->context_entry.lo,
2133 cc_entry->context_cache_gen);
2134 ce = cc_entry->context_entry;
2135 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2136 if (!is_fpd_set && s->root_scalable) {
2137 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2138 if (ret_fr) {
2139 vtd_report_fault(s, -ret_fr, is_fpd_set,
2140 source_id, addr, is_write,
2141 false, 0);
2142 goto error;
2143 }
2144 }
2145 } else {
2146 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
2147 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
2148 if (!ret_fr && !is_fpd_set && s->root_scalable) {
2149 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
2150 }
2151 if (ret_fr) {
2152 vtd_report_fault(s, -ret_fr, is_fpd_set,
2153 source_id, addr, is_write,
2154 false, 0);
2155 goto error;
2156 }
2157 /* Update context-cache */
2158 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
2159 cc_entry->context_cache_gen,
2160 s->context_cache_gen);
2161 cc_entry->context_entry = ce;
2162 cc_entry->context_cache_gen = s->context_cache_gen;
2163 }
2164
2165 if (rid2pasid) {
2166 pasid = VTD_CE_GET_RID2PASID(&ce);
2167 }
2168
2169 /*
2170 * We don't need to translate for pass-through context entries.
2171 * Also, let's ignore IOTLB caching as well for PT devices.
2172 */
2173 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
2174 entry->iova = addr & VTD_PAGE_MASK_4K;
2175 entry->translated_addr = entry->iova;
2176 entry->addr_mask = ~VTD_PAGE_MASK_4K;
2177 entry->perm = IOMMU_RW;
2178 trace_vtd_translate_pt(source_id, entry->iova);
2179
2180 /*
2181 * When this happens, it means firstly caching-mode is not
2182 * enabled, and this is the first passthrough translation for
2183 * the device. Let's enable the fast path for passthrough.
2184 *
2185 * When passthrough is disabled again for the device, we can
2186 * capture it via the context entry invalidation, then the
2187 * IOMMU region can be swapped back.
2188 */
2189 vtd_pt_enable_fast_path(s, source_id);
2190 vtd_iommu_unlock(s);
2191 return true;
2192 }
2193
2194 /* Try to fetch pte from IOTLB for RID2PASID slow path */
2195 if (rid2pasid) {
2196 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
2197 if (iotlb_entry) {
2198 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte,
2199 iotlb_entry->domain_id);
2200 pte = iotlb_entry->pte;
2201 access_flags = iotlb_entry->access_flags;
2202 page_mask = iotlb_entry->mask;
2203 goto out;
2204 }
2205 }
2206
2207 if (s->flts && s->root_scalable) {
2208 ret_fr = vtd_iova_to_flpte(s, &ce, addr, is_write, &pte, &level,
2209 &reads, &writes, s->aw_bits, pasid);
2210 pgtt = VTD_SM_PASID_ENTRY_FLT;
2211 } else {
2212 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &pte, &level,
2213 &reads, &writes, s->aw_bits, pasid);
2214 pgtt = VTD_SM_PASID_ENTRY_SLT;
2215 }
2216 if (!ret_fr) {
2217 xlat = vtd_get_pte_addr(pte, s->aw_bits);
2218 size = ~vtd_pt_level_page_mask(level) + 1;
2219
2220 /*
2221 * Per VT-d spec 4.1 section 3.15: Untranslated requests and translation
2222 * requests that result in an address in the interrupt range will be
2223 * blocked with condition code LGN.4 or SGN.8.
2224 */
2225 if ((xlat <= VTD_INTERRUPT_ADDR_LAST &&
2226 xlat + size - 1 >= VTD_INTERRUPT_ADDR_FIRST)) {
2227 error_report_once("%s: xlat address is in interrupt range "
2228 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
2229 "pte=0x%" PRIx64 ", write=%d, "
2230 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
2231 "pasid=0x%" PRIx32 ")",
2232 __func__, addr, level, pte, is_write,
2233 xlat, size, pasid);
2234 ret_fr = s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
2235 -VTD_FR_INTERRUPT_ADDR;
2236 }
2237 }
2238
2239 if (ret_fr) {
2240 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2241 addr, is_write, pasid != PCI_NO_PASID, pasid);
2242 goto error;
2243 }
2244
2245 page_mask = vtd_pt_level_page_mask(level);
2246 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2247 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2248 addr, pte, access_flags, level, pasid, pgtt);
2249 out:
2250 vtd_iommu_unlock(s);
2251 entry->iova = addr & page_mask;
2252 entry->translated_addr = vtd_get_pte_addr(pte, s->aw_bits) & page_mask;
2253 entry->addr_mask = ~page_mask;
2254 entry->perm = (is_write ? access_flags : (access_flags & (~IOMMU_WO)));
2255 return true;
2256
2257 error:
2258 vtd_iommu_unlock(s);
2259 entry->iova = 0;
2260 entry->translated_addr = 0;
2261 /*
2262 * Set the mask for ATS (the range must be present even when the
2263 * translation fails : PCIe rev 5 10.2.3.5)
2264 */
2265 entry->addr_mask = (level != UINT32_MAX) ?
2266 (~vtd_pt_level_page_mask(level)) : (~VTD_PAGE_MASK_4K);
2267 entry->perm = IOMMU_NONE;
2268 return false;
2269 }
2270
vtd_root_table_setup(IntelIOMMUState * s)2271 static void vtd_root_table_setup(IntelIOMMUState *s)
2272 {
2273 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2274 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2275
2276 vtd_update_scalable_state(s);
2277
2278 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2279 }
2280
vtd_iec_notify_all(IntelIOMMUState * s,bool global,uint32_t index,uint32_t mask)2281 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2282 uint32_t index, uint32_t mask)
2283 {
2284 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2285 }
2286
vtd_interrupt_remap_table_setup(IntelIOMMUState * s)2287 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2288 {
2289 uint64_t value = 0;
2290 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2291 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2292 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2293 s->intr_eime = value & VTD_IRTA_EIME;
2294
2295 /* Notify global invalidation */
2296 vtd_iec_notify_all(s, true, 0, 0);
2297
2298 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2299 }
2300
vtd_iommu_replay_all(IntelIOMMUState * s)2301 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2302 {
2303 VTDAddressSpace *vtd_as;
2304
2305 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2306 vtd_address_space_sync(vtd_as);
2307 }
2308 }
2309
vtd_context_global_invalidate(IntelIOMMUState * s)2310 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2311 {
2312 trace_vtd_inv_desc_cc_global();
2313 /* Protects context cache */
2314 vtd_iommu_lock(s);
2315 s->context_cache_gen++;
2316 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2317 vtd_reset_context_cache_locked(s);
2318 }
2319 vtd_iommu_unlock(s);
2320 vtd_address_space_refresh_all(s);
2321 /*
2322 * From VT-d spec 6.5.2.1, a global context entry invalidation
2323 * should be followed by a IOTLB global invalidation, so we should
2324 * be safe even without this. Hoewever, let's replay the region as
2325 * well to be safer, and go back here when we need finer tunes for
2326 * VT-d emulation codes.
2327 */
2328 vtd_iommu_replay_all(s);
2329 }
2330
2331 /* Do a context-cache device-selective invalidation.
2332 * @func_mask: FM field after shifting
2333 */
vtd_context_device_invalidate(IntelIOMMUState * s,uint16_t source_id,uint16_t func_mask)2334 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2335 uint16_t source_id,
2336 uint16_t func_mask)
2337 {
2338 GHashTableIter as_it;
2339 uint16_t mask;
2340 VTDAddressSpace *vtd_as;
2341 uint8_t bus_n, devfn;
2342
2343 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2344
2345 switch (func_mask & 3) {
2346 case 0:
2347 mask = 0; /* No bits in the SID field masked */
2348 break;
2349 case 1:
2350 mask = 4; /* Mask bit 2 in the SID field */
2351 break;
2352 case 2:
2353 mask = 6; /* Mask bit 2:1 in the SID field */
2354 break;
2355 case 3:
2356 mask = 7; /* Mask bit 2:0 in the SID field */
2357 break;
2358 default:
2359 g_assert_not_reached();
2360 }
2361 mask = ~mask;
2362
2363 bus_n = VTD_SID_TO_BUS(source_id);
2364 devfn = VTD_SID_TO_DEVFN(source_id);
2365
2366 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2367 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2368 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2369 (vtd_as->devfn & mask) == (devfn & mask)) {
2370 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2371 VTD_PCI_FUNC(vtd_as->devfn));
2372 vtd_iommu_lock(s);
2373 vtd_as->context_cache_entry.context_cache_gen = 0;
2374 vtd_iommu_unlock(s);
2375 /*
2376 * Do switch address space when needed, in case if the
2377 * device passthrough bit is switched.
2378 */
2379 vtd_switch_address_space(vtd_as);
2380 /*
2381 * So a device is moving out of (or moving into) a
2382 * domain, resync the shadow page table.
2383 * This won't bring bad even if we have no such
2384 * notifier registered - the IOMMU notification
2385 * framework will skip MAP notifications if that
2386 * happened.
2387 */
2388 vtd_address_space_sync(vtd_as);
2389 }
2390 }
2391 }
2392
2393 /* Context-cache invalidation
2394 * Returns the Context Actual Invalidation Granularity.
2395 * @val: the content of the CCMD_REG
2396 */
vtd_context_cache_invalidate(IntelIOMMUState * s,uint64_t val)2397 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2398 {
2399 uint64_t caig;
2400 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2401
2402 switch (type) {
2403 case VTD_CCMD_DOMAIN_INVL:
2404 /* Fall through */
2405 case VTD_CCMD_GLOBAL_INVL:
2406 caig = VTD_CCMD_GLOBAL_INVL_A;
2407 vtd_context_global_invalidate(s);
2408 break;
2409
2410 case VTD_CCMD_DEVICE_INVL:
2411 caig = VTD_CCMD_DEVICE_INVL_A;
2412 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2413 break;
2414
2415 default:
2416 error_report_once("%s: invalid context: 0x%" PRIx64,
2417 __func__, val);
2418 caig = 0;
2419 }
2420 return caig;
2421 }
2422
vtd_iotlb_global_invalidate(IntelIOMMUState * s)2423 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2424 {
2425 trace_vtd_inv_desc_iotlb_global();
2426 vtd_reset_iotlb(s);
2427 vtd_iommu_replay_all(s);
2428 }
2429
vtd_iotlb_domain_invalidate(IntelIOMMUState * s,uint16_t domain_id)2430 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2431 {
2432 VTDContextEntry ce;
2433 VTDAddressSpace *vtd_as;
2434
2435 trace_vtd_inv_desc_iotlb_domain(domain_id);
2436
2437 vtd_iommu_lock(s);
2438 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2439 &domain_id);
2440 vtd_iommu_unlock(s);
2441
2442 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2443 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2444 vtd_as->devfn, &ce) &&
2445 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2446 vtd_address_space_sync(vtd_as);
2447 }
2448 }
2449 }
2450
2451 /*
2452 * There is no pasid field in iotlb invalidation descriptor, so PCI_NO_PASID
2453 * is passed as parameter. Piotlb invalidation supports pasid, pasid in its
2454 * descriptor is passed which should not be PCI_NO_PASID.
2455 */
vtd_iotlb_page_invalidate_notify(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am,uint32_t pasid)2456 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2457 uint16_t domain_id, hwaddr addr,
2458 uint8_t am, uint32_t pasid)
2459 {
2460 VTDAddressSpace *vtd_as;
2461 VTDContextEntry ce;
2462 int ret;
2463 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2464
2465 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2466 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2467 vtd_as->devfn, &ce);
2468 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2469 uint32_t rid2pasid = PCI_NO_PASID;
2470
2471 if (s->root_scalable) {
2472 rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2473 }
2474
2475 /*
2476 * In legacy mode, vtd_as->pasid == pasid is always true.
2477 * In scalable mode, for vtd address space backing a PCI
2478 * device without pasid, needs to compare pasid with
2479 * rid2pasid of this device.
2480 */
2481 if (!(vtd_as->pasid == pasid ||
2482 (vtd_as->pasid == PCI_NO_PASID && pasid == rid2pasid))) {
2483 continue;
2484 }
2485
2486 if (vtd_as_has_map_notifier(vtd_as)) {
2487 /*
2488 * When stage-1 translation is off, as long as we have MAP
2489 * notifications registered in any of our IOMMU notifiers,
2490 * we need to sync the shadow page table. Otherwise VFIO
2491 * device attaches to nested page table instead of shadow
2492 * page table, so no need to sync.
2493 */
2494 if (!s->flts || !s->root_scalable) {
2495 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2496 }
2497 } else {
2498 /*
2499 * For UNMAP-only notifiers, we don't need to walk the
2500 * page tables. We just deliver the PSI down to
2501 * invalidate caches.
2502 */
2503 const IOMMUTLBEvent event = {
2504 .type = IOMMU_NOTIFIER_UNMAP,
2505 .entry = {
2506 .target_as = &address_space_memory,
2507 .iova = addr,
2508 .translated_addr = 0,
2509 .addr_mask = size - 1,
2510 .perm = IOMMU_NONE,
2511 .pasid = vtd_as->pasid,
2512 },
2513 };
2514 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2515 }
2516 }
2517 }
2518 }
2519
vtd_iotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am)2520 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2521 hwaddr addr, uint8_t am)
2522 {
2523 VTDIOTLBPageInvInfo info;
2524
2525 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2526
2527 assert(am <= VTD_MAMV);
2528 info.domain_id = domain_id;
2529 info.addr = addr;
2530 info.mask = ~((1 << am) - 1);
2531 vtd_iommu_lock(s);
2532 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2533 vtd_iommu_unlock(s);
2534 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2535 }
2536
2537 /* Flush IOTLB
2538 * Returns the IOTLB Actual Invalidation Granularity.
2539 * @val: the content of the IOTLB_REG
2540 */
vtd_iotlb_flush(IntelIOMMUState * s,uint64_t val)2541 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2542 {
2543 uint64_t iaig;
2544 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2545 uint16_t domain_id;
2546 hwaddr addr;
2547 uint8_t am;
2548
2549 switch (type) {
2550 case VTD_TLB_GLOBAL_FLUSH:
2551 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2552 vtd_iotlb_global_invalidate(s);
2553 break;
2554
2555 case VTD_TLB_DSI_FLUSH:
2556 domain_id = VTD_TLB_DID(val);
2557 iaig = VTD_TLB_DSI_FLUSH_A;
2558 vtd_iotlb_domain_invalidate(s, domain_id);
2559 break;
2560
2561 case VTD_TLB_PSI_FLUSH:
2562 domain_id = VTD_TLB_DID(val);
2563 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2564 am = VTD_IVA_AM(addr);
2565 addr = VTD_IVA_ADDR(addr);
2566 if (am > VTD_MAMV) {
2567 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2568 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2569 iaig = 0;
2570 break;
2571 }
2572 iaig = VTD_TLB_PSI_FLUSH_A;
2573 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2574 break;
2575
2576 default:
2577 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2578 __func__, val);
2579 iaig = 0;
2580 }
2581 return iaig;
2582 }
2583
2584 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2585
vtd_queued_inv_disable_check(IntelIOMMUState * s)2586 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2587 {
2588 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2589 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2590 }
2591
vtd_handle_gcmd_qie(IntelIOMMUState * s,bool en)2592 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2593 {
2594 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2595
2596 trace_vtd_inv_qi_enable(en);
2597
2598 if (en) {
2599 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2600 /* 2^(x+8) entries */
2601 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2602 s->qi_enabled = true;
2603 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2604 /* Ok - report back to driver */
2605 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2606
2607 if (s->iq_tail != 0) {
2608 /*
2609 * This is a spec violation but Windows guests are known to set up
2610 * Queued Invalidation this way so we allow the write and process
2611 * Invalidation Descriptors right away.
2612 */
2613 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2614 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2615 vtd_fetch_inv_desc(s);
2616 }
2617 }
2618 } else {
2619 if (vtd_queued_inv_disable_check(s)) {
2620 /* disable Queued Invalidation */
2621 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2622 s->iq_head = 0;
2623 s->qi_enabled = false;
2624 /* Ok - report back to driver */
2625 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2626 } else {
2627 error_report_once("%s: detected improper state when disable QI "
2628 "(head=0x%x, tail=0x%x, last_type=%d)",
2629 __func__,
2630 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2631 }
2632 }
2633 }
2634
2635 /* Set Root Table Pointer */
vtd_handle_gcmd_srtp(IntelIOMMUState * s)2636 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2637 {
2638 vtd_root_table_setup(s);
2639 /* Ok - report back to driver */
2640 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2641 vtd_reset_caches(s);
2642 vtd_address_space_refresh_all(s);
2643 }
2644
2645 /* Set Interrupt Remap Table Pointer */
vtd_handle_gcmd_sirtp(IntelIOMMUState * s)2646 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2647 {
2648 vtd_interrupt_remap_table_setup(s);
2649 /* Ok - report back to driver */
2650 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2651 }
2652
2653 /* Handle Translation Enable/Disable */
vtd_handle_gcmd_te(IntelIOMMUState * s,bool en)2654 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2655 {
2656 if (s->dmar_enabled == en) {
2657 return;
2658 }
2659
2660 trace_vtd_dmar_enable(en);
2661
2662 if (en) {
2663 s->dmar_enabled = true;
2664 /* Ok - report back to driver */
2665 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2666 } else {
2667 s->dmar_enabled = false;
2668
2669 /* Clear the index of Fault Recording Register */
2670 s->next_frcd_reg = 0;
2671 /* Ok - report back to driver */
2672 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2673 }
2674
2675 vtd_reset_caches(s);
2676 vtd_address_space_refresh_all(s);
2677 }
2678
2679 /* Handle Interrupt Remap Enable/Disable */
vtd_handle_gcmd_ire(IntelIOMMUState * s,bool en)2680 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2681 {
2682 trace_vtd_ir_enable(en);
2683
2684 if (en) {
2685 s->intr_enabled = true;
2686 /* Ok - report back to driver */
2687 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2688 } else {
2689 s->intr_enabled = false;
2690 /* Ok - report back to driver */
2691 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2692 }
2693 }
2694
2695 /* Handle write to Global Command Register */
vtd_handle_gcmd_write(IntelIOMMUState * s)2696 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2697 {
2698 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2699 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2700 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2701 uint32_t changed = status ^ val;
2702
2703 trace_vtd_reg_write_gcmd(status, val);
2704 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2705 /* Translation enable/disable */
2706 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2707 }
2708 if (val & VTD_GCMD_SRTP) {
2709 /* Set/update the root-table pointer */
2710 vtd_handle_gcmd_srtp(s);
2711 }
2712 if (changed & VTD_GCMD_QIE) {
2713 /* Queued Invalidation Enable */
2714 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2715 }
2716 if (val & VTD_GCMD_SIRTP) {
2717 /* Set/update the interrupt remapping root-table pointer */
2718 vtd_handle_gcmd_sirtp(s);
2719 }
2720 if ((changed & VTD_GCMD_IRE) &&
2721 x86_iommu_ir_supported(x86_iommu)) {
2722 /* Interrupt remap enable/disable */
2723 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2724 }
2725 }
2726
2727 /* Handle write to Context Command Register */
vtd_handle_ccmd_write(IntelIOMMUState * s)2728 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2729 {
2730 uint64_t ret;
2731 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2732
2733 /* Context-cache invalidation request */
2734 if (val & VTD_CCMD_ICC) {
2735 if (s->qi_enabled) {
2736 error_report_once("Queued Invalidation enabled, "
2737 "should not use register-based invalidation");
2738 return;
2739 }
2740 ret = vtd_context_cache_invalidate(s, val);
2741 /* Invalidation completed. Change something to show */
2742 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2743 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2744 ret);
2745 }
2746 }
2747
2748 /* Handle write to IOTLB Invalidation Register */
vtd_handle_iotlb_write(IntelIOMMUState * s)2749 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2750 {
2751 uint64_t ret;
2752 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2753
2754 /* IOTLB invalidation request */
2755 if (val & VTD_TLB_IVT) {
2756 if (s->qi_enabled) {
2757 error_report_once("Queued Invalidation enabled, "
2758 "should not use register-based invalidation");
2759 return;
2760 }
2761 ret = vtd_iotlb_flush(s, val);
2762 /* Invalidation completed. Change something to show */
2763 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2764 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2765 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2766 }
2767 }
2768
2769 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
vtd_get_inv_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2770 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2771 VTDInvDesc *inv_desc)
2772 {
2773 dma_addr_t base_addr = s->iq;
2774 uint32_t offset = s->iq_head;
2775 uint32_t dw = s->iq_dw ? 32 : 16;
2776 dma_addr_t addr = base_addr + offset * dw;
2777
2778 if (dma_memory_read(&address_space_memory, addr,
2779 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2780 error_report_once("Read INV DESC failed.");
2781 return false;
2782 }
2783 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2784 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2785 if (dw == 32) {
2786 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2787 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2788 }
2789 return true;
2790 }
2791
vtd_inv_desc_reserved_check(IntelIOMMUState * s,VTDInvDesc * inv_desc,uint64_t mask[4],bool dw,const char * func_name,const char * desc_type)2792 static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s,
2793 VTDInvDesc *inv_desc,
2794 uint64_t mask[4], bool dw,
2795 const char *func_name,
2796 const char *desc_type)
2797 {
2798 if (s->iq_dw) {
2799 if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] ||
2800 inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) {
2801 error_report("%s: invalid %s desc val[3]: 0x%"PRIx64
2802 " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64
2803 " val[0]=0x%"PRIx64" (reserved nonzero)",
2804 func_name, desc_type, inv_desc->val[3],
2805 inv_desc->val[2], inv_desc->val[1],
2806 inv_desc->val[0]);
2807 return false;
2808 }
2809 } else {
2810 if (dw) {
2811 error_report("%s: 256-bit %s desc in 128-bit invalidation queue",
2812 func_name, desc_type);
2813 return false;
2814 }
2815
2816 if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) {
2817 error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64
2818 " (reserved nonzero)", func_name, desc_type,
2819 inv_desc->hi, inv_desc->lo);
2820 return false;
2821 }
2822 }
2823
2824 return true;
2825 }
2826
vtd_process_wait_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2827 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2828 {
2829 uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI,
2830 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2831 bool ret = true;
2832
2833 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2834 __func__, "wait")) {
2835 return false;
2836 }
2837
2838 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2839 /* Status Write */
2840 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2841 VTD_INV_DESC_WAIT_DATA_SHIFT);
2842
2843 /* FIXME: need to be masked with HAW? */
2844 dma_addr_t status_addr = inv_desc->hi;
2845 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2846 status_data = cpu_to_le32(status_data);
2847 if (dma_memory_write(&address_space_memory, status_addr,
2848 &status_data, sizeof(status_data),
2849 MEMTXATTRS_UNSPECIFIED)) {
2850 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2851 ret = false;
2852 }
2853 }
2854
2855 if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2856 /* Interrupt flag */
2857 vtd_generate_completion_event(s);
2858 }
2859
2860 if (!(inv_desc->lo & (VTD_INV_DESC_WAIT_IF | VTD_INV_DESC_WAIT_SW))) {
2861 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2862 " (unknown type)", __func__, inv_desc->hi,
2863 inv_desc->lo);
2864 return false;
2865 }
2866 return ret;
2867 }
2868
vtd_process_context_cache_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2869 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2870 VTDInvDesc *inv_desc)
2871 {
2872 uint16_t sid, fmask;
2873 uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE,
2874 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2875
2876 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2877 __func__, "cc inv")) {
2878 return false;
2879 }
2880
2881 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2882 case VTD_INV_DESC_CC_DOMAIN:
2883 trace_vtd_inv_desc_cc_domain(
2884 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2885 /* Fall through */
2886 case VTD_INV_DESC_CC_GLOBAL:
2887 vtd_context_global_invalidate(s);
2888 break;
2889
2890 case VTD_INV_DESC_CC_DEVICE:
2891 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2892 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2893 vtd_context_device_invalidate(s, sid, fmask);
2894 break;
2895
2896 default:
2897 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2898 " (invalid type)", __func__, inv_desc->hi,
2899 inv_desc->lo);
2900 return false;
2901 }
2902 return true;
2903 }
2904
vtd_process_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2905 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2906 {
2907 uint16_t domain_id;
2908 uint8_t am;
2909 hwaddr addr;
2910 uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI,
2911 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2912
2913 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2914 __func__, "iotlb inv")) {
2915 return false;
2916 }
2917
2918 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2919 case VTD_INV_DESC_IOTLB_GLOBAL:
2920 vtd_iotlb_global_invalidate(s);
2921 break;
2922
2923 case VTD_INV_DESC_IOTLB_DOMAIN:
2924 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2925 vtd_iotlb_domain_invalidate(s, domain_id);
2926 break;
2927
2928 case VTD_INV_DESC_IOTLB_PAGE:
2929 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2930 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2931 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2932 if (am > VTD_MAMV) {
2933 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2934 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2935 __func__, inv_desc->hi, inv_desc->lo,
2936 am, (unsigned)VTD_MAMV);
2937 return false;
2938 }
2939 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2940 break;
2941
2942 default:
2943 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2944 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2945 __func__, inv_desc->hi, inv_desc->lo,
2946 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2947 return false;
2948 }
2949 return true;
2950 }
2951
vtd_hash_remove_by_pasid(gpointer key,gpointer value,gpointer user_data)2952 static gboolean vtd_hash_remove_by_pasid(gpointer key, gpointer value,
2953 gpointer user_data)
2954 {
2955 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
2956 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
2957
2958 return ((entry->domain_id == info->domain_id) &&
2959 (entry->pasid == info->pasid));
2960 }
2961
vtd_piotlb_pasid_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid)2962 static void vtd_piotlb_pasid_invalidate(IntelIOMMUState *s,
2963 uint16_t domain_id, uint32_t pasid)
2964 {
2965 VTDIOTLBPageInvInfo info;
2966 VTDAddressSpace *vtd_as;
2967 VTDContextEntry ce;
2968
2969 info.domain_id = domain_id;
2970 info.pasid = pasid;
2971
2972 vtd_iommu_lock(s);
2973 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_pasid,
2974 &info);
2975 vtd_iommu_unlock(s);
2976
2977 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2978 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2979 vtd_as->devfn, &ce) &&
2980 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2981 uint32_t rid2pasid = VTD_CE_GET_RID2PASID(&ce);
2982
2983 if ((vtd_as->pasid != PCI_NO_PASID || pasid != rid2pasid) &&
2984 vtd_as->pasid != pasid) {
2985 continue;
2986 }
2987
2988 if (!s->flts || !vtd_as_has_map_notifier(vtd_as)) {
2989 vtd_address_space_sync(vtd_as);
2990 }
2991 }
2992 }
2993 }
2994
vtd_piotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,uint32_t pasid,hwaddr addr,uint8_t am)2995 static void vtd_piotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2996 uint32_t pasid, hwaddr addr, uint8_t am)
2997 {
2998 VTDIOTLBPageInvInfo info;
2999
3000 info.domain_id = domain_id;
3001 info.pasid = pasid;
3002 info.addr = addr;
3003 info.mask = ~((1 << am) - 1);
3004
3005 vtd_iommu_lock(s);
3006 g_hash_table_foreach_remove(s->iotlb,
3007 vtd_hash_remove_by_page_piotlb, &info);
3008 vtd_iommu_unlock(s);
3009
3010 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, pasid);
3011 }
3012
vtd_process_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3013 static bool vtd_process_piotlb_desc(IntelIOMMUState *s,
3014 VTDInvDesc *inv_desc)
3015 {
3016 uint16_t domain_id;
3017 uint32_t pasid;
3018 hwaddr addr;
3019 uint8_t am;
3020 uint64_t mask[4] = {VTD_INV_DESC_PIOTLB_RSVD_VAL0,
3021 VTD_INV_DESC_PIOTLB_RSVD_VAL1,
3022 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3023
3024 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3025 __func__, "piotlb inv")) {
3026 return false;
3027 }
3028
3029 domain_id = VTD_INV_DESC_PIOTLB_DID(inv_desc->val[0]);
3030 pasid = VTD_INV_DESC_PIOTLB_PASID(inv_desc->val[0]);
3031 switch (inv_desc->val[0] & VTD_INV_DESC_PIOTLB_G) {
3032 case VTD_INV_DESC_PIOTLB_ALL_IN_PASID:
3033 vtd_piotlb_pasid_invalidate(s, domain_id, pasid);
3034 break;
3035
3036 case VTD_INV_DESC_PIOTLB_PSI_IN_PASID:
3037 am = VTD_INV_DESC_PIOTLB_AM(inv_desc->val[1]);
3038 addr = (hwaddr) VTD_INV_DESC_PIOTLB_ADDR(inv_desc->val[1]);
3039 vtd_piotlb_page_invalidate(s, domain_id, pasid, addr, am);
3040 break;
3041
3042 default:
3043 error_report_once("%s: invalid piotlb inv desc: hi=0x%"PRIx64
3044 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
3045 __func__, inv_desc->val[1], inv_desc->val[0],
3046 inv_desc->val[0] & VTD_INV_DESC_IOTLB_G);
3047 return false;
3048 }
3049 return true;
3050 }
3051
vtd_process_inv_iec_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3052 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
3053 VTDInvDesc *inv_desc)
3054 {
3055 uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE,
3056 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3057
3058 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3059 __func__, "iec inv")) {
3060 return false;
3061 }
3062
3063 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
3064 inv_desc->iec.index,
3065 inv_desc->iec.index_mask);
3066
3067 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
3068 inv_desc->iec.index,
3069 inv_desc->iec.index_mask);
3070 return true;
3071 }
3072
do_invalidate_device_tlb(VTDAddressSpace * vtd_dev_as,bool size,hwaddr addr)3073 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
3074 bool size, hwaddr addr)
3075 {
3076 /*
3077 * According to ATS spec table 2.4:
3078 * S = 0, bits 15:12 = xxxx range size: 4K
3079 * S = 1, bits 15:12 = xxx0 range size: 8K
3080 * S = 1, bits 15:12 = xx01 range size: 16K
3081 * S = 1, bits 15:12 = x011 range size: 32K
3082 * S = 1, bits 15:12 = 0111 range size: 64K
3083 * ...
3084 */
3085
3086 IOMMUTLBEvent event;
3087 uint64_t sz;
3088
3089 if (size) {
3090 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
3091 addr &= ~(sz - 1);
3092 } else {
3093 sz = VTD_PAGE_SIZE;
3094 }
3095
3096 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
3097 event.entry.target_as = &vtd_dev_as->as;
3098 event.entry.addr_mask = sz - 1;
3099 event.entry.iova = addr;
3100 event.entry.perm = IOMMU_NONE;
3101 event.entry.translated_addr = 0;
3102 event.entry.pasid = vtd_dev_as->pasid;
3103 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
3104 }
3105
vtd_process_device_piotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3106 static bool vtd_process_device_piotlb_desc(IntelIOMMUState *s,
3107 VTDInvDesc *inv_desc)
3108 {
3109 uint16_t sid;
3110 VTDAddressSpace *vtd_dev_as;
3111 bool size;
3112 bool global;
3113 hwaddr addr;
3114 uint32_t pasid;
3115 uint64_t mask[4] = {VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL0,
3116 VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL1,
3117 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3118
3119 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true,
3120 __func__, "device piotlb inv")) {
3121 return false;
3122 }
3123
3124 global = VTD_INV_DESC_PASID_DEVICE_IOTLB_GLOBAL(inv_desc->hi);
3125 size = VTD_INV_DESC_PASID_DEVICE_IOTLB_SIZE(inv_desc->hi);
3126 addr = VTD_INV_DESC_PASID_DEVICE_IOTLB_ADDR(inv_desc->hi);
3127 sid = VTD_INV_DESC_PASID_DEVICE_IOTLB_SID(inv_desc->lo);
3128 if (global) {
3129 QLIST_FOREACH(vtd_dev_as, &s->vtd_as_with_notifiers, next) {
3130 if ((vtd_dev_as->pasid != PCI_NO_PASID) &&
3131 (PCI_BUILD_BDF(pci_bus_num(vtd_dev_as->bus),
3132 vtd_dev_as->devfn) == sid)) {
3133 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3134 }
3135 }
3136 } else {
3137 pasid = VTD_INV_DESC_PASID_DEVICE_IOTLB_PASID(inv_desc->lo);
3138 vtd_dev_as = vtd_get_as_by_sid_and_pasid(s, sid, pasid);
3139 if (!vtd_dev_as) {
3140 return true;
3141 }
3142
3143 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3144 }
3145
3146 return true;
3147 }
3148
vtd_process_device_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)3149 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
3150 VTDInvDesc *inv_desc)
3151 {
3152 VTDAddressSpace *vtd_dev_as;
3153 hwaddr addr;
3154 uint16_t sid;
3155 bool size;
3156 uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO,
3157 VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI,
3158 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
3159
3160 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
3161 __func__, "dev-iotlb inv")) {
3162 return false;
3163 }
3164
3165 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
3166 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
3167 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
3168
3169 /*
3170 * Using sid is OK since the guest should have finished the
3171 * initialization of both the bus and device.
3172 */
3173 vtd_dev_as = vtd_get_as_by_sid(s, sid);
3174 if (!vtd_dev_as) {
3175 goto done;
3176 }
3177
3178 do_invalidate_device_tlb(vtd_dev_as, size, addr);
3179
3180 done:
3181 return true;
3182 }
3183
vtd_process_inv_desc(IntelIOMMUState * s)3184 static bool vtd_process_inv_desc(IntelIOMMUState *s)
3185 {
3186 VTDInvDesc inv_desc;
3187 uint8_t desc_type;
3188
3189 trace_vtd_inv_qi_head(s->iq_head);
3190 if (!vtd_get_inv_desc(s, &inv_desc)) {
3191 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3192 return false;
3193 }
3194
3195 desc_type = VTD_INV_DESC_TYPE(inv_desc.lo);
3196 /* FIXME: should update at first or at last? */
3197 s->iq_last_desc_type = desc_type;
3198
3199 switch (desc_type) {
3200 case VTD_INV_DESC_CC:
3201 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
3202 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
3203 return false;
3204 }
3205 break;
3206
3207 case VTD_INV_DESC_IOTLB:
3208 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
3209 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
3210 return false;
3211 }
3212 break;
3213
3214 case VTD_INV_DESC_PIOTLB:
3215 trace_vtd_inv_desc("p-iotlb", inv_desc.val[1], inv_desc.val[0]);
3216 if (!vtd_process_piotlb_desc(s, &inv_desc)) {
3217 return false;
3218 }
3219 break;
3220
3221 case VTD_INV_DESC_WAIT:
3222 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
3223 if (!vtd_process_wait_desc(s, &inv_desc)) {
3224 return false;
3225 }
3226 break;
3227
3228 case VTD_INV_DESC_IEC:
3229 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
3230 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
3231 return false;
3232 }
3233 break;
3234
3235 case VTD_INV_DESC_DEV_PIOTLB:
3236 trace_vtd_inv_desc("device-piotlb", inv_desc.hi, inv_desc.lo);
3237 if (!vtd_process_device_piotlb_desc(s, &inv_desc)) {
3238 return false;
3239 }
3240 break;
3241
3242 case VTD_INV_DESC_DEVICE:
3243 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
3244 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
3245 return false;
3246 }
3247 break;
3248
3249 /*
3250 * TODO: the entity of below two cases will be implemented in future series.
3251 * To make guest (which integrates scalable mode support patch set in
3252 * iommu driver) work, just return true is enough so far.
3253 */
3254 case VTD_INV_DESC_PC:
3255 if (s->scalable_mode) {
3256 break;
3257 }
3258 /* fallthrough */
3259 default:
3260 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
3261 " (unknown type)", __func__, inv_desc.hi,
3262 inv_desc.lo);
3263 return false;
3264 }
3265 s->iq_head++;
3266 if (s->iq_head == s->iq_size) {
3267 s->iq_head = 0;
3268 }
3269 return true;
3270 }
3271
3272 /* Try to fetch and process more Invalidation Descriptors */
vtd_fetch_inv_desc(IntelIOMMUState * s)3273 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
3274 {
3275 int qi_shift;
3276
3277 /* Refer to 10.4.23 of VT-d spec 3.0 */
3278 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
3279
3280 trace_vtd_inv_qi_fetch();
3281
3282 if (s->iq_tail >= s->iq_size) {
3283 /* Detects an invalid Tail pointer */
3284 error_report_once("%s: detected invalid QI tail "
3285 "(tail=0x%x, size=0x%x)",
3286 __func__, s->iq_tail, s->iq_size);
3287 vtd_handle_inv_queue_error(s);
3288 return;
3289 }
3290 while (s->iq_head != s->iq_tail) {
3291 if (!vtd_process_inv_desc(s)) {
3292 /* Invalidation Queue Errors */
3293 vtd_handle_inv_queue_error(s);
3294 break;
3295 }
3296 /* Must update the IQH_REG in time */
3297 vtd_set_quad_raw(s, DMAR_IQH_REG,
3298 (((uint64_t)(s->iq_head)) << qi_shift) &
3299 VTD_IQH_QH_MASK);
3300 }
3301 }
3302
3303 /* Handle write to Invalidation Queue Tail Register */
vtd_handle_iqt_write(IntelIOMMUState * s)3304 static void vtd_handle_iqt_write(IntelIOMMUState *s)
3305 {
3306 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
3307
3308 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
3309 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
3310 __func__, val);
3311 vtd_handle_inv_queue_error(s);
3312 return;
3313 }
3314 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
3315 trace_vtd_inv_qi_tail(s->iq_tail);
3316
3317 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
3318 /* Process Invalidation Queue here */
3319 vtd_fetch_inv_desc(s);
3320 }
3321 }
3322
vtd_handle_fsts_write(IntelIOMMUState * s)3323 static void vtd_handle_fsts_write(IntelIOMMUState *s)
3324 {
3325 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
3326 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3327 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
3328
3329 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
3330 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3331 trace_vtd_fsts_clear_ip();
3332 }
3333 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
3334 * Descriptors if there are any when Queued Invalidation is enabled?
3335 */
3336 }
3337
vtd_handle_fectl_write(IntelIOMMUState * s)3338 static void vtd_handle_fectl_write(IntelIOMMUState *s)
3339 {
3340 uint32_t fectl_reg;
3341 /* FIXME: when software clears the IM field, check the IP field. But do we
3342 * need to compare the old value and the new value to conclude that
3343 * software clears the IM field? Or just check if the IM field is zero?
3344 */
3345 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
3346
3347 trace_vtd_reg_write_fectl(fectl_reg);
3348
3349 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
3350 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
3351 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
3352 }
3353 }
3354
vtd_handle_ics_write(IntelIOMMUState * s)3355 static void vtd_handle_ics_write(IntelIOMMUState *s)
3356 {
3357 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
3358 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3359
3360 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
3361 trace_vtd_reg_ics_clear_ip();
3362 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3363 }
3364 }
3365
vtd_handle_iectl_write(IntelIOMMUState * s)3366 static void vtd_handle_iectl_write(IntelIOMMUState *s)
3367 {
3368 uint32_t iectl_reg;
3369 /* FIXME: when software clears the IM field, check the IP field. But do we
3370 * need to compare the old value and the new value to conclude that
3371 * software clears the IM field? Or just check if the IM field is zero?
3372 */
3373 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
3374
3375 trace_vtd_reg_write_iectl(iectl_reg);
3376
3377 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
3378 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
3379 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
3380 }
3381 }
3382
vtd_mem_read(void * opaque,hwaddr addr,unsigned size)3383 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
3384 {
3385 IntelIOMMUState *s = opaque;
3386 uint64_t val;
3387
3388 trace_vtd_reg_read(addr, size);
3389
3390 if (addr + size > DMAR_REG_SIZE) {
3391 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3392 " size=0x%x", __func__, addr, size);
3393 return (uint64_t)-1;
3394 }
3395
3396 switch (addr) {
3397 /* Root Table Address Register, 64-bit */
3398 case DMAR_RTADDR_REG:
3399 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
3400 if (size == 4) {
3401 val = val & ((1ULL << 32) - 1);
3402 }
3403 break;
3404
3405 case DMAR_RTADDR_REG_HI:
3406 assert(size == 4);
3407 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
3408 break;
3409
3410 /* Invalidation Queue Address Register, 64-bit */
3411 case DMAR_IQA_REG:
3412 val = s->iq |
3413 (vtd_get_quad(s, DMAR_IQA_REG) &
3414 (VTD_IQA_QS | VTD_IQA_DW_MASK));
3415 if (size == 4) {
3416 val = val & ((1ULL << 32) - 1);
3417 }
3418 break;
3419
3420 case DMAR_IQA_REG_HI:
3421 assert(size == 4);
3422 val = s->iq >> 32;
3423 break;
3424
3425 default:
3426 if (size == 4) {
3427 val = vtd_get_long(s, addr);
3428 } else {
3429 val = vtd_get_quad(s, addr);
3430 }
3431 }
3432
3433 return val;
3434 }
3435
vtd_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3436 static void vtd_mem_write(void *opaque, hwaddr addr,
3437 uint64_t val, unsigned size)
3438 {
3439 IntelIOMMUState *s = opaque;
3440
3441 trace_vtd_reg_write(addr, size, val);
3442
3443 if (addr + size > DMAR_REG_SIZE) {
3444 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3445 " size=0x%x", __func__, addr, size);
3446 return;
3447 }
3448
3449 switch (addr) {
3450 /* Global Command Register, 32-bit */
3451 case DMAR_GCMD_REG:
3452 vtd_set_long(s, addr, val);
3453 vtd_handle_gcmd_write(s);
3454 break;
3455
3456 /* Context Command Register, 64-bit */
3457 case DMAR_CCMD_REG:
3458 if (size == 4) {
3459 vtd_set_long(s, addr, val);
3460 } else {
3461 vtd_set_quad(s, addr, val);
3462 vtd_handle_ccmd_write(s);
3463 }
3464 break;
3465
3466 case DMAR_CCMD_REG_HI:
3467 assert(size == 4);
3468 vtd_set_long(s, addr, val);
3469 vtd_handle_ccmd_write(s);
3470 break;
3471
3472 /* IOTLB Invalidation Register, 64-bit */
3473 case DMAR_IOTLB_REG:
3474 if (size == 4) {
3475 vtd_set_long(s, addr, val);
3476 } else {
3477 vtd_set_quad(s, addr, val);
3478 vtd_handle_iotlb_write(s);
3479 }
3480 break;
3481
3482 case DMAR_IOTLB_REG_HI:
3483 assert(size == 4);
3484 vtd_set_long(s, addr, val);
3485 vtd_handle_iotlb_write(s);
3486 break;
3487
3488 /* Invalidate Address Register, 64-bit */
3489 case DMAR_IVA_REG:
3490 if (size == 4) {
3491 vtd_set_long(s, addr, val);
3492 } else {
3493 vtd_set_quad(s, addr, val);
3494 }
3495 break;
3496
3497 case DMAR_IVA_REG_HI:
3498 assert(size == 4);
3499 vtd_set_long(s, addr, val);
3500 break;
3501
3502 /* Fault Status Register, 32-bit */
3503 case DMAR_FSTS_REG:
3504 assert(size == 4);
3505 vtd_set_long(s, addr, val);
3506 vtd_handle_fsts_write(s);
3507 break;
3508
3509 /* Fault Event Control Register, 32-bit */
3510 case DMAR_FECTL_REG:
3511 assert(size == 4);
3512 vtd_set_long(s, addr, val);
3513 vtd_handle_fectl_write(s);
3514 break;
3515
3516 /* Fault Event Data Register, 32-bit */
3517 case DMAR_FEDATA_REG:
3518 assert(size == 4);
3519 vtd_set_long(s, addr, val);
3520 break;
3521
3522 /* Fault Event Address Register, 32-bit */
3523 case DMAR_FEADDR_REG:
3524 if (size == 4) {
3525 vtd_set_long(s, addr, val);
3526 } else {
3527 /*
3528 * While the register is 32-bit only, some guests (Xen...) write to
3529 * it with 64-bit.
3530 */
3531 vtd_set_quad(s, addr, val);
3532 }
3533 break;
3534
3535 /* Fault Event Upper Address Register, 32-bit */
3536 case DMAR_FEUADDR_REG:
3537 assert(size == 4);
3538 vtd_set_long(s, addr, val);
3539 break;
3540
3541 /* Protected Memory Enable Register, 32-bit */
3542 case DMAR_PMEN_REG:
3543 assert(size == 4);
3544 vtd_set_long(s, addr, val);
3545 break;
3546
3547 /* Root Table Address Register, 64-bit */
3548 case DMAR_RTADDR_REG:
3549 if (size == 4) {
3550 vtd_set_long(s, addr, val);
3551 } else {
3552 vtd_set_quad(s, addr, val);
3553 }
3554 break;
3555
3556 case DMAR_RTADDR_REG_HI:
3557 assert(size == 4);
3558 vtd_set_long(s, addr, val);
3559 break;
3560
3561 /* Invalidation Queue Tail Register, 64-bit */
3562 case DMAR_IQT_REG:
3563 if (size == 4) {
3564 vtd_set_long(s, addr, val);
3565 } else {
3566 vtd_set_quad(s, addr, val);
3567 }
3568 vtd_handle_iqt_write(s);
3569 break;
3570
3571 case DMAR_IQT_REG_HI:
3572 assert(size == 4);
3573 vtd_set_long(s, addr, val);
3574 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3575 break;
3576
3577 /* Invalidation Queue Address Register, 64-bit */
3578 case DMAR_IQA_REG:
3579 if (size == 4) {
3580 vtd_set_long(s, addr, val);
3581 } else {
3582 vtd_set_quad(s, addr, val);
3583 }
3584 vtd_update_iq_dw(s);
3585 break;
3586
3587 case DMAR_IQA_REG_HI:
3588 assert(size == 4);
3589 vtd_set_long(s, addr, val);
3590 break;
3591
3592 /* Invalidation Completion Status Register, 32-bit */
3593 case DMAR_ICS_REG:
3594 assert(size == 4);
3595 vtd_set_long(s, addr, val);
3596 vtd_handle_ics_write(s);
3597 break;
3598
3599 /* Invalidation Event Control Register, 32-bit */
3600 case DMAR_IECTL_REG:
3601 assert(size == 4);
3602 vtd_set_long(s, addr, val);
3603 vtd_handle_iectl_write(s);
3604 break;
3605
3606 /* Invalidation Event Data Register, 32-bit */
3607 case DMAR_IEDATA_REG:
3608 assert(size == 4);
3609 vtd_set_long(s, addr, val);
3610 break;
3611
3612 /* Invalidation Event Address Register, 32-bit */
3613 case DMAR_IEADDR_REG:
3614 assert(size == 4);
3615 vtd_set_long(s, addr, val);
3616 break;
3617
3618 /* Invalidation Event Upper Address Register, 32-bit */
3619 case DMAR_IEUADDR_REG:
3620 assert(size == 4);
3621 vtd_set_long(s, addr, val);
3622 break;
3623
3624 /* Fault Recording Registers, 128-bit */
3625 case DMAR_FRCD_REG_0_0:
3626 if (size == 4) {
3627 vtd_set_long(s, addr, val);
3628 } else {
3629 vtd_set_quad(s, addr, val);
3630 }
3631 break;
3632
3633 case DMAR_FRCD_REG_0_1:
3634 assert(size == 4);
3635 vtd_set_long(s, addr, val);
3636 break;
3637
3638 case DMAR_FRCD_REG_0_2:
3639 if (size == 4) {
3640 vtd_set_long(s, addr, val);
3641 } else {
3642 vtd_set_quad(s, addr, val);
3643 /* May clear bit 127 (Fault), update PPF */
3644 vtd_update_fsts_ppf(s);
3645 }
3646 break;
3647
3648 case DMAR_FRCD_REG_0_3:
3649 assert(size == 4);
3650 vtd_set_long(s, addr, val);
3651 /* May clear bit 127 (Fault), update PPF */
3652 vtd_update_fsts_ppf(s);
3653 break;
3654
3655 case DMAR_IRTA_REG:
3656 if (size == 4) {
3657 vtd_set_long(s, addr, val);
3658 } else {
3659 vtd_set_quad(s, addr, val);
3660 }
3661 break;
3662
3663 case DMAR_IRTA_REG_HI:
3664 assert(size == 4);
3665 vtd_set_long(s, addr, val);
3666 break;
3667
3668 default:
3669 if (size == 4) {
3670 vtd_set_long(s, addr, val);
3671 } else {
3672 vtd_set_quad(s, addr, val);
3673 }
3674 }
3675 }
3676
vtd_iommu_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)3677 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3678 IOMMUAccessFlags flag, int iommu_idx)
3679 {
3680 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3681 IntelIOMMUState *s = vtd_as->iommu_state;
3682 IOMMUTLBEntry iotlb = {
3683 /* We'll fill in the rest later. */
3684 .target_as = &address_space_memory,
3685 .pasid = vtd_as->pasid,
3686 };
3687 bool success;
3688
3689 if (likely(s->dmar_enabled)) {
3690 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3691 addr, flag & IOMMU_WO, &iotlb);
3692 } else {
3693 /* DMAR disabled, passthrough, use 4k-page*/
3694 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3695 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3696 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3697 iotlb.perm = IOMMU_RW;
3698 success = true;
3699 }
3700
3701 if (likely(success)) {
3702 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3703 VTD_PCI_SLOT(vtd_as->devfn),
3704 VTD_PCI_FUNC(vtd_as->devfn),
3705 iotlb.iova, iotlb.translated_addr,
3706 iotlb.addr_mask);
3707 } else {
3708 error_report_once("%s: detected translation failure "
3709 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3710 __func__, pci_bus_num(vtd_as->bus),
3711 VTD_PCI_SLOT(vtd_as->devfn),
3712 VTD_PCI_FUNC(vtd_as->devfn),
3713 addr);
3714 }
3715
3716 return iotlb;
3717 }
3718
vtd_iommu_notify_flag_changed(IOMMUMemoryRegion * iommu,IOMMUNotifierFlag old,IOMMUNotifierFlag new,Error ** errp)3719 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3720 IOMMUNotifierFlag old,
3721 IOMMUNotifierFlag new,
3722 Error **errp)
3723 {
3724 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3725 IntelIOMMUState *s = vtd_as->iommu_state;
3726 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3727
3728 /* TODO: add support for VFIO and vhost users */
3729 if (s->snoop_control) {
3730 error_setg_errno(errp, ENOTSUP,
3731 "Snoop Control with vhost or VFIO is not supported");
3732 return -ENOTSUP;
3733 }
3734 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3735 error_setg_errno(errp, ENOTSUP,
3736 "device %02x.%02x.%x requires caching mode",
3737 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3738 PCI_FUNC(vtd_as->devfn));
3739 return -ENOTSUP;
3740 }
3741 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3742 error_setg_errno(errp, ENOTSUP,
3743 "device %02x.%02x.%x requires device IOTLB mode",
3744 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3745 PCI_FUNC(vtd_as->devfn));
3746 return -ENOTSUP;
3747 }
3748
3749 /* Update per-address-space notifier flags */
3750 vtd_as->notifier_flags = new;
3751
3752 if (old == IOMMU_NOTIFIER_NONE) {
3753 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3754 } else if (new == IOMMU_NOTIFIER_NONE) {
3755 QLIST_REMOVE(vtd_as, next);
3756 }
3757 return 0;
3758 }
3759
vtd_post_load(void * opaque,int version_id)3760 static int vtd_post_load(void *opaque, int version_id)
3761 {
3762 IntelIOMMUState *iommu = opaque;
3763
3764 /*
3765 * We don't need to migrate the root_scalable because we can
3766 * simply do the calculation after the loading is complete. We
3767 * can actually do similar things with root, dmar_enabled, etc.
3768 * however since we've had them already so we'd better keep them
3769 * for compatibility of migration.
3770 */
3771 vtd_update_scalable_state(iommu);
3772
3773 vtd_update_iq_dw(iommu);
3774
3775 /*
3776 * Memory regions are dynamically turned on/off depending on
3777 * context entry configurations from the guest. After migration,
3778 * we need to make sure the memory regions are still correct.
3779 */
3780 vtd_switch_address_space_all(iommu);
3781
3782 return 0;
3783 }
3784
3785 static const VMStateDescription vtd_vmstate = {
3786 .name = "iommu-intel",
3787 .version_id = 1,
3788 .minimum_version_id = 1,
3789 .priority = MIG_PRI_IOMMU,
3790 .post_load = vtd_post_load,
3791 .fields = (const VMStateField[]) {
3792 VMSTATE_UINT64(root, IntelIOMMUState),
3793 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3794 VMSTATE_UINT64(iq, IntelIOMMUState),
3795 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3796 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3797 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3798 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3799 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3800 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3801 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3802 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3803 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3804 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3805 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3806 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3807 VMSTATE_END_OF_LIST()
3808 }
3809 };
3810
3811 static const MemoryRegionOps vtd_mem_ops = {
3812 .read = vtd_mem_read,
3813 .write = vtd_mem_write,
3814 .endianness = DEVICE_LITTLE_ENDIAN,
3815 .impl = {
3816 .min_access_size = 4,
3817 .max_access_size = 8,
3818 },
3819 .valid = {
3820 .min_access_size = 4,
3821 .max_access_size = 8,
3822 },
3823 };
3824
3825 static const Property vtd_properties[] = {
3826 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3827 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3828 ON_OFF_AUTO_AUTO),
3829 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3830 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3831 VTD_HOST_ADDRESS_WIDTH),
3832 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3833 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3834 DEFINE_PROP_BOOL("x-flts", IntelIOMMUState, flts, FALSE),
3835 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3836 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3837 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3838 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3839 DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false),
3840 DEFINE_PROP_BOOL("fs1gp", IntelIOMMUState, fs1gp, true),
3841 };
3842
3843 /* Read IRTE entry with specific index */
vtd_irte_get(IntelIOMMUState * iommu,uint16_t index,VTD_IR_TableEntry * entry,uint16_t sid,bool do_fault)3844 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3845 VTD_IR_TableEntry *entry, uint16_t sid,
3846 bool do_fault)
3847 {
3848 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3849 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3850 dma_addr_t addr = 0x00;
3851 uint16_t mask, source_id;
3852 uint8_t bus, bus_max, bus_min;
3853
3854 if (index >= iommu->intr_size) {
3855 error_report_once("%s: index too large: ind=0x%x",
3856 __func__, index);
3857 if (do_fault) {
3858 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3859 }
3860 return false;
3861 }
3862
3863 addr = iommu->intr_root + index * sizeof(*entry);
3864 if (dma_memory_read(&address_space_memory, addr,
3865 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3866 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3867 __func__, index, addr);
3868 if (do_fault) {
3869 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3870 }
3871 return false;
3872 }
3873
3874 entry->data[0] = le64_to_cpu(entry->data[0]);
3875 entry->data[1] = le64_to_cpu(entry->data[1]);
3876
3877 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3878
3879 /*
3880 * The remaining potential fault conditions are "qualified" by the
3881 * Fault Processing Disable bit in the IRTE. Even "not present".
3882 * So just clear the do_fault flag if PFD is set, which will
3883 * prevent faults being raised.
3884 */
3885 if (entry->irte.fault_disable) {
3886 do_fault = false;
3887 }
3888
3889 if (!entry->irte.present) {
3890 error_report_once("%s: detected non-present IRTE "
3891 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3892 __func__, index, entry->data[1], entry->data[0]);
3893 if (do_fault) {
3894 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3895 }
3896 return false;
3897 }
3898
3899 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3900 entry->irte.__reserved_2) {
3901 error_report_once("%s: detected non-zero reserved IRTE "
3902 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3903 __func__, index, entry->data[1], entry->data[0]);
3904 if (do_fault) {
3905 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3906 }
3907 return false;
3908 }
3909
3910 if (sid != X86_IOMMU_SID_INVALID) {
3911 /* Validate IRTE SID */
3912 source_id = entry->irte.source_id;
3913 switch (entry->irte.sid_vtype) {
3914 case VTD_SVT_NONE:
3915 break;
3916
3917 case VTD_SVT_ALL:
3918 mask = vtd_svt_mask[entry->irte.sid_q];
3919 if ((source_id & mask) != (sid & mask)) {
3920 error_report_once("%s: invalid IRTE SID "
3921 "(index=%u, sid=%u, source_id=%u)",
3922 __func__, index, sid, source_id);
3923 if (do_fault) {
3924 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3925 }
3926 return false;
3927 }
3928 break;
3929
3930 case VTD_SVT_BUS:
3931 bus_max = source_id >> 8;
3932 bus_min = source_id & 0xff;
3933 bus = sid >> 8;
3934 if (bus > bus_max || bus < bus_min) {
3935 error_report_once("%s: invalid SVT_BUS "
3936 "(index=%u, bus=%u, min=%u, max=%u)",
3937 __func__, index, bus, bus_min, bus_max);
3938 if (do_fault) {
3939 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3940 }
3941 return false;
3942 }
3943 break;
3944
3945 default:
3946 error_report_once("%s: detected invalid IRTE SVT "
3947 "(index=%u, type=%d)", __func__,
3948 index, entry->irte.sid_vtype);
3949 /* Take this as verification failure. */
3950 if (do_fault) {
3951 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3952 }
3953 return false;
3954 }
3955 }
3956
3957 return true;
3958 }
3959
3960 /* Fetch IRQ information of specific IR index */
vtd_remap_irq_get(IntelIOMMUState * iommu,uint16_t index,X86IOMMUIrq * irq,uint16_t sid,bool do_fault)3961 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3962 X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3963 {
3964 VTD_IR_TableEntry irte = {};
3965
3966 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3967 return false;
3968 }
3969
3970 irq->trigger_mode = irte.irte.trigger_mode;
3971 irq->vector = irte.irte.vector;
3972 irq->delivery_mode = irte.irte.delivery_mode;
3973 irq->dest = irte.irte.dest_id;
3974 if (!iommu->intr_eime) {
3975 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3976 #define VTD_IR_APIC_DEST_SHIFT (8)
3977 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3978 VTD_IR_APIC_DEST_SHIFT;
3979 }
3980 irq->dest_mode = irte.irte.dest_mode;
3981 irq->redir_hint = irte.irte.redir_hint;
3982
3983 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3984 irq->delivery_mode, irq->dest, irq->dest_mode);
3985
3986 return true;
3987 }
3988
3989 /* Interrupt remapping for MSI/MSI-X entry */
vtd_interrupt_remap_msi(IntelIOMMUState * iommu,MSIMessage * origin,MSIMessage * translated,uint16_t sid,bool do_fault)3990 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3991 MSIMessage *origin,
3992 MSIMessage *translated,
3993 uint16_t sid, bool do_fault)
3994 {
3995 VTD_IR_MSIAddress addr;
3996 uint16_t index;
3997 X86IOMMUIrq irq = {};
3998
3999 assert(origin && translated);
4000
4001 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
4002
4003 if (!iommu || !iommu->intr_enabled) {
4004 memcpy(translated, origin, sizeof(*origin));
4005 goto out;
4006 }
4007
4008 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
4009 error_report_once("%s: MSI address high 32 bits non-zero detected: "
4010 "address=0x%" PRIx64, __func__, origin->address);
4011 if (do_fault) {
4012 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4013 }
4014 return -EINVAL;
4015 }
4016
4017 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
4018 if (addr.addr.__head != 0xfee) {
4019 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
4020 __func__, addr.data);
4021 if (do_fault) {
4022 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4023 }
4024 return -EINVAL;
4025 }
4026
4027 /* This is compatible mode. */
4028 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
4029 memcpy(translated, origin, sizeof(*origin));
4030 goto out;
4031 }
4032
4033 index = addr.addr.index_h << 15 | addr.addr.index_l;
4034
4035 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
4036 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
4037
4038 if (addr.addr.sub_valid) {
4039 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
4040 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
4041 }
4042
4043 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
4044 return -EINVAL;
4045 }
4046
4047 if (addr.addr.sub_valid) {
4048 trace_vtd_ir_remap_type("MSI");
4049 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
4050 error_report_once("%s: invalid IR MSI "
4051 "(sid=%u, address=0x%" PRIx64
4052 ", data=0x%" PRIx32 ")",
4053 __func__, sid, origin->address, origin->data);
4054 if (do_fault) {
4055 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
4056 }
4057 return -EINVAL;
4058 }
4059 } else {
4060 uint8_t vector = origin->data & 0xff;
4061 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
4062
4063 trace_vtd_ir_remap_type("IOAPIC");
4064 /* IOAPIC entry vector should be aligned with IRTE vector
4065 * (see vt-d spec 5.1.5.1). */
4066 if (vector != irq.vector) {
4067 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
4068 }
4069
4070 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
4071 * (see vt-d spec 5.1.5.1). */
4072 if (trigger_mode != irq.trigger_mode) {
4073 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
4074 irq.trigger_mode);
4075 }
4076 }
4077
4078 /*
4079 * We'd better keep the last two bits, assuming that guest OS
4080 * might modify it. Keep it does not hurt after all.
4081 */
4082 irq.msi_addr_last_bits = addr.addr.__not_care;
4083
4084 /* Translate X86IOMMUIrq to MSI message */
4085 x86_iommu_irq_to_msi_message(&irq, translated);
4086
4087 out:
4088 trace_vtd_ir_remap_msi(origin->address, origin->data,
4089 translated->address, translated->data);
4090 return 0;
4091 }
4092
vtd_int_remap(X86IOMMUState * iommu,MSIMessage * src,MSIMessage * dst,uint16_t sid)4093 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
4094 MSIMessage *dst, uint16_t sid)
4095 {
4096 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
4097 src, dst, sid, false);
4098 }
4099
vtd_mem_ir_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4100 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
4101 uint64_t *data, unsigned size,
4102 MemTxAttrs attrs)
4103 {
4104 return MEMTX_OK;
4105 }
4106
vtd_mem_ir_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4107 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
4108 uint64_t value, unsigned size,
4109 MemTxAttrs attrs)
4110 {
4111 int ret = 0;
4112 MSIMessage from = {}, to = {};
4113 uint16_t sid = X86_IOMMU_SID_INVALID;
4114
4115 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
4116 from.data = (uint32_t) value;
4117
4118 if (!attrs.unspecified) {
4119 /* We have explicit Source ID */
4120 sid = attrs.requester_id;
4121 }
4122
4123 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
4124 if (ret) {
4125 /* Drop this interrupt */
4126 return MEMTX_ERROR;
4127 }
4128
4129 apic_get_class(NULL)->send_msi(&to);
4130
4131 return MEMTX_OK;
4132 }
4133
4134 static const MemoryRegionOps vtd_mem_ir_ops = {
4135 .read_with_attrs = vtd_mem_ir_read,
4136 .write_with_attrs = vtd_mem_ir_write,
4137 .endianness = DEVICE_LITTLE_ENDIAN,
4138 .impl = {
4139 .min_access_size = 4,
4140 .max_access_size = 4,
4141 },
4142 .valid = {
4143 .min_access_size = 4,
4144 .max_access_size = 4,
4145 },
4146 };
4147
vtd_report_ir_illegal_access(VTDAddressSpace * vtd_as,hwaddr addr,bool is_write)4148 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
4149 hwaddr addr, bool is_write)
4150 {
4151 IntelIOMMUState *s = vtd_as->iommu_state;
4152 uint8_t bus_n = pci_bus_num(vtd_as->bus);
4153 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
4154 bool is_fpd_set = false;
4155 VTDContextEntry ce;
4156
4157 assert(vtd_as->pasid != PCI_NO_PASID);
4158
4159 /* Try out best to fetch FPD, we can't do anything more */
4160 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4161 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
4162 if (!is_fpd_set && s->root_scalable) {
4163 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
4164 }
4165 }
4166
4167 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
4168 is_fpd_set, sid, addr, is_write,
4169 true, vtd_as->pasid);
4170 }
4171
vtd_mem_ir_fault_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)4172 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
4173 uint64_t *data, unsigned size,
4174 MemTxAttrs attrs)
4175 {
4176 vtd_report_ir_illegal_access(opaque, addr, false);
4177
4178 return MEMTX_ERROR;
4179 }
4180
vtd_mem_ir_fault_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)4181 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
4182 uint64_t value, unsigned size,
4183 MemTxAttrs attrs)
4184 {
4185 vtd_report_ir_illegal_access(opaque, addr, true);
4186
4187 return MEMTX_ERROR;
4188 }
4189
4190 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
4191 .read_with_attrs = vtd_mem_ir_fault_read,
4192 .write_with_attrs = vtd_mem_ir_fault_write,
4193 .endianness = DEVICE_LITTLE_ENDIAN,
4194 .impl = {
4195 .min_access_size = 1,
4196 .max_access_size = 8,
4197 },
4198 .valid = {
4199 .min_access_size = 1,
4200 .max_access_size = 8,
4201 },
4202 };
4203
vtd_find_add_as(IntelIOMMUState * s,PCIBus * bus,int devfn,unsigned int pasid)4204 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
4205 int devfn, unsigned int pasid)
4206 {
4207 /*
4208 * We can't simply use sid here since the bus number might not be
4209 * initialized by the guest.
4210 */
4211 struct vtd_as_key key = {
4212 .bus = bus,
4213 .devfn = devfn,
4214 .pasid = pasid,
4215 };
4216 VTDAddressSpace *vtd_dev_as;
4217 char name[128];
4218
4219 vtd_iommu_lock(s);
4220 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4221 vtd_iommu_unlock(s);
4222
4223 if (!vtd_dev_as) {
4224 struct vtd_as_key *new_key;
4225 /* Slow path */
4226
4227 /*
4228 * memory_region_add_subregion_overlap requires the bql,
4229 * make sure we own it.
4230 */
4231 BQL_LOCK_GUARD();
4232 vtd_iommu_lock(s);
4233
4234 /* Check again as we released the lock for a moment */
4235 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
4236 if (vtd_dev_as) {
4237 vtd_iommu_unlock(s);
4238 return vtd_dev_as;
4239 }
4240
4241 /* Still nothing, allocate a new address space */
4242 new_key = g_malloc(sizeof(*new_key));
4243
4244 new_key->bus = bus;
4245 new_key->devfn = devfn;
4246 new_key->pasid = pasid;
4247
4248 if (pasid == PCI_NO_PASID) {
4249 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
4250 PCI_FUNC(devfn));
4251 } else {
4252 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
4253 PCI_FUNC(devfn), pasid);
4254 }
4255
4256 vtd_dev_as = g_new0(VTDAddressSpace, 1);
4257
4258 vtd_dev_as->bus = bus;
4259 vtd_dev_as->devfn = (uint8_t)devfn;
4260 vtd_dev_as->pasid = pasid;
4261 vtd_dev_as->iommu_state = s;
4262 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
4263 vtd_dev_as->iova_tree = iova_tree_new();
4264
4265 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
4266 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
4267
4268 /*
4269 * Build the DMAR-disabled container with aliases to the
4270 * shared MRs. Note that aliasing to a shared memory region
4271 * could help the memory API to detect same FlatViews so we
4272 * can have devices to share the same FlatView when DMAR is
4273 * disabled (either by not providing "intel_iommu=on" or with
4274 * "iommu=pt"). It will greatly reduce the total number of
4275 * FlatViews of the system hence VM runs faster.
4276 */
4277 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
4278 "vtd-nodmar", &s->mr_nodmar, 0,
4279 memory_region_size(&s->mr_nodmar));
4280
4281 /*
4282 * Build the per-device DMAR-enabled container.
4283 *
4284 * TODO: currently we have per-device IOMMU memory region only
4285 * because we have per-device IOMMU notifiers for devices. If
4286 * one day we can abstract the IOMMU notifiers out of the
4287 * memory regions then we can also share the same memory
4288 * region here just like what we've done above with the nodmar
4289 * region.
4290 */
4291 strcat(name, "-dmar");
4292 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
4293 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
4294 name, UINT64_MAX);
4295 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
4296 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
4297 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
4298 VTD_INTERRUPT_ADDR_FIRST,
4299 &vtd_dev_as->iommu_ir, 1);
4300
4301 /*
4302 * This region is used for catching fault to access interrupt
4303 * range via passthrough + PASID. See also
4304 * vtd_switch_address_space(). We can't use alias since we
4305 * need to know the sid which is valid for MSI who uses
4306 * bus_master_as (see msi_send_message()).
4307 */
4308 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
4309 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
4310 VTD_INTERRUPT_ADDR_SIZE);
4311 /*
4312 * Hook to root since when PT is enabled vtd_dev_as->iommu
4313 * will be disabled.
4314 */
4315 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
4316 VTD_INTERRUPT_ADDR_FIRST,
4317 &vtd_dev_as->iommu_ir_fault, 2);
4318
4319 /*
4320 * Hook both the containers under the root container, we
4321 * switch between DMAR & noDMAR by enable/disable
4322 * corresponding sub-containers
4323 */
4324 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4325 MEMORY_REGION(&vtd_dev_as->iommu),
4326 0);
4327 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
4328 &vtd_dev_as->nodmar, 0);
4329
4330 vtd_switch_address_space(vtd_dev_as);
4331
4332 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
4333
4334 vtd_iommu_unlock(s);
4335 }
4336 return vtd_dev_as;
4337 }
4338
vtd_check_hiod(IntelIOMMUState * s,HostIOMMUDevice * hiod,Error ** errp)4339 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
4340 Error **errp)
4341 {
4342 HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
4343 int ret;
4344
4345 if (!hiodc->get_cap) {
4346 error_setg(errp, ".get_cap() not implemented");
4347 return false;
4348 }
4349
4350 /* Common checks */
4351 ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
4352 if (ret < 0) {
4353 return false;
4354 }
4355 if (s->aw_bits > ret) {
4356 error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
4357 return false;
4358 }
4359
4360 if (!s->flts) {
4361 /* All checks requested by VTD stage-2 translation pass */
4362 return true;
4363 }
4364
4365 error_setg(errp, "host device is uncompatible with stage-1 translation");
4366 return false;
4367 }
4368
vtd_dev_set_iommu_device(PCIBus * bus,void * opaque,int devfn,HostIOMMUDevice * hiod,Error ** errp)4369 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
4370 HostIOMMUDevice *hiod, Error **errp)
4371 {
4372 IntelIOMMUState *s = opaque;
4373 struct vtd_as_key key = {
4374 .bus = bus,
4375 .devfn = devfn,
4376 };
4377 struct vtd_as_key *new_key;
4378
4379 assert(hiod);
4380
4381 vtd_iommu_lock(s);
4382
4383 if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4384 error_setg(errp, "Host IOMMU device already exist");
4385 vtd_iommu_unlock(s);
4386 return false;
4387 }
4388
4389 if (!vtd_check_hiod(s, hiod, errp)) {
4390 vtd_iommu_unlock(s);
4391 return false;
4392 }
4393
4394 new_key = g_malloc(sizeof(*new_key));
4395 new_key->bus = bus;
4396 new_key->devfn = devfn;
4397
4398 object_ref(hiod);
4399 g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
4400
4401 vtd_iommu_unlock(s);
4402
4403 return true;
4404 }
4405
vtd_dev_unset_iommu_device(PCIBus * bus,void * opaque,int devfn)4406 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
4407 {
4408 IntelIOMMUState *s = opaque;
4409 struct vtd_as_key key = {
4410 .bus = bus,
4411 .devfn = devfn,
4412 };
4413
4414 vtd_iommu_lock(s);
4415
4416 if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
4417 vtd_iommu_unlock(s);
4418 return;
4419 }
4420
4421 g_hash_table_remove(s->vtd_host_iommu_dev, &key);
4422
4423 vtd_iommu_unlock(s);
4424 }
4425
4426 /* Unmap the whole range in the notifier's scope. */
vtd_address_space_unmap(VTDAddressSpace * as,IOMMUNotifier * n)4427 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
4428 {
4429 hwaddr total, remain;
4430 hwaddr start = n->start;
4431 hwaddr end = n->end;
4432 IntelIOMMUState *s = as->iommu_state;
4433 DMAMap map;
4434
4435 /*
4436 * Note: all the codes in this function has a assumption that IOVA
4437 * bits are no more than VTD_MGAW bits (which is restricted by
4438 * VT-d spec), otherwise we need to consider overflow of 64 bits.
4439 */
4440
4441 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
4442 /*
4443 * Don't need to unmap regions that is bigger than the whole
4444 * VT-d supported address space size
4445 */
4446 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
4447 }
4448
4449 assert(start <= end);
4450 total = remain = end - start + 1;
4451
4452 while (remain >= VTD_PAGE_SIZE) {
4453 IOMMUTLBEvent event;
4454 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
4455 uint64_t size = mask + 1;
4456
4457 assert(size);
4458
4459 event.type = IOMMU_NOTIFIER_UNMAP;
4460 event.entry.iova = start;
4461 event.entry.addr_mask = mask;
4462 event.entry.target_as = &address_space_memory;
4463 event.entry.perm = IOMMU_NONE;
4464 /* This field is meaningless for unmap */
4465 event.entry.translated_addr = 0;
4466
4467 memory_region_notify_iommu_one(n, &event);
4468
4469 start += size;
4470 remain -= size;
4471 }
4472
4473 assert(!remain);
4474
4475 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
4476 VTD_PCI_SLOT(as->devfn),
4477 VTD_PCI_FUNC(as->devfn),
4478 n->start, total);
4479
4480 map.iova = n->start;
4481 map.size = total - 1; /* Inclusive */
4482 iova_tree_remove(as->iova_tree, map);
4483 }
4484
vtd_address_space_unmap_all(IntelIOMMUState * s)4485 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
4486 {
4487 VTDAddressSpace *vtd_as;
4488 IOMMUNotifier *n;
4489
4490 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
4491 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
4492 vtd_address_space_unmap(vtd_as, n);
4493 }
4494 }
4495 }
4496
vtd_address_space_refresh_all(IntelIOMMUState * s)4497 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4498 {
4499 vtd_address_space_unmap_all(s);
4500 vtd_switch_address_space_all(s);
4501 }
4502
vtd_replay_hook(const IOMMUTLBEvent * event,void * private)4503 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4504 {
4505 memory_region_notify_iommu_one(private, event);
4506 return 0;
4507 }
4508
vtd_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)4509 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4510 {
4511 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4512 IntelIOMMUState *s = vtd_as->iommu_state;
4513 uint8_t bus_n = pci_bus_num(vtd_as->bus);
4514 VTDContextEntry ce;
4515 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4516
4517 /* replay is protected by BQL, page walk will re-setup it safely */
4518 iova_tree_remove(vtd_as->iova_tree, map);
4519
4520 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4521 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4522 "legacy mode",
4523 bus_n, PCI_SLOT(vtd_as->devfn),
4524 PCI_FUNC(vtd_as->devfn),
4525 vtd_get_domain_id(s, &ce, vtd_as->pasid),
4526 ce.hi, ce.lo);
4527 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4528 /* This is required only for MAP typed notifiers */
4529 vtd_page_walk_info info = {
4530 .hook_fn = vtd_replay_hook,
4531 .private = (void *)n,
4532 .notify_unmap = false,
4533 .aw = s->aw_bits,
4534 .as = vtd_as,
4535 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4536 };
4537
4538 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4539 }
4540 } else {
4541 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4542 PCI_FUNC(vtd_as->devfn));
4543 }
4544 }
4545
vtd_cap_init(IntelIOMMUState * s)4546 static void vtd_cap_init(IntelIOMMUState *s)
4547 {
4548 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4549
4550 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4551 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4552 VTD_CAP_MGAW(s->aw_bits);
4553 if (s->dma_drain) {
4554 s->cap |= VTD_CAP_DRAIN;
4555 }
4556 if (s->dma_translation) {
4557 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4558 s->cap |= VTD_CAP_SAGAW_39bit;
4559 }
4560 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4561 s->cap |= VTD_CAP_SAGAW_48bit;
4562 }
4563 }
4564 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4565
4566 if (x86_iommu_ir_supported(x86_iommu)) {
4567 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4568 if (s->intr_eim == ON_OFF_AUTO_ON) {
4569 s->ecap |= VTD_ECAP_EIM;
4570 }
4571 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4572 }
4573
4574 if (x86_iommu->dt_supported) {
4575 s->ecap |= VTD_ECAP_DT;
4576 }
4577
4578 if (x86_iommu->pt_supported) {
4579 s->ecap |= VTD_ECAP_PT;
4580 }
4581
4582 if (s->caching_mode) {
4583 s->cap |= VTD_CAP_CM;
4584 }
4585
4586 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4587 if (s->flts) {
4588 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_FLTS;
4589 if (s->fs1gp) {
4590 s->cap |= VTD_CAP_FS1GP;
4591 }
4592 } else if (s->scalable_mode) {
4593 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4594 }
4595
4596 if (s->snoop_control) {
4597 s->ecap |= VTD_ECAP_SC;
4598 }
4599
4600 if (s->pasid) {
4601 s->ecap |= VTD_ECAP_PASID | VTD_ECAP_PSS;
4602 }
4603 }
4604
4605 /*
4606 * Do the initialization. It will also be called when reset, so pay
4607 * attention when adding new initialization stuff.
4608 */
vtd_init(IntelIOMMUState * s)4609 static void vtd_init(IntelIOMMUState *s)
4610 {
4611 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4612
4613 memset(s->csr, 0, DMAR_REG_SIZE);
4614 memset(s->wmask, 0, DMAR_REG_SIZE);
4615 memset(s->w1cmask, 0, DMAR_REG_SIZE);
4616 memset(s->womask, 0, DMAR_REG_SIZE);
4617
4618 s->root = 0;
4619 s->root_scalable = false;
4620 s->dmar_enabled = false;
4621 s->intr_enabled = false;
4622 s->iq_head = 0;
4623 s->iq_tail = 0;
4624 s->iq = 0;
4625 s->iq_size = 0;
4626 s->qi_enabled = false;
4627 s->iq_last_desc_type = VTD_INV_DESC_NONE;
4628 s->iq_dw = false;
4629 s->next_frcd_reg = 0;
4630
4631 vtd_cap_init(s);
4632
4633 /*
4634 * Rsvd field masks for spte
4635 */
4636 vtd_spte_rsvd[0] = ~0ULL;
4637 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4638 x86_iommu->dt_supported && s->stale_tm);
4639 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4640 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4641 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4642
4643 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4644 x86_iommu->dt_supported && s->stale_tm);
4645 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4646 x86_iommu->dt_supported && s->stale_tm);
4647
4648 /*
4649 * Rsvd field masks for fpte
4650 */
4651 vtd_fpte_rsvd[0] = ~0ULL;
4652 vtd_fpte_rsvd[1] = VTD_FPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
4653 vtd_fpte_rsvd[2] = VTD_FPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4654 vtd_fpte_rsvd[3] = VTD_FPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4655 vtd_fpte_rsvd[4] = VTD_FPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4656
4657 vtd_fpte_rsvd_large[2] = VTD_FPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
4658 vtd_fpte_rsvd_large[3] = VTD_FPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
4659
4660 if (s->scalable_mode || s->snoop_control) {
4661 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4662 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4663 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4664 }
4665
4666 vtd_reset_caches(s);
4667
4668 /* Define registers with default values and bit semantics */
4669 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4670 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4671 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4672 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4673 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4674 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4675 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4676 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4677 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4678
4679 /* Advanced Fault Logging not supported */
4680 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4681 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4682 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4683 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4684
4685 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4686 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4687 */
4688 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4689
4690 /* Treated as RO for implementations that PLMR and PHMR fields reported
4691 * as Clear in the CAP_REG.
4692 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4693 */
4694 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4695
4696 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4697 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4698 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4699 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4700 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4701 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4702 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4703 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4704 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4705
4706 /* IOTLB registers */
4707 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4708 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4709 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4710
4711 /* Fault Recording Registers, 128-bit */
4712 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4713 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4714
4715 /*
4716 * Interrupt remapping registers.
4717 */
4718 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4719 }
4720
4721 /* Should not reset address_spaces when reset because devices will still use
4722 * the address space they got at first (won't ask the bus again).
4723 */
vtd_reset_exit(Object * obj,ResetType type)4724 static void vtd_reset_exit(Object *obj, ResetType type)
4725 {
4726 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(obj);
4727
4728 trace_vtd_reset_exit();
4729 vtd_init(s);
4730 vtd_address_space_refresh_all(s);
4731 }
4732
vtd_host_dma_iommu(PCIBus * bus,void * opaque,int devfn)4733 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4734 {
4735 IntelIOMMUState *s = opaque;
4736 VTDAddressSpace *vtd_as;
4737
4738 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4739
4740 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4741 return &vtd_as->as;
4742 }
4743
vtd_iommu_ats_do_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flags)4744 static IOMMUTLBEntry vtd_iommu_ats_do_translate(IOMMUMemoryRegion *iommu,
4745 hwaddr addr,
4746 IOMMUAccessFlags flags)
4747 {
4748 IOMMUTLBEntry entry;
4749 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
4750
4751 if (vtd_is_interrupt_addr(addr)) {
4752 vtd_report_ir_illegal_access(vtd_as, addr, flags & IOMMU_WO);
4753 entry.target_as = &address_space_memory;
4754 entry.iova = 0;
4755 entry.translated_addr = 0;
4756 entry.addr_mask = ~VTD_PAGE_MASK_4K;
4757 entry.perm = IOMMU_NONE;
4758 entry.pasid = PCI_NO_PASID;
4759 } else {
4760 entry = vtd_iommu_translate(iommu, addr, flags, 0);
4761 }
4762
4763 return entry;
4764 }
4765
vtd_ats_request_translation(PCIBus * bus,void * opaque,int devfn,uint32_t pasid,bool priv_req,bool exec_req,hwaddr addr,size_t length,bool no_write,IOMMUTLBEntry * result,size_t result_length,uint32_t * err_count)4766 static ssize_t vtd_ats_request_translation(PCIBus *bus, void *opaque,
4767 int devfn, uint32_t pasid,
4768 bool priv_req, bool exec_req,
4769 hwaddr addr, size_t length,
4770 bool no_write, IOMMUTLBEntry *result,
4771 size_t result_length,
4772 uint32_t *err_count)
4773 {
4774 IntelIOMMUState *s = opaque;
4775 VTDAddressSpace *vtd_as;
4776 IOMMUAccessFlags flags = IOMMU_ACCESS_FLAG_FULL(true, !no_write, exec_req,
4777 priv_req, false, false);
4778 ssize_t res_index = 0;
4779 hwaddr target_address = addr + length;
4780 IOMMUTLBEntry entry;
4781
4782 vtd_as = vtd_find_add_as(s, bus, devfn, pasid);
4783 *err_count = 0;
4784
4785 while ((addr < target_address) && (res_index < result_length)) {
4786 entry = vtd_iommu_ats_do_translate(&vtd_as->iommu, addr, flags);
4787 entry.perm &= ~IOMMU_GLOBAL; /* Spec 4.1.2: Global Mapping never set */
4788
4789 if ((entry.perm & flags) != flags) {
4790 *err_count += 1; /* Less than expected */
4791 }
4792
4793 result[res_index] = entry;
4794 res_index += 1;
4795 addr = (addr & (~entry.addr_mask)) + (entry.addr_mask + 1);
4796 }
4797
4798 /* Buffer too small */
4799 if (addr < target_address) {
4800 return -ENOMEM;
4801 }
4802
4803 return res_index;
4804 }
4805
vtd_init_iotlb_notifier(PCIBus * bus,void * opaque,int devfn,IOMMUNotifier * n,IOMMUNotify fn,void * user_opaque)4806 static void vtd_init_iotlb_notifier(PCIBus *bus, void *opaque, int devfn,
4807 IOMMUNotifier *n, IOMMUNotify fn,
4808 void *user_opaque)
4809 {
4810 n->opaque = user_opaque;
4811 iommu_notifier_init(n, fn, IOMMU_NOTIFIER_DEVIOTLB_EVENTS, 0,
4812 HWADDR_MAX, 0);
4813 }
4814
vtd_get_iotlb_info(void * opaque,uint8_t * addr_width,uint32_t * min_page_size)4815 static void vtd_get_iotlb_info(void *opaque, uint8_t *addr_width,
4816 uint32_t *min_page_size)
4817 {
4818 IntelIOMMUState *s = opaque;
4819
4820 *addr_width = s->aw_bits;
4821 *min_page_size = VTD_PAGE_SIZE;
4822 }
4823
vtd_register_iotlb_notifier(PCIBus * bus,void * opaque,int devfn,uint32_t pasid,IOMMUNotifier * n)4824 static void vtd_register_iotlb_notifier(PCIBus *bus, void *opaque,
4825 int devfn, uint32_t pasid,
4826 IOMMUNotifier *n)
4827 {
4828 IntelIOMMUState *s = opaque;
4829 VTDAddressSpace *vtd_as;
4830
4831 vtd_as = vtd_find_add_as(s, bus, devfn, pasid);
4832 memory_region_register_iommu_notifier(MEMORY_REGION(&vtd_as->iommu), n,
4833 &error_fatal);
4834 }
4835
vtd_unregister_iotlb_notifier(PCIBus * bus,void * opaque,int devfn,uint32_t pasid,IOMMUNotifier * n)4836 static void vtd_unregister_iotlb_notifier(PCIBus *bus, void *opaque,
4837 int devfn, uint32_t pasid,
4838 IOMMUNotifier *n)
4839 {
4840 IntelIOMMUState *s = opaque;
4841 VTDAddressSpace *vtd_as;
4842
4843 vtd_as = vtd_find_add_as(s, bus, devfn, pasid);
4844 memory_region_unregister_iommu_notifier(MEMORY_REGION(&vtd_as->iommu), n);
4845 }
4846
4847 static PCIIOMMUOps vtd_iommu_ops = {
4848 .get_address_space = vtd_host_dma_iommu,
4849 .set_iommu_device = vtd_dev_set_iommu_device,
4850 .unset_iommu_device = vtd_dev_unset_iommu_device,
4851 .get_iotlb_info = vtd_get_iotlb_info,
4852 .init_iotlb_notifier = vtd_init_iotlb_notifier,
4853 .register_iotlb_notifier = vtd_register_iotlb_notifier,
4854 .unregister_iotlb_notifier = vtd_unregister_iotlb_notifier,
4855 .ats_request_translation = vtd_ats_request_translation,
4856 };
4857
vtd_decide_config(IntelIOMMUState * s,Error ** errp)4858 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4859 {
4860 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4861
4862 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4863 error_setg(errp, "eim=on cannot be selected without intremap=on");
4864 return false;
4865 }
4866
4867 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4868 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4869 && x86_iommu_ir_supported(x86_iommu) ?
4870 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4871 }
4872 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4873 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4874 error_setg(errp, "eim=on requires support on the KVM side"
4875 "(X2APIC_API, first shipped in v4.7)");
4876 return false;
4877 }
4878 }
4879
4880 if (!s->scalable_mode && s->flts) {
4881 error_setg(errp, "x-flts is only available in scalable mode");
4882 return false;
4883 }
4884
4885 if (!s->flts && s->aw_bits != VTD_HOST_AW_39BIT &&
4886 s->aw_bits != VTD_HOST_AW_48BIT) {
4887 error_setg(errp, "%s: supported values for aw-bits are: %d, %d",
4888 s->scalable_mode ? "Scalable mode(flts=off)" : "Legacy mode",
4889 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4890 return false;
4891 }
4892
4893 if (s->flts && s->aw_bits != VTD_HOST_AW_48BIT) {
4894 error_setg(errp,
4895 "Scalable mode(flts=on): supported value for aw-bits is: %d",
4896 VTD_HOST_AW_48BIT);
4897 return false;
4898 }
4899
4900 if (s->scalable_mode && !s->dma_drain) {
4901 error_setg(errp, "Need to set dma_drain for scalable mode");
4902 return false;
4903 }
4904
4905 if (s->pasid && !s->scalable_mode) {
4906 error_setg(errp, "Need to set scalable mode for PASID");
4907 return false;
4908 }
4909
4910 return true;
4911 }
4912
vtd_machine_done_notify_one(Object * child,void * unused)4913 static int vtd_machine_done_notify_one(Object *child, void *unused)
4914 {
4915 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4916
4917 /*
4918 * We hard-coded here because vfio-pci is the only special case
4919 * here. Let's be more elegant in the future when we can, but so
4920 * far there seems to be no better way.
4921 */
4922 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4923 vtd_panic_require_caching_mode();
4924 }
4925
4926 return 0;
4927 }
4928
vtd_machine_done_hook(Notifier * notifier,void * unused)4929 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4930 {
4931 object_child_foreach_recursive(object_get_root(),
4932 vtd_machine_done_notify_one, NULL);
4933 }
4934
4935 static Notifier vtd_machine_done_notify = {
4936 .notify = vtd_machine_done_hook,
4937 };
4938
vtd_realize(DeviceState * dev,Error ** errp)4939 static void vtd_realize(DeviceState *dev, Error **errp)
4940 {
4941 MachineState *ms = MACHINE(qdev_get_machine());
4942 PCMachineState *pcms = PC_MACHINE(ms);
4943 X86MachineState *x86ms = X86_MACHINE(ms);
4944 PCIBus *bus = pcms->pcibus;
4945 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4946 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4947
4948 if (s->pasid && x86_iommu->dt_supported) {
4949 /*
4950 * PASID-based-Device-TLB Invalidate Descriptor is not
4951 * implemented and it requires support from vhost layer which
4952 * needs to be implemented in the future.
4953 */
4954 error_setg(errp, "PASID based device IOTLB is not supported");
4955 return;
4956 }
4957
4958 if (!vtd_decide_config(s, errp)) {
4959 return;
4960 }
4961
4962 QLIST_INIT(&s->vtd_as_with_notifiers);
4963 qemu_mutex_init(&s->iommu_lock);
4964 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4965 "intel_iommu", DMAR_REG_SIZE);
4966 memory_region_add_subregion(get_system_memory(),
4967 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4968
4969 /* Create the shared memory regions by all devices */
4970 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4971 UINT64_MAX);
4972 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4973 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4974 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4975 "vtd-sys-alias", get_system_memory(), 0,
4976 memory_region_size(get_system_memory()));
4977 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4978 &s->mr_sys_alias, 0);
4979 memory_region_add_subregion_overlap(&s->mr_nodmar,
4980 VTD_INTERRUPT_ADDR_FIRST,
4981 &s->mr_ir, 1);
4982 /* No corresponding destroy */
4983 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4984 g_free, g_free);
4985 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4986 g_free, g_free);
4987 s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4988 g_free, vtd_hiod_destroy);
4989 vtd_init(s);
4990 pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4991 /* Pseudo address space under root PCI bus. */
4992 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4993 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4994 }
4995
vtd_class_init(ObjectClass * klass,const void * data)4996 static void vtd_class_init(ObjectClass *klass, const void *data)
4997 {
4998 DeviceClass *dc = DEVICE_CLASS(klass);
4999 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
5000 ResettableClass *rc = RESETTABLE_CLASS(klass);
5001
5002 /*
5003 * Use 'exit' reset phase to make sure all DMA requests
5004 * have been quiesced during 'enter' or 'hold' phase
5005 */
5006 rc->phases.exit = vtd_reset_exit;
5007 dc->vmsd = &vtd_vmstate;
5008 device_class_set_props(dc, vtd_properties);
5009 dc->hotpluggable = false;
5010 x86_class->realize = vtd_realize;
5011 x86_class->int_remap = vtd_int_remap;
5012 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
5013 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
5014 }
5015
5016 static const TypeInfo vtd_info = {
5017 .name = TYPE_INTEL_IOMMU_DEVICE,
5018 .parent = TYPE_X86_IOMMU_DEVICE,
5019 .instance_size = sizeof(IntelIOMMUState),
5020 .class_init = vtd_class_init,
5021 };
5022
vtd_iommu_memory_region_class_init(ObjectClass * klass,const void * data)5023 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
5024 const void *data)
5025 {
5026 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
5027
5028 imrc->translate = vtd_iommu_translate;
5029 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
5030 imrc->replay = vtd_iommu_replay;
5031 }
5032
5033 static const TypeInfo vtd_iommu_memory_region_info = {
5034 .parent = TYPE_IOMMU_MEMORY_REGION,
5035 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
5036 .class_init = vtd_iommu_memory_region_class_init,
5037 };
5038
vtd_register_types(void)5039 static void vtd_register_types(void)
5040 {
5041 type_register_static(&vtd_info);
5042 type_register_static(&vtd_iommu_memory_region_info);
5043 }
5044
5045 type_init(vtd_register_types)
5046