1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18 #define pr_fmt(fmt) "PM: " fmt
19 #define dev_fmt pr_fmt
20
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 list_for_each_entry_rcu(pos, head, member, \
45 device_links_read_lock_held())
46
47 /*
48 * The entries in the dpm_list list are in a depth first order, simply
49 * because children are guaranteed to be discovered after parents, and
50 * are inserted at the back of the list on discovery.
51 *
52 * Since device_pm_add() may be called with a device lock held,
53 * we must never try to acquire a device lock while holding
54 * dpm_list_mutex.
55 */
56
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
62
63 struct suspend_stats suspend_stats;
64 static DEFINE_MUTEX(dpm_list_mtx);
65 static pm_message_t pm_transition;
66
67 static int async_error;
68
pm_verb(int event)69 static const char *pm_verb(int event)
70 {
71 switch (event) {
72 case PM_EVENT_SUSPEND:
73 return "suspend";
74 case PM_EVENT_RESUME:
75 return "resume";
76 case PM_EVENT_FREEZE:
77 return "freeze";
78 case PM_EVENT_QUIESCE:
79 return "quiesce";
80 case PM_EVENT_HIBERNATE:
81 return "hibernate";
82 case PM_EVENT_THAW:
83 return "thaw";
84 case PM_EVENT_RESTORE:
85 return "restore";
86 case PM_EVENT_RECOVER:
87 return "recover";
88 default:
89 return "(unknown PM event)";
90 }
91 }
92
93 /**
94 * device_pm_sleep_init - Initialize system suspend-related device fields.
95 * @dev: Device object being initialized.
96 */
device_pm_sleep_init(struct device * dev)97 void device_pm_sleep_init(struct device *dev)
98 {
99 dev->power.is_prepared = false;
100 dev->power.is_suspended = false;
101 dev->power.is_noirq_suspended = false;
102 dev->power.is_late_suspended = false;
103 init_completion(&dev->power.completion);
104 complete_all(&dev->power.completion);
105 dev->power.wakeup = NULL;
106 INIT_LIST_HEAD(&dev->power.entry);
107 }
108
109 /**
110 * device_pm_lock - Lock the list of active devices used by the PM core.
111 */
device_pm_lock(void)112 void device_pm_lock(void)
113 {
114 mutex_lock(&dpm_list_mtx);
115 }
116
117 /**
118 * device_pm_unlock - Unlock the list of active devices used by the PM core.
119 */
device_pm_unlock(void)120 void device_pm_unlock(void)
121 {
122 mutex_unlock(&dpm_list_mtx);
123 }
124
125 /**
126 * device_pm_add - Add a device to the PM core's list of active devices.
127 * @dev: Device to add to the list.
128 */
device_pm_add(struct device * dev)129 void device_pm_add(struct device *dev)
130 {
131 /* Skip PM setup/initialization. */
132 if (device_pm_not_required(dev))
133 return;
134
135 pr_debug("Adding info for %s:%s\n",
136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 device_pm_check_callbacks(dev);
138 mutex_lock(&dpm_list_mtx);
139 if (dev->parent && dev->parent->power.is_prepared)
140 dev_warn(dev, "parent %s should not be sleeping\n",
141 dev_name(dev->parent));
142 list_add_tail(&dev->power.entry, &dpm_list);
143 dev->power.in_dpm_list = true;
144 mutex_unlock(&dpm_list_mtx);
145 }
146
147 /**
148 * device_pm_remove - Remove a device from the PM core's list of active devices.
149 * @dev: Device to be removed from the list.
150 */
device_pm_remove(struct device * dev)151 void device_pm_remove(struct device *dev)
152 {
153 if (device_pm_not_required(dev))
154 return;
155
156 pr_debug("Removing info for %s:%s\n",
157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 complete_all(&dev->power.completion);
159 mutex_lock(&dpm_list_mtx);
160 list_del_init(&dev->power.entry);
161 dev->power.in_dpm_list = false;
162 mutex_unlock(&dpm_list_mtx);
163 device_wakeup_disable(dev);
164 pm_runtime_remove(dev);
165 device_pm_check_callbacks(dev);
166 }
167
168 /**
169 * device_pm_move_before - Move device in the PM core's list of active devices.
170 * @deva: Device to move in dpm_list.
171 * @devb: Device @deva should come before.
172 */
device_pm_move_before(struct device * deva,struct device * devb)173 void device_pm_move_before(struct device *deva, struct device *devb)
174 {
175 pr_debug("Moving %s:%s before %s:%s\n",
176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 /* Delete deva from dpm_list and reinsert before devb. */
179 list_move_tail(&deva->power.entry, &devb->power.entry);
180 }
181
182 /**
183 * device_pm_move_after - Move device in the PM core's list of active devices.
184 * @deva: Device to move in dpm_list.
185 * @devb: Device @deva should come after.
186 */
device_pm_move_after(struct device * deva,struct device * devb)187 void device_pm_move_after(struct device *deva, struct device *devb)
188 {
189 pr_debug("Moving %s:%s after %s:%s\n",
190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 /* Delete deva from dpm_list and reinsert after devb. */
193 list_move(&deva->power.entry, &devb->power.entry);
194 }
195
196 /**
197 * device_pm_move_last - Move device to end of the PM core's list of devices.
198 * @dev: Device to move in dpm_list.
199 */
device_pm_move_last(struct device * dev)200 void device_pm_move_last(struct device *dev)
201 {
202 pr_debug("Moving %s:%s to end of list\n",
203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 list_move_tail(&dev->power.entry, &dpm_list);
205 }
206
initcall_debug_start(struct device * dev,void * cb)207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
208 {
209 if (!pm_print_times_enabled)
210 return 0;
211
212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 task_pid_nr(current),
214 dev->parent ? dev_name(dev->parent) : "none");
215 return ktime_get();
216 }
217
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 void *cb, int error)
220 {
221 ktime_t rettime;
222
223 if (!pm_print_times_enabled)
224 return;
225
226 rettime = ktime_get();
227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
228 (unsigned long long)ktime_us_delta(rettime, calltime));
229 }
230
231 /**
232 * dpm_wait - Wait for a PM operation to complete.
233 * @dev: Device to wait for.
234 * @async: If unset, wait only if the device's power.async_suspend flag is set.
235 */
dpm_wait(struct device * dev,bool async)236 static void dpm_wait(struct device *dev, bool async)
237 {
238 if (!dev)
239 return;
240
241 if (async || (pm_async_enabled && dev->power.async_suspend))
242 wait_for_completion(&dev->power.completion);
243 }
244
dpm_wait_fn(struct device * dev,void * async_ptr)245 static int dpm_wait_fn(struct device *dev, void *async_ptr)
246 {
247 dpm_wait(dev, *((bool *)async_ptr));
248 return 0;
249 }
250
dpm_wait_for_children(struct device * dev,bool async)251 static void dpm_wait_for_children(struct device *dev, bool async)
252 {
253 device_for_each_child(dev, &async, dpm_wait_fn);
254 }
255
dpm_wait_for_suppliers(struct device * dev,bool async)256 static void dpm_wait_for_suppliers(struct device *dev, bool async)
257 {
258 struct device_link *link;
259 int idx;
260
261 idx = device_links_read_lock();
262
263 /*
264 * If the supplier goes away right after we've checked the link to it,
265 * we'll wait for its completion to change the state, but that's fine,
266 * because the only things that will block as a result are the SRCU
267 * callbacks freeing the link objects for the links in the list we're
268 * walking.
269 */
270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 dpm_wait(link->supplier, async);
273
274 device_links_read_unlock(idx);
275 }
276
dpm_wait_for_superior(struct device * dev,bool async)277 static bool dpm_wait_for_superior(struct device *dev, bool async)
278 {
279 struct device *parent;
280
281 /*
282 * If the device is resumed asynchronously and the parent's callback
283 * deletes both the device and the parent itself, the parent object may
284 * be freed while this function is running, so avoid that by reference
285 * counting the parent once more unless the device has been deleted
286 * already (in which case return right away).
287 */
288 mutex_lock(&dpm_list_mtx);
289
290 if (!device_pm_initialized(dev)) {
291 mutex_unlock(&dpm_list_mtx);
292 return false;
293 }
294
295 parent = get_device(dev->parent);
296
297 mutex_unlock(&dpm_list_mtx);
298
299 dpm_wait(parent, async);
300 put_device(parent);
301
302 dpm_wait_for_suppliers(dev, async);
303
304 /*
305 * If the parent's callback has deleted the device, attempting to resume
306 * it would be invalid, so avoid doing that then.
307 */
308 return device_pm_initialized(dev);
309 }
310
dpm_wait_for_consumers(struct device * dev,bool async)311 static void dpm_wait_for_consumers(struct device *dev, bool async)
312 {
313 struct device_link *link;
314 int idx;
315
316 idx = device_links_read_lock();
317
318 /*
319 * The status of a device link can only be changed from "dormant" by a
320 * probe, but that cannot happen during system suspend/resume. In
321 * theory it can change to "dormant" at that time, but then it is
322 * reasonable to wait for the target device anyway (eg. if it goes
323 * away, it's better to wait for it to go away completely and then
324 * continue instead of trying to continue in parallel with its
325 * unregistration).
326 */
327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 dpm_wait(link->consumer, async);
330
331 device_links_read_unlock(idx);
332 }
333
dpm_wait_for_subordinate(struct device * dev,bool async)334 static void dpm_wait_for_subordinate(struct device *dev, bool async)
335 {
336 dpm_wait_for_children(dev, async);
337 dpm_wait_for_consumers(dev, async);
338 }
339
340 /**
341 * pm_op - Return the PM operation appropriate for given PM event.
342 * @ops: PM operations to choose from.
343 * @state: PM transition of the system being carried out.
344 */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)345 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346 {
347 switch (state.event) {
348 #ifdef CONFIG_SUSPEND
349 case PM_EVENT_SUSPEND:
350 return ops->suspend;
351 case PM_EVENT_RESUME:
352 return ops->resume;
353 #endif /* CONFIG_SUSPEND */
354 #ifdef CONFIG_HIBERNATE_CALLBACKS
355 case PM_EVENT_FREEZE:
356 case PM_EVENT_QUIESCE:
357 return ops->freeze;
358 case PM_EVENT_HIBERNATE:
359 return ops->poweroff;
360 case PM_EVENT_THAW:
361 case PM_EVENT_RECOVER:
362 return ops->thaw;
363 case PM_EVENT_RESTORE:
364 return ops->restore;
365 #endif /* CONFIG_HIBERNATE_CALLBACKS */
366 }
367
368 return NULL;
369 }
370
371 /**
372 * pm_late_early_op - Return the PM operation appropriate for given PM event.
373 * @ops: PM operations to choose from.
374 * @state: PM transition of the system being carried out.
375 *
376 * Runtime PM is disabled for @dev while this function is being executed.
377 */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)378 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 pm_message_t state)
380 {
381 switch (state.event) {
382 #ifdef CONFIG_SUSPEND
383 case PM_EVENT_SUSPEND:
384 return ops->suspend_late;
385 case PM_EVENT_RESUME:
386 return ops->resume_early;
387 #endif /* CONFIG_SUSPEND */
388 #ifdef CONFIG_HIBERNATE_CALLBACKS
389 case PM_EVENT_FREEZE:
390 case PM_EVENT_QUIESCE:
391 return ops->freeze_late;
392 case PM_EVENT_HIBERNATE:
393 return ops->poweroff_late;
394 case PM_EVENT_THAW:
395 case PM_EVENT_RECOVER:
396 return ops->thaw_early;
397 case PM_EVENT_RESTORE:
398 return ops->restore_early;
399 #endif /* CONFIG_HIBERNATE_CALLBACKS */
400 }
401
402 return NULL;
403 }
404
405 /**
406 * pm_noirq_op - Return the PM operation appropriate for given PM event.
407 * @ops: PM operations to choose from.
408 * @state: PM transition of the system being carried out.
409 *
410 * The driver of @dev will not receive interrupts while this function is being
411 * executed.
412 */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)413 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414 {
415 switch (state.event) {
416 #ifdef CONFIG_SUSPEND
417 case PM_EVENT_SUSPEND:
418 return ops->suspend_noirq;
419 case PM_EVENT_RESUME:
420 return ops->resume_noirq;
421 #endif /* CONFIG_SUSPEND */
422 #ifdef CONFIG_HIBERNATE_CALLBACKS
423 case PM_EVENT_FREEZE:
424 case PM_EVENT_QUIESCE:
425 return ops->freeze_noirq;
426 case PM_EVENT_HIBERNATE:
427 return ops->poweroff_noirq;
428 case PM_EVENT_THAW:
429 case PM_EVENT_RECOVER:
430 return ops->thaw_noirq;
431 case PM_EVENT_RESTORE:
432 return ops->restore_noirq;
433 #endif /* CONFIG_HIBERNATE_CALLBACKS */
434 }
435
436 return NULL;
437 }
438
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)439 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440 {
441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 ", may wakeup" : "", dev->power.driver_flags);
444 }
445
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)446 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 int error)
448 {
449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 error);
451 }
452
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)453 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 const char *info)
455 {
456 ktime_t calltime;
457 u64 usecs64;
458 int usecs;
459
460 calltime = ktime_get();
461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 do_div(usecs64, NSEC_PER_USEC);
463 usecs = usecs64;
464 if (usecs == 0)
465 usecs = 1;
466
467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 info ?: "", info ? " " : "", pm_verb(state.event),
469 error ? "aborted" : "complete",
470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471 }
472
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)473 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 pm_message_t state, const char *info)
475 {
476 ktime_t calltime;
477 int error;
478
479 if (!cb)
480 return 0;
481
482 calltime = initcall_debug_start(dev, cb);
483
484 pm_dev_dbg(dev, state, info);
485 trace_device_pm_callback_start(dev, info, state.event);
486 error = cb(dev);
487 trace_device_pm_callback_end(dev, error);
488 suspend_report_result(dev, cb, error);
489
490 initcall_debug_report(dev, calltime, cb, error);
491
492 return error;
493 }
494
495 #ifdef CONFIG_DPM_WATCHDOG
496 struct dpm_watchdog {
497 struct device *dev;
498 struct task_struct *tsk;
499 struct timer_list timer;
500 };
501
502 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
503 struct dpm_watchdog wd
504
505 /**
506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
507 * @t: The timer that PM watchdog depends on.
508 *
509 * Called when a driver has timed out suspending or resuming.
510 * There's not much we can do here to recover so panic() to
511 * capture a crash-dump in pstore.
512 */
dpm_watchdog_handler(struct timer_list * t)513 static void dpm_watchdog_handler(struct timer_list *t)
514 {
515 struct dpm_watchdog *wd = from_timer(wd, t, timer);
516
517 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
518 show_stack(wd->tsk, NULL, KERN_EMERG);
519 panic("%s %s: unrecoverable failure\n",
520 dev_driver_string(wd->dev), dev_name(wd->dev));
521 }
522
523 /**
524 * dpm_watchdog_set - Enable pm watchdog for given device.
525 * @wd: Watchdog. Must be allocated on the stack.
526 * @dev: Device to handle.
527 */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)528 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
529 {
530 struct timer_list *timer = &wd->timer;
531
532 wd->dev = dev;
533 wd->tsk = current;
534
535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
536 /* use same timeout value for both suspend and resume */
537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
538 add_timer(timer);
539 }
540
541 /**
542 * dpm_watchdog_clear - Disable suspend/resume watchdog.
543 * @wd: Watchdog to disable.
544 */
dpm_watchdog_clear(struct dpm_watchdog * wd)545 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
546 {
547 struct timer_list *timer = &wd->timer;
548
549 del_timer_sync(timer);
550 destroy_timer_on_stack(timer);
551 }
552 #else
553 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
554 #define dpm_watchdog_set(x, y)
555 #define dpm_watchdog_clear(x)
556 #endif
557
558 /*------------------------- Resume routines -------------------------*/
559
560 /**
561 * dev_pm_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
563 *
564 * Return:
565 * - %false if the transition under way is RESTORE.
566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
567 * - The logical negation of %power.must_resume otherwise (that is, when the
568 * transition under way is RESUME).
569 */
dev_pm_skip_resume(struct device * dev)570 bool dev_pm_skip_resume(struct device *dev)
571 {
572 if (pm_transition.event == PM_EVENT_RESTORE)
573 return false;
574
575 if (pm_transition.event == PM_EVENT_THAW)
576 return dev_pm_skip_suspend(dev);
577
578 return !dev->power.must_resume;
579 }
580
581 /**
582 * __device_resume_noirq - Execute a "noirq resume" callback for given device.
583 * @dev: Device to handle.
584 * @state: PM transition of the system being carried out.
585 * @async: If true, the device is being resumed asynchronously.
586 *
587 * The driver of @dev will not receive interrupts while this function is being
588 * executed.
589 */
__device_resume_noirq(struct device * dev,pm_message_t state,bool async)590 static void __device_resume_noirq(struct device *dev, pm_message_t state, bool async)
591 {
592 pm_callback_t callback = NULL;
593 const char *info = NULL;
594 bool skip_resume;
595 int error = 0;
596
597 TRACE_DEVICE(dev);
598 TRACE_RESUME(0);
599
600 if (dev->power.syscore || dev->power.direct_complete)
601 goto Out;
602
603 if (!dev->power.is_noirq_suspended)
604 goto Out;
605
606 if (!dpm_wait_for_superior(dev, async))
607 goto Out;
608
609 skip_resume = dev_pm_skip_resume(dev);
610 /*
611 * If the driver callback is skipped below or by the middle layer
612 * callback and device_resume_early() also skips the driver callback for
613 * this device later, it needs to appear as "suspended" to PM-runtime,
614 * so change its status accordingly.
615 *
616 * Otherwise, the device is going to be resumed, so set its PM-runtime
617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
618 * to avoid confusing drivers that don't use it.
619 */
620 if (skip_resume)
621 pm_runtime_set_suspended(dev);
622 else if (dev_pm_skip_suspend(dev))
623 pm_runtime_set_active(dev);
624
625 if (dev->pm_domain) {
626 info = "noirq power domain ";
627 callback = pm_noirq_op(&dev->pm_domain->ops, state);
628 } else if (dev->type && dev->type->pm) {
629 info = "noirq type ";
630 callback = pm_noirq_op(dev->type->pm, state);
631 } else if (dev->class && dev->class->pm) {
632 info = "noirq class ";
633 callback = pm_noirq_op(dev->class->pm, state);
634 } else if (dev->bus && dev->bus->pm) {
635 info = "noirq bus ";
636 callback = pm_noirq_op(dev->bus->pm, state);
637 }
638 if (callback)
639 goto Run;
640
641 if (skip_resume)
642 goto Skip;
643
644 if (dev->driver && dev->driver->pm) {
645 info = "noirq driver ";
646 callback = pm_noirq_op(dev->driver->pm, state);
647 }
648
649 Run:
650 error = dpm_run_callback(callback, dev, state, info);
651
652 Skip:
653 dev->power.is_noirq_suspended = false;
654
655 Out:
656 complete_all(&dev->power.completion);
657 TRACE_RESUME(error);
658
659 if (error) {
660 suspend_stats.failed_resume_noirq++;
661 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
662 dpm_save_failed_dev(dev_name(dev));
663 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
664 }
665 }
666
is_async(struct device * dev)667 static bool is_async(struct device *dev)
668 {
669 return dev->power.async_suspend && pm_async_enabled
670 && !pm_trace_is_enabled();
671 }
672
dpm_async_fn(struct device * dev,async_func_t func)673 static bool dpm_async_fn(struct device *dev, async_func_t func)
674 {
675 reinit_completion(&dev->power.completion);
676
677 if (!is_async(dev))
678 return false;
679
680 get_device(dev);
681
682 if (async_schedule_dev_nocall(func, dev))
683 return true;
684
685 put_device(dev);
686
687 return false;
688 }
689
async_resume_noirq(void * data,async_cookie_t cookie)690 static void async_resume_noirq(void *data, async_cookie_t cookie)
691 {
692 struct device *dev = data;
693
694 __device_resume_noirq(dev, pm_transition, true);
695 put_device(dev);
696 }
697
device_resume_noirq(struct device * dev)698 static void device_resume_noirq(struct device *dev)
699 {
700 if (dpm_async_fn(dev, async_resume_noirq))
701 return;
702
703 __device_resume_noirq(dev, pm_transition, false);
704 }
705
dpm_noirq_resume_devices(pm_message_t state)706 static void dpm_noirq_resume_devices(pm_message_t state)
707 {
708 struct device *dev;
709 ktime_t starttime = ktime_get();
710
711 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
712 mutex_lock(&dpm_list_mtx);
713 pm_transition = state;
714
715 while (!list_empty(&dpm_noirq_list)) {
716 dev = to_device(dpm_noirq_list.next);
717 get_device(dev);
718 list_move_tail(&dev->power.entry, &dpm_late_early_list);
719
720 mutex_unlock(&dpm_list_mtx);
721
722 device_resume_noirq(dev);
723
724 put_device(dev);
725
726 mutex_lock(&dpm_list_mtx);
727 }
728 mutex_unlock(&dpm_list_mtx);
729 async_synchronize_full();
730 dpm_show_time(starttime, state, 0, "noirq");
731 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
732 }
733
734 /**
735 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
736 * @state: PM transition of the system being carried out.
737 *
738 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
739 * allow device drivers' interrupt handlers to be called.
740 */
dpm_resume_noirq(pm_message_t state)741 void dpm_resume_noirq(pm_message_t state)
742 {
743 dpm_noirq_resume_devices(state);
744
745 resume_device_irqs();
746 device_wakeup_disarm_wake_irqs();
747 }
748
749 /**
750 * __device_resume_early - Execute an "early resume" callback for given device.
751 * @dev: Device to handle.
752 * @state: PM transition of the system being carried out.
753 * @async: If true, the device is being resumed asynchronously.
754 *
755 * Runtime PM is disabled for @dev while this function is being executed.
756 */
__device_resume_early(struct device * dev,pm_message_t state,bool async)757 static void __device_resume_early(struct device *dev, pm_message_t state, bool async)
758 {
759 pm_callback_t callback = NULL;
760 const char *info = NULL;
761 int error = 0;
762
763 TRACE_DEVICE(dev);
764 TRACE_RESUME(0);
765
766 if (dev->power.syscore || dev->power.direct_complete)
767 goto Out;
768
769 if (!dev->power.is_late_suspended)
770 goto Out;
771
772 if (!dpm_wait_for_superior(dev, async))
773 goto Out;
774
775 if (dev->pm_domain) {
776 info = "early power domain ";
777 callback = pm_late_early_op(&dev->pm_domain->ops, state);
778 } else if (dev->type && dev->type->pm) {
779 info = "early type ";
780 callback = pm_late_early_op(dev->type->pm, state);
781 } else if (dev->class && dev->class->pm) {
782 info = "early class ";
783 callback = pm_late_early_op(dev->class->pm, state);
784 } else if (dev->bus && dev->bus->pm) {
785 info = "early bus ";
786 callback = pm_late_early_op(dev->bus->pm, state);
787 }
788 if (callback)
789 goto Run;
790
791 if (dev_pm_skip_resume(dev))
792 goto Skip;
793
794 if (dev->driver && dev->driver->pm) {
795 info = "early driver ";
796 callback = pm_late_early_op(dev->driver->pm, state);
797 }
798
799 Run:
800 error = dpm_run_callback(callback, dev, state, info);
801
802 Skip:
803 dev->power.is_late_suspended = false;
804
805 Out:
806 TRACE_RESUME(error);
807
808 pm_runtime_enable(dev);
809 complete_all(&dev->power.completion);
810
811 if (error) {
812 suspend_stats.failed_resume_early++;
813 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
814 dpm_save_failed_dev(dev_name(dev));
815 pm_dev_err(dev, state, async ? " async early" : " early", error);
816 }
817 }
818
async_resume_early(void * data,async_cookie_t cookie)819 static void async_resume_early(void *data, async_cookie_t cookie)
820 {
821 struct device *dev = data;
822
823 __device_resume_early(dev, pm_transition, true);
824 put_device(dev);
825 }
826
device_resume_early(struct device * dev)827 static void device_resume_early(struct device *dev)
828 {
829 if (dpm_async_fn(dev, async_resume_early))
830 return;
831
832 __device_resume_early(dev, pm_transition, false);
833 }
834
835 /**
836 * dpm_resume_early - Execute "early resume" callbacks for all devices.
837 * @state: PM transition of the system being carried out.
838 */
dpm_resume_early(pm_message_t state)839 void dpm_resume_early(pm_message_t state)
840 {
841 struct device *dev;
842 ktime_t starttime = ktime_get();
843
844 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
845 mutex_lock(&dpm_list_mtx);
846 pm_transition = state;
847
848 while (!list_empty(&dpm_late_early_list)) {
849 dev = to_device(dpm_late_early_list.next);
850 get_device(dev);
851 list_move_tail(&dev->power.entry, &dpm_suspended_list);
852
853 mutex_unlock(&dpm_list_mtx);
854
855 device_resume_early(dev);
856
857 put_device(dev);
858
859 mutex_lock(&dpm_list_mtx);
860 }
861 mutex_unlock(&dpm_list_mtx);
862 async_synchronize_full();
863 dpm_show_time(starttime, state, 0, "early");
864 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
865 }
866
867 /**
868 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
869 * @state: PM transition of the system being carried out.
870 */
dpm_resume_start(pm_message_t state)871 void dpm_resume_start(pm_message_t state)
872 {
873 dpm_resume_noirq(state);
874 dpm_resume_early(state);
875 }
876 EXPORT_SYMBOL_GPL(dpm_resume_start);
877
878 /**
879 * __device_resume - Execute "resume" callbacks for given device.
880 * @dev: Device to handle.
881 * @state: PM transition of the system being carried out.
882 * @async: If true, the device is being resumed asynchronously.
883 */
__device_resume(struct device * dev,pm_message_t state,bool async)884 static void __device_resume(struct device *dev, pm_message_t state, bool async)
885 {
886 pm_callback_t callback = NULL;
887 const char *info = NULL;
888 int error = 0;
889 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
890
891 TRACE_DEVICE(dev);
892 TRACE_RESUME(0);
893
894 if (dev->power.syscore)
895 goto Complete;
896
897 if (!dev->power.is_suspended)
898 goto Complete;
899
900 if (dev->power.direct_complete) {
901 /* Match the pm_runtime_disable() in __device_suspend(). */
902 pm_runtime_enable(dev);
903 goto Complete;
904 }
905
906 if (!dpm_wait_for_superior(dev, async))
907 goto Complete;
908
909 dpm_watchdog_set(&wd, dev);
910 device_lock(dev);
911
912 /*
913 * This is a fib. But we'll allow new children to be added below
914 * a resumed device, even if the device hasn't been completed yet.
915 */
916 dev->power.is_prepared = false;
917
918 if (dev->pm_domain) {
919 info = "power domain ";
920 callback = pm_op(&dev->pm_domain->ops, state);
921 goto Driver;
922 }
923
924 if (dev->type && dev->type->pm) {
925 info = "type ";
926 callback = pm_op(dev->type->pm, state);
927 goto Driver;
928 }
929
930 if (dev->class && dev->class->pm) {
931 info = "class ";
932 callback = pm_op(dev->class->pm, state);
933 goto Driver;
934 }
935
936 if (dev->bus) {
937 if (dev->bus->pm) {
938 info = "bus ";
939 callback = pm_op(dev->bus->pm, state);
940 } else if (dev->bus->resume) {
941 info = "legacy bus ";
942 callback = dev->bus->resume;
943 goto End;
944 }
945 }
946
947 Driver:
948 if (!callback && dev->driver && dev->driver->pm) {
949 info = "driver ";
950 callback = pm_op(dev->driver->pm, state);
951 }
952
953 End:
954 error = dpm_run_callback(callback, dev, state, info);
955 dev->power.is_suspended = false;
956
957 device_unlock(dev);
958 dpm_watchdog_clear(&wd);
959
960 Complete:
961 complete_all(&dev->power.completion);
962
963 TRACE_RESUME(error);
964
965 if (error) {
966 suspend_stats.failed_resume++;
967 dpm_save_failed_step(SUSPEND_RESUME);
968 dpm_save_failed_dev(dev_name(dev));
969 pm_dev_err(dev, state, async ? " async" : "", error);
970 }
971 }
972
async_resume(void * data,async_cookie_t cookie)973 static void async_resume(void *data, async_cookie_t cookie)
974 {
975 struct device *dev = data;
976
977 __device_resume(dev, pm_transition, true);
978 put_device(dev);
979 }
980
device_resume(struct device * dev)981 static void device_resume(struct device *dev)
982 {
983 if (dpm_async_fn(dev, async_resume))
984 return;
985
986 __device_resume(dev, pm_transition, false);
987 }
988
989 /**
990 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
991 * @state: PM transition of the system being carried out.
992 *
993 * Execute the appropriate "resume" callback for all devices whose status
994 * indicates that they are suspended.
995 */
dpm_resume(pm_message_t state)996 void dpm_resume(pm_message_t state)
997 {
998 struct device *dev;
999 ktime_t starttime = ktime_get();
1000
1001 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1002 might_sleep();
1003
1004 mutex_lock(&dpm_list_mtx);
1005 pm_transition = state;
1006 async_error = 0;
1007
1008 while (!list_empty(&dpm_suspended_list)) {
1009 dev = to_device(dpm_suspended_list.next);
1010
1011 get_device(dev);
1012
1013 mutex_unlock(&dpm_list_mtx);
1014
1015 device_resume(dev);
1016
1017 mutex_lock(&dpm_list_mtx);
1018
1019 if (!list_empty(&dev->power.entry))
1020 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1021
1022 mutex_unlock(&dpm_list_mtx);
1023
1024 put_device(dev);
1025
1026 mutex_lock(&dpm_list_mtx);
1027 }
1028 mutex_unlock(&dpm_list_mtx);
1029 async_synchronize_full();
1030 dpm_show_time(starttime, state, 0, NULL);
1031
1032 cpufreq_resume();
1033 devfreq_resume();
1034 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1035 }
1036
1037 /**
1038 * device_complete - Complete a PM transition for given device.
1039 * @dev: Device to handle.
1040 * @state: PM transition of the system being carried out.
1041 */
device_complete(struct device * dev,pm_message_t state)1042 static void device_complete(struct device *dev, pm_message_t state)
1043 {
1044 void (*callback)(struct device *) = NULL;
1045 const char *info = NULL;
1046
1047 if (dev->power.syscore)
1048 goto out;
1049
1050 device_lock(dev);
1051
1052 if (dev->pm_domain) {
1053 info = "completing power domain ";
1054 callback = dev->pm_domain->ops.complete;
1055 } else if (dev->type && dev->type->pm) {
1056 info = "completing type ";
1057 callback = dev->type->pm->complete;
1058 } else if (dev->class && dev->class->pm) {
1059 info = "completing class ";
1060 callback = dev->class->pm->complete;
1061 } else if (dev->bus && dev->bus->pm) {
1062 info = "completing bus ";
1063 callback = dev->bus->pm->complete;
1064 }
1065
1066 if (!callback && dev->driver && dev->driver->pm) {
1067 info = "completing driver ";
1068 callback = dev->driver->pm->complete;
1069 }
1070
1071 if (callback) {
1072 pm_dev_dbg(dev, state, info);
1073 callback(dev);
1074 }
1075
1076 device_unlock(dev);
1077
1078 out:
1079 pm_runtime_put(dev);
1080 }
1081
1082 /**
1083 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1084 * @state: PM transition of the system being carried out.
1085 *
1086 * Execute the ->complete() callbacks for all devices whose PM status is not
1087 * DPM_ON (this allows new devices to be registered).
1088 */
dpm_complete(pm_message_t state)1089 void dpm_complete(pm_message_t state)
1090 {
1091 struct list_head list;
1092
1093 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1094 might_sleep();
1095
1096 INIT_LIST_HEAD(&list);
1097 mutex_lock(&dpm_list_mtx);
1098 while (!list_empty(&dpm_prepared_list)) {
1099 struct device *dev = to_device(dpm_prepared_list.prev);
1100
1101 get_device(dev);
1102 dev->power.is_prepared = false;
1103 list_move(&dev->power.entry, &list);
1104
1105 mutex_unlock(&dpm_list_mtx);
1106
1107 trace_device_pm_callback_start(dev, "", state.event);
1108 device_complete(dev, state);
1109 trace_device_pm_callback_end(dev, 0);
1110
1111 put_device(dev);
1112
1113 mutex_lock(&dpm_list_mtx);
1114 }
1115 list_splice(&list, &dpm_list);
1116 mutex_unlock(&dpm_list_mtx);
1117
1118 /* Allow device probing and trigger re-probing of deferred devices */
1119 device_unblock_probing();
1120 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1121 }
1122
1123 /**
1124 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1125 * @state: PM transition of the system being carried out.
1126 *
1127 * Execute "resume" callbacks for all devices and complete the PM transition of
1128 * the system.
1129 */
dpm_resume_end(pm_message_t state)1130 void dpm_resume_end(pm_message_t state)
1131 {
1132 dpm_resume(state);
1133 dpm_complete(state);
1134 }
1135 EXPORT_SYMBOL_GPL(dpm_resume_end);
1136
1137
1138 /*------------------------- Suspend routines -------------------------*/
1139
1140 /**
1141 * resume_event - Return a "resume" message for given "suspend" sleep state.
1142 * @sleep_state: PM message representing a sleep state.
1143 *
1144 * Return a PM message representing the resume event corresponding to given
1145 * sleep state.
1146 */
resume_event(pm_message_t sleep_state)1147 static pm_message_t resume_event(pm_message_t sleep_state)
1148 {
1149 switch (sleep_state.event) {
1150 case PM_EVENT_SUSPEND:
1151 return PMSG_RESUME;
1152 case PM_EVENT_FREEZE:
1153 case PM_EVENT_QUIESCE:
1154 return PMSG_RECOVER;
1155 case PM_EVENT_HIBERNATE:
1156 return PMSG_RESTORE;
1157 }
1158 return PMSG_ON;
1159 }
1160
dpm_superior_set_must_resume(struct device * dev)1161 static void dpm_superior_set_must_resume(struct device *dev)
1162 {
1163 struct device_link *link;
1164 int idx;
1165
1166 if (dev->parent)
1167 dev->parent->power.must_resume = true;
1168
1169 idx = device_links_read_lock();
1170
1171 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1172 link->supplier->power.must_resume = true;
1173
1174 device_links_read_unlock(idx);
1175 }
1176
1177 /**
1178 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1179 * @dev: Device to handle.
1180 * @state: PM transition of the system being carried out.
1181 * @async: If true, the device is being suspended asynchronously.
1182 *
1183 * The driver of @dev will not receive interrupts while this function is being
1184 * executed.
1185 */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1186 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1187 {
1188 pm_callback_t callback = NULL;
1189 const char *info = NULL;
1190 int error = 0;
1191
1192 TRACE_DEVICE(dev);
1193 TRACE_SUSPEND(0);
1194
1195 dpm_wait_for_subordinate(dev, async);
1196
1197 if (async_error)
1198 goto Complete;
1199
1200 if (dev->power.syscore || dev->power.direct_complete)
1201 goto Complete;
1202
1203 if (dev->pm_domain) {
1204 info = "noirq power domain ";
1205 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1206 } else if (dev->type && dev->type->pm) {
1207 info = "noirq type ";
1208 callback = pm_noirq_op(dev->type->pm, state);
1209 } else if (dev->class && dev->class->pm) {
1210 info = "noirq class ";
1211 callback = pm_noirq_op(dev->class->pm, state);
1212 } else if (dev->bus && dev->bus->pm) {
1213 info = "noirq bus ";
1214 callback = pm_noirq_op(dev->bus->pm, state);
1215 }
1216 if (callback)
1217 goto Run;
1218
1219 if (dev_pm_skip_suspend(dev))
1220 goto Skip;
1221
1222 if (dev->driver && dev->driver->pm) {
1223 info = "noirq driver ";
1224 callback = pm_noirq_op(dev->driver->pm, state);
1225 }
1226
1227 Run:
1228 error = dpm_run_callback(callback, dev, state, info);
1229 if (error) {
1230 async_error = error;
1231 goto Complete;
1232 }
1233
1234 Skip:
1235 dev->power.is_noirq_suspended = true;
1236
1237 /*
1238 * Devices must be resumed unless they are explicitly allowed to be left
1239 * in suspend, but even in that case skipping the resume of devices that
1240 * were in use right before the system suspend (as indicated by their
1241 * runtime PM usage counters and child counters) would be suboptimal.
1242 */
1243 if (!(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1244 dev->power.may_skip_resume) || !pm_runtime_need_not_resume(dev))
1245 dev->power.must_resume = true;
1246
1247 if (dev->power.must_resume)
1248 dpm_superior_set_must_resume(dev);
1249
1250 Complete:
1251 complete_all(&dev->power.completion);
1252 TRACE_SUSPEND(error);
1253 return error;
1254 }
1255
async_suspend_noirq(void * data,async_cookie_t cookie)1256 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1257 {
1258 struct device *dev = data;
1259 int error;
1260
1261 error = __device_suspend_noirq(dev, pm_transition, true);
1262 if (error) {
1263 dpm_save_failed_dev(dev_name(dev));
1264 pm_dev_err(dev, pm_transition, " async", error);
1265 }
1266
1267 put_device(dev);
1268 }
1269
device_suspend_noirq(struct device * dev)1270 static int device_suspend_noirq(struct device *dev)
1271 {
1272 if (dpm_async_fn(dev, async_suspend_noirq))
1273 return 0;
1274
1275 return __device_suspend_noirq(dev, pm_transition, false);
1276 }
1277
dpm_noirq_suspend_devices(pm_message_t state)1278 static int dpm_noirq_suspend_devices(pm_message_t state)
1279 {
1280 ktime_t starttime = ktime_get();
1281 int error = 0;
1282
1283 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1284 mutex_lock(&dpm_list_mtx);
1285 pm_transition = state;
1286 async_error = 0;
1287
1288 while (!list_empty(&dpm_late_early_list)) {
1289 struct device *dev = to_device(dpm_late_early_list.prev);
1290
1291 get_device(dev);
1292 mutex_unlock(&dpm_list_mtx);
1293
1294 error = device_suspend_noirq(dev);
1295
1296 mutex_lock(&dpm_list_mtx);
1297
1298 if (error) {
1299 pm_dev_err(dev, state, " noirq", error);
1300 dpm_save_failed_dev(dev_name(dev));
1301 } else if (!list_empty(&dev->power.entry)) {
1302 list_move(&dev->power.entry, &dpm_noirq_list);
1303 }
1304
1305 mutex_unlock(&dpm_list_mtx);
1306
1307 put_device(dev);
1308
1309 mutex_lock(&dpm_list_mtx);
1310
1311 if (error || async_error)
1312 break;
1313 }
1314 mutex_unlock(&dpm_list_mtx);
1315 async_synchronize_full();
1316 if (!error)
1317 error = async_error;
1318
1319 if (error) {
1320 suspend_stats.failed_suspend_noirq++;
1321 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1322 }
1323 dpm_show_time(starttime, state, error, "noirq");
1324 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1325 return error;
1326 }
1327
1328 /**
1329 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1330 * @state: PM transition of the system being carried out.
1331 *
1332 * Prevent device drivers' interrupt handlers from being called and invoke
1333 * "noirq" suspend callbacks for all non-sysdev devices.
1334 */
dpm_suspend_noirq(pm_message_t state)1335 int dpm_suspend_noirq(pm_message_t state)
1336 {
1337 int ret;
1338
1339 device_wakeup_arm_wake_irqs();
1340 suspend_device_irqs();
1341
1342 ret = dpm_noirq_suspend_devices(state);
1343 if (ret)
1344 dpm_resume_noirq(resume_event(state));
1345
1346 return ret;
1347 }
1348
dpm_propagate_wakeup_to_parent(struct device * dev)1349 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1350 {
1351 struct device *parent = dev->parent;
1352
1353 if (!parent)
1354 return;
1355
1356 spin_lock_irq(&parent->power.lock);
1357
1358 if (device_wakeup_path(dev) && !parent->power.ignore_children)
1359 parent->power.wakeup_path = true;
1360
1361 spin_unlock_irq(&parent->power.lock);
1362 }
1363
1364 /**
1365 * __device_suspend_late - Execute a "late suspend" callback for given device.
1366 * @dev: Device to handle.
1367 * @state: PM transition of the system being carried out.
1368 * @async: If true, the device is being suspended asynchronously.
1369 *
1370 * Runtime PM is disabled for @dev while this function is being executed.
1371 */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1372 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1373 {
1374 pm_callback_t callback = NULL;
1375 const char *info = NULL;
1376 int error = 0;
1377
1378 TRACE_DEVICE(dev);
1379 TRACE_SUSPEND(0);
1380
1381 __pm_runtime_disable(dev, false);
1382
1383 dpm_wait_for_subordinate(dev, async);
1384
1385 if (async_error)
1386 goto Complete;
1387
1388 if (pm_wakeup_pending()) {
1389 async_error = -EBUSY;
1390 goto Complete;
1391 }
1392
1393 if (dev->power.syscore || dev->power.direct_complete)
1394 goto Complete;
1395
1396 if (dev->pm_domain) {
1397 info = "late power domain ";
1398 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1399 } else if (dev->type && dev->type->pm) {
1400 info = "late type ";
1401 callback = pm_late_early_op(dev->type->pm, state);
1402 } else if (dev->class && dev->class->pm) {
1403 info = "late class ";
1404 callback = pm_late_early_op(dev->class->pm, state);
1405 } else if (dev->bus && dev->bus->pm) {
1406 info = "late bus ";
1407 callback = pm_late_early_op(dev->bus->pm, state);
1408 }
1409 if (callback)
1410 goto Run;
1411
1412 if (dev_pm_skip_suspend(dev))
1413 goto Skip;
1414
1415 if (dev->driver && dev->driver->pm) {
1416 info = "late driver ";
1417 callback = pm_late_early_op(dev->driver->pm, state);
1418 }
1419
1420 Run:
1421 error = dpm_run_callback(callback, dev, state, info);
1422 if (error) {
1423 async_error = error;
1424 goto Complete;
1425 }
1426 dpm_propagate_wakeup_to_parent(dev);
1427
1428 Skip:
1429 dev->power.is_late_suspended = true;
1430
1431 Complete:
1432 TRACE_SUSPEND(error);
1433 complete_all(&dev->power.completion);
1434 return error;
1435 }
1436
async_suspend_late(void * data,async_cookie_t cookie)1437 static void async_suspend_late(void *data, async_cookie_t cookie)
1438 {
1439 struct device *dev = data;
1440 int error;
1441
1442 error = __device_suspend_late(dev, pm_transition, true);
1443 if (error) {
1444 dpm_save_failed_dev(dev_name(dev));
1445 pm_dev_err(dev, pm_transition, " async", error);
1446 }
1447 put_device(dev);
1448 }
1449
device_suspend_late(struct device * dev)1450 static int device_suspend_late(struct device *dev)
1451 {
1452 if (dpm_async_fn(dev, async_suspend_late))
1453 return 0;
1454
1455 return __device_suspend_late(dev, pm_transition, false);
1456 }
1457
1458 /**
1459 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1460 * @state: PM transition of the system being carried out.
1461 */
dpm_suspend_late(pm_message_t state)1462 int dpm_suspend_late(pm_message_t state)
1463 {
1464 ktime_t starttime = ktime_get();
1465 int error = 0;
1466
1467 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1468 wake_up_all_idle_cpus();
1469 mutex_lock(&dpm_list_mtx);
1470 pm_transition = state;
1471 async_error = 0;
1472
1473 while (!list_empty(&dpm_suspended_list)) {
1474 struct device *dev = to_device(dpm_suspended_list.prev);
1475
1476 get_device(dev);
1477
1478 mutex_unlock(&dpm_list_mtx);
1479
1480 error = device_suspend_late(dev);
1481
1482 mutex_lock(&dpm_list_mtx);
1483
1484 if (!list_empty(&dev->power.entry))
1485 list_move(&dev->power.entry, &dpm_late_early_list);
1486
1487 if (error) {
1488 pm_dev_err(dev, state, " late", error);
1489 dpm_save_failed_dev(dev_name(dev));
1490 }
1491
1492 mutex_unlock(&dpm_list_mtx);
1493
1494 put_device(dev);
1495
1496 mutex_lock(&dpm_list_mtx);
1497
1498 if (error || async_error)
1499 break;
1500 }
1501 mutex_unlock(&dpm_list_mtx);
1502 async_synchronize_full();
1503 if (!error)
1504 error = async_error;
1505 if (error) {
1506 suspend_stats.failed_suspend_late++;
1507 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1508 dpm_resume_early(resume_event(state));
1509 }
1510 dpm_show_time(starttime, state, error, "late");
1511 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1512 return error;
1513 }
1514
1515 /**
1516 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1517 * @state: PM transition of the system being carried out.
1518 */
dpm_suspend_end(pm_message_t state)1519 int dpm_suspend_end(pm_message_t state)
1520 {
1521 ktime_t starttime = ktime_get();
1522 int error;
1523
1524 error = dpm_suspend_late(state);
1525 if (error)
1526 goto out;
1527
1528 error = dpm_suspend_noirq(state);
1529 if (error)
1530 dpm_resume_early(resume_event(state));
1531
1532 out:
1533 dpm_show_time(starttime, state, error, "end");
1534 return error;
1535 }
1536 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1537
1538 /**
1539 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1540 * @dev: Device to suspend.
1541 * @state: PM transition of the system being carried out.
1542 * @cb: Suspend callback to execute.
1543 * @info: string description of caller.
1544 */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1545 static int legacy_suspend(struct device *dev, pm_message_t state,
1546 int (*cb)(struct device *dev, pm_message_t state),
1547 const char *info)
1548 {
1549 int error;
1550 ktime_t calltime;
1551
1552 calltime = initcall_debug_start(dev, cb);
1553
1554 trace_device_pm_callback_start(dev, info, state.event);
1555 error = cb(dev, state);
1556 trace_device_pm_callback_end(dev, error);
1557 suspend_report_result(dev, cb, error);
1558
1559 initcall_debug_report(dev, calltime, cb, error);
1560
1561 return error;
1562 }
1563
dpm_clear_superiors_direct_complete(struct device * dev)1564 static void dpm_clear_superiors_direct_complete(struct device *dev)
1565 {
1566 struct device_link *link;
1567 int idx;
1568
1569 if (dev->parent) {
1570 spin_lock_irq(&dev->parent->power.lock);
1571 dev->parent->power.direct_complete = false;
1572 spin_unlock_irq(&dev->parent->power.lock);
1573 }
1574
1575 idx = device_links_read_lock();
1576
1577 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1578 spin_lock_irq(&link->supplier->power.lock);
1579 link->supplier->power.direct_complete = false;
1580 spin_unlock_irq(&link->supplier->power.lock);
1581 }
1582
1583 device_links_read_unlock(idx);
1584 }
1585
1586 /**
1587 * __device_suspend - Execute "suspend" callbacks for given device.
1588 * @dev: Device to handle.
1589 * @state: PM transition of the system being carried out.
1590 * @async: If true, the device is being suspended asynchronously.
1591 */
__device_suspend(struct device * dev,pm_message_t state,bool async)1592 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1593 {
1594 pm_callback_t callback = NULL;
1595 const char *info = NULL;
1596 int error = 0;
1597 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1598
1599 TRACE_DEVICE(dev);
1600 TRACE_SUSPEND(0);
1601
1602 dpm_wait_for_subordinate(dev, async);
1603
1604 if (async_error) {
1605 dev->power.direct_complete = false;
1606 goto Complete;
1607 }
1608
1609 /*
1610 * Wait for possible runtime PM transitions of the device in progress
1611 * to complete and if there's a runtime resume request pending for it,
1612 * resume it before proceeding with invoking the system-wide suspend
1613 * callbacks for it.
1614 *
1615 * If the system-wide suspend callbacks below change the configuration
1616 * of the device, they must disable runtime PM for it or otherwise
1617 * ensure that its runtime-resume callbacks will not be confused by that
1618 * change in case they are invoked going forward.
1619 */
1620 pm_runtime_barrier(dev);
1621
1622 if (pm_wakeup_pending()) {
1623 dev->power.direct_complete = false;
1624 async_error = -EBUSY;
1625 goto Complete;
1626 }
1627
1628 if (dev->power.syscore)
1629 goto Complete;
1630
1631 /* Avoid direct_complete to let wakeup_path propagate. */
1632 if (device_may_wakeup(dev) || device_wakeup_path(dev))
1633 dev->power.direct_complete = false;
1634
1635 if (dev->power.direct_complete) {
1636 if (pm_runtime_status_suspended(dev)) {
1637 pm_runtime_disable(dev);
1638 if (pm_runtime_status_suspended(dev)) {
1639 pm_dev_dbg(dev, state, "direct-complete ");
1640 dev->power.is_suspended = true;
1641 goto Complete;
1642 }
1643
1644 pm_runtime_enable(dev);
1645 }
1646 dev->power.direct_complete = false;
1647 }
1648
1649 dev->power.may_skip_resume = true;
1650 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1651
1652 dpm_watchdog_set(&wd, dev);
1653 device_lock(dev);
1654
1655 if (dev->pm_domain) {
1656 info = "power domain ";
1657 callback = pm_op(&dev->pm_domain->ops, state);
1658 goto Run;
1659 }
1660
1661 if (dev->type && dev->type->pm) {
1662 info = "type ";
1663 callback = pm_op(dev->type->pm, state);
1664 goto Run;
1665 }
1666
1667 if (dev->class && dev->class->pm) {
1668 info = "class ";
1669 callback = pm_op(dev->class->pm, state);
1670 goto Run;
1671 }
1672
1673 if (dev->bus) {
1674 if (dev->bus->pm) {
1675 info = "bus ";
1676 callback = pm_op(dev->bus->pm, state);
1677 } else if (dev->bus->suspend) {
1678 pm_dev_dbg(dev, state, "legacy bus ");
1679 error = legacy_suspend(dev, state, dev->bus->suspend,
1680 "legacy bus ");
1681 goto End;
1682 }
1683 }
1684
1685 Run:
1686 if (!callback && dev->driver && dev->driver->pm) {
1687 info = "driver ";
1688 callback = pm_op(dev->driver->pm, state);
1689 }
1690
1691 error = dpm_run_callback(callback, dev, state, info);
1692
1693 End:
1694 if (!error) {
1695 dev->power.is_suspended = true;
1696 if (device_may_wakeup(dev))
1697 dev->power.wakeup_path = true;
1698
1699 dpm_propagate_wakeup_to_parent(dev);
1700 dpm_clear_superiors_direct_complete(dev);
1701 }
1702
1703 device_unlock(dev);
1704 dpm_watchdog_clear(&wd);
1705
1706 Complete:
1707 if (error)
1708 async_error = error;
1709
1710 complete_all(&dev->power.completion);
1711 TRACE_SUSPEND(error);
1712 return error;
1713 }
1714
async_suspend(void * data,async_cookie_t cookie)1715 static void async_suspend(void *data, async_cookie_t cookie)
1716 {
1717 struct device *dev = data;
1718 int error;
1719
1720 error = __device_suspend(dev, pm_transition, true);
1721 if (error) {
1722 dpm_save_failed_dev(dev_name(dev));
1723 pm_dev_err(dev, pm_transition, " async", error);
1724 }
1725
1726 put_device(dev);
1727 }
1728
device_suspend(struct device * dev)1729 static int device_suspend(struct device *dev)
1730 {
1731 if (dpm_async_fn(dev, async_suspend))
1732 return 0;
1733
1734 return __device_suspend(dev, pm_transition, false);
1735 }
1736
1737 /**
1738 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1739 * @state: PM transition of the system being carried out.
1740 */
dpm_suspend(pm_message_t state)1741 int dpm_suspend(pm_message_t state)
1742 {
1743 ktime_t starttime = ktime_get();
1744 int error = 0;
1745
1746 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1747 might_sleep();
1748
1749 devfreq_suspend();
1750 cpufreq_suspend();
1751
1752 mutex_lock(&dpm_list_mtx);
1753 pm_transition = state;
1754 async_error = 0;
1755 while (!list_empty(&dpm_prepared_list)) {
1756 struct device *dev = to_device(dpm_prepared_list.prev);
1757
1758 get_device(dev);
1759
1760 mutex_unlock(&dpm_list_mtx);
1761
1762 error = device_suspend(dev);
1763
1764 mutex_lock(&dpm_list_mtx);
1765
1766 if (error) {
1767 pm_dev_err(dev, state, "", error);
1768 dpm_save_failed_dev(dev_name(dev));
1769 } else if (!list_empty(&dev->power.entry)) {
1770 list_move(&dev->power.entry, &dpm_suspended_list);
1771 }
1772
1773 mutex_unlock(&dpm_list_mtx);
1774
1775 put_device(dev);
1776
1777 mutex_lock(&dpm_list_mtx);
1778
1779 if (error || async_error)
1780 break;
1781 }
1782 mutex_unlock(&dpm_list_mtx);
1783 async_synchronize_full();
1784 if (!error)
1785 error = async_error;
1786 if (error) {
1787 suspend_stats.failed_suspend++;
1788 dpm_save_failed_step(SUSPEND_SUSPEND);
1789 }
1790 dpm_show_time(starttime, state, error, NULL);
1791 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1792 return error;
1793 }
1794
1795 /**
1796 * device_prepare - Prepare a device for system power transition.
1797 * @dev: Device to handle.
1798 * @state: PM transition of the system being carried out.
1799 *
1800 * Execute the ->prepare() callback(s) for given device. No new children of the
1801 * device may be registered after this function has returned.
1802 */
device_prepare(struct device * dev,pm_message_t state)1803 static int device_prepare(struct device *dev, pm_message_t state)
1804 {
1805 int (*callback)(struct device *) = NULL;
1806 int ret = 0;
1807
1808 /*
1809 * If a device's parent goes into runtime suspend at the wrong time,
1810 * it won't be possible to resume the device. To prevent this we
1811 * block runtime suspend here, during the prepare phase, and allow
1812 * it again during the complete phase.
1813 */
1814 pm_runtime_get_noresume(dev);
1815
1816 if (dev->power.syscore)
1817 return 0;
1818
1819 device_lock(dev);
1820
1821 dev->power.wakeup_path = false;
1822
1823 if (dev->power.no_pm_callbacks)
1824 goto unlock;
1825
1826 if (dev->pm_domain)
1827 callback = dev->pm_domain->ops.prepare;
1828 else if (dev->type && dev->type->pm)
1829 callback = dev->type->pm->prepare;
1830 else if (dev->class && dev->class->pm)
1831 callback = dev->class->pm->prepare;
1832 else if (dev->bus && dev->bus->pm)
1833 callback = dev->bus->pm->prepare;
1834
1835 if (!callback && dev->driver && dev->driver->pm)
1836 callback = dev->driver->pm->prepare;
1837
1838 if (callback)
1839 ret = callback(dev);
1840
1841 unlock:
1842 device_unlock(dev);
1843
1844 if (ret < 0) {
1845 suspend_report_result(dev, callback, ret);
1846 pm_runtime_put(dev);
1847 return ret;
1848 }
1849 /*
1850 * A positive return value from ->prepare() means "this device appears
1851 * to be runtime-suspended and its state is fine, so if it really is
1852 * runtime-suspended, you can leave it in that state provided that you
1853 * will do the same thing with all of its descendants". This only
1854 * applies to suspend transitions, however.
1855 */
1856 spin_lock_irq(&dev->power.lock);
1857 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1858 (ret > 0 || dev->power.no_pm_callbacks) &&
1859 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1860 spin_unlock_irq(&dev->power.lock);
1861 return 0;
1862 }
1863
1864 /**
1865 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1866 * @state: PM transition of the system being carried out.
1867 *
1868 * Execute the ->prepare() callback(s) for all devices.
1869 */
dpm_prepare(pm_message_t state)1870 int dpm_prepare(pm_message_t state)
1871 {
1872 int error = 0;
1873
1874 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1875 might_sleep();
1876
1877 /*
1878 * Give a chance for the known devices to complete their probes, before
1879 * disable probing of devices. This sync point is important at least
1880 * at boot time + hibernation restore.
1881 */
1882 wait_for_device_probe();
1883 /*
1884 * It is unsafe if probing of devices will happen during suspend or
1885 * hibernation and system behavior will be unpredictable in this case.
1886 * So, let's prohibit device's probing here and defer their probes
1887 * instead. The normal behavior will be restored in dpm_complete().
1888 */
1889 device_block_probing();
1890
1891 mutex_lock(&dpm_list_mtx);
1892 while (!list_empty(&dpm_list) && !error) {
1893 struct device *dev = to_device(dpm_list.next);
1894
1895 get_device(dev);
1896
1897 mutex_unlock(&dpm_list_mtx);
1898
1899 trace_device_pm_callback_start(dev, "", state.event);
1900 error = device_prepare(dev, state);
1901 trace_device_pm_callback_end(dev, error);
1902
1903 mutex_lock(&dpm_list_mtx);
1904
1905 if (!error) {
1906 dev->power.is_prepared = true;
1907 if (!list_empty(&dev->power.entry))
1908 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1909 } else if (error == -EAGAIN) {
1910 error = 0;
1911 } else {
1912 dev_info(dev, "not prepared for power transition: code %d\n",
1913 error);
1914 }
1915
1916 mutex_unlock(&dpm_list_mtx);
1917
1918 put_device(dev);
1919
1920 mutex_lock(&dpm_list_mtx);
1921 }
1922 mutex_unlock(&dpm_list_mtx);
1923 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1924 return error;
1925 }
1926
1927 /**
1928 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1929 * @state: PM transition of the system being carried out.
1930 *
1931 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1932 * callbacks for them.
1933 */
dpm_suspend_start(pm_message_t state)1934 int dpm_suspend_start(pm_message_t state)
1935 {
1936 ktime_t starttime = ktime_get();
1937 int error;
1938
1939 error = dpm_prepare(state);
1940 if (error) {
1941 suspend_stats.failed_prepare++;
1942 dpm_save_failed_step(SUSPEND_PREPARE);
1943 } else
1944 error = dpm_suspend(state);
1945 dpm_show_time(starttime, state, error, "start");
1946 return error;
1947 }
1948 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1949
__suspend_report_result(const char * function,struct device * dev,void * fn,int ret)1950 void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1951 {
1952 if (ret)
1953 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1954 }
1955 EXPORT_SYMBOL_GPL(__suspend_report_result);
1956
1957 /**
1958 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1959 * @subordinate: Device that needs to wait for @dev.
1960 * @dev: Device to wait for.
1961 */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1962 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1963 {
1964 dpm_wait(dev, subordinate->power.async_suspend);
1965 return async_error;
1966 }
1967 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1968
1969 /**
1970 * dpm_for_each_dev - device iterator.
1971 * @data: data for the callback.
1972 * @fn: function to be called for each device.
1973 *
1974 * Iterate over devices in dpm_list, and call @fn for each device,
1975 * passing it @data.
1976 */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1977 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1978 {
1979 struct device *dev;
1980
1981 if (!fn)
1982 return;
1983
1984 device_pm_lock();
1985 list_for_each_entry(dev, &dpm_list, power.entry)
1986 fn(dev, data);
1987 device_pm_unlock();
1988 }
1989 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1990
pm_ops_is_empty(const struct dev_pm_ops * ops)1991 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1992 {
1993 if (!ops)
1994 return true;
1995
1996 return !ops->prepare &&
1997 !ops->suspend &&
1998 !ops->suspend_late &&
1999 !ops->suspend_noirq &&
2000 !ops->resume_noirq &&
2001 !ops->resume_early &&
2002 !ops->resume &&
2003 !ops->complete;
2004 }
2005
device_pm_check_callbacks(struct device * dev)2006 void device_pm_check_callbacks(struct device *dev)
2007 {
2008 unsigned long flags;
2009
2010 spin_lock_irqsave(&dev->power.lock, flags);
2011 dev->power.no_pm_callbacks =
2012 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2013 !dev->bus->suspend && !dev->bus->resume)) &&
2014 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2015 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2016 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2017 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2018 !dev->driver->suspend && !dev->driver->resume));
2019 spin_unlock_irqrestore(&dev->power.lock, flags);
2020 }
2021
dev_pm_skip_suspend(struct device * dev)2022 bool dev_pm_skip_suspend(struct device *dev)
2023 {
2024 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2025 pm_runtime_status_suspended(dev);
2026 }
2027