xref: /openbmc/linux/arch/arm64/kvm/fpsimd.c (revision 840d9a813c8eaa5c55d86525e374a97ca5023b53)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/arm64/kvm/fpsimd.c: Guest/host FPSIMD context coordination helpers
4  *
5  * Copyright 2018 Arm Limited
6  * Author: Dave Martin <Dave.Martin@arm.com>
7  */
8 #include <linux/irqflags.h>
9 #include <linux/sched.h>
10 #include <linux/kvm_host.h>
11 #include <asm/fpsimd.h>
12 #include <asm/kvm_asm.h>
13 #include <asm/kvm_hyp.h>
14 #include <asm/kvm_mmu.h>
15 #include <asm/sysreg.h>
16 
kvm_vcpu_unshare_task_fp(struct kvm_vcpu * vcpu)17 void kvm_vcpu_unshare_task_fp(struct kvm_vcpu *vcpu)
18 {
19 	struct task_struct *p = vcpu->arch.parent_task;
20 	struct user_fpsimd_state *fpsimd;
21 
22 	if (!is_protected_kvm_enabled() || !p)
23 		return;
24 
25 	fpsimd = &p->thread.uw.fpsimd_state;
26 	kvm_unshare_hyp(fpsimd, fpsimd + 1);
27 	put_task_struct(p);
28 }
29 
30 /*
31  * Called on entry to KVM_RUN unless this vcpu previously ran at least
32  * once and the most recent prior KVM_RUN for this vcpu was called from
33  * the same task as current (highly likely).
34  *
35  * This is guaranteed to execute before kvm_arch_vcpu_load_fp(vcpu),
36  * such that on entering hyp the relevant parts of current are already
37  * mapped.
38  */
kvm_arch_vcpu_run_map_fp(struct kvm_vcpu * vcpu)39 int kvm_arch_vcpu_run_map_fp(struct kvm_vcpu *vcpu)
40 {
41 	int ret;
42 
43 	struct user_fpsimd_state *fpsimd = &current->thread.uw.fpsimd_state;
44 
45 	kvm_vcpu_unshare_task_fp(vcpu);
46 
47 	/* Make sure the host task fpsimd state is visible to hyp: */
48 	ret = kvm_share_hyp(fpsimd, fpsimd + 1);
49 	if (ret)
50 		return ret;
51 
52 	/*
53 	 * We need to keep current's task_struct pinned until its data has been
54 	 * unshared with the hypervisor to make sure it is not re-used by the
55 	 * kernel and donated to someone else while already shared -- see
56 	 * kvm_vcpu_unshare_task_fp() for the matching put_task_struct().
57 	 */
58 	if (is_protected_kvm_enabled()) {
59 		get_task_struct(current);
60 		vcpu->arch.parent_task = current;
61 	}
62 
63 	return 0;
64 }
65 
66 /*
67  * Prepare vcpu for saving the host's FPSIMD state and loading the guest's.
68  * The actual loading is done by the FPSIMD access trap taken to hyp.
69  *
70  * Here, we just set the correct metadata to indicate that the FPSIMD
71  * state in the cpu regs (if any) belongs to current on the host.
72  */
kvm_arch_vcpu_load_fp(struct kvm_vcpu * vcpu)73 void kvm_arch_vcpu_load_fp(struct kvm_vcpu *vcpu)
74 {
75 	BUG_ON(!current->mm);
76 
77 	if (!system_supports_fpsimd())
78 		return;
79 
80 	/*
81 	 * Ensure that any host FPSIMD/SVE/SME state is saved and unbound such
82 	 * that the host kernel is responsible for restoring this state upon
83 	 * return to userspace, and the hyp code doesn't need to save anything.
84 	 *
85 	 * When the host may use SME, fpsimd_save_and_flush_cpu_state() ensures
86 	 * that PSTATE.{SM,ZA} == {0,0}.
87 	 */
88 	fpsimd_save_and_flush_cpu_state();
89 	vcpu->arch.fp_state = FP_STATE_FREE;
90 }
91 
92 /*
93  * Called just before entering the guest once we are no longer preemptable
94  * and interrupts are disabled. If we have managed to run anything using
95  * FP while we were preemptible (such as off the back of an interrupt),
96  * then neither the host nor the guest own the FP hardware (and it was the
97  * responsibility of the code that used FP to save the existing state).
98  */
kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu * vcpu)99 void kvm_arch_vcpu_ctxflush_fp(struct kvm_vcpu *vcpu)
100 {
101 	if (test_thread_flag(TIF_FOREIGN_FPSTATE))
102 		vcpu->arch.fp_state = FP_STATE_FREE;
103 }
104 
105 /*
106  * Called just after exiting the guest. If the guest FPSIMD state
107  * was loaded, update the host's context tracking data mark the CPU
108  * FPSIMD regs as dirty and belonging to vcpu so that they will be
109  * written back if the kernel clobbers them due to kernel-mode NEON
110  * before re-entry into the guest.
111  */
kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu * vcpu)112 void kvm_arch_vcpu_ctxsync_fp(struct kvm_vcpu *vcpu)
113 {
114 	struct cpu_fp_state fp_state;
115 
116 	WARN_ON_ONCE(!irqs_disabled());
117 
118 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
119 
120 		/*
121 		 * Currently we do not support SME guests so SVCR is
122 		 * always 0 and we just need a variable to point to.
123 		 */
124 		fp_state.st = &vcpu->arch.ctxt.fp_regs;
125 		fp_state.sve_state = vcpu->arch.sve_state;
126 		fp_state.sve_vl = vcpu->arch.sve_max_vl;
127 		fp_state.sme_state = NULL;
128 		fp_state.svcr = &vcpu->arch.svcr;
129 		fp_state.fp_type = &vcpu->arch.fp_type;
130 
131 		if (vcpu_has_sve(vcpu))
132 			fp_state.to_save = FP_STATE_SVE;
133 		else
134 			fp_state.to_save = FP_STATE_FPSIMD;
135 
136 		fpsimd_bind_state_to_cpu(&fp_state);
137 
138 		clear_thread_flag(TIF_FOREIGN_FPSTATE);
139 	}
140 }
141 
142 /*
143  * Write back the vcpu FPSIMD regs if they are dirty, and invalidate the
144  * cpu FPSIMD regs so that they can't be spuriously reused if this vcpu
145  * disappears and another task or vcpu appears that recycles the same
146  * struct fpsimd_state.
147  */
kvm_arch_vcpu_put_fp(struct kvm_vcpu * vcpu)148 void kvm_arch_vcpu_put_fp(struct kvm_vcpu *vcpu)
149 {
150 	unsigned long flags;
151 
152 	local_irq_save(flags);
153 
154 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED) {
155 		/*
156 		 * Flush (save and invalidate) the fpsimd/sve state so that if
157 		 * the host tries to use fpsimd/sve, it's not using stale data
158 		 * from the guest.
159 		 *
160 		 * Flushing the state sets the TIF_FOREIGN_FPSTATE bit for the
161 		 * context unconditionally, in both nVHE and VHE. This allows
162 		 * the kernel to restore the fpsimd/sve state, including ZCR_EL1
163 		 * when needed.
164 		 */
165 		fpsimd_save_and_flush_cpu_state();
166 	}
167 
168 	local_irq_restore(flags);
169 }
170