xref: /openbmc/linux/drivers/base/power/main.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20 
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 
38 #include "../base.h"
39 #include "power.h"
40 
41 typedef int (*pm_callback_t)(struct device *);
42 
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 	list_for_each_entry_rcu(pos, head, member, \
45 			device_links_read_lock_held())
46 
47 /*
48  * The entries in the dpm_list list are in a depth first order, simply
49  * because children are guaranteed to be discovered after parents, and
50  * are inserted at the back of the list on discovery.
51  *
52  * Since device_pm_add() may be called with a device lock held,
53  * we must never try to acquire a device lock while holding
54  * dpm_list_mutex.
55  */
56 
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62 
63 struct suspend_stats suspend_stats;
64 static DEFINE_MUTEX(dpm_list_mtx);
65 static pm_message_t pm_transition;
66 
67 static int async_error;
68 
pm_verb(int event)69 static const char *pm_verb(int event)
70 {
71 	switch (event) {
72 	case PM_EVENT_SUSPEND:
73 		return "suspend";
74 	case PM_EVENT_RESUME:
75 		return "resume";
76 	case PM_EVENT_FREEZE:
77 		return "freeze";
78 	case PM_EVENT_QUIESCE:
79 		return "quiesce";
80 	case PM_EVENT_HIBERNATE:
81 		return "hibernate";
82 	case PM_EVENT_THAW:
83 		return "thaw";
84 	case PM_EVENT_RESTORE:
85 		return "restore";
86 	case PM_EVENT_RECOVER:
87 		return "recover";
88 	default:
89 		return "(unknown PM event)";
90 	}
91 }
92 
93 /**
94  * device_pm_sleep_init - Initialize system suspend-related device fields.
95  * @dev: Device object being initialized.
96  */
device_pm_sleep_init(struct device * dev)97 void device_pm_sleep_init(struct device *dev)
98 {
99 	dev->power.is_prepared = false;
100 	dev->power.is_suspended = false;
101 	dev->power.is_noirq_suspended = false;
102 	dev->power.is_late_suspended = false;
103 	init_completion(&dev->power.completion);
104 	complete_all(&dev->power.completion);
105 	dev->power.wakeup = NULL;
106 	INIT_LIST_HEAD(&dev->power.entry);
107 }
108 
109 /**
110  * device_pm_lock - Lock the list of active devices used by the PM core.
111  */
device_pm_lock(void)112 void device_pm_lock(void)
113 {
114 	mutex_lock(&dpm_list_mtx);
115 }
116 
117 /**
118  * device_pm_unlock - Unlock the list of active devices used by the PM core.
119  */
device_pm_unlock(void)120 void device_pm_unlock(void)
121 {
122 	mutex_unlock(&dpm_list_mtx);
123 }
124 
125 /**
126  * device_pm_add - Add a device to the PM core's list of active devices.
127  * @dev: Device to add to the list.
128  */
device_pm_add(struct device * dev)129 void device_pm_add(struct device *dev)
130 {
131 	/* Skip PM setup/initialization. */
132 	if (device_pm_not_required(dev))
133 		return;
134 
135 	pr_debug("Adding info for %s:%s\n",
136 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 	device_pm_check_callbacks(dev);
138 	mutex_lock(&dpm_list_mtx);
139 	if (dev->parent && dev->parent->power.is_prepared)
140 		dev_warn(dev, "parent %s should not be sleeping\n",
141 			dev_name(dev->parent));
142 	list_add_tail(&dev->power.entry, &dpm_list);
143 	dev->power.in_dpm_list = true;
144 	mutex_unlock(&dpm_list_mtx);
145 }
146 
147 /**
148  * device_pm_remove - Remove a device from the PM core's list of active devices.
149  * @dev: Device to be removed from the list.
150  */
device_pm_remove(struct device * dev)151 void device_pm_remove(struct device *dev)
152 {
153 	if (device_pm_not_required(dev))
154 		return;
155 
156 	pr_debug("Removing info for %s:%s\n",
157 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 	complete_all(&dev->power.completion);
159 	mutex_lock(&dpm_list_mtx);
160 	list_del_init(&dev->power.entry);
161 	dev->power.in_dpm_list = false;
162 	mutex_unlock(&dpm_list_mtx);
163 	device_wakeup_disable(dev);
164 	pm_runtime_remove(dev);
165 	device_pm_check_callbacks(dev);
166 }
167 
168 /**
169  * device_pm_move_before - Move device in the PM core's list of active devices.
170  * @deva: Device to move in dpm_list.
171  * @devb: Device @deva should come before.
172  */
device_pm_move_before(struct device * deva,struct device * devb)173 void device_pm_move_before(struct device *deva, struct device *devb)
174 {
175 	pr_debug("Moving %s:%s before %s:%s\n",
176 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 	/* Delete deva from dpm_list and reinsert before devb. */
179 	list_move_tail(&deva->power.entry, &devb->power.entry);
180 }
181 
182 /**
183  * device_pm_move_after - Move device in the PM core's list of active devices.
184  * @deva: Device to move in dpm_list.
185  * @devb: Device @deva should come after.
186  */
device_pm_move_after(struct device * deva,struct device * devb)187 void device_pm_move_after(struct device *deva, struct device *devb)
188 {
189 	pr_debug("Moving %s:%s after %s:%s\n",
190 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 	/* Delete deva from dpm_list and reinsert after devb. */
193 	list_move(&deva->power.entry, &devb->power.entry);
194 }
195 
196 /**
197  * device_pm_move_last - Move device to end of the PM core's list of devices.
198  * @dev: Device to move in dpm_list.
199  */
device_pm_move_last(struct device * dev)200 void device_pm_move_last(struct device *dev)
201 {
202 	pr_debug("Moving %s:%s to end of list\n",
203 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 	list_move_tail(&dev->power.entry, &dpm_list);
205 }
206 
initcall_debug_start(struct device * dev,void * cb)207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
208 {
209 	if (!pm_print_times_enabled)
210 		return 0;
211 
212 	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 		 task_pid_nr(current),
214 		 dev->parent ? dev_name(dev->parent) : "none");
215 	return ktime_get();
216 }
217 
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 				  void *cb, int error)
220 {
221 	ktime_t rettime;
222 
223 	if (!pm_print_times_enabled)
224 		return;
225 
226 	rettime = ktime_get();
227 	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
228 		 (unsigned long long)ktime_us_delta(rettime, calltime));
229 }
230 
231 /**
232  * dpm_wait - Wait for a PM operation to complete.
233  * @dev: Device to wait for.
234  * @async: If unset, wait only if the device's power.async_suspend flag is set.
235  */
dpm_wait(struct device * dev,bool async)236 static void dpm_wait(struct device *dev, bool async)
237 {
238 	if (!dev)
239 		return;
240 
241 	if (async || (pm_async_enabled && dev->power.async_suspend))
242 		wait_for_completion(&dev->power.completion);
243 }
244 
dpm_wait_fn(struct device * dev,void * async_ptr)245 static int dpm_wait_fn(struct device *dev, void *async_ptr)
246 {
247 	dpm_wait(dev, *((bool *)async_ptr));
248 	return 0;
249 }
250 
dpm_wait_for_children(struct device * dev,bool async)251 static void dpm_wait_for_children(struct device *dev, bool async)
252 {
253        device_for_each_child(dev, &async, dpm_wait_fn);
254 }
255 
dpm_wait_for_suppliers(struct device * dev,bool async)256 static void dpm_wait_for_suppliers(struct device *dev, bool async)
257 {
258 	struct device_link *link;
259 	int idx;
260 
261 	idx = device_links_read_lock();
262 
263 	/*
264 	 * If the supplier goes away right after we've checked the link to it,
265 	 * we'll wait for its completion to change the state, but that's fine,
266 	 * because the only things that will block as a result are the SRCU
267 	 * callbacks freeing the link objects for the links in the list we're
268 	 * walking.
269 	 */
270 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 			dpm_wait(link->supplier, async);
273 
274 	device_links_read_unlock(idx);
275 }
276 
dpm_wait_for_superior(struct device * dev,bool async)277 static bool dpm_wait_for_superior(struct device *dev, bool async)
278 {
279 	struct device *parent;
280 
281 	/*
282 	 * If the device is resumed asynchronously and the parent's callback
283 	 * deletes both the device and the parent itself, the parent object may
284 	 * be freed while this function is running, so avoid that by reference
285 	 * counting the parent once more unless the device has been deleted
286 	 * already (in which case return right away).
287 	 */
288 	mutex_lock(&dpm_list_mtx);
289 
290 	if (!device_pm_initialized(dev)) {
291 		mutex_unlock(&dpm_list_mtx);
292 		return false;
293 	}
294 
295 	parent = get_device(dev->parent);
296 
297 	mutex_unlock(&dpm_list_mtx);
298 
299 	dpm_wait(parent, async);
300 	put_device(parent);
301 
302 	dpm_wait_for_suppliers(dev, async);
303 
304 	/*
305 	 * If the parent's callback has deleted the device, attempting to resume
306 	 * it would be invalid, so avoid doing that then.
307 	 */
308 	return device_pm_initialized(dev);
309 }
310 
dpm_wait_for_consumers(struct device * dev,bool async)311 static void dpm_wait_for_consumers(struct device *dev, bool async)
312 {
313 	struct device_link *link;
314 	int idx;
315 
316 	idx = device_links_read_lock();
317 
318 	/*
319 	 * The status of a device link can only be changed from "dormant" by a
320 	 * probe, but that cannot happen during system suspend/resume.  In
321 	 * theory it can change to "dormant" at that time, but then it is
322 	 * reasonable to wait for the target device anyway (eg. if it goes
323 	 * away, it's better to wait for it to go away completely and then
324 	 * continue instead of trying to continue in parallel with its
325 	 * unregistration).
326 	 */
327 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 			dpm_wait(link->consumer, async);
330 
331 	device_links_read_unlock(idx);
332 }
333 
dpm_wait_for_subordinate(struct device * dev,bool async)334 static void dpm_wait_for_subordinate(struct device *dev, bool async)
335 {
336 	dpm_wait_for_children(dev, async);
337 	dpm_wait_for_consumers(dev, async);
338 }
339 
340 /**
341  * pm_op - Return the PM operation appropriate for given PM event.
342  * @ops: PM operations to choose from.
343  * @state: PM transition of the system being carried out.
344  */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346 {
347 	switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 	case PM_EVENT_SUSPEND:
350 		return ops->suspend;
351 	case PM_EVENT_RESUME:
352 		return ops->resume;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 	case PM_EVENT_FREEZE:
356 	case PM_EVENT_QUIESCE:
357 		return ops->freeze;
358 	case PM_EVENT_HIBERNATE:
359 		return ops->poweroff;
360 	case PM_EVENT_THAW:
361 	case PM_EVENT_RECOVER:
362 		return ops->thaw;
363 	case PM_EVENT_RESTORE:
364 		return ops->restore;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 	}
367 
368 	return NULL;
369 }
370 
371 /**
372  * pm_late_early_op - Return the PM operation appropriate for given PM event.
373  * @ops: PM operations to choose from.
374  * @state: PM transition of the system being carried out.
375  *
376  * Runtime PM is disabled for @dev while this function is being executed.
377  */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 				      pm_message_t state)
380 {
381 	switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 	case PM_EVENT_SUSPEND:
384 		return ops->suspend_late;
385 	case PM_EVENT_RESUME:
386 		return ops->resume_early;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 	case PM_EVENT_FREEZE:
390 	case PM_EVENT_QUIESCE:
391 		return ops->freeze_late;
392 	case PM_EVENT_HIBERNATE:
393 		return ops->poweroff_late;
394 	case PM_EVENT_THAW:
395 	case PM_EVENT_RECOVER:
396 		return ops->thaw_early;
397 	case PM_EVENT_RESTORE:
398 		return ops->restore_early;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 	}
401 
402 	return NULL;
403 }
404 
405 /**
406  * pm_noirq_op - Return the PM operation appropriate for given PM event.
407  * @ops: PM operations to choose from.
408  * @state: PM transition of the system being carried out.
409  *
410  * The driver of @dev will not receive interrupts while this function is being
411  * executed.
412  */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414 {
415 	switch (state.event) {
416 #ifdef CONFIG_SUSPEND
417 	case PM_EVENT_SUSPEND:
418 		return ops->suspend_noirq;
419 	case PM_EVENT_RESUME:
420 		return ops->resume_noirq;
421 #endif /* CONFIG_SUSPEND */
422 #ifdef CONFIG_HIBERNATE_CALLBACKS
423 	case PM_EVENT_FREEZE:
424 	case PM_EVENT_QUIESCE:
425 		return ops->freeze_noirq;
426 	case PM_EVENT_HIBERNATE:
427 		return ops->poweroff_noirq;
428 	case PM_EVENT_THAW:
429 	case PM_EVENT_RECOVER:
430 		return ops->thaw_noirq;
431 	case PM_EVENT_RESTORE:
432 		return ops->restore_noirq;
433 #endif /* CONFIG_HIBERNATE_CALLBACKS */
434 	}
435 
436 	return NULL;
437 }
438 
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440 {
441 	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 		", may wakeup" : "", dev->power.driver_flags);
444 }
445 
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 			int error)
448 {
449 	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 		error);
451 }
452 
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 			  const char *info)
455 {
456 	ktime_t calltime;
457 	u64 usecs64;
458 	int usecs;
459 
460 	calltime = ktime_get();
461 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 	do_div(usecs64, NSEC_PER_USEC);
463 	usecs = usecs64;
464 	if (usecs == 0)
465 		usecs = 1;
466 
467 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 		  info ?: "", info ? " " : "", pm_verb(state.event),
469 		  error ? "aborted" : "complete",
470 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471 }
472 
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)473 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 			    pm_message_t state, const char *info)
475 {
476 	ktime_t calltime;
477 	int error;
478 
479 	if (!cb)
480 		return 0;
481 
482 	calltime = initcall_debug_start(dev, cb);
483 
484 	pm_dev_dbg(dev, state, info);
485 	trace_device_pm_callback_start(dev, info, state.event);
486 	error = cb(dev);
487 	trace_device_pm_callback_end(dev, error);
488 	suspend_report_result(dev, cb, error);
489 
490 	initcall_debug_report(dev, calltime, cb, error);
491 
492 	return error;
493 }
494 
495 #ifdef CONFIG_DPM_WATCHDOG
496 struct dpm_watchdog {
497 	struct device		*dev;
498 	struct task_struct	*tsk;
499 	struct timer_list	timer;
500 };
501 
502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
503 	struct dpm_watchdog wd
504 
505 /**
506  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
507  * @t: The timer that PM watchdog depends on.
508  *
509  * Called when a driver has timed out suspending or resuming.
510  * There's not much we can do here to recover so panic() to
511  * capture a crash-dump in pstore.
512  */
dpm_watchdog_handler(struct timer_list * t)513 static void dpm_watchdog_handler(struct timer_list *t)
514 {
515 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
516 
517 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
518 	show_stack(wd->tsk, NULL, KERN_EMERG);
519 	panic("%s %s: unrecoverable failure\n",
520 		dev_driver_string(wd->dev), dev_name(wd->dev));
521 }
522 
523 /**
524  * dpm_watchdog_set - Enable pm watchdog for given device.
525  * @wd: Watchdog. Must be allocated on the stack.
526  * @dev: Device to handle.
527  */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
529 {
530 	struct timer_list *timer = &wd->timer;
531 
532 	wd->dev = dev;
533 	wd->tsk = current;
534 
535 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
536 	/* use same timeout value for both suspend and resume */
537 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
538 	add_timer(timer);
539 }
540 
541 /**
542  * dpm_watchdog_clear - Disable suspend/resume watchdog.
543  * @wd: Watchdog to disable.
544  */
dpm_watchdog_clear(struct dpm_watchdog * wd)545 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
546 {
547 	struct timer_list *timer = &wd->timer;
548 
549 	del_timer_sync(timer);
550 	destroy_timer_on_stack(timer);
551 }
552 #else
553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
554 #define dpm_watchdog_set(x, y)
555 #define dpm_watchdog_clear(x)
556 #endif
557 
558 /*------------------------- Resume routines -------------------------*/
559 
560 /**
561  * dev_pm_skip_resume - System-wide device resume optimization check.
562  * @dev: Target device.
563  *
564  * Return:
565  * - %false if the transition under way is RESTORE.
566  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
567  * - The logical negation of %power.must_resume otherwise (that is, when the
568  *   transition under way is RESUME).
569  */
dev_pm_skip_resume(struct device * dev)570 bool dev_pm_skip_resume(struct device *dev)
571 {
572 	if (pm_transition.event == PM_EVENT_RESTORE)
573 		return false;
574 
575 	if (pm_transition.event == PM_EVENT_THAW)
576 		return dev_pm_skip_suspend(dev);
577 
578 	return !dev->power.must_resume;
579 }
580 
581 /**
582  * __device_resume_noirq - Execute a "noirq resume" callback for given device.
583  * @dev: Device to handle.
584  * @state: PM transition of the system being carried out.
585  * @async: If true, the device is being resumed asynchronously.
586  *
587  * The driver of @dev will not receive interrupts while this function is being
588  * executed.
589  */
__device_resume_noirq(struct device * dev,pm_message_t state,bool async)590 static void __device_resume_noirq(struct device *dev, pm_message_t state, bool async)
591 {
592 	pm_callback_t callback = NULL;
593 	const char *info = NULL;
594 	bool skip_resume;
595 	int error = 0;
596 
597 	TRACE_DEVICE(dev);
598 	TRACE_RESUME(0);
599 
600 	if (dev->power.syscore || dev->power.direct_complete)
601 		goto Out;
602 
603 	if (!dev->power.is_noirq_suspended)
604 		goto Out;
605 
606 	if (!dpm_wait_for_superior(dev, async))
607 		goto Out;
608 
609 	skip_resume = dev_pm_skip_resume(dev);
610 	/*
611 	 * If the driver callback is skipped below or by the middle layer
612 	 * callback and device_resume_early() also skips the driver callback for
613 	 * this device later, it needs to appear as "suspended" to PM-runtime,
614 	 * so change its status accordingly.
615 	 *
616 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
617 	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
618 	 * to avoid confusing drivers that don't use it.
619 	 */
620 	if (skip_resume)
621 		pm_runtime_set_suspended(dev);
622 	else if (dev_pm_skip_suspend(dev))
623 		pm_runtime_set_active(dev);
624 
625 	if (dev->pm_domain) {
626 		info = "noirq power domain ";
627 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
628 	} else if (dev->type && dev->type->pm) {
629 		info = "noirq type ";
630 		callback = pm_noirq_op(dev->type->pm, state);
631 	} else if (dev->class && dev->class->pm) {
632 		info = "noirq class ";
633 		callback = pm_noirq_op(dev->class->pm, state);
634 	} else if (dev->bus && dev->bus->pm) {
635 		info = "noirq bus ";
636 		callback = pm_noirq_op(dev->bus->pm, state);
637 	}
638 	if (callback)
639 		goto Run;
640 
641 	if (skip_resume)
642 		goto Skip;
643 
644 	if (dev->driver && dev->driver->pm) {
645 		info = "noirq driver ";
646 		callback = pm_noirq_op(dev->driver->pm, state);
647 	}
648 
649 Run:
650 	error = dpm_run_callback(callback, dev, state, info);
651 
652 Skip:
653 	dev->power.is_noirq_suspended = false;
654 
655 Out:
656 	complete_all(&dev->power.completion);
657 	TRACE_RESUME(error);
658 
659 	if (error) {
660 		suspend_stats.failed_resume_noirq++;
661 		dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
662 		dpm_save_failed_dev(dev_name(dev));
663 		pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
664 	}
665 }
666 
is_async(struct device * dev)667 static bool is_async(struct device *dev)
668 {
669 	return dev->power.async_suspend && pm_async_enabled
670 		&& !pm_trace_is_enabled();
671 }
672 
dpm_async_fn(struct device * dev,async_func_t func)673 static bool dpm_async_fn(struct device *dev, async_func_t func)
674 {
675 	reinit_completion(&dev->power.completion);
676 
677 	if (!is_async(dev))
678 		return false;
679 
680 	get_device(dev);
681 
682 	if (async_schedule_dev_nocall(func, dev))
683 		return true;
684 
685 	put_device(dev);
686 
687 	return false;
688 }
689 
async_resume_noirq(void * data,async_cookie_t cookie)690 static void async_resume_noirq(void *data, async_cookie_t cookie)
691 {
692 	struct device *dev = data;
693 
694 	__device_resume_noirq(dev, pm_transition, true);
695 	put_device(dev);
696 }
697 
device_resume_noirq(struct device * dev)698 static void device_resume_noirq(struct device *dev)
699 {
700 	if (dpm_async_fn(dev, async_resume_noirq))
701 		return;
702 
703 	__device_resume_noirq(dev, pm_transition, false);
704 }
705 
dpm_noirq_resume_devices(pm_message_t state)706 static void dpm_noirq_resume_devices(pm_message_t state)
707 {
708 	struct device *dev;
709 	ktime_t starttime = ktime_get();
710 
711 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
712 	mutex_lock(&dpm_list_mtx);
713 	pm_transition = state;
714 
715 	while (!list_empty(&dpm_noirq_list)) {
716 		dev = to_device(dpm_noirq_list.next);
717 		get_device(dev);
718 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
719 
720 		mutex_unlock(&dpm_list_mtx);
721 
722 		device_resume_noirq(dev);
723 
724 		put_device(dev);
725 
726 		mutex_lock(&dpm_list_mtx);
727 	}
728 	mutex_unlock(&dpm_list_mtx);
729 	async_synchronize_full();
730 	dpm_show_time(starttime, state, 0, "noirq");
731 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
732 }
733 
734 /**
735  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
736  * @state: PM transition of the system being carried out.
737  *
738  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
739  * allow device drivers' interrupt handlers to be called.
740  */
dpm_resume_noirq(pm_message_t state)741 void dpm_resume_noirq(pm_message_t state)
742 {
743 	dpm_noirq_resume_devices(state);
744 
745 	resume_device_irqs();
746 	device_wakeup_disarm_wake_irqs();
747 }
748 
749 /**
750  * __device_resume_early - Execute an "early resume" callback for given device.
751  * @dev: Device to handle.
752  * @state: PM transition of the system being carried out.
753  * @async: If true, the device is being resumed asynchronously.
754  *
755  * Runtime PM is disabled for @dev while this function is being executed.
756  */
__device_resume_early(struct device * dev,pm_message_t state,bool async)757 static void __device_resume_early(struct device *dev, pm_message_t state, bool async)
758 {
759 	pm_callback_t callback = NULL;
760 	const char *info = NULL;
761 	int error = 0;
762 
763 	TRACE_DEVICE(dev);
764 	TRACE_RESUME(0);
765 
766 	if (dev->power.syscore || dev->power.direct_complete)
767 		goto Out;
768 
769 	if (!dev->power.is_late_suspended)
770 		goto Out;
771 
772 	if (!dpm_wait_for_superior(dev, async))
773 		goto Out;
774 
775 	if (dev->pm_domain) {
776 		info = "early power domain ";
777 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
778 	} else if (dev->type && dev->type->pm) {
779 		info = "early type ";
780 		callback = pm_late_early_op(dev->type->pm, state);
781 	} else if (dev->class && dev->class->pm) {
782 		info = "early class ";
783 		callback = pm_late_early_op(dev->class->pm, state);
784 	} else if (dev->bus && dev->bus->pm) {
785 		info = "early bus ";
786 		callback = pm_late_early_op(dev->bus->pm, state);
787 	}
788 	if (callback)
789 		goto Run;
790 
791 	if (dev_pm_skip_resume(dev))
792 		goto Skip;
793 
794 	if (dev->driver && dev->driver->pm) {
795 		info = "early driver ";
796 		callback = pm_late_early_op(dev->driver->pm, state);
797 	}
798 
799 Run:
800 	error = dpm_run_callback(callback, dev, state, info);
801 
802 Skip:
803 	dev->power.is_late_suspended = false;
804 
805 Out:
806 	TRACE_RESUME(error);
807 
808 	pm_runtime_enable(dev);
809 	complete_all(&dev->power.completion);
810 
811 	if (error) {
812 		suspend_stats.failed_resume_early++;
813 		dpm_save_failed_step(SUSPEND_RESUME_EARLY);
814 		dpm_save_failed_dev(dev_name(dev));
815 		pm_dev_err(dev, state, async ? " async early" : " early", error);
816 	}
817 }
818 
async_resume_early(void * data,async_cookie_t cookie)819 static void async_resume_early(void *data, async_cookie_t cookie)
820 {
821 	struct device *dev = data;
822 
823 	__device_resume_early(dev, pm_transition, true);
824 	put_device(dev);
825 }
826 
device_resume_early(struct device * dev)827 static void device_resume_early(struct device *dev)
828 {
829 	if (dpm_async_fn(dev, async_resume_early))
830 		return;
831 
832 	__device_resume_early(dev, pm_transition, false);
833 }
834 
835 /**
836  * dpm_resume_early - Execute "early resume" callbacks for all devices.
837  * @state: PM transition of the system being carried out.
838  */
dpm_resume_early(pm_message_t state)839 void dpm_resume_early(pm_message_t state)
840 {
841 	struct device *dev;
842 	ktime_t starttime = ktime_get();
843 
844 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
845 	mutex_lock(&dpm_list_mtx);
846 	pm_transition = state;
847 
848 	while (!list_empty(&dpm_late_early_list)) {
849 		dev = to_device(dpm_late_early_list.next);
850 		get_device(dev);
851 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
852 
853 		mutex_unlock(&dpm_list_mtx);
854 
855 		device_resume_early(dev);
856 
857 		put_device(dev);
858 
859 		mutex_lock(&dpm_list_mtx);
860 	}
861 	mutex_unlock(&dpm_list_mtx);
862 	async_synchronize_full();
863 	dpm_show_time(starttime, state, 0, "early");
864 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
865 }
866 
867 /**
868  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
869  * @state: PM transition of the system being carried out.
870  */
dpm_resume_start(pm_message_t state)871 void dpm_resume_start(pm_message_t state)
872 {
873 	dpm_resume_noirq(state);
874 	dpm_resume_early(state);
875 }
876 EXPORT_SYMBOL_GPL(dpm_resume_start);
877 
878 /**
879  * __device_resume - Execute "resume" callbacks for given device.
880  * @dev: Device to handle.
881  * @state: PM transition of the system being carried out.
882  * @async: If true, the device is being resumed asynchronously.
883  */
__device_resume(struct device * dev,pm_message_t state,bool async)884 static void __device_resume(struct device *dev, pm_message_t state, bool async)
885 {
886 	pm_callback_t callback = NULL;
887 	const char *info = NULL;
888 	int error = 0;
889 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
890 
891 	TRACE_DEVICE(dev);
892 	TRACE_RESUME(0);
893 
894 	if (dev->power.syscore)
895 		goto Complete;
896 
897 	if (!dev->power.is_suspended)
898 		goto Complete;
899 
900 	if (dev->power.direct_complete) {
901 		/* Match the pm_runtime_disable() in __device_suspend(). */
902 		pm_runtime_enable(dev);
903 		goto Complete;
904 	}
905 
906 	if (!dpm_wait_for_superior(dev, async))
907 		goto Complete;
908 
909 	dpm_watchdog_set(&wd, dev);
910 	device_lock(dev);
911 
912 	/*
913 	 * This is a fib.  But we'll allow new children to be added below
914 	 * a resumed device, even if the device hasn't been completed yet.
915 	 */
916 	dev->power.is_prepared = false;
917 
918 	if (dev->pm_domain) {
919 		info = "power domain ";
920 		callback = pm_op(&dev->pm_domain->ops, state);
921 		goto Driver;
922 	}
923 
924 	if (dev->type && dev->type->pm) {
925 		info = "type ";
926 		callback = pm_op(dev->type->pm, state);
927 		goto Driver;
928 	}
929 
930 	if (dev->class && dev->class->pm) {
931 		info = "class ";
932 		callback = pm_op(dev->class->pm, state);
933 		goto Driver;
934 	}
935 
936 	if (dev->bus) {
937 		if (dev->bus->pm) {
938 			info = "bus ";
939 			callback = pm_op(dev->bus->pm, state);
940 		} else if (dev->bus->resume) {
941 			info = "legacy bus ";
942 			callback = dev->bus->resume;
943 			goto End;
944 		}
945 	}
946 
947  Driver:
948 	if (!callback && dev->driver && dev->driver->pm) {
949 		info = "driver ";
950 		callback = pm_op(dev->driver->pm, state);
951 	}
952 
953  End:
954 	error = dpm_run_callback(callback, dev, state, info);
955 	dev->power.is_suspended = false;
956 
957 	device_unlock(dev);
958 	dpm_watchdog_clear(&wd);
959 
960  Complete:
961 	complete_all(&dev->power.completion);
962 
963 	TRACE_RESUME(error);
964 
965 	if (error) {
966 		suspend_stats.failed_resume++;
967 		dpm_save_failed_step(SUSPEND_RESUME);
968 		dpm_save_failed_dev(dev_name(dev));
969 		pm_dev_err(dev, state, async ? " async" : "", error);
970 	}
971 }
972 
async_resume(void * data,async_cookie_t cookie)973 static void async_resume(void *data, async_cookie_t cookie)
974 {
975 	struct device *dev = data;
976 
977 	__device_resume(dev, pm_transition, true);
978 	put_device(dev);
979 }
980 
device_resume(struct device * dev)981 static void device_resume(struct device *dev)
982 {
983 	if (dpm_async_fn(dev, async_resume))
984 		return;
985 
986 	__device_resume(dev, pm_transition, false);
987 }
988 
989 /**
990  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
991  * @state: PM transition of the system being carried out.
992  *
993  * Execute the appropriate "resume" callback for all devices whose status
994  * indicates that they are suspended.
995  */
dpm_resume(pm_message_t state)996 void dpm_resume(pm_message_t state)
997 {
998 	struct device *dev;
999 	ktime_t starttime = ktime_get();
1000 
1001 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1002 	might_sleep();
1003 
1004 	mutex_lock(&dpm_list_mtx);
1005 	pm_transition = state;
1006 	async_error = 0;
1007 
1008 	while (!list_empty(&dpm_suspended_list)) {
1009 		dev = to_device(dpm_suspended_list.next);
1010 
1011 		get_device(dev);
1012 
1013 		mutex_unlock(&dpm_list_mtx);
1014 
1015 		device_resume(dev);
1016 
1017 		mutex_lock(&dpm_list_mtx);
1018 
1019 		if (!list_empty(&dev->power.entry))
1020 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1021 
1022 		mutex_unlock(&dpm_list_mtx);
1023 
1024 		put_device(dev);
1025 
1026 		mutex_lock(&dpm_list_mtx);
1027 	}
1028 	mutex_unlock(&dpm_list_mtx);
1029 	async_synchronize_full();
1030 	dpm_show_time(starttime, state, 0, NULL);
1031 
1032 	cpufreq_resume();
1033 	devfreq_resume();
1034 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1035 }
1036 
1037 /**
1038  * device_complete - Complete a PM transition for given device.
1039  * @dev: Device to handle.
1040  * @state: PM transition of the system being carried out.
1041  */
device_complete(struct device * dev,pm_message_t state)1042 static void device_complete(struct device *dev, pm_message_t state)
1043 {
1044 	void (*callback)(struct device *) = NULL;
1045 	const char *info = NULL;
1046 
1047 	if (dev->power.syscore)
1048 		goto out;
1049 
1050 	device_lock(dev);
1051 
1052 	if (dev->pm_domain) {
1053 		info = "completing power domain ";
1054 		callback = dev->pm_domain->ops.complete;
1055 	} else if (dev->type && dev->type->pm) {
1056 		info = "completing type ";
1057 		callback = dev->type->pm->complete;
1058 	} else if (dev->class && dev->class->pm) {
1059 		info = "completing class ";
1060 		callback = dev->class->pm->complete;
1061 	} else if (dev->bus && dev->bus->pm) {
1062 		info = "completing bus ";
1063 		callback = dev->bus->pm->complete;
1064 	}
1065 
1066 	if (!callback && dev->driver && dev->driver->pm) {
1067 		info = "completing driver ";
1068 		callback = dev->driver->pm->complete;
1069 	}
1070 
1071 	if (callback) {
1072 		pm_dev_dbg(dev, state, info);
1073 		callback(dev);
1074 	}
1075 
1076 	device_unlock(dev);
1077 
1078 out:
1079 	pm_runtime_put(dev);
1080 }
1081 
1082 /**
1083  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1084  * @state: PM transition of the system being carried out.
1085  *
1086  * Execute the ->complete() callbacks for all devices whose PM status is not
1087  * DPM_ON (this allows new devices to be registered).
1088  */
dpm_complete(pm_message_t state)1089 void dpm_complete(pm_message_t state)
1090 {
1091 	struct list_head list;
1092 
1093 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1094 	might_sleep();
1095 
1096 	INIT_LIST_HEAD(&list);
1097 	mutex_lock(&dpm_list_mtx);
1098 	while (!list_empty(&dpm_prepared_list)) {
1099 		struct device *dev = to_device(dpm_prepared_list.prev);
1100 
1101 		get_device(dev);
1102 		dev->power.is_prepared = false;
1103 		list_move(&dev->power.entry, &list);
1104 
1105 		mutex_unlock(&dpm_list_mtx);
1106 
1107 		trace_device_pm_callback_start(dev, "", state.event);
1108 		device_complete(dev, state);
1109 		trace_device_pm_callback_end(dev, 0);
1110 
1111 		put_device(dev);
1112 
1113 		mutex_lock(&dpm_list_mtx);
1114 	}
1115 	list_splice(&list, &dpm_list);
1116 	mutex_unlock(&dpm_list_mtx);
1117 
1118 	/* Allow device probing and trigger re-probing of deferred devices */
1119 	device_unblock_probing();
1120 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1121 }
1122 
1123 /**
1124  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1125  * @state: PM transition of the system being carried out.
1126  *
1127  * Execute "resume" callbacks for all devices and complete the PM transition of
1128  * the system.
1129  */
dpm_resume_end(pm_message_t state)1130 void dpm_resume_end(pm_message_t state)
1131 {
1132 	dpm_resume(state);
1133 	dpm_complete(state);
1134 }
1135 EXPORT_SYMBOL_GPL(dpm_resume_end);
1136 
1137 
1138 /*------------------------- Suspend routines -------------------------*/
1139 
1140 /**
1141  * resume_event - Return a "resume" message for given "suspend" sleep state.
1142  * @sleep_state: PM message representing a sleep state.
1143  *
1144  * Return a PM message representing the resume event corresponding to given
1145  * sleep state.
1146  */
resume_event(pm_message_t sleep_state)1147 static pm_message_t resume_event(pm_message_t sleep_state)
1148 {
1149 	switch (sleep_state.event) {
1150 	case PM_EVENT_SUSPEND:
1151 		return PMSG_RESUME;
1152 	case PM_EVENT_FREEZE:
1153 	case PM_EVENT_QUIESCE:
1154 		return PMSG_RECOVER;
1155 	case PM_EVENT_HIBERNATE:
1156 		return PMSG_RESTORE;
1157 	}
1158 	return PMSG_ON;
1159 }
1160 
dpm_superior_set_must_resume(struct device * dev)1161 static void dpm_superior_set_must_resume(struct device *dev)
1162 {
1163 	struct device_link *link;
1164 	int idx;
1165 
1166 	if (dev->parent)
1167 		dev->parent->power.must_resume = true;
1168 
1169 	idx = device_links_read_lock();
1170 
1171 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1172 		link->supplier->power.must_resume = true;
1173 
1174 	device_links_read_unlock(idx);
1175 }
1176 
1177 /**
1178  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1179  * @dev: Device to handle.
1180  * @state: PM transition of the system being carried out.
1181  * @async: If true, the device is being suspended asynchronously.
1182  *
1183  * The driver of @dev will not receive interrupts while this function is being
1184  * executed.
1185  */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1186 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1187 {
1188 	pm_callback_t callback = NULL;
1189 	const char *info = NULL;
1190 	int error = 0;
1191 
1192 	TRACE_DEVICE(dev);
1193 	TRACE_SUSPEND(0);
1194 
1195 	dpm_wait_for_subordinate(dev, async);
1196 
1197 	if (async_error)
1198 		goto Complete;
1199 
1200 	if (dev->power.syscore || dev->power.direct_complete)
1201 		goto Complete;
1202 
1203 	if (dev->pm_domain) {
1204 		info = "noirq power domain ";
1205 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1206 	} else if (dev->type && dev->type->pm) {
1207 		info = "noirq type ";
1208 		callback = pm_noirq_op(dev->type->pm, state);
1209 	} else if (dev->class && dev->class->pm) {
1210 		info = "noirq class ";
1211 		callback = pm_noirq_op(dev->class->pm, state);
1212 	} else if (dev->bus && dev->bus->pm) {
1213 		info = "noirq bus ";
1214 		callback = pm_noirq_op(dev->bus->pm, state);
1215 	}
1216 	if (callback)
1217 		goto Run;
1218 
1219 	if (dev_pm_skip_suspend(dev))
1220 		goto Skip;
1221 
1222 	if (dev->driver && dev->driver->pm) {
1223 		info = "noirq driver ";
1224 		callback = pm_noirq_op(dev->driver->pm, state);
1225 	}
1226 
1227 Run:
1228 	error = dpm_run_callback(callback, dev, state, info);
1229 	if (error) {
1230 		async_error = error;
1231 		goto Complete;
1232 	}
1233 
1234 Skip:
1235 	dev->power.is_noirq_suspended = true;
1236 
1237 	/*
1238 	 * Devices must be resumed unless they are explicitly allowed to be left
1239 	 * in suspend, but even in that case skipping the resume of devices that
1240 	 * were in use right before the system suspend (as indicated by their
1241 	 * runtime PM usage counters and child counters) would be suboptimal.
1242 	 */
1243 	if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1244 	      dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev))
1245 		dev->power.must_resume = true;
1246 
1247 	if (dev->power.must_resume)
1248 		dpm_superior_set_must_resume(dev);
1249 
1250 Complete:
1251 	complete_all(&dev->power.completion);
1252 	TRACE_SUSPEND(error);
1253 	return error;
1254 }
1255 
async_suspend_noirq(void * data,async_cookie_t cookie)1256 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1257 {
1258 	struct device *dev = data;
1259 	int error;
1260 
1261 	error = __device_suspend_noirq(dev, pm_transition, true);
1262 	if (error) {
1263 		dpm_save_failed_dev(dev_name(dev));
1264 		pm_dev_err(dev, pm_transition, " async", error);
1265 	}
1266 
1267 	put_device(dev);
1268 }
1269 
device_suspend_noirq(struct device * dev)1270 static int device_suspend_noirq(struct device *dev)
1271 {
1272 	if (dpm_async_fn(dev, async_suspend_noirq))
1273 		return 0;
1274 
1275 	return __device_suspend_noirq(dev, pm_transition, false);
1276 }
1277 
dpm_noirq_suspend_devices(pm_message_t state)1278 static int dpm_noirq_suspend_devices(pm_message_t state)
1279 {
1280 	ktime_t starttime = ktime_get();
1281 	int error = 0;
1282 
1283 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1284 	mutex_lock(&dpm_list_mtx);
1285 	pm_transition = state;
1286 	async_error = 0;
1287 
1288 	while (!list_empty(&dpm_late_early_list)) {
1289 		struct device *dev = to_device(dpm_late_early_list.prev);
1290 
1291 		get_device(dev);
1292 		mutex_unlock(&dpm_list_mtx);
1293 
1294 		error = device_suspend_noirq(dev);
1295 
1296 		mutex_lock(&dpm_list_mtx);
1297 
1298 		if (error) {
1299 			pm_dev_err(dev, state, " noirq", error);
1300 			dpm_save_failed_dev(dev_name(dev));
1301 		} else if (!list_empty(&dev->power.entry)) {
1302 			list_move(&dev->power.entry, &dpm_noirq_list);
1303 		}
1304 
1305 		mutex_unlock(&dpm_list_mtx);
1306 
1307 		put_device(dev);
1308 
1309 		mutex_lock(&dpm_list_mtx);
1310 
1311 		if (error || async_error)
1312 			break;
1313 	}
1314 	mutex_unlock(&dpm_list_mtx);
1315 	async_synchronize_full();
1316 	if (!error)
1317 		error = async_error;
1318 
1319 	if (error) {
1320 		suspend_stats.failed_suspend_noirq++;
1321 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1322 	}
1323 	dpm_show_time(starttime, state, error, "noirq");
1324 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1325 	return error;
1326 }
1327 
1328 /**
1329  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1330  * @state: PM transition of the system being carried out.
1331  *
1332  * Prevent device drivers' interrupt handlers from being called and invoke
1333  * "noirq" suspend callbacks for all non-sysdev devices.
1334  */
dpm_suspend_noirq(pm_message_t state)1335 int dpm_suspend_noirq(pm_message_t state)
1336 {
1337 	int ret;
1338 
1339 	device_wakeup_arm_wake_irqs();
1340 	suspend_device_irqs();
1341 
1342 	ret = dpm_noirq_suspend_devices(state);
1343 	if (ret)
1344 		dpm_resume_noirq(resume_event(state));
1345 
1346 	return ret;
1347 }
1348 
dpm_propagate_wakeup_to_parent(struct device * dev)1349 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1350 {
1351 	struct device *parent = dev->parent;
1352 
1353 	if (!parent)
1354 		return;
1355 
1356 	spin_lock_irq(&parent->power.lock);
1357 
1358 	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1359 		parent->power.wakeup_path = true;
1360 
1361 	spin_unlock_irq(&parent->power.lock);
1362 }
1363 
1364 /**
1365  * __device_suspend_late - Execute a "late suspend" callback for given device.
1366  * @dev: Device to handle.
1367  * @state: PM transition of the system being carried out.
1368  * @async: If true, the device is being suspended asynchronously.
1369  *
1370  * Runtime PM is disabled for @dev while this function is being executed.
1371  */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1372 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1373 {
1374 	pm_callback_t callback = NULL;
1375 	const char *info = NULL;
1376 	int error = 0;
1377 
1378 	TRACE_DEVICE(dev);
1379 	TRACE_SUSPEND(0);
1380 
1381 	__pm_runtime_disable(dev, false);
1382 
1383 	dpm_wait_for_subordinate(dev, async);
1384 
1385 	if (async_error)
1386 		goto Complete;
1387 
1388 	if (pm_wakeup_pending()) {
1389 		async_error = -EBUSY;
1390 		goto Complete;
1391 	}
1392 
1393 	if (dev->power.syscore || dev->power.direct_complete)
1394 		goto Complete;
1395 
1396 	if (dev->pm_domain) {
1397 		info = "late power domain ";
1398 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1399 	} else if (dev->type && dev->type->pm) {
1400 		info = "late type ";
1401 		callback = pm_late_early_op(dev->type->pm, state);
1402 	} else if (dev->class && dev->class->pm) {
1403 		info = "late class ";
1404 		callback = pm_late_early_op(dev->class->pm, state);
1405 	} else if (dev->bus && dev->bus->pm) {
1406 		info = "late bus ";
1407 		callback = pm_late_early_op(dev->bus->pm, state);
1408 	}
1409 	if (callback)
1410 		goto Run;
1411 
1412 	if (dev_pm_skip_suspend(dev))
1413 		goto Skip;
1414 
1415 	if (dev->driver && dev->driver->pm) {
1416 		info = "late driver ";
1417 		callback = pm_late_early_op(dev->driver->pm, state);
1418 	}
1419 
1420 Run:
1421 	error = dpm_run_callback(callback, dev, state, info);
1422 	if (error) {
1423 		async_error = error;
1424 		goto Complete;
1425 	}
1426 	dpm_propagate_wakeup_to_parent(dev);
1427 
1428 Skip:
1429 	dev->power.is_late_suspended = true;
1430 
1431 Complete:
1432 	TRACE_SUSPEND(error);
1433 	complete_all(&dev->power.completion);
1434 	return error;
1435 }
1436 
async_suspend_late(void * data,async_cookie_t cookie)1437 static void async_suspend_late(void *data, async_cookie_t cookie)
1438 {
1439 	struct device *dev = data;
1440 	int error;
1441 
1442 	error = __device_suspend_late(dev, pm_transition, true);
1443 	if (error) {
1444 		dpm_save_failed_dev(dev_name(dev));
1445 		pm_dev_err(dev, pm_transition, " async", error);
1446 	}
1447 	put_device(dev);
1448 }
1449 
device_suspend_late(struct device * dev)1450 static int device_suspend_late(struct device *dev)
1451 {
1452 	if (dpm_async_fn(dev, async_suspend_late))
1453 		return 0;
1454 
1455 	return __device_suspend_late(dev, pm_transition, false);
1456 }
1457 
1458 /**
1459  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1460  * @state: PM transition of the system being carried out.
1461  */
dpm_suspend_late(pm_message_t state)1462 int dpm_suspend_late(pm_message_t state)
1463 {
1464 	ktime_t starttime = ktime_get();
1465 	int error = 0;
1466 
1467 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1468 	wake_up_all_idle_cpus();
1469 	mutex_lock(&dpm_list_mtx);
1470 	pm_transition = state;
1471 	async_error = 0;
1472 
1473 	while (!list_empty(&dpm_suspended_list)) {
1474 		struct device *dev = to_device(dpm_suspended_list.prev);
1475 
1476 		get_device(dev);
1477 
1478 		mutex_unlock(&dpm_list_mtx);
1479 
1480 		error = device_suspend_late(dev);
1481 
1482 		mutex_lock(&dpm_list_mtx);
1483 
1484 		if (!list_empty(&dev->power.entry))
1485 			list_move(&dev->power.entry, &dpm_late_early_list);
1486 
1487 		if (error) {
1488 			pm_dev_err(dev, state, " late", error);
1489 			dpm_save_failed_dev(dev_name(dev));
1490 		}
1491 
1492 		mutex_unlock(&dpm_list_mtx);
1493 
1494 		put_device(dev);
1495 
1496 		mutex_lock(&dpm_list_mtx);
1497 
1498 		if (error || async_error)
1499 			break;
1500 	}
1501 	mutex_unlock(&dpm_list_mtx);
1502 	async_synchronize_full();
1503 	if (!error)
1504 		error = async_error;
1505 	if (error) {
1506 		suspend_stats.failed_suspend_late++;
1507 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1508 		dpm_resume_early(resume_event(state));
1509 	}
1510 	dpm_show_time(starttime, state, error, "late");
1511 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1512 	return error;
1513 }
1514 
1515 /**
1516  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1517  * @state: PM transition of the system being carried out.
1518  */
dpm_suspend_end(pm_message_t state)1519 int dpm_suspend_end(pm_message_t state)
1520 {
1521 	ktime_t starttime = ktime_get();
1522 	int error;
1523 
1524 	error = dpm_suspend_late(state);
1525 	if (error)
1526 		goto out;
1527 
1528 	error = dpm_suspend_noirq(state);
1529 	if (error)
1530 		dpm_resume_early(resume_event(state));
1531 
1532 out:
1533 	dpm_show_time(starttime, state, error, "end");
1534 	return error;
1535 }
1536 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1537 
1538 /**
1539  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1540  * @dev: Device to suspend.
1541  * @state: PM transition of the system being carried out.
1542  * @cb: Suspend callback to execute.
1543  * @info: string description of caller.
1544  */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1545 static int legacy_suspend(struct device *dev, pm_message_t state,
1546 			  int (*cb)(struct device *dev, pm_message_t state),
1547 			  const char *info)
1548 {
1549 	int error;
1550 	ktime_t calltime;
1551 
1552 	calltime = initcall_debug_start(dev, cb);
1553 
1554 	trace_device_pm_callback_start(dev, info, state.event);
1555 	error = cb(dev, state);
1556 	trace_device_pm_callback_end(dev, error);
1557 	suspend_report_result(dev, cb, error);
1558 
1559 	initcall_debug_report(dev, calltime, cb, error);
1560 
1561 	return error;
1562 }
1563 
dpm_clear_superiors_direct_complete(struct device * dev)1564 static void dpm_clear_superiors_direct_complete(struct device *dev)
1565 {
1566 	struct device_link *link;
1567 	int idx;
1568 
1569 	if (dev->parent) {
1570 		spin_lock_irq(&dev->parent->power.lock);
1571 		dev->parent->power.direct_complete = false;
1572 		spin_unlock_irq(&dev->parent->power.lock);
1573 	}
1574 
1575 	idx = device_links_read_lock();
1576 
1577 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1578 		spin_lock_irq(&link->supplier->power.lock);
1579 		link->supplier->power.direct_complete = false;
1580 		spin_unlock_irq(&link->supplier->power.lock);
1581 	}
1582 
1583 	device_links_read_unlock(idx);
1584 }
1585 
1586 /**
1587  * __device_suspend - Execute "suspend" callbacks for given device.
1588  * @dev: Device to handle.
1589  * @state: PM transition of the system being carried out.
1590  * @async: If true, the device is being suspended asynchronously.
1591  */
__device_suspend(struct device * dev,pm_message_t state,bool async)1592 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1593 {
1594 	pm_callback_t callback = NULL;
1595 	const char *info = NULL;
1596 	int error = 0;
1597 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1598 
1599 	TRACE_DEVICE(dev);
1600 	TRACE_SUSPEND(0);
1601 
1602 	dpm_wait_for_subordinate(dev, async);
1603 
1604 	if (async_error) {
1605 		dev->power.direct_complete = false;
1606 		goto Complete;
1607 	}
1608 
1609 	/*
1610 	 * Wait for possible runtime PM transitions of the device in progress
1611 	 * to complete and if there's a runtime resume request pending for it,
1612 	 * resume it before proceeding with invoking the system-wide suspend
1613 	 * callbacks for it.
1614 	 *
1615 	 * If the system-wide suspend callbacks below change the configuration
1616 	 * of the device, they must disable runtime PM for it or otherwise
1617 	 * ensure that its runtime-resume callbacks will not be confused by that
1618 	 * change in case they are invoked going forward.
1619 	 */
1620 	pm_runtime_barrier(dev);
1621 
1622 	if (pm_wakeup_pending()) {
1623 		dev->power.direct_complete = false;
1624 		async_error = -EBUSY;
1625 		goto Complete;
1626 	}
1627 
1628 	if (dev->power.syscore)
1629 		goto Complete;
1630 
1631 	/* Avoid direct_complete to let wakeup_path propagate. */
1632 	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1633 		dev->power.direct_complete = false;
1634 
1635 	if (dev->power.direct_complete) {
1636 		if (pm_runtime_status_suspended(dev)) {
1637 			pm_runtime_disable(dev);
1638 			if (pm_runtime_status_suspended(dev)) {
1639 				pm_dev_dbg(dev, state, "direct-complete ");
1640 				dev->power.is_suspended = true;
1641 				goto Complete;
1642 			}
1643 
1644 			pm_runtime_enable(dev);
1645 		}
1646 		dev->power.direct_complete = false;
1647 	}
1648 
1649 	dev->power.may_skip_resume = true;
1650 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1651 
1652 	dpm_watchdog_set(&wd, dev);
1653 	device_lock(dev);
1654 
1655 	if (dev->pm_domain) {
1656 		info = "power domain ";
1657 		callback = pm_op(&dev->pm_domain->ops, state);
1658 		goto Run;
1659 	}
1660 
1661 	if (dev->type && dev->type->pm) {
1662 		info = "type ";
1663 		callback = pm_op(dev->type->pm, state);
1664 		goto Run;
1665 	}
1666 
1667 	if (dev->class && dev->class->pm) {
1668 		info = "class ";
1669 		callback = pm_op(dev->class->pm, state);
1670 		goto Run;
1671 	}
1672 
1673 	if (dev->bus) {
1674 		if (dev->bus->pm) {
1675 			info = "bus ";
1676 			callback = pm_op(dev->bus->pm, state);
1677 		} else if (dev->bus->suspend) {
1678 			pm_dev_dbg(dev, state, "legacy bus ");
1679 			error = legacy_suspend(dev, state, dev->bus->suspend,
1680 						"legacy bus ");
1681 			goto End;
1682 		}
1683 	}
1684 
1685  Run:
1686 	if (!callback && dev->driver && dev->driver->pm) {
1687 		info = "driver ";
1688 		callback = pm_op(dev->driver->pm, state);
1689 	}
1690 
1691 	error = dpm_run_callback(callback, dev, state, info);
1692 
1693  End:
1694 	if (!error) {
1695 		dev->power.is_suspended = true;
1696 		if (device_may_wakeup(dev))
1697 			dev->power.wakeup_path = true;
1698 
1699 		dpm_propagate_wakeup_to_parent(dev);
1700 		dpm_clear_superiors_direct_complete(dev);
1701 	}
1702 
1703 	device_unlock(dev);
1704 	dpm_watchdog_clear(&wd);
1705 
1706  Complete:
1707 	if (error)
1708 		async_error = error;
1709 
1710 	complete_all(&dev->power.completion);
1711 	TRACE_SUSPEND(error);
1712 	return error;
1713 }
1714 
async_suspend(void * data,async_cookie_t cookie)1715 static void async_suspend(void *data, async_cookie_t cookie)
1716 {
1717 	struct device *dev = data;
1718 	int error;
1719 
1720 	error = __device_suspend(dev, pm_transition, true);
1721 	if (error) {
1722 		dpm_save_failed_dev(dev_name(dev));
1723 		pm_dev_err(dev, pm_transition, " async", error);
1724 	}
1725 
1726 	put_device(dev);
1727 }
1728 
device_suspend(struct device * dev)1729 static int device_suspend(struct device *dev)
1730 {
1731 	if (dpm_async_fn(dev, async_suspend))
1732 		return 0;
1733 
1734 	return __device_suspend(dev, pm_transition, false);
1735 }
1736 
1737 /**
1738  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1739  * @state: PM transition of the system being carried out.
1740  */
dpm_suspend(pm_message_t state)1741 int dpm_suspend(pm_message_t state)
1742 {
1743 	ktime_t starttime = ktime_get();
1744 	int error = 0;
1745 
1746 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1747 	might_sleep();
1748 
1749 	devfreq_suspend();
1750 	cpufreq_suspend();
1751 
1752 	mutex_lock(&dpm_list_mtx);
1753 	pm_transition = state;
1754 	async_error = 0;
1755 	while (!list_empty(&dpm_prepared_list)) {
1756 		struct device *dev = to_device(dpm_prepared_list.prev);
1757 
1758 		get_device(dev);
1759 
1760 		mutex_unlock(&dpm_list_mtx);
1761 
1762 		error = device_suspend(dev);
1763 
1764 		mutex_lock(&dpm_list_mtx);
1765 
1766 		if (error) {
1767 			pm_dev_err(dev, state, "", error);
1768 			dpm_save_failed_dev(dev_name(dev));
1769 		} else if (!list_empty(&dev->power.entry)) {
1770 			list_move(&dev->power.entry, &dpm_suspended_list);
1771 		}
1772 
1773 		mutex_unlock(&dpm_list_mtx);
1774 
1775 		put_device(dev);
1776 
1777 		mutex_lock(&dpm_list_mtx);
1778 
1779 		if (error || async_error)
1780 			break;
1781 	}
1782 	mutex_unlock(&dpm_list_mtx);
1783 	async_synchronize_full();
1784 	if (!error)
1785 		error = async_error;
1786 	if (error) {
1787 		suspend_stats.failed_suspend++;
1788 		dpm_save_failed_step(SUSPEND_SUSPEND);
1789 	}
1790 	dpm_show_time(starttime, state, error, NULL);
1791 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1792 	return error;
1793 }
1794 
1795 /**
1796  * device_prepare - Prepare a device for system power transition.
1797  * @dev: Device to handle.
1798  * @state: PM transition of the system being carried out.
1799  *
1800  * Execute the ->prepare() callback(s) for given device.  No new children of the
1801  * device may be registered after this function has returned.
1802  */
device_prepare(struct device * dev,pm_message_t state)1803 static int device_prepare(struct device *dev, pm_message_t state)
1804 {
1805 	int (*callback)(struct device *) = NULL;
1806 	int ret = 0;
1807 
1808 	/*
1809 	 * If a device's parent goes into runtime suspend at the wrong time,
1810 	 * it won't be possible to resume the device.  To prevent this we
1811 	 * block runtime suspend here, during the prepare phase, and allow
1812 	 * it again during the complete phase.
1813 	 */
1814 	pm_runtime_get_noresume(dev);
1815 
1816 	if (dev->power.syscore)
1817 		return 0;
1818 
1819 	device_lock(dev);
1820 
1821 	dev->power.wakeup_path = false;
1822 
1823 	if (dev->power.no_pm_callbacks)
1824 		goto unlock;
1825 
1826 	if (dev->pm_domain)
1827 		callback = dev->pm_domain->ops.prepare;
1828 	else if (dev->type && dev->type->pm)
1829 		callback = dev->type->pm->prepare;
1830 	else if (dev->class && dev->class->pm)
1831 		callback = dev->class->pm->prepare;
1832 	else if (dev->bus && dev->bus->pm)
1833 		callback = dev->bus->pm->prepare;
1834 
1835 	if (!callback && dev->driver && dev->driver->pm)
1836 		callback = dev->driver->pm->prepare;
1837 
1838 	if (callback)
1839 		ret = callback(dev);
1840 
1841 unlock:
1842 	device_unlock(dev);
1843 
1844 	if (ret < 0) {
1845 		suspend_report_result(dev, callback, ret);
1846 		pm_runtime_put(dev);
1847 		return ret;
1848 	}
1849 	/*
1850 	 * A positive return value from ->prepare() means "this device appears
1851 	 * to be runtime-suspended and its state is fine, so if it really is
1852 	 * runtime-suspended, you can leave it in that state provided that you
1853 	 * will do the same thing with all of its descendants".  This only
1854 	 * applies to suspend transitions, however.
1855 	 */
1856 	spin_lock_irq(&dev->power.lock);
1857 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1858 		(ret > 0 || dev->power.no_pm_callbacks) &&
1859 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1860 	spin_unlock_irq(&dev->power.lock);
1861 	return 0;
1862 }
1863 
1864 /**
1865  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1866  * @state: PM transition of the system being carried out.
1867  *
1868  * Execute the ->prepare() callback(s) for all devices.
1869  */
dpm_prepare(pm_message_t state)1870 int dpm_prepare(pm_message_t state)
1871 {
1872 	int error = 0;
1873 
1874 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1875 	might_sleep();
1876 
1877 	/*
1878 	 * Give a chance for the known devices to complete their probes, before
1879 	 * disable probing of devices. This sync point is important at least
1880 	 * at boot time + hibernation restore.
1881 	 */
1882 	wait_for_device_probe();
1883 	/*
1884 	 * It is unsafe if probing of devices will happen during suspend or
1885 	 * hibernation and system behavior will be unpredictable in this case.
1886 	 * So, let's prohibit device's probing here and defer their probes
1887 	 * instead. The normal behavior will be restored in dpm_complete().
1888 	 */
1889 	device_block_probing();
1890 
1891 	mutex_lock(&dpm_list_mtx);
1892 	while (!list_empty(&dpm_list) && !error) {
1893 		struct device *dev = to_device(dpm_list.next);
1894 
1895 		get_device(dev);
1896 
1897 		mutex_unlock(&dpm_list_mtx);
1898 
1899 		trace_device_pm_callback_start(dev, "", state.event);
1900 		error = device_prepare(dev, state);
1901 		trace_device_pm_callback_end(dev, error);
1902 
1903 		mutex_lock(&dpm_list_mtx);
1904 
1905 		if (!error) {
1906 			dev->power.is_prepared = true;
1907 			if (!list_empty(&dev->power.entry))
1908 				list_move_tail(&dev->power.entry, &dpm_prepared_list);
1909 		} else if (error == -EAGAIN) {
1910 			error = 0;
1911 		} else {
1912 			dev_info(dev, "not prepared for power transition: code %d\n",
1913 				 error);
1914 		}
1915 
1916 		mutex_unlock(&dpm_list_mtx);
1917 
1918 		put_device(dev);
1919 
1920 		mutex_lock(&dpm_list_mtx);
1921 	}
1922 	mutex_unlock(&dpm_list_mtx);
1923 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1924 	return error;
1925 }
1926 
1927 /**
1928  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1929  * @state: PM transition of the system being carried out.
1930  *
1931  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1932  * callbacks for them.
1933  */
dpm_suspend_start(pm_message_t state)1934 int dpm_suspend_start(pm_message_t state)
1935 {
1936 	ktime_t starttime = ktime_get();
1937 	int error;
1938 
1939 	error = dpm_prepare(state);
1940 	if (error) {
1941 		suspend_stats.failed_prepare++;
1942 		dpm_save_failed_step(SUSPEND_PREPARE);
1943 	} else
1944 		error = dpm_suspend(state);
1945 	dpm_show_time(starttime, state, error, "start");
1946 	return error;
1947 }
1948 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1949 
__suspend_report_result(const char * function,struct device * dev,void * fn,int ret)1950 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1951 {
1952 	if (ret)
1953 		dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1954 }
1955 EXPORT_SYMBOL_GPL(__suspend_report_result);
1956 
1957 /**
1958  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1959  * @subordinate: Device that needs to wait for @dev.
1960  * @dev: Device to wait for.
1961  */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1962 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1963 {
1964 	dpm_wait(dev, subordinate->power.async_suspend);
1965 	return async_error;
1966 }
1967 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1968 
1969 /**
1970  * dpm_for_each_dev - device iterator.
1971  * @data: data for the callback.
1972  * @fn: function to be called for each device.
1973  *
1974  * Iterate over devices in dpm_list, and call @fn for each device,
1975  * passing it @data.
1976  */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1977 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1978 {
1979 	struct device *dev;
1980 
1981 	if (!fn)
1982 		return;
1983 
1984 	device_pm_lock();
1985 	list_for_each_entry(dev, &dpm_list, power.entry)
1986 		fn(dev, data);
1987 	device_pm_unlock();
1988 }
1989 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1990 
pm_ops_is_empty(const struct dev_pm_ops * ops)1991 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1992 {
1993 	if (!ops)
1994 		return true;
1995 
1996 	return !ops->prepare &&
1997 	       !ops->suspend &&
1998 	       !ops->suspend_late &&
1999 	       !ops->suspend_noirq &&
2000 	       !ops->resume_noirq &&
2001 	       !ops->resume_early &&
2002 	       !ops->resume &&
2003 	       !ops->complete;
2004 }
2005 
device_pm_check_callbacks(struct device * dev)2006 void device_pm_check_callbacks(struct device *dev)
2007 {
2008 	unsigned long flags;
2009 
2010 	spin_lock_irqsave(&dev->power.lock, flags);
2011 	dev->power.no_pm_callbacks =
2012 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2013 		 !dev->bus->suspend && !dev->bus->resume)) &&
2014 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2015 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2016 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2017 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2018 		 !dev->driver->suspend && !dev->driver->resume));
2019 	spin_unlock_irqrestore(&dev->power.lock, flags);
2020 }
2021 
dev_pm_skip_suspend(struct device * dev)2022 bool dev_pm_skip_suspend(struct device *dev)
2023 {
2024 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2025 		pm_runtime_status_suspended(dev);
2026 }
2027