xref: /openbmc/linux/net/ipv4/tcp.c (revision d37cf9b63113f13d742713881ce691fc615d8b3b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
tcp_stream_is_readable(struct sock * sk,int target)483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT &&
587 		   inet_test_bit(DEFER_CONNECT, sk)) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
595 	smp_rmb();
596 	if (READ_ONCE(sk->sk_err) ||
597 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598 		mask |= EPOLLERR;
599 
600 	return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603 
tcp_ioctl(struct sock * sk,int cmd,int * karg)604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	int answ;
608 	bool slow;
609 
610 	switch (cmd) {
611 	case SIOCINQ:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		slow = lock_sock_fast(sk);
616 		answ = tcp_inq(sk);
617 		unlock_sock_fast(sk, slow);
618 		break;
619 	case SIOCATMARK:
620 		answ = READ_ONCE(tp->urg_data) &&
621 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) -
640 			       READ_ONCE(tp->snd_nxt);
641 		break;
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 
646 	*karg = answ;
647 	return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	tcb->seq     = tcb->end_seq = tp->write_seq;
668 	tcb->tcp_flags = TCPHDR_ACK;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
tcp_mark_urg(struct tcp_sock * tp,int flags)679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 	       tcp_skb_can_collapse_to(skb);
703 }
704 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 	      int nonagle, int size_goal)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct sk_buff *skb;
710 
711 	skb = tcp_write_queue_tail(sk);
712 	if (!skb)
713 		return;
714 	if (!(flags & MSG_MORE) || forced_push(tp))
715 		tcp_mark_push(tp, skb);
716 
717 	tcp_mark_urg(tp, flags);
718 
719 	if (tcp_should_autocork(sk, skb, size_goal)) {
720 
721 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 			smp_mb__after_atomic();
726 		}
727 		/* It is possible TX completion already happened
728 		 * before we set TSQ_THROTTLED.
729 		 */
730 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 			return;
732 	}
733 
734 	if (flags & MSG_MORE)
735 		nonagle = TCP_NAGLE_CORK;
736 
737 	__tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 				unsigned int offset, size_t len)
742 {
743 	struct tcp_splice_state *tss = rd_desc->arg.data;
744 	int ret;
745 
746 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 			      min(rd_desc->count, len), tss->flags);
748 	if (ret > 0)
749 		rd_desc->count -= ret;
750 	return ret;
751 }
752 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 	/* Store TCP splice context information in read_descriptor_t. */
756 	read_descriptor_t rd_desc = {
757 		.arg.data = tss,
758 		.count	  = tss->len,
759 	};
760 
761 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763 
764 /**
765  *  tcp_splice_read - splice data from TCP socket to a pipe
766  * @sock:	socket to splice from
767  * @ppos:	position (not valid)
768  * @pipe:	pipe to splice to
769  * @len:	number of bytes to splice
770  * @flags:	splice modifier flags
771  *
772  * Description:
773  *    Will read pages from given socket and fill them into a pipe.
774  *
775  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 			struct pipe_inode_info *pipe, size_t len,
778 			unsigned int flags)
779 {
780 	struct sock *sk = sock->sk;
781 	struct tcp_splice_state tss = {
782 		.pipe = pipe,
783 		.len = len,
784 		.flags = flags,
785 	};
786 	long timeo;
787 	ssize_t spliced;
788 	int ret;
789 
790 	sock_rps_record_flow(sk);
791 	/*
792 	 * We can't seek on a socket input
793 	 */
794 	if (unlikely(*ppos))
795 		return -ESPIPE;
796 
797 	ret = spliced = 0;
798 
799 	lock_sock(sk);
800 
801 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 	while (tss.len) {
803 		ret = __tcp_splice_read(sk, &tss);
804 		if (ret < 0)
805 			break;
806 		else if (!ret) {
807 			if (spliced)
808 				break;
809 			if (sock_flag(sk, SOCK_DONE))
810 				break;
811 			if (sk->sk_err) {
812 				ret = sock_error(sk);
813 				break;
814 			}
815 			if (sk->sk_shutdown & RCV_SHUTDOWN)
816 				break;
817 			if (sk->sk_state == TCP_CLOSE) {
818 				/*
819 				 * This occurs when user tries to read
820 				 * from never connected socket.
821 				 */
822 				ret = -ENOTCONN;
823 				break;
824 			}
825 			if (!timeo) {
826 				ret = -EAGAIN;
827 				break;
828 			}
829 			/* if __tcp_splice_read() got nothing while we have
830 			 * an skb in receive queue, we do not want to loop.
831 			 * This might happen with URG data.
832 			 */
833 			if (!skb_queue_empty(&sk->sk_receive_queue))
834 				break;
835 			ret = sk_wait_data(sk, &timeo, NULL);
836 			if (ret < 0)
837 				break;
838 			if (signal_pending(current)) {
839 				ret = sock_intr_errno(timeo);
840 				break;
841 			}
842 			continue;
843 		}
844 		tss.len -= ret;
845 		spliced += ret;
846 
847 		if (!tss.len || !timeo)
848 			break;
849 		release_sock(sk);
850 		lock_sock(sk);
851 
852 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 		    signal_pending(current))
855 			break;
856 	}
857 
858 	release_sock(sk);
859 
860 	if (spliced)
861 		return spliced;
862 
863 	return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
868 				     bool force_schedule)
869 {
870 	struct sk_buff *skb;
871 
872 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
873 	if (likely(skb)) {
874 		bool mem_scheduled;
875 
876 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 		if (force_schedule) {
878 			mem_scheduled = true;
879 			sk_forced_mem_schedule(sk, skb->truesize);
880 		} else {
881 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
882 		}
883 		if (likely(mem_scheduled)) {
884 			skb_reserve(skb, MAX_TCP_HEADER);
885 			skb->ip_summed = CHECKSUM_PARTIAL;
886 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
887 			return skb;
888 		}
889 		__kfree_skb(skb);
890 	} else {
891 		sk->sk_prot->enter_memory_pressure(sk);
892 		sk_stream_moderate_sndbuf(sk);
893 	}
894 	return NULL;
895 }
896 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898 				       int large_allowed)
899 {
900 	struct tcp_sock *tp = tcp_sk(sk);
901 	u32 new_size_goal, size_goal;
902 
903 	if (!large_allowed)
904 		return mss_now;
905 
906 	/* Note : tcp_tso_autosize() will eventually split this later */
907 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
908 
909 	/* We try hard to avoid divides here */
910 	size_goal = tp->gso_segs * mss_now;
911 	if (unlikely(new_size_goal < size_goal ||
912 		     new_size_goal >= size_goal + mss_now)) {
913 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914 				     sk->sk_gso_max_segs);
915 		size_goal = tp->gso_segs * mss_now;
916 	}
917 
918 	return max(size_goal, mss_now);
919 }
920 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922 {
923 	int mss_now;
924 
925 	mss_now = tcp_current_mss(sk);
926 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927 
928 	return mss_now;
929 }
930 
931 /* In some cases, sendmsg() could have added an skb to the write queue,
932  * but failed adding payload on it. We need to remove it to consume less
933  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
934  * epoll() users. Another reason is that tcp_write_xmit() does not like
935  * finding an empty skb in the write queue.
936  */
tcp_remove_empty_skb(struct sock * sk)937 void tcp_remove_empty_skb(struct sock *sk)
938 {
939 	struct sk_buff *skb = tcp_write_queue_tail(sk);
940 
941 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
942 		tcp_unlink_write_queue(skb, sk);
943 		if (tcp_write_queue_empty(sk))
944 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 		tcp_wmem_free_skb(sk, skb);
946 	}
947 }
948 
949 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
951 {
952 	if (unlikely(skb_zcopy_pure(skb))) {
953 		u32 extra = skb->truesize -
954 			    SKB_TRUESIZE(skb_end_offset(skb));
955 
956 		if (!sk_wmem_schedule(sk, extra))
957 			return -ENOMEM;
958 
959 		sk_mem_charge(sk, extra);
960 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
961 	}
962 	return 0;
963 }
964 
965 
tcp_wmem_schedule(struct sock * sk,int copy)966 int tcp_wmem_schedule(struct sock *sk, int copy)
967 {
968 	int left;
969 
970 	if (likely(sk_wmem_schedule(sk, copy)))
971 		return copy;
972 
973 	/* We could be in trouble if we have nothing queued.
974 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
975 	 * to guarantee some progress.
976 	 */
977 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
978 	if (left > 0)
979 		sk_forced_mem_schedule(sk, min(left, copy));
980 	return min(copy, sk->sk_forward_alloc);
981 }
982 
tcp_free_fastopen_req(struct tcp_sock * tp)983 void tcp_free_fastopen_req(struct tcp_sock *tp)
984 {
985 	if (tp->fastopen_req) {
986 		kfree(tp->fastopen_req);
987 		tp->fastopen_req = NULL;
988 	}
989 }
990 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
992 			 size_t size, struct ubuf_info *uarg)
993 {
994 	struct tcp_sock *tp = tcp_sk(sk);
995 	struct inet_sock *inet = inet_sk(sk);
996 	struct sockaddr *uaddr = msg->msg_name;
997 	int err, flags;
998 
999 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000 	      TFO_CLIENT_ENABLE) ||
1001 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002 	     uaddr->sa_family == AF_UNSPEC))
1003 		return -EOPNOTSUPP;
1004 	if (tp->fastopen_req)
1005 		return -EALREADY; /* Another Fast Open is in progress */
1006 
1007 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008 				   sk->sk_allocation);
1009 	if (unlikely(!tp->fastopen_req))
1010 		return -ENOBUFS;
1011 	tp->fastopen_req->data = msg;
1012 	tp->fastopen_req->size = size;
1013 	tp->fastopen_req->uarg = uarg;
1014 
1015 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1016 		err = tcp_connect(sk);
1017 		/* Same failure procedure as in tcp_v4/6_connect */
1018 		if (err) {
1019 			tcp_set_state(sk, TCP_CLOSE);
1020 			inet->inet_dport = 0;
1021 			sk->sk_route_caps = 0;
1022 		}
1023 	}
1024 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1026 				    msg->msg_namelen, flags, 1);
1027 	/* fastopen_req could already be freed in __inet_stream_connect
1028 	 * if the connection times out or gets rst
1029 	 */
1030 	if (tp->fastopen_req) {
1031 		*copied = tp->fastopen_req->copied;
1032 		tcp_free_fastopen_req(tp);
1033 		inet_clear_bit(DEFER_CONNECT, sk);
1034 	}
1035 	return err;
1036 }
1037 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	struct ubuf_info *uarg = NULL;
1042 	struct sk_buff *skb;
1043 	struct sockcm_cookie sockc;
1044 	int flags, err, copied = 0;
1045 	int mss_now = 0, size_goal, copied_syn = 0;
1046 	int process_backlog = 0;
1047 	int zc = 0;
1048 	long timeo;
1049 
1050 	flags = msg->msg_flags;
1051 
1052 	if ((flags & MSG_ZEROCOPY) && size) {
1053 		if (msg->msg_ubuf) {
1054 			uarg = msg->msg_ubuf;
1055 			if (sk->sk_route_caps & NETIF_F_SG)
1056 				zc = MSG_ZEROCOPY;
1057 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058 			skb = tcp_write_queue_tail(sk);
1059 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060 			if (!uarg) {
1061 				err = -ENOBUFS;
1062 				goto out_err;
1063 			}
1064 			if (sk->sk_route_caps & NETIF_F_SG)
1065 				zc = MSG_ZEROCOPY;
1066 			else
1067 				uarg_to_msgzc(uarg)->zerocopy = 0;
1068 		}
1069 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070 		if (sk->sk_route_caps & NETIF_F_SG)
1071 			zc = MSG_SPLICE_PAGES;
1072 	}
1073 
1074 	if (unlikely(flags & MSG_FASTOPEN ||
1075 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1076 	    !tp->repair) {
1077 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078 		if (err == -EINPROGRESS && copied_syn > 0)
1079 			goto out;
1080 		else if (err)
1081 			goto out_err;
1082 	}
1083 
1084 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085 
1086 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1087 
1088 	/* Wait for a connection to finish. One exception is TCP Fast Open
1089 	 * (passive side) where data is allowed to be sent before a connection
1090 	 * is fully established.
1091 	 */
1092 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093 	    !tcp_passive_fastopen(sk)) {
1094 		err = sk_stream_wait_connect(sk, &timeo);
1095 		if (err != 0)
1096 			goto do_error;
1097 	}
1098 
1099 	if (unlikely(tp->repair)) {
1100 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1101 			copied = tcp_send_rcvq(sk, msg, size);
1102 			goto out_nopush;
1103 		}
1104 
1105 		err = -EINVAL;
1106 		if (tp->repair_queue == TCP_NO_QUEUE)
1107 			goto out_err;
1108 
1109 		/* 'common' sending to sendq */
1110 	}
1111 
1112 	sockcm_init(&sockc, sk);
1113 	if (msg->msg_controllen) {
1114 		err = sock_cmsg_send(sk, msg, &sockc);
1115 		if (unlikely(err)) {
1116 			err = -EINVAL;
1117 			goto out_err;
1118 		}
1119 	}
1120 
1121 	/* This should be in poll */
1122 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123 
1124 	/* Ok commence sending. */
1125 	copied = 0;
1126 
1127 restart:
1128 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1129 
1130 	err = -EPIPE;
1131 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 		goto do_error;
1133 
1134 	while (msg_data_left(msg)) {
1135 		ssize_t copy = 0;
1136 
1137 		skb = tcp_write_queue_tail(sk);
1138 		if (skb)
1139 			copy = size_goal - skb->len;
1140 
1141 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142 			bool first_skb;
1143 
1144 new_segment:
1145 			if (!sk_stream_memory_free(sk))
1146 				goto wait_for_space;
1147 
1148 			if (unlikely(process_backlog >= 16)) {
1149 				process_backlog = 0;
1150 				if (sk_flush_backlog(sk))
1151 					goto restart;
1152 			}
1153 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1154 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155 						   first_skb);
1156 			if (!skb)
1157 				goto wait_for_space;
1158 
1159 			process_backlog++;
1160 
1161 #ifdef CONFIG_SKB_DECRYPTED
1162 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1163 #endif
1164 			tcp_skb_entail(sk, skb);
1165 			copy = size_goal;
1166 
1167 			/* All packets are restored as if they have
1168 			 * already been sent. skb_mstamp_ns isn't set to
1169 			 * avoid wrong rtt estimation.
1170 			 */
1171 			if (tp->repair)
1172 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1173 		}
1174 
1175 		/* Try to append data to the end of skb. */
1176 		if (copy > msg_data_left(msg))
1177 			copy = msg_data_left(msg);
1178 
1179 		if (zc == 0) {
1180 			bool merge = true;
1181 			int i = skb_shinfo(skb)->nr_frags;
1182 			struct page_frag *pfrag = sk_page_frag(sk);
1183 
1184 			if (!sk_page_frag_refill(sk, pfrag))
1185 				goto wait_for_space;
1186 
1187 			if (!skb_can_coalesce(skb, i, pfrag->page,
1188 					      pfrag->offset)) {
1189 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1190 					tcp_mark_push(tp, skb);
1191 					goto new_segment;
1192 				}
1193 				merge = false;
1194 			}
1195 
1196 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1197 
1198 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1199 				if (tcp_downgrade_zcopy_pure(sk, skb))
1200 					goto wait_for_space;
1201 				skb_zcopy_downgrade_managed(skb);
1202 			}
1203 
1204 			copy = tcp_wmem_schedule(sk, copy);
1205 			if (!copy)
1206 				goto wait_for_space;
1207 
1208 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1209 						       pfrag->page,
1210 						       pfrag->offset,
1211 						       copy);
1212 			if (err)
1213 				goto do_error;
1214 
1215 			/* Update the skb. */
1216 			if (merge) {
1217 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1218 			} else {
1219 				skb_fill_page_desc(skb, i, pfrag->page,
1220 						   pfrag->offset, copy);
1221 				page_ref_inc(pfrag->page);
1222 			}
1223 			pfrag->offset += copy;
1224 		} else if (zc == MSG_ZEROCOPY)  {
1225 			/* First append to a fragless skb builds initial
1226 			 * pure zerocopy skb
1227 			 */
1228 			if (!skb->len)
1229 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1230 
1231 			if (!skb_zcopy_pure(skb)) {
1232 				copy = tcp_wmem_schedule(sk, copy);
1233 				if (!copy)
1234 					goto wait_for_space;
1235 			}
1236 
1237 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1238 			if (err == -EMSGSIZE || err == -EEXIST) {
1239 				tcp_mark_push(tp, skb);
1240 				goto new_segment;
1241 			}
1242 			if (err < 0)
1243 				goto do_error;
1244 			copy = err;
1245 		} else if (zc == MSG_SPLICE_PAGES) {
1246 			/* Splice in data if we can; copy if we can't. */
1247 			if (tcp_downgrade_zcopy_pure(sk, skb))
1248 				goto wait_for_space;
1249 			copy = tcp_wmem_schedule(sk, copy);
1250 			if (!copy)
1251 				goto wait_for_space;
1252 
1253 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1254 						   sk->sk_allocation);
1255 			if (err < 0) {
1256 				if (err == -EMSGSIZE) {
1257 					tcp_mark_push(tp, skb);
1258 					goto new_segment;
1259 				}
1260 				goto do_error;
1261 			}
1262 			copy = err;
1263 
1264 			if (!(flags & MSG_NO_SHARED_FRAGS))
1265 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1266 
1267 			sk_wmem_queued_add(sk, copy);
1268 			sk_mem_charge(sk, copy);
1269 		}
1270 
1271 		if (!copied)
1272 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1273 
1274 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1275 		TCP_SKB_CB(skb)->end_seq += copy;
1276 		tcp_skb_pcount_set(skb, 0);
1277 
1278 		copied += copy;
1279 		if (!msg_data_left(msg)) {
1280 			if (unlikely(flags & MSG_EOR))
1281 				TCP_SKB_CB(skb)->eor = 1;
1282 			goto out;
1283 		}
1284 
1285 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1286 			continue;
1287 
1288 		if (forced_push(tp)) {
1289 			tcp_mark_push(tp, skb);
1290 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1291 		} else if (skb == tcp_send_head(sk))
1292 			tcp_push_one(sk, mss_now);
1293 		continue;
1294 
1295 wait_for_space:
1296 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1297 		tcp_remove_empty_skb(sk);
1298 		if (copied)
1299 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1300 				 TCP_NAGLE_PUSH, size_goal);
1301 
1302 		err = sk_stream_wait_memory(sk, &timeo);
1303 		if (err != 0)
1304 			goto do_error;
1305 
1306 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1307 	}
1308 
1309 out:
1310 	if (copied) {
1311 		tcp_tx_timestamp(sk, sockc.tsflags);
1312 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1313 	}
1314 out_nopush:
1315 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1316 	if (uarg && !msg->msg_ubuf)
1317 		net_zcopy_put(uarg);
1318 	return copied + copied_syn;
1319 
1320 do_error:
1321 	tcp_remove_empty_skb(sk);
1322 
1323 	if (copied + copied_syn)
1324 		goto out;
1325 out_err:
1326 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1327 	if (uarg && !msg->msg_ubuf)
1328 		net_zcopy_put_abort(uarg, true);
1329 	err = sk_stream_error(sk, flags, err);
1330 	/* make sure we wake any epoll edge trigger waiter */
1331 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1332 		sk->sk_write_space(sk);
1333 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1334 	}
1335 	return err;
1336 }
1337 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1338 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1340 {
1341 	int ret;
1342 
1343 	lock_sock(sk);
1344 	ret = tcp_sendmsg_locked(sk, msg, size);
1345 	release_sock(sk);
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL(tcp_sendmsg);
1350 
tcp_splice_eof(struct socket * sock)1351 void tcp_splice_eof(struct socket *sock)
1352 {
1353 	struct sock *sk = sock->sk;
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 	int mss_now, size_goal;
1356 
1357 	if (!tcp_write_queue_tail(sk))
1358 		return;
1359 
1360 	lock_sock(sk);
1361 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1362 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1363 	release_sock(sk);
1364 }
1365 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1366 
1367 /*
1368  *	Handle reading urgent data. BSD has very simple semantics for
1369  *	this, no blocking and very strange errors 8)
1370  */
1371 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1372 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1373 {
1374 	struct tcp_sock *tp = tcp_sk(sk);
1375 
1376 	/* No URG data to read. */
1377 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1378 	    tp->urg_data == TCP_URG_READ)
1379 		return -EINVAL;	/* Yes this is right ! */
1380 
1381 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1382 		return -ENOTCONN;
1383 
1384 	if (tp->urg_data & TCP_URG_VALID) {
1385 		int err = 0;
1386 		char c = tp->urg_data;
1387 
1388 		if (!(flags & MSG_PEEK))
1389 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1390 
1391 		/* Read urgent data. */
1392 		msg->msg_flags |= MSG_OOB;
1393 
1394 		if (len > 0) {
1395 			if (!(flags & MSG_TRUNC))
1396 				err = memcpy_to_msg(msg, &c, 1);
1397 			len = 1;
1398 		} else
1399 			msg->msg_flags |= MSG_TRUNC;
1400 
1401 		return err ? -EFAULT : len;
1402 	}
1403 
1404 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1405 		return 0;
1406 
1407 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1408 	 * the available implementations agree in this case:
1409 	 * this call should never block, independent of the
1410 	 * blocking state of the socket.
1411 	 * Mike <pall@rz.uni-karlsruhe.de>
1412 	 */
1413 	return -EAGAIN;
1414 }
1415 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1416 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1417 {
1418 	struct sk_buff *skb;
1419 	int copied = 0, err = 0;
1420 
1421 	/* XXX -- need to support SO_PEEK_OFF */
1422 
1423 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1424 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1425 		if (err)
1426 			return err;
1427 		copied += skb->len;
1428 	}
1429 
1430 	skb_queue_walk(&sk->sk_write_queue, skb) {
1431 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 		if (err)
1433 			break;
1434 
1435 		copied += skb->len;
1436 	}
1437 
1438 	return err ?: copied;
1439 }
1440 
1441 /* Clean up the receive buffer for full frames taken by the user,
1442  * then send an ACK if necessary.  COPIED is the number of bytes
1443  * tcp_recvmsg has given to the user so far, it speeds up the
1444  * calculation of whether or not we must ACK for the sake of
1445  * a window update.
1446  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1448 {
1449 	struct tcp_sock *tp = tcp_sk(sk);
1450 	bool time_to_ack = false;
1451 
1452 	if (inet_csk_ack_scheduled(sk)) {
1453 		const struct inet_connection_sock *icsk = inet_csk(sk);
1454 
1455 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1456 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1457 		    /*
1458 		     * If this read emptied read buffer, we send ACK, if
1459 		     * connection is not bidirectional, user drained
1460 		     * receive buffer and there was a small segment
1461 		     * in queue.
1462 		     */
1463 		    (copied > 0 &&
1464 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1465 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1466 		       !inet_csk_in_pingpong_mode(sk))) &&
1467 		      !atomic_read(&sk->sk_rmem_alloc)))
1468 			time_to_ack = true;
1469 	}
1470 
1471 	/* We send an ACK if we can now advertise a non-zero window
1472 	 * which has been raised "significantly".
1473 	 *
1474 	 * Even if window raised up to infinity, do not send window open ACK
1475 	 * in states, where we will not receive more. It is useless.
1476 	 */
1477 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1478 		__u32 rcv_window_now = tcp_receive_window(tp);
1479 
1480 		/* Optimize, __tcp_select_window() is not cheap. */
1481 		if (2*rcv_window_now <= tp->window_clamp) {
1482 			__u32 new_window = __tcp_select_window(sk);
1483 
1484 			/* Send ACK now, if this read freed lots of space
1485 			 * in our buffer. Certainly, new_window is new window.
1486 			 * We can advertise it now, if it is not less than current one.
1487 			 * "Lots" means "at least twice" here.
1488 			 */
1489 			if (new_window && new_window >= 2 * rcv_window_now)
1490 				time_to_ack = true;
1491 		}
1492 	}
1493 	if (time_to_ack)
1494 		tcp_send_ack(sk);
1495 }
1496 
tcp_cleanup_rbuf(struct sock * sk,int copied)1497 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1500 	struct tcp_sock *tp = tcp_sk(sk);
1501 
1502 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1503 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1504 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1505 	__tcp_cleanup_rbuf(sk, copied);
1506 }
1507 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1509 {
1510 	__skb_unlink(skb, &sk->sk_receive_queue);
1511 	if (likely(skb->destructor == sock_rfree)) {
1512 		sock_rfree(skb);
1513 		skb->destructor = NULL;
1514 		skb->sk = NULL;
1515 		return skb_attempt_defer_free(skb);
1516 	}
1517 	__kfree_skb(skb);
1518 }
1519 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1521 {
1522 	struct sk_buff *skb;
1523 	u32 offset;
1524 
1525 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1526 		offset = seq - TCP_SKB_CB(skb)->seq;
1527 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1528 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1529 			offset--;
1530 		}
1531 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1532 			*off = offset;
1533 			return skb;
1534 		}
1535 		/* This looks weird, but this can happen if TCP collapsing
1536 		 * splitted a fat GRO packet, while we released socket lock
1537 		 * in skb_splice_bits()
1538 		 */
1539 		tcp_eat_recv_skb(sk, skb);
1540 	}
1541 	return NULL;
1542 }
1543 EXPORT_SYMBOL(tcp_recv_skb);
1544 
1545 /*
1546  * This routine provides an alternative to tcp_recvmsg() for routines
1547  * that would like to handle copying from skbuffs directly in 'sendfile'
1548  * fashion.
1549  * Note:
1550  *	- It is assumed that the socket was locked by the caller.
1551  *	- The routine does not block.
1552  *	- At present, there is no support for reading OOB data
1553  *	  or for 'peeking' the socket using this routine
1554  *	  (although both would be easy to implement).
1555  */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1556 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 			   sk_read_actor_t recv_actor, bool noack,
1558 			   u32 *copied_seq)
1559 {
1560 	struct sk_buff *skb;
1561 	struct tcp_sock *tp = tcp_sk(sk);
1562 	u32 seq = *copied_seq;
1563 	u32 offset;
1564 	int copied = 0;
1565 
1566 	if (sk->sk_state == TCP_LISTEN)
1567 		return -ENOTCONN;
1568 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1569 		if (offset < skb->len) {
1570 			int used;
1571 			size_t len;
1572 
1573 			len = skb->len - offset;
1574 			/* Stop reading if we hit a patch of urgent data */
1575 			if (unlikely(tp->urg_data)) {
1576 				u32 urg_offset = tp->urg_seq - seq;
1577 				if (urg_offset < len)
1578 					len = urg_offset;
1579 				if (!len)
1580 					break;
1581 			}
1582 			used = recv_actor(desc, skb, offset, len);
1583 			if (used <= 0) {
1584 				if (!copied)
1585 					copied = used;
1586 				break;
1587 			}
1588 			if (WARN_ON_ONCE(used > len))
1589 				used = len;
1590 			seq += used;
1591 			copied += used;
1592 			offset += used;
1593 
1594 			/* If recv_actor drops the lock (e.g. TCP splice
1595 			 * receive) the skb pointer might be invalid when
1596 			 * getting here: tcp_collapse might have deleted it
1597 			 * while aggregating skbs from the socket queue.
1598 			 */
1599 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1600 			if (!skb)
1601 				break;
1602 			/* TCP coalescing might have appended data to the skb.
1603 			 * Try to splice more frags
1604 			 */
1605 			if (offset + 1 != skb->len)
1606 				continue;
1607 		}
1608 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1609 			tcp_eat_recv_skb(sk, skb);
1610 			++seq;
1611 			break;
1612 		}
1613 		tcp_eat_recv_skb(sk, skb);
1614 		if (!desc->count)
1615 			break;
1616 		WRITE_ONCE(*copied_seq, seq);
1617 	}
1618 	WRITE_ONCE(*copied_seq, seq);
1619 
1620 	if (noack)
1621 		goto out;
1622 
1623 	tcp_rcv_space_adjust(sk);
1624 
1625 	/* Clean up data we have read: This will do ACK frames. */
1626 	if (copied > 0) {
1627 		tcp_recv_skb(sk, seq, &offset);
1628 		tcp_cleanup_rbuf(sk, copied);
1629 	}
1630 out:
1631 	return copied;
1632 }
1633 
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1634 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1635 		  sk_read_actor_t recv_actor)
1636 {
1637 	return __tcp_read_sock(sk, desc, recv_actor, false,
1638 			       &tcp_sk(sk)->copied_seq);
1639 }
1640 EXPORT_SYMBOL(tcp_read_sock);
1641 
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1642 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1643 			sk_read_actor_t recv_actor, bool noack,
1644 			u32 *copied_seq)
1645 {
1646 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1647 }
1648 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1649 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1650 {
1651 	struct sk_buff *skb;
1652 	int copied = 0;
1653 
1654 	if (sk->sk_state == TCP_LISTEN)
1655 		return -ENOTCONN;
1656 
1657 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1658 		u8 tcp_flags;
1659 		int used;
1660 
1661 		__skb_unlink(skb, &sk->sk_receive_queue);
1662 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1663 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1664 		used = recv_actor(sk, skb);
1665 		if (used < 0) {
1666 			if (!copied)
1667 				copied = used;
1668 			break;
1669 		}
1670 		copied += used;
1671 
1672 		if (tcp_flags & TCPHDR_FIN)
1673 			break;
1674 	}
1675 	return copied;
1676 }
1677 EXPORT_SYMBOL(tcp_read_skb);
1678 
tcp_read_done(struct sock * sk,size_t len)1679 void tcp_read_done(struct sock *sk, size_t len)
1680 {
1681 	struct tcp_sock *tp = tcp_sk(sk);
1682 	u32 seq = tp->copied_seq;
1683 	struct sk_buff *skb;
1684 	size_t left;
1685 	u32 offset;
1686 
1687 	if (sk->sk_state == TCP_LISTEN)
1688 		return;
1689 
1690 	left = len;
1691 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1692 		int used;
1693 
1694 		used = min_t(size_t, skb->len - offset, left);
1695 		seq += used;
1696 		left -= used;
1697 
1698 		if (skb->len > offset + used)
1699 			break;
1700 
1701 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1702 			tcp_eat_recv_skb(sk, skb);
1703 			++seq;
1704 			break;
1705 		}
1706 		tcp_eat_recv_skb(sk, skb);
1707 	}
1708 	WRITE_ONCE(tp->copied_seq, seq);
1709 
1710 	tcp_rcv_space_adjust(sk);
1711 
1712 	/* Clean up data we have read: This will do ACK frames. */
1713 	if (left != len)
1714 		tcp_cleanup_rbuf(sk, len - left);
1715 }
1716 EXPORT_SYMBOL(tcp_read_done);
1717 
tcp_peek_len(struct socket * sock)1718 int tcp_peek_len(struct socket *sock)
1719 {
1720 	return tcp_inq(sock->sk);
1721 }
1722 EXPORT_SYMBOL(tcp_peek_len);
1723 
1724 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1725 int tcp_set_rcvlowat(struct sock *sk, int val)
1726 {
1727 	int space, cap;
1728 
1729 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1730 		cap = sk->sk_rcvbuf >> 1;
1731 	else
1732 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1733 	val = min(val, cap);
1734 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1735 
1736 	/* Check if we need to signal EPOLLIN right now */
1737 	tcp_data_ready(sk);
1738 
1739 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1740 		return 0;
1741 
1742 	space = tcp_space_from_win(sk, val);
1743 	if (space > sk->sk_rcvbuf) {
1744 		WRITE_ONCE(sk->sk_rcvbuf, space);
1745 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1746 	}
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(tcp_set_rcvlowat);
1750 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1751 void tcp_update_recv_tstamps(struct sk_buff *skb,
1752 			     struct scm_timestamping_internal *tss)
1753 {
1754 	if (skb->tstamp)
1755 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1756 	else
1757 		tss->ts[0] = (struct timespec64) {0};
1758 
1759 	if (skb_hwtstamps(skb)->hwtstamp)
1760 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1761 	else
1762 		tss->ts[2] = (struct timespec64) {0};
1763 }
1764 
1765 #ifdef CONFIG_MMU
1766 static const struct vm_operations_struct tcp_vm_ops = {
1767 };
1768 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1769 int tcp_mmap(struct file *file, struct socket *sock,
1770 	     struct vm_area_struct *vma)
1771 {
1772 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1773 		return -EPERM;
1774 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1775 
1776 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1777 	vm_flags_set(vma, VM_MIXEDMAP);
1778 
1779 	vma->vm_ops = &tcp_vm_ops;
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(tcp_mmap);
1783 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1784 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1785 				       u32 *offset_frag)
1786 {
1787 	skb_frag_t *frag;
1788 
1789 	if (unlikely(offset_skb >= skb->len))
1790 		return NULL;
1791 
1792 	offset_skb -= skb_headlen(skb);
1793 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1794 		return NULL;
1795 
1796 	frag = skb_shinfo(skb)->frags;
1797 	while (offset_skb) {
1798 		if (skb_frag_size(frag) > offset_skb) {
1799 			*offset_frag = offset_skb;
1800 			return frag;
1801 		}
1802 		offset_skb -= skb_frag_size(frag);
1803 		++frag;
1804 	}
1805 	*offset_frag = 0;
1806 	return frag;
1807 }
1808 
can_map_frag(const skb_frag_t * frag)1809 static bool can_map_frag(const skb_frag_t *frag)
1810 {
1811 	struct page *page;
1812 
1813 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1814 		return false;
1815 
1816 	page = skb_frag_page(frag);
1817 
1818 	if (PageCompound(page) || page->mapping)
1819 		return false;
1820 
1821 	return true;
1822 }
1823 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1824 static int find_next_mappable_frag(const skb_frag_t *frag,
1825 				   int remaining_in_skb)
1826 {
1827 	int offset = 0;
1828 
1829 	if (likely(can_map_frag(frag)))
1830 		return 0;
1831 
1832 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1833 		offset += skb_frag_size(frag);
1834 		++frag;
1835 	}
1836 	return offset;
1837 }
1838 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1839 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1840 					  struct tcp_zerocopy_receive *zc,
1841 					  struct sk_buff *skb, u32 offset)
1842 {
1843 	u32 frag_offset, partial_frag_remainder = 0;
1844 	int mappable_offset;
1845 	skb_frag_t *frag;
1846 
1847 	/* worst case: skip to next skb. try to improve on this case below */
1848 	zc->recv_skip_hint = skb->len - offset;
1849 
1850 	/* Find the frag containing this offset (and how far into that frag) */
1851 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1852 	if (!frag)
1853 		return;
1854 
1855 	if (frag_offset) {
1856 		struct skb_shared_info *info = skb_shinfo(skb);
1857 
1858 		/* We read part of the last frag, must recvmsg() rest of skb. */
1859 		if (frag == &info->frags[info->nr_frags - 1])
1860 			return;
1861 
1862 		/* Else, we must at least read the remainder in this frag. */
1863 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1864 		zc->recv_skip_hint -= partial_frag_remainder;
1865 		++frag;
1866 	}
1867 
1868 	/* partial_frag_remainder: If part way through a frag, must read rest.
1869 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1870 	 * in partial_frag_remainder.
1871 	 */
1872 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1873 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1874 }
1875 
1876 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1877 			      int flags, struct scm_timestamping_internal *tss,
1878 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1879 static int receive_fallback_to_copy(struct sock *sk,
1880 				    struct tcp_zerocopy_receive *zc, int inq,
1881 				    struct scm_timestamping_internal *tss)
1882 {
1883 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1884 	struct msghdr msg = {};
1885 	struct iovec iov;
1886 	int err;
1887 
1888 	zc->length = 0;
1889 	zc->recv_skip_hint = 0;
1890 
1891 	if (copy_address != zc->copybuf_address)
1892 		return -EINVAL;
1893 
1894 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1895 				  inq, &iov, &msg.msg_iter);
1896 	if (err)
1897 		return err;
1898 
1899 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1900 				 tss, &zc->msg_flags);
1901 	if (err < 0)
1902 		return err;
1903 
1904 	zc->copybuf_len = err;
1905 	if (likely(zc->copybuf_len)) {
1906 		struct sk_buff *skb;
1907 		u32 offset;
1908 
1909 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1910 		if (skb)
1911 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1912 	}
1913 	return 0;
1914 }
1915 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1916 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1917 				   struct sk_buff *skb, u32 copylen,
1918 				   u32 *offset, u32 *seq)
1919 {
1920 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1921 	struct msghdr msg = {};
1922 	struct iovec iov;
1923 	int err;
1924 
1925 	if (copy_address != zc->copybuf_address)
1926 		return -EINVAL;
1927 
1928 	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1929 				  copylen, &iov, &msg.msg_iter);
1930 	if (err)
1931 		return err;
1932 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1933 	if (err)
1934 		return err;
1935 	zc->recv_skip_hint -= copylen;
1936 	*offset += copylen;
1937 	*seq += copylen;
1938 	return (__s32)copylen;
1939 }
1940 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1941 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1942 				  struct sock *sk,
1943 				  struct sk_buff *skb,
1944 				  u32 *seq,
1945 				  s32 copybuf_len,
1946 				  struct scm_timestamping_internal *tss)
1947 {
1948 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1949 
1950 	if (!copylen)
1951 		return 0;
1952 	/* skb is null if inq < PAGE_SIZE. */
1953 	if (skb) {
1954 		offset = *seq - TCP_SKB_CB(skb)->seq;
1955 	} else {
1956 		skb = tcp_recv_skb(sk, *seq, &offset);
1957 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1958 			tcp_update_recv_tstamps(skb, tss);
1959 			zc->msg_flags |= TCP_CMSG_TS;
1960 		}
1961 	}
1962 
1963 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1964 						  seq);
1965 	return zc->copybuf_len < 0 ? 0 : copylen;
1966 }
1967 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1968 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1969 					      struct page **pending_pages,
1970 					      unsigned long pages_remaining,
1971 					      unsigned long *address,
1972 					      u32 *length,
1973 					      u32 *seq,
1974 					      struct tcp_zerocopy_receive *zc,
1975 					      u32 total_bytes_to_map,
1976 					      int err)
1977 {
1978 	/* At least one page did not map. Try zapping if we skipped earlier. */
1979 	if (err == -EBUSY &&
1980 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1981 		u32 maybe_zap_len;
1982 
1983 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1984 				*length + /* Mapped or pending */
1985 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1986 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1987 		err = 0;
1988 	}
1989 
1990 	if (!err) {
1991 		unsigned long leftover_pages = pages_remaining;
1992 		int bytes_mapped;
1993 
1994 		/* We called zap_page_range_single, try to reinsert. */
1995 		err = vm_insert_pages(vma, *address,
1996 				      pending_pages,
1997 				      &pages_remaining);
1998 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1999 		*seq += bytes_mapped;
2000 		*address += bytes_mapped;
2001 	}
2002 	if (err) {
2003 		/* Either we were unable to zap, OR we zapped, retried an
2004 		 * insert, and still had an issue. Either ways, pages_remaining
2005 		 * is the number of pages we were unable to map, and we unroll
2006 		 * some state we speculatively touched before.
2007 		 */
2008 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2009 
2010 		*length -= bytes_not_mapped;
2011 		zc->recv_skip_hint += bytes_not_mapped;
2012 	}
2013 	return err;
2014 }
2015 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2016 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2017 					struct page **pages,
2018 					unsigned int pages_to_map,
2019 					unsigned long *address,
2020 					u32 *length,
2021 					u32 *seq,
2022 					struct tcp_zerocopy_receive *zc,
2023 					u32 total_bytes_to_map)
2024 {
2025 	unsigned long pages_remaining = pages_to_map;
2026 	unsigned int pages_mapped;
2027 	unsigned int bytes_mapped;
2028 	int err;
2029 
2030 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2031 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2032 	bytes_mapped = PAGE_SIZE * pages_mapped;
2033 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2034 	 * mapping (some but not all of the pages).
2035 	 */
2036 	*seq += bytes_mapped;
2037 	*address += bytes_mapped;
2038 
2039 	if (likely(!err))
2040 		return 0;
2041 
2042 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2043 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2044 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2045 		err);
2046 }
2047 
2048 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2049 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2050 				      struct tcp_zerocopy_receive *zc,
2051 				      struct scm_timestamping_internal *tss)
2052 {
2053 	unsigned long msg_control_addr;
2054 	struct msghdr cmsg_dummy;
2055 
2056 	msg_control_addr = (unsigned long)zc->msg_control;
2057 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2058 	cmsg_dummy.msg_controllen =
2059 		(__kernel_size_t)zc->msg_controllen;
2060 	cmsg_dummy.msg_flags = in_compat_syscall()
2061 		? MSG_CMSG_COMPAT : 0;
2062 	cmsg_dummy.msg_control_is_user = true;
2063 	zc->msg_flags = 0;
2064 	if (zc->msg_control == msg_control_addr &&
2065 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2066 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2067 		zc->msg_control = (__u64)
2068 			((uintptr_t)cmsg_dummy.msg_control_user);
2069 		zc->msg_controllen =
2070 			(__u64)cmsg_dummy.msg_controllen;
2071 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2072 	}
2073 }
2074 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2075 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2076 					   unsigned long address,
2077 					   bool *mmap_locked)
2078 {
2079 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2080 
2081 	if (vma) {
2082 		if (vma->vm_ops != &tcp_vm_ops) {
2083 			vma_end_read(vma);
2084 			return NULL;
2085 		}
2086 		*mmap_locked = false;
2087 		return vma;
2088 	}
2089 
2090 	mmap_read_lock(mm);
2091 	vma = vma_lookup(mm, address);
2092 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2093 		mmap_read_unlock(mm);
2094 		return NULL;
2095 	}
2096 	*mmap_locked = true;
2097 	return vma;
2098 }
2099 
2100 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2101 static int tcp_zerocopy_receive(struct sock *sk,
2102 				struct tcp_zerocopy_receive *zc,
2103 				struct scm_timestamping_internal *tss)
2104 {
2105 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2106 	unsigned long address = (unsigned long)zc->address;
2107 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2108 	s32 copybuf_len = zc->copybuf_len;
2109 	struct tcp_sock *tp = tcp_sk(sk);
2110 	const skb_frag_t *frags = NULL;
2111 	unsigned int pages_to_map = 0;
2112 	struct vm_area_struct *vma;
2113 	struct sk_buff *skb = NULL;
2114 	u32 seq = tp->copied_seq;
2115 	u32 total_bytes_to_map;
2116 	int inq = tcp_inq(sk);
2117 	bool mmap_locked;
2118 	int ret;
2119 
2120 	zc->copybuf_len = 0;
2121 	zc->msg_flags = 0;
2122 
2123 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2124 		return -EINVAL;
2125 
2126 	if (sk->sk_state == TCP_LISTEN)
2127 		return -ENOTCONN;
2128 
2129 	sock_rps_record_flow(sk);
2130 
2131 	if (inq && inq <= copybuf_len)
2132 		return receive_fallback_to_copy(sk, zc, inq, tss);
2133 
2134 	if (inq < PAGE_SIZE) {
2135 		zc->length = 0;
2136 		zc->recv_skip_hint = inq;
2137 		if (!inq && sock_flag(sk, SOCK_DONE))
2138 			return -EIO;
2139 		return 0;
2140 	}
2141 
2142 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2143 	if (!vma)
2144 		return -EINVAL;
2145 
2146 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2147 	avail_len = min_t(u32, vma_len, inq);
2148 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2149 	if (total_bytes_to_map) {
2150 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2151 			zap_page_range_single(vma, address, total_bytes_to_map,
2152 					      NULL);
2153 		zc->length = total_bytes_to_map;
2154 		zc->recv_skip_hint = 0;
2155 	} else {
2156 		zc->length = avail_len;
2157 		zc->recv_skip_hint = avail_len;
2158 	}
2159 	ret = 0;
2160 	while (length + PAGE_SIZE <= zc->length) {
2161 		int mappable_offset;
2162 		struct page *page;
2163 
2164 		if (zc->recv_skip_hint < PAGE_SIZE) {
2165 			u32 offset_frag;
2166 
2167 			if (skb) {
2168 				if (zc->recv_skip_hint > 0)
2169 					break;
2170 				skb = skb->next;
2171 				offset = seq - TCP_SKB_CB(skb)->seq;
2172 			} else {
2173 				skb = tcp_recv_skb(sk, seq, &offset);
2174 			}
2175 
2176 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2177 				tcp_update_recv_tstamps(skb, tss);
2178 				zc->msg_flags |= TCP_CMSG_TS;
2179 			}
2180 			zc->recv_skip_hint = skb->len - offset;
2181 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2182 			if (!frags || offset_frag)
2183 				break;
2184 		}
2185 
2186 		mappable_offset = find_next_mappable_frag(frags,
2187 							  zc->recv_skip_hint);
2188 		if (mappable_offset) {
2189 			zc->recv_skip_hint = mappable_offset;
2190 			break;
2191 		}
2192 		page = skb_frag_page(frags);
2193 		prefetchw(page);
2194 		pages[pages_to_map++] = page;
2195 		length += PAGE_SIZE;
2196 		zc->recv_skip_hint -= PAGE_SIZE;
2197 		frags++;
2198 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2199 		    zc->recv_skip_hint < PAGE_SIZE) {
2200 			/* Either full batch, or we're about to go to next skb
2201 			 * (and we cannot unroll failed ops across skbs).
2202 			 */
2203 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2204 							   pages_to_map,
2205 							   &address, &length,
2206 							   &seq, zc,
2207 							   total_bytes_to_map);
2208 			if (ret)
2209 				goto out;
2210 			pages_to_map = 0;
2211 		}
2212 	}
2213 	if (pages_to_map) {
2214 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2215 						   &address, &length, &seq,
2216 						   zc, total_bytes_to_map);
2217 	}
2218 out:
2219 	if (mmap_locked)
2220 		mmap_read_unlock(current->mm);
2221 	else
2222 		vma_end_read(vma);
2223 	/* Try to copy straggler data. */
2224 	if (!ret)
2225 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2226 
2227 	if (length + copylen) {
2228 		WRITE_ONCE(tp->copied_seq, seq);
2229 		tcp_rcv_space_adjust(sk);
2230 
2231 		/* Clean up data we have read: This will do ACK frames. */
2232 		tcp_recv_skb(sk, seq, &offset);
2233 		tcp_cleanup_rbuf(sk, length + copylen);
2234 		ret = 0;
2235 		if (length == zc->length)
2236 			zc->recv_skip_hint = 0;
2237 	} else {
2238 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2239 			ret = -EIO;
2240 	}
2241 	zc->length = length;
2242 	return ret;
2243 }
2244 #endif
2245 
2246 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2247 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2248 			struct scm_timestamping_internal *tss)
2249 {
2250 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2251 	bool has_timestamping = false;
2252 
2253 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2254 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2255 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2256 				if (new_tstamp) {
2257 					struct __kernel_timespec kts = {
2258 						.tv_sec = tss->ts[0].tv_sec,
2259 						.tv_nsec = tss->ts[0].tv_nsec,
2260 					};
2261 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2262 						 sizeof(kts), &kts);
2263 				} else {
2264 					struct __kernel_old_timespec ts_old = {
2265 						.tv_sec = tss->ts[0].tv_sec,
2266 						.tv_nsec = tss->ts[0].tv_nsec,
2267 					};
2268 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2269 						 sizeof(ts_old), &ts_old);
2270 				}
2271 			} else {
2272 				if (new_tstamp) {
2273 					struct __kernel_sock_timeval stv = {
2274 						.tv_sec = tss->ts[0].tv_sec,
2275 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2276 					};
2277 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2278 						 sizeof(stv), &stv);
2279 				} else {
2280 					struct __kernel_old_timeval tv = {
2281 						.tv_sec = tss->ts[0].tv_sec,
2282 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2283 					};
2284 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2285 						 sizeof(tv), &tv);
2286 				}
2287 			}
2288 		}
2289 
2290 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2291 			has_timestamping = true;
2292 		else
2293 			tss->ts[0] = (struct timespec64) {0};
2294 	}
2295 
2296 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2297 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2298 			has_timestamping = true;
2299 		else
2300 			tss->ts[2] = (struct timespec64) {0};
2301 	}
2302 
2303 	if (has_timestamping) {
2304 		tss->ts[1] = (struct timespec64) {0};
2305 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2306 			put_cmsg_scm_timestamping64(msg, tss);
2307 		else
2308 			put_cmsg_scm_timestamping(msg, tss);
2309 	}
2310 }
2311 
tcp_inq_hint(struct sock * sk)2312 static int tcp_inq_hint(struct sock *sk)
2313 {
2314 	const struct tcp_sock *tp = tcp_sk(sk);
2315 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2316 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2317 	int inq;
2318 
2319 	inq = rcv_nxt - copied_seq;
2320 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2321 		lock_sock(sk);
2322 		inq = tp->rcv_nxt - tp->copied_seq;
2323 		release_sock(sk);
2324 	}
2325 	/* After receiving a FIN, tell the user-space to continue reading
2326 	 * by returning a non-zero inq.
2327 	 */
2328 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2329 		inq = 1;
2330 	return inq;
2331 }
2332 
2333 /*
2334  *	This routine copies from a sock struct into the user buffer.
2335  *
2336  *	Technical note: in 2.3 we work on _locked_ socket, so that
2337  *	tricks with *seq access order and skb->users are not required.
2338  *	Probably, code can be easily improved even more.
2339  */
2340 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2341 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2342 			      int flags, struct scm_timestamping_internal *tss,
2343 			      int *cmsg_flags)
2344 {
2345 	struct tcp_sock *tp = tcp_sk(sk);
2346 	int copied = 0;
2347 	u32 peek_seq;
2348 	u32 *seq;
2349 	unsigned long used;
2350 	int err;
2351 	int target;		/* Read at least this many bytes */
2352 	long timeo;
2353 	struct sk_buff *skb, *last;
2354 	u32 urg_hole = 0;
2355 
2356 	err = -ENOTCONN;
2357 	if (sk->sk_state == TCP_LISTEN)
2358 		goto out;
2359 
2360 	if (tp->recvmsg_inq) {
2361 		*cmsg_flags = TCP_CMSG_INQ;
2362 		msg->msg_get_inq = 1;
2363 	}
2364 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2365 
2366 	/* Urgent data needs to be handled specially. */
2367 	if (flags & MSG_OOB)
2368 		goto recv_urg;
2369 
2370 	if (unlikely(tp->repair)) {
2371 		err = -EPERM;
2372 		if (!(flags & MSG_PEEK))
2373 			goto out;
2374 
2375 		if (tp->repair_queue == TCP_SEND_QUEUE)
2376 			goto recv_sndq;
2377 
2378 		err = -EINVAL;
2379 		if (tp->repair_queue == TCP_NO_QUEUE)
2380 			goto out;
2381 
2382 		/* 'common' recv queue MSG_PEEK-ing */
2383 	}
2384 
2385 	seq = &tp->copied_seq;
2386 	if (flags & MSG_PEEK) {
2387 		peek_seq = tp->copied_seq;
2388 		seq = &peek_seq;
2389 	}
2390 
2391 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2392 
2393 	do {
2394 		u32 offset;
2395 
2396 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2397 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2398 			if (copied)
2399 				break;
2400 			if (signal_pending(current)) {
2401 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2402 				break;
2403 			}
2404 		}
2405 
2406 		/* Next get a buffer. */
2407 
2408 		last = skb_peek_tail(&sk->sk_receive_queue);
2409 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2410 			last = skb;
2411 			/* Now that we have two receive queues this
2412 			 * shouldn't happen.
2413 			 */
2414 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2415 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2416 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2417 				 flags))
2418 				break;
2419 
2420 			offset = *seq - TCP_SKB_CB(skb)->seq;
2421 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2422 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2423 				offset--;
2424 			}
2425 			if (offset < skb->len)
2426 				goto found_ok_skb;
2427 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2428 				goto found_fin_ok;
2429 			WARN(!(flags & MSG_PEEK),
2430 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2431 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2432 		}
2433 
2434 		/* Well, if we have backlog, try to process it now yet. */
2435 
2436 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2437 			break;
2438 
2439 		if (copied) {
2440 			if (!timeo ||
2441 			    sk->sk_err ||
2442 			    sk->sk_state == TCP_CLOSE ||
2443 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2444 			    signal_pending(current))
2445 				break;
2446 		} else {
2447 			if (sock_flag(sk, SOCK_DONE))
2448 				break;
2449 
2450 			if (sk->sk_err) {
2451 				copied = sock_error(sk);
2452 				break;
2453 			}
2454 
2455 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2456 				break;
2457 
2458 			if (sk->sk_state == TCP_CLOSE) {
2459 				/* This occurs when user tries to read
2460 				 * from never connected socket.
2461 				 */
2462 				copied = -ENOTCONN;
2463 				break;
2464 			}
2465 
2466 			if (!timeo) {
2467 				copied = -EAGAIN;
2468 				break;
2469 			}
2470 
2471 			if (signal_pending(current)) {
2472 				copied = sock_intr_errno(timeo);
2473 				break;
2474 			}
2475 		}
2476 
2477 		if (copied >= target) {
2478 			/* Do not sleep, just process backlog. */
2479 			__sk_flush_backlog(sk);
2480 		} else {
2481 			tcp_cleanup_rbuf(sk, copied);
2482 			err = sk_wait_data(sk, &timeo, last);
2483 			if (err < 0) {
2484 				err = copied ? : err;
2485 				goto out;
2486 			}
2487 		}
2488 
2489 		if ((flags & MSG_PEEK) &&
2490 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2491 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2492 					    current->comm,
2493 					    task_pid_nr(current));
2494 			peek_seq = tp->copied_seq;
2495 		}
2496 		continue;
2497 
2498 found_ok_skb:
2499 		/* Ok so how much can we use? */
2500 		used = skb->len - offset;
2501 		if (len < used)
2502 			used = len;
2503 
2504 		/* Do we have urgent data here? */
2505 		if (unlikely(tp->urg_data)) {
2506 			u32 urg_offset = tp->urg_seq - *seq;
2507 			if (urg_offset < used) {
2508 				if (!urg_offset) {
2509 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2510 						WRITE_ONCE(*seq, *seq + 1);
2511 						urg_hole++;
2512 						offset++;
2513 						used--;
2514 						if (!used)
2515 							goto skip_copy;
2516 					}
2517 				} else
2518 					used = urg_offset;
2519 			}
2520 		}
2521 
2522 		if (!(flags & MSG_TRUNC)) {
2523 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2524 			if (err) {
2525 				/* Exception. Bailout! */
2526 				if (!copied)
2527 					copied = -EFAULT;
2528 				break;
2529 			}
2530 		}
2531 
2532 		WRITE_ONCE(*seq, *seq + used);
2533 		copied += used;
2534 		len -= used;
2535 
2536 		tcp_rcv_space_adjust(sk);
2537 
2538 skip_copy:
2539 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2540 			WRITE_ONCE(tp->urg_data, 0);
2541 			tcp_fast_path_check(sk);
2542 		}
2543 
2544 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2545 			tcp_update_recv_tstamps(skb, tss);
2546 			*cmsg_flags |= TCP_CMSG_TS;
2547 		}
2548 
2549 		if (used + offset < skb->len)
2550 			continue;
2551 
2552 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2553 			goto found_fin_ok;
2554 		if (!(flags & MSG_PEEK))
2555 			tcp_eat_recv_skb(sk, skb);
2556 		continue;
2557 
2558 found_fin_ok:
2559 		/* Process the FIN. */
2560 		WRITE_ONCE(*seq, *seq + 1);
2561 		if (!(flags & MSG_PEEK))
2562 			tcp_eat_recv_skb(sk, skb);
2563 		break;
2564 	} while (len > 0);
2565 
2566 	/* According to UNIX98, msg_name/msg_namelen are ignored
2567 	 * on connected socket. I was just happy when found this 8) --ANK
2568 	 */
2569 
2570 	/* Clean up data we have read: This will do ACK frames. */
2571 	tcp_cleanup_rbuf(sk, copied);
2572 	return copied;
2573 
2574 out:
2575 	return err;
2576 
2577 recv_urg:
2578 	err = tcp_recv_urg(sk, msg, len, flags);
2579 	goto out;
2580 
2581 recv_sndq:
2582 	err = tcp_peek_sndq(sk, msg, len);
2583 	goto out;
2584 }
2585 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2586 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2587 		int *addr_len)
2588 {
2589 	int cmsg_flags = 0, ret;
2590 	struct scm_timestamping_internal tss;
2591 
2592 	if (unlikely(flags & MSG_ERRQUEUE))
2593 		return inet_recv_error(sk, msg, len, addr_len);
2594 
2595 	if (sk_can_busy_loop(sk) &&
2596 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2597 	    sk->sk_state == TCP_ESTABLISHED)
2598 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2599 
2600 	lock_sock(sk);
2601 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2602 	release_sock(sk);
2603 
2604 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2605 		if (cmsg_flags & TCP_CMSG_TS)
2606 			tcp_recv_timestamp(msg, sk, &tss);
2607 		if (msg->msg_get_inq) {
2608 			msg->msg_inq = tcp_inq_hint(sk);
2609 			if (cmsg_flags & TCP_CMSG_INQ)
2610 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2611 					 sizeof(msg->msg_inq), &msg->msg_inq);
2612 		}
2613 	}
2614 	return ret;
2615 }
2616 EXPORT_SYMBOL(tcp_recvmsg);
2617 
tcp_set_state(struct sock * sk,int state)2618 void tcp_set_state(struct sock *sk, int state)
2619 {
2620 	int oldstate = sk->sk_state;
2621 
2622 	/* We defined a new enum for TCP states that are exported in BPF
2623 	 * so as not force the internal TCP states to be frozen. The
2624 	 * following checks will detect if an internal state value ever
2625 	 * differs from the BPF value. If this ever happens, then we will
2626 	 * need to remap the internal value to the BPF value before calling
2627 	 * tcp_call_bpf_2arg.
2628 	 */
2629 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2630 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2631 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2632 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2633 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2634 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2635 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2636 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2637 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2638 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2639 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2640 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2641 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2642 
2643 	/* bpf uapi header bpf.h defines an anonymous enum with values
2644 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2645 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2646 	 * But clang built vmlinux does not have this enum in DWARF
2647 	 * since clang removes the above code before generating IR/debuginfo.
2648 	 * Let us explicitly emit the type debuginfo to ensure the
2649 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2650 	 * regardless of which compiler is used.
2651 	 */
2652 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2653 
2654 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2655 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2656 
2657 	switch (state) {
2658 	case TCP_ESTABLISHED:
2659 		if (oldstate != TCP_ESTABLISHED)
2660 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2661 		break;
2662 	case TCP_CLOSE_WAIT:
2663 		if (oldstate == TCP_SYN_RECV)
2664 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2665 		break;
2666 
2667 	case TCP_CLOSE:
2668 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2669 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2670 
2671 		sk->sk_prot->unhash(sk);
2672 		if (inet_csk(sk)->icsk_bind_hash &&
2673 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2674 			inet_put_port(sk);
2675 		fallthrough;
2676 	default:
2677 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2678 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2679 	}
2680 
2681 	/* Change state AFTER socket is unhashed to avoid closed
2682 	 * socket sitting in hash tables.
2683 	 */
2684 	inet_sk_state_store(sk, state);
2685 }
2686 EXPORT_SYMBOL_GPL(tcp_set_state);
2687 
2688 /*
2689  *	State processing on a close. This implements the state shift for
2690  *	sending our FIN frame. Note that we only send a FIN for some
2691  *	states. A shutdown() may have already sent the FIN, or we may be
2692  *	closed.
2693  */
2694 
2695 static const unsigned char new_state[16] = {
2696   /* current state:        new state:      action:	*/
2697   [0 /* (Invalid) */]	= TCP_CLOSE,
2698   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2699   [TCP_SYN_SENT]	= TCP_CLOSE,
2700   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2701   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2702   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2703   [TCP_TIME_WAIT]	= TCP_CLOSE,
2704   [TCP_CLOSE]		= TCP_CLOSE,
2705   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2706   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2707   [TCP_LISTEN]		= TCP_CLOSE,
2708   [TCP_CLOSING]		= TCP_CLOSING,
2709   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2710 };
2711 
tcp_close_state(struct sock * sk)2712 static int tcp_close_state(struct sock *sk)
2713 {
2714 	int next = (int)new_state[sk->sk_state];
2715 	int ns = next & TCP_STATE_MASK;
2716 
2717 	tcp_set_state(sk, ns);
2718 
2719 	return next & TCP_ACTION_FIN;
2720 }
2721 
2722 /*
2723  *	Shutdown the sending side of a connection. Much like close except
2724  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2725  */
2726 
tcp_shutdown(struct sock * sk,int how)2727 void tcp_shutdown(struct sock *sk, int how)
2728 {
2729 	/*	We need to grab some memory, and put together a FIN,
2730 	 *	and then put it into the queue to be sent.
2731 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2732 	 */
2733 	if (!(how & SEND_SHUTDOWN))
2734 		return;
2735 
2736 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2737 	if ((1 << sk->sk_state) &
2738 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2739 	     TCPF_CLOSE_WAIT)) {
2740 		/* Clear out any half completed packets.  FIN if needed. */
2741 		if (tcp_close_state(sk))
2742 			tcp_send_fin(sk);
2743 	}
2744 }
2745 EXPORT_SYMBOL(tcp_shutdown);
2746 
tcp_orphan_count_sum(void)2747 int tcp_orphan_count_sum(void)
2748 {
2749 	int i, total = 0;
2750 
2751 	for_each_possible_cpu(i)
2752 		total += per_cpu(tcp_orphan_count, i);
2753 
2754 	return max(total, 0);
2755 }
2756 
2757 static int tcp_orphan_cache;
2758 static struct timer_list tcp_orphan_timer;
2759 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2760 
tcp_orphan_update(struct timer_list * unused)2761 static void tcp_orphan_update(struct timer_list *unused)
2762 {
2763 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2764 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2765 }
2766 
tcp_too_many_orphans(int shift)2767 static bool tcp_too_many_orphans(int shift)
2768 {
2769 	return READ_ONCE(tcp_orphan_cache) << shift >
2770 		READ_ONCE(sysctl_tcp_max_orphans);
2771 }
2772 
tcp_check_oom(struct sock * sk,int shift)2773 bool tcp_check_oom(struct sock *sk, int shift)
2774 {
2775 	bool too_many_orphans, out_of_socket_memory;
2776 
2777 	too_many_orphans = tcp_too_many_orphans(shift);
2778 	out_of_socket_memory = tcp_out_of_memory(sk);
2779 
2780 	if (too_many_orphans)
2781 		net_info_ratelimited("too many orphaned sockets\n");
2782 	if (out_of_socket_memory)
2783 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2784 	return too_many_orphans || out_of_socket_memory;
2785 }
2786 
__tcp_close(struct sock * sk,long timeout)2787 void __tcp_close(struct sock *sk, long timeout)
2788 {
2789 	struct sk_buff *skb;
2790 	int data_was_unread = 0;
2791 	int state;
2792 
2793 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2794 
2795 	if (sk->sk_state == TCP_LISTEN) {
2796 		tcp_set_state(sk, TCP_CLOSE);
2797 
2798 		/* Special case. */
2799 		inet_csk_listen_stop(sk);
2800 
2801 		goto adjudge_to_death;
2802 	}
2803 
2804 	/*  We need to flush the recv. buffs.  We do this only on the
2805 	 *  descriptor close, not protocol-sourced closes, because the
2806 	 *  reader process may not have drained the data yet!
2807 	 */
2808 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2809 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2810 
2811 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2812 			len--;
2813 		data_was_unread += len;
2814 		__kfree_skb(skb);
2815 	}
2816 
2817 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2818 	if (sk->sk_state == TCP_CLOSE)
2819 		goto adjudge_to_death;
2820 
2821 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2822 	 * data was lost. To witness the awful effects of the old behavior of
2823 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2824 	 * GET in an FTP client, suspend the process, wait for the client to
2825 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2826 	 * Note: timeout is always zero in such a case.
2827 	 */
2828 	if (unlikely(tcp_sk(sk)->repair)) {
2829 		sk->sk_prot->disconnect(sk, 0);
2830 	} else if (data_was_unread) {
2831 		/* Unread data was tossed, zap the connection. */
2832 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2833 		tcp_set_state(sk, TCP_CLOSE);
2834 		tcp_send_active_reset(sk, sk->sk_allocation);
2835 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2836 		/* Check zero linger _after_ checking for unread data. */
2837 		sk->sk_prot->disconnect(sk, 0);
2838 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2839 	} else if (tcp_close_state(sk)) {
2840 		/* We FIN if the application ate all the data before
2841 		 * zapping the connection.
2842 		 */
2843 
2844 		/* RED-PEN. Formally speaking, we have broken TCP state
2845 		 * machine. State transitions:
2846 		 *
2847 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2848 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2849 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2850 		 *
2851 		 * are legal only when FIN has been sent (i.e. in window),
2852 		 * rather than queued out of window. Purists blame.
2853 		 *
2854 		 * F.e. "RFC state" is ESTABLISHED,
2855 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2856 		 *
2857 		 * The visible declinations are that sometimes
2858 		 * we enter time-wait state, when it is not required really
2859 		 * (harmless), do not send active resets, when they are
2860 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2861 		 * they look as CLOSING or LAST_ACK for Linux)
2862 		 * Probably, I missed some more holelets.
2863 		 * 						--ANK
2864 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2865 		 * in a single packet! (May consider it later but will
2866 		 * probably need API support or TCP_CORK SYN-ACK until
2867 		 * data is written and socket is closed.)
2868 		 */
2869 		tcp_send_fin(sk);
2870 	}
2871 
2872 	sk_stream_wait_close(sk, timeout);
2873 
2874 adjudge_to_death:
2875 	state = sk->sk_state;
2876 	sock_hold(sk);
2877 	sock_orphan(sk);
2878 
2879 	local_bh_disable();
2880 	bh_lock_sock(sk);
2881 	/* remove backlog if any, without releasing ownership. */
2882 	__release_sock(sk);
2883 
2884 	this_cpu_inc(tcp_orphan_count);
2885 
2886 	/* Have we already been destroyed by a softirq or backlog? */
2887 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2888 		goto out;
2889 
2890 	/*	This is a (useful) BSD violating of the RFC. There is a
2891 	 *	problem with TCP as specified in that the other end could
2892 	 *	keep a socket open forever with no application left this end.
2893 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2894 	 *	our end. If they send after that then tough - BUT: long enough
2895 	 *	that we won't make the old 4*rto = almost no time - whoops
2896 	 *	reset mistake.
2897 	 *
2898 	 *	Nope, it was not mistake. It is really desired behaviour
2899 	 *	f.e. on http servers, when such sockets are useless, but
2900 	 *	consume significant resources. Let's do it with special
2901 	 *	linger2	option.					--ANK
2902 	 */
2903 
2904 	if (sk->sk_state == TCP_FIN_WAIT2) {
2905 		struct tcp_sock *tp = tcp_sk(sk);
2906 		if (READ_ONCE(tp->linger2) < 0) {
2907 			tcp_set_state(sk, TCP_CLOSE);
2908 			tcp_send_active_reset(sk, GFP_ATOMIC);
2909 			__NET_INC_STATS(sock_net(sk),
2910 					LINUX_MIB_TCPABORTONLINGER);
2911 		} else {
2912 			const int tmo = tcp_fin_time(sk);
2913 
2914 			if (tmo > TCP_TIMEWAIT_LEN) {
2915 				inet_csk_reset_keepalive_timer(sk,
2916 						tmo - TCP_TIMEWAIT_LEN);
2917 			} else {
2918 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2919 				goto out;
2920 			}
2921 		}
2922 	}
2923 	if (sk->sk_state != TCP_CLOSE) {
2924 		if (tcp_check_oom(sk, 0)) {
2925 			tcp_set_state(sk, TCP_CLOSE);
2926 			tcp_send_active_reset(sk, GFP_ATOMIC);
2927 			__NET_INC_STATS(sock_net(sk),
2928 					LINUX_MIB_TCPABORTONMEMORY);
2929 		} else if (!check_net(sock_net(sk))) {
2930 			/* Not possible to send reset; just close */
2931 			tcp_set_state(sk, TCP_CLOSE);
2932 		}
2933 	}
2934 
2935 	if (sk->sk_state == TCP_CLOSE) {
2936 		struct request_sock *req;
2937 
2938 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2939 						lockdep_sock_is_held(sk));
2940 		/* We could get here with a non-NULL req if the socket is
2941 		 * aborted (e.g., closed with unread data) before 3WHS
2942 		 * finishes.
2943 		 */
2944 		if (req)
2945 			reqsk_fastopen_remove(sk, req, false);
2946 		inet_csk_destroy_sock(sk);
2947 	}
2948 	/* Otherwise, socket is reprieved until protocol close. */
2949 
2950 out:
2951 	bh_unlock_sock(sk);
2952 	local_bh_enable();
2953 }
2954 
tcp_close(struct sock * sk,long timeout)2955 void tcp_close(struct sock *sk, long timeout)
2956 {
2957 	lock_sock(sk);
2958 	__tcp_close(sk, timeout);
2959 	release_sock(sk);
2960 	if (!sk->sk_net_refcnt)
2961 		inet_csk_clear_xmit_timers_sync(sk);
2962 	sock_put(sk);
2963 }
2964 EXPORT_SYMBOL(tcp_close);
2965 
2966 /* These states need RST on ABORT according to RFC793 */
2967 
tcp_need_reset(int state)2968 static inline bool tcp_need_reset(int state)
2969 {
2970 	return (1 << state) &
2971 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2972 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2973 }
2974 
tcp_rtx_queue_purge(struct sock * sk)2975 static void tcp_rtx_queue_purge(struct sock *sk)
2976 {
2977 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2978 
2979 	tcp_sk(sk)->highest_sack = NULL;
2980 	while (p) {
2981 		struct sk_buff *skb = rb_to_skb(p);
2982 
2983 		p = rb_next(p);
2984 		/* Since we are deleting whole queue, no need to
2985 		 * list_del(&skb->tcp_tsorted_anchor)
2986 		 */
2987 		tcp_rtx_queue_unlink(skb, sk);
2988 		tcp_wmem_free_skb(sk, skb);
2989 	}
2990 }
2991 
tcp_write_queue_purge(struct sock * sk)2992 void tcp_write_queue_purge(struct sock *sk)
2993 {
2994 	struct sk_buff *skb;
2995 
2996 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2997 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2998 		tcp_skb_tsorted_anchor_cleanup(skb);
2999 		tcp_wmem_free_skb(sk, skb);
3000 	}
3001 	tcp_rtx_queue_purge(sk);
3002 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3003 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3004 	tcp_sk(sk)->packets_out = 0;
3005 	inet_csk(sk)->icsk_backoff = 0;
3006 }
3007 
tcp_disconnect(struct sock * sk,int flags)3008 int tcp_disconnect(struct sock *sk, int flags)
3009 {
3010 	struct inet_sock *inet = inet_sk(sk);
3011 	struct inet_connection_sock *icsk = inet_csk(sk);
3012 	struct tcp_sock *tp = tcp_sk(sk);
3013 	int old_state = sk->sk_state;
3014 	u32 seq;
3015 
3016 	if (old_state != TCP_CLOSE)
3017 		tcp_set_state(sk, TCP_CLOSE);
3018 
3019 	/* ABORT function of RFC793 */
3020 	if (old_state == TCP_LISTEN) {
3021 		inet_csk_listen_stop(sk);
3022 	} else if (unlikely(tp->repair)) {
3023 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3024 	} else if (tcp_need_reset(old_state) ||
3025 		   (tp->snd_nxt != tp->write_seq &&
3026 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3027 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3028 		 * states
3029 		 */
3030 		tcp_send_active_reset(sk, gfp_any());
3031 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3032 	} else if (old_state == TCP_SYN_SENT)
3033 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3034 
3035 	tcp_clear_xmit_timers(sk);
3036 	__skb_queue_purge(&sk->sk_receive_queue);
3037 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3038 	WRITE_ONCE(tp->urg_data, 0);
3039 	tcp_write_queue_purge(sk);
3040 	tcp_fastopen_active_disable_ofo_check(sk);
3041 	skb_rbtree_purge(&tp->out_of_order_queue);
3042 
3043 	inet->inet_dport = 0;
3044 
3045 	inet_bhash2_reset_saddr(sk);
3046 
3047 	WRITE_ONCE(sk->sk_shutdown, 0);
3048 	sock_reset_flag(sk, SOCK_DONE);
3049 	tp->srtt_us = 0;
3050 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3051 	tp->rcv_rtt_last_tsecr = 0;
3052 
3053 	seq = tp->write_seq + tp->max_window + 2;
3054 	if (!seq)
3055 		seq = 1;
3056 	WRITE_ONCE(tp->write_seq, seq);
3057 
3058 	icsk->icsk_backoff = 0;
3059 	icsk->icsk_probes_out = 0;
3060 	icsk->icsk_probes_tstamp = 0;
3061 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3062 	icsk->icsk_rto_min = TCP_RTO_MIN;
3063 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3064 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3065 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3066 	tp->snd_cwnd_cnt = 0;
3067 	tp->is_cwnd_limited = 0;
3068 	tp->max_packets_out = 0;
3069 	tp->window_clamp = 0;
3070 	tp->delivered = 0;
3071 	tp->delivered_ce = 0;
3072 	if (icsk->icsk_ca_ops->release)
3073 		icsk->icsk_ca_ops->release(sk);
3074 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3075 	icsk->icsk_ca_initialized = 0;
3076 	tcp_set_ca_state(sk, TCP_CA_Open);
3077 	tp->is_sack_reneg = 0;
3078 	tcp_clear_retrans(tp);
3079 	tp->total_retrans = 0;
3080 	inet_csk_delack_init(sk);
3081 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3082 	 * issue in __tcp_select_window()
3083 	 */
3084 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3085 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3086 	__sk_dst_reset(sk);
3087 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3088 	tcp_saved_syn_free(tp);
3089 	tp->compressed_ack = 0;
3090 	tp->segs_in = 0;
3091 	tp->segs_out = 0;
3092 	tp->bytes_sent = 0;
3093 	tp->bytes_acked = 0;
3094 	tp->bytes_received = 0;
3095 	tp->bytes_retrans = 0;
3096 	tp->data_segs_in = 0;
3097 	tp->data_segs_out = 0;
3098 	tp->duplicate_sack[0].start_seq = 0;
3099 	tp->duplicate_sack[0].end_seq = 0;
3100 	tp->dsack_dups = 0;
3101 	tp->reord_seen = 0;
3102 	tp->retrans_out = 0;
3103 	tp->sacked_out = 0;
3104 	tp->tlp_high_seq = 0;
3105 	tp->last_oow_ack_time = 0;
3106 	tp->plb_rehash = 0;
3107 	/* There's a bubble in the pipe until at least the first ACK. */
3108 	tp->app_limited = ~0U;
3109 	tp->rate_app_limited = 1;
3110 	tp->rack.mstamp = 0;
3111 	tp->rack.advanced = 0;
3112 	tp->rack.reo_wnd_steps = 1;
3113 	tp->rack.last_delivered = 0;
3114 	tp->rack.reo_wnd_persist = 0;
3115 	tp->rack.dsack_seen = 0;
3116 	tp->syn_data_acked = 0;
3117 	tp->rx_opt.saw_tstamp = 0;
3118 	tp->rx_opt.dsack = 0;
3119 	tp->rx_opt.num_sacks = 0;
3120 	tp->rcv_ooopack = 0;
3121 
3122 
3123 	/* Clean up fastopen related fields */
3124 	tcp_free_fastopen_req(tp);
3125 	inet_clear_bit(DEFER_CONNECT, sk);
3126 	tp->fastopen_client_fail = 0;
3127 
3128 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3129 
3130 	if (sk->sk_frag.page) {
3131 		put_page(sk->sk_frag.page);
3132 		sk->sk_frag.page = NULL;
3133 		sk->sk_frag.offset = 0;
3134 	}
3135 	sk_error_report(sk);
3136 	return 0;
3137 }
3138 EXPORT_SYMBOL(tcp_disconnect);
3139 
tcp_can_repair_sock(const struct sock * sk)3140 static inline bool tcp_can_repair_sock(const struct sock *sk)
3141 {
3142 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3143 		(sk->sk_state != TCP_LISTEN);
3144 }
3145 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3146 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3147 {
3148 	struct tcp_repair_window opt;
3149 
3150 	if (!tp->repair)
3151 		return -EPERM;
3152 
3153 	if (len != sizeof(opt))
3154 		return -EINVAL;
3155 
3156 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3157 		return -EFAULT;
3158 
3159 	if (opt.max_window < opt.snd_wnd)
3160 		return -EINVAL;
3161 
3162 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3163 		return -EINVAL;
3164 
3165 	if (after(opt.rcv_wup, tp->rcv_nxt))
3166 		return -EINVAL;
3167 
3168 	tp->snd_wl1	= opt.snd_wl1;
3169 	tp->snd_wnd	= opt.snd_wnd;
3170 	tp->max_window	= opt.max_window;
3171 
3172 	tp->rcv_wnd	= opt.rcv_wnd;
3173 	tp->rcv_wup	= opt.rcv_wup;
3174 
3175 	return 0;
3176 }
3177 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3178 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3179 		unsigned int len)
3180 {
3181 	struct tcp_sock *tp = tcp_sk(sk);
3182 	struct tcp_repair_opt opt;
3183 	size_t offset = 0;
3184 
3185 	while (len >= sizeof(opt)) {
3186 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3187 			return -EFAULT;
3188 
3189 		offset += sizeof(opt);
3190 		len -= sizeof(opt);
3191 
3192 		switch (opt.opt_code) {
3193 		case TCPOPT_MSS:
3194 			tp->rx_opt.mss_clamp = opt.opt_val;
3195 			tcp_mtup_init(sk);
3196 			break;
3197 		case TCPOPT_WINDOW:
3198 			{
3199 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3200 				u16 rcv_wscale = opt.opt_val >> 16;
3201 
3202 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3203 					return -EFBIG;
3204 
3205 				tp->rx_opt.snd_wscale = snd_wscale;
3206 				tp->rx_opt.rcv_wscale = rcv_wscale;
3207 				tp->rx_opt.wscale_ok = 1;
3208 			}
3209 			break;
3210 		case TCPOPT_SACK_PERM:
3211 			if (opt.opt_val != 0)
3212 				return -EINVAL;
3213 
3214 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3215 			break;
3216 		case TCPOPT_TIMESTAMP:
3217 			if (opt.opt_val != 0)
3218 				return -EINVAL;
3219 
3220 			tp->rx_opt.tstamp_ok = 1;
3221 			break;
3222 		}
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3229 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3230 
tcp_enable_tx_delay(void)3231 static void tcp_enable_tx_delay(void)
3232 {
3233 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3234 		static int __tcp_tx_delay_enabled = 0;
3235 
3236 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3237 			static_branch_enable(&tcp_tx_delay_enabled);
3238 			pr_info("TCP_TX_DELAY enabled\n");
3239 		}
3240 	}
3241 }
3242 
3243 /* When set indicates to always queue non-full frames.  Later the user clears
3244  * this option and we transmit any pending partial frames in the queue.  This is
3245  * meant to be used alongside sendfile() to get properly filled frames when the
3246  * user (for example) must write out headers with a write() call first and then
3247  * use sendfile to send out the data parts.
3248  *
3249  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3250  * TCP_NODELAY.
3251  */
__tcp_sock_set_cork(struct sock * sk,bool on)3252 void __tcp_sock_set_cork(struct sock *sk, bool on)
3253 {
3254 	struct tcp_sock *tp = tcp_sk(sk);
3255 
3256 	if (on) {
3257 		tp->nonagle |= TCP_NAGLE_CORK;
3258 	} else {
3259 		tp->nonagle &= ~TCP_NAGLE_CORK;
3260 		if (tp->nonagle & TCP_NAGLE_OFF)
3261 			tp->nonagle |= TCP_NAGLE_PUSH;
3262 		tcp_push_pending_frames(sk);
3263 	}
3264 }
3265 
tcp_sock_set_cork(struct sock * sk,bool on)3266 void tcp_sock_set_cork(struct sock *sk, bool on)
3267 {
3268 	lock_sock(sk);
3269 	__tcp_sock_set_cork(sk, on);
3270 	release_sock(sk);
3271 }
3272 EXPORT_SYMBOL(tcp_sock_set_cork);
3273 
3274 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3275  * remembered, but it is not activated until cork is cleared.
3276  *
3277  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3278  * even TCP_CORK for currently queued segments.
3279  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3280 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3281 {
3282 	if (on) {
3283 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3284 		tcp_push_pending_frames(sk);
3285 	} else {
3286 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3287 	}
3288 }
3289 
tcp_sock_set_nodelay(struct sock * sk)3290 void tcp_sock_set_nodelay(struct sock *sk)
3291 {
3292 	lock_sock(sk);
3293 	__tcp_sock_set_nodelay(sk, true);
3294 	release_sock(sk);
3295 }
3296 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3297 
__tcp_sock_set_quickack(struct sock * sk,int val)3298 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3299 {
3300 	if (!val) {
3301 		inet_csk_enter_pingpong_mode(sk);
3302 		return;
3303 	}
3304 
3305 	inet_csk_exit_pingpong_mode(sk);
3306 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3307 	    inet_csk_ack_scheduled(sk)) {
3308 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3309 		tcp_cleanup_rbuf(sk, 1);
3310 		if (!(val & 1))
3311 			inet_csk_enter_pingpong_mode(sk);
3312 	}
3313 }
3314 
tcp_sock_set_quickack(struct sock * sk,int val)3315 void tcp_sock_set_quickack(struct sock *sk, int val)
3316 {
3317 	lock_sock(sk);
3318 	__tcp_sock_set_quickack(sk, val);
3319 	release_sock(sk);
3320 }
3321 EXPORT_SYMBOL(tcp_sock_set_quickack);
3322 
tcp_sock_set_syncnt(struct sock * sk,int val)3323 int tcp_sock_set_syncnt(struct sock *sk, int val)
3324 {
3325 	if (val < 1 || val > MAX_TCP_SYNCNT)
3326 		return -EINVAL;
3327 
3328 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3329 	return 0;
3330 }
3331 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3332 
tcp_sock_set_user_timeout(struct sock * sk,int val)3333 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3334 {
3335 	/* Cap the max time in ms TCP will retry or probe the window
3336 	 * before giving up and aborting (ETIMEDOUT) a connection.
3337 	 */
3338 	if (val < 0)
3339 		return -EINVAL;
3340 
3341 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3342 	return 0;
3343 }
3344 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3345 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3346 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3347 {
3348 	struct tcp_sock *tp = tcp_sk(sk);
3349 
3350 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3351 		return -EINVAL;
3352 
3353 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3354 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3355 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3356 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3357 		u32 elapsed = keepalive_time_elapsed(tp);
3358 
3359 		if (tp->keepalive_time > elapsed)
3360 			elapsed = tp->keepalive_time - elapsed;
3361 		else
3362 			elapsed = 0;
3363 		inet_csk_reset_keepalive_timer(sk, elapsed);
3364 	}
3365 
3366 	return 0;
3367 }
3368 
tcp_sock_set_keepidle(struct sock * sk,int val)3369 int tcp_sock_set_keepidle(struct sock *sk, int val)
3370 {
3371 	int err;
3372 
3373 	lock_sock(sk);
3374 	err = tcp_sock_set_keepidle_locked(sk, val);
3375 	release_sock(sk);
3376 	return err;
3377 }
3378 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3379 
tcp_sock_set_keepintvl(struct sock * sk,int val)3380 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3381 {
3382 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3383 		return -EINVAL;
3384 
3385 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3386 	return 0;
3387 }
3388 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3389 
tcp_sock_set_keepcnt(struct sock * sk,int val)3390 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3391 {
3392 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3393 		return -EINVAL;
3394 
3395 	/* Paired with READ_ONCE() in keepalive_probes() */
3396 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3397 	return 0;
3398 }
3399 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3400 
tcp_set_window_clamp(struct sock * sk,int val)3401 int tcp_set_window_clamp(struct sock *sk, int val)
3402 {
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 
3405 	if (!val) {
3406 		if (sk->sk_state != TCP_CLOSE)
3407 			return -EINVAL;
3408 		WRITE_ONCE(tp->window_clamp, 0);
3409 	} else {
3410 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3411 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3412 						SOCK_MIN_RCVBUF / 2 : val;
3413 
3414 		if (new_window_clamp == old_window_clamp)
3415 			return 0;
3416 
3417 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3418 		if (new_window_clamp < old_window_clamp) {
3419 			/* need to apply the reserved mem provisioning only
3420 			 * when shrinking the window clamp
3421 			 */
3422 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3423 
3424 		} else {
3425 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3426 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3427 					       tp->rcv_ssthresh);
3428 		}
3429 	}
3430 	return 0;
3431 }
3432 
3433 /*
3434  *	Socket option code for TCP.
3435  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3436 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3437 		      sockptr_t optval, unsigned int optlen)
3438 {
3439 	struct tcp_sock *tp = tcp_sk(sk);
3440 	struct inet_connection_sock *icsk = inet_csk(sk);
3441 	struct net *net = sock_net(sk);
3442 	int val;
3443 	int err = 0;
3444 
3445 	/* These are data/string values, all the others are ints */
3446 	switch (optname) {
3447 	case TCP_CONGESTION: {
3448 		char name[TCP_CA_NAME_MAX];
3449 
3450 		if (optlen < 1)
3451 			return -EINVAL;
3452 
3453 		val = strncpy_from_sockptr(name, optval,
3454 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3455 		if (val < 0)
3456 			return -EFAULT;
3457 		name[val] = 0;
3458 
3459 		sockopt_lock_sock(sk);
3460 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3461 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3462 								    CAP_NET_ADMIN));
3463 		sockopt_release_sock(sk);
3464 		return err;
3465 	}
3466 	case TCP_ULP: {
3467 		char name[TCP_ULP_NAME_MAX];
3468 
3469 		if (optlen < 1)
3470 			return -EINVAL;
3471 
3472 		val = strncpy_from_sockptr(name, optval,
3473 					min_t(long, TCP_ULP_NAME_MAX - 1,
3474 					      optlen));
3475 		if (val < 0)
3476 			return -EFAULT;
3477 		name[val] = 0;
3478 
3479 		sockopt_lock_sock(sk);
3480 		err = tcp_set_ulp(sk, name);
3481 		sockopt_release_sock(sk);
3482 		return err;
3483 	}
3484 	case TCP_FASTOPEN_KEY: {
3485 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3486 		__u8 *backup_key = NULL;
3487 
3488 		/* Allow a backup key as well to facilitate key rotation
3489 		 * First key is the active one.
3490 		 */
3491 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3492 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3493 			return -EINVAL;
3494 
3495 		if (copy_from_sockptr(key, optval, optlen))
3496 			return -EFAULT;
3497 
3498 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3499 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3500 
3501 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3502 	}
3503 	default:
3504 		/* fallthru */
3505 		break;
3506 	}
3507 
3508 	if (optlen < sizeof(int))
3509 		return -EINVAL;
3510 
3511 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3512 		return -EFAULT;
3513 
3514 	/* Handle options that can be set without locking the socket. */
3515 	switch (optname) {
3516 	case TCP_SYNCNT:
3517 		return tcp_sock_set_syncnt(sk, val);
3518 	case TCP_USER_TIMEOUT:
3519 		return tcp_sock_set_user_timeout(sk, val);
3520 	case TCP_KEEPINTVL:
3521 		return tcp_sock_set_keepintvl(sk, val);
3522 	case TCP_KEEPCNT:
3523 		return tcp_sock_set_keepcnt(sk, val);
3524 	case TCP_LINGER2:
3525 		if (val < 0)
3526 			WRITE_ONCE(tp->linger2, -1);
3527 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3528 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3529 		else
3530 			WRITE_ONCE(tp->linger2, val * HZ);
3531 		return 0;
3532 	case TCP_DEFER_ACCEPT:
3533 		/* Translate value in seconds to number of retransmits */
3534 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3535 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3536 					   TCP_RTO_MAX / HZ));
3537 		return 0;
3538 	}
3539 
3540 	sockopt_lock_sock(sk);
3541 
3542 	switch (optname) {
3543 	case TCP_MAXSEG:
3544 		/* Values greater than interface MTU won't take effect. However
3545 		 * at the point when this call is done we typically don't yet
3546 		 * know which interface is going to be used
3547 		 */
3548 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3549 			err = -EINVAL;
3550 			break;
3551 		}
3552 		tp->rx_opt.user_mss = val;
3553 		break;
3554 
3555 	case TCP_NODELAY:
3556 		__tcp_sock_set_nodelay(sk, val);
3557 		break;
3558 
3559 	case TCP_THIN_LINEAR_TIMEOUTS:
3560 		if (val < 0 || val > 1)
3561 			err = -EINVAL;
3562 		else
3563 			tp->thin_lto = val;
3564 		break;
3565 
3566 	case TCP_THIN_DUPACK:
3567 		if (val < 0 || val > 1)
3568 			err = -EINVAL;
3569 		break;
3570 
3571 	case TCP_REPAIR:
3572 		if (!tcp_can_repair_sock(sk))
3573 			err = -EPERM;
3574 		else if (val == TCP_REPAIR_ON) {
3575 			tp->repair = 1;
3576 			sk->sk_reuse = SK_FORCE_REUSE;
3577 			tp->repair_queue = TCP_NO_QUEUE;
3578 		} else if (val == TCP_REPAIR_OFF) {
3579 			tp->repair = 0;
3580 			sk->sk_reuse = SK_NO_REUSE;
3581 			tcp_send_window_probe(sk);
3582 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3583 			tp->repair = 0;
3584 			sk->sk_reuse = SK_NO_REUSE;
3585 		} else
3586 			err = -EINVAL;
3587 
3588 		break;
3589 
3590 	case TCP_REPAIR_QUEUE:
3591 		if (!tp->repair)
3592 			err = -EPERM;
3593 		else if ((unsigned int)val < TCP_QUEUES_NR)
3594 			tp->repair_queue = val;
3595 		else
3596 			err = -EINVAL;
3597 		break;
3598 
3599 	case TCP_QUEUE_SEQ:
3600 		if (sk->sk_state != TCP_CLOSE) {
3601 			err = -EPERM;
3602 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3603 			if (!tcp_rtx_queue_empty(sk))
3604 				err = -EPERM;
3605 			else
3606 				WRITE_ONCE(tp->write_seq, val);
3607 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3608 			if (tp->rcv_nxt != tp->copied_seq) {
3609 				err = -EPERM;
3610 			} else {
3611 				WRITE_ONCE(tp->rcv_nxt, val);
3612 				WRITE_ONCE(tp->copied_seq, val);
3613 			}
3614 		} else {
3615 			err = -EINVAL;
3616 		}
3617 		break;
3618 
3619 	case TCP_REPAIR_OPTIONS:
3620 		if (!tp->repair)
3621 			err = -EINVAL;
3622 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3623 			err = tcp_repair_options_est(sk, optval, optlen);
3624 		else
3625 			err = -EPERM;
3626 		break;
3627 
3628 	case TCP_CORK:
3629 		__tcp_sock_set_cork(sk, val);
3630 		break;
3631 
3632 	case TCP_KEEPIDLE:
3633 		err = tcp_sock_set_keepidle_locked(sk, val);
3634 		break;
3635 	case TCP_SAVE_SYN:
3636 		/* 0: disable, 1: enable, 2: start from ether_header */
3637 		if (val < 0 || val > 2)
3638 			err = -EINVAL;
3639 		else
3640 			tp->save_syn = val;
3641 		break;
3642 
3643 	case TCP_WINDOW_CLAMP:
3644 		err = tcp_set_window_clamp(sk, val);
3645 		break;
3646 
3647 	case TCP_QUICKACK:
3648 		__tcp_sock_set_quickack(sk, val);
3649 		break;
3650 
3651 #ifdef CONFIG_TCP_MD5SIG
3652 	case TCP_MD5SIG:
3653 	case TCP_MD5SIG_EXT:
3654 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3655 		break;
3656 #endif
3657 	case TCP_FASTOPEN:
3658 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3659 		    TCPF_LISTEN))) {
3660 			tcp_fastopen_init_key_once(net);
3661 
3662 			fastopen_queue_tune(sk, val);
3663 		} else {
3664 			err = -EINVAL;
3665 		}
3666 		break;
3667 	case TCP_FASTOPEN_CONNECT:
3668 		if (val > 1 || val < 0) {
3669 			err = -EINVAL;
3670 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3671 			   TFO_CLIENT_ENABLE) {
3672 			if (sk->sk_state == TCP_CLOSE)
3673 				tp->fastopen_connect = val;
3674 			else
3675 				err = -EINVAL;
3676 		} else {
3677 			err = -EOPNOTSUPP;
3678 		}
3679 		break;
3680 	case TCP_FASTOPEN_NO_COOKIE:
3681 		if (val > 1 || val < 0)
3682 			err = -EINVAL;
3683 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3684 			err = -EINVAL;
3685 		else
3686 			tp->fastopen_no_cookie = val;
3687 		break;
3688 	case TCP_TIMESTAMP:
3689 		if (!tp->repair)
3690 			err = -EPERM;
3691 		else
3692 			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3693 		break;
3694 	case TCP_REPAIR_WINDOW:
3695 		err = tcp_repair_set_window(tp, optval, optlen);
3696 		break;
3697 	case TCP_NOTSENT_LOWAT:
3698 		WRITE_ONCE(tp->notsent_lowat, val);
3699 		sk->sk_write_space(sk);
3700 		break;
3701 	case TCP_INQ:
3702 		if (val > 1 || val < 0)
3703 			err = -EINVAL;
3704 		else
3705 			tp->recvmsg_inq = val;
3706 		break;
3707 	case TCP_TX_DELAY:
3708 		if (val)
3709 			tcp_enable_tx_delay();
3710 		WRITE_ONCE(tp->tcp_tx_delay, val);
3711 		break;
3712 	default:
3713 		err = -ENOPROTOOPT;
3714 		break;
3715 	}
3716 
3717 	sockopt_release_sock(sk);
3718 	return err;
3719 }
3720 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3721 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3722 		   unsigned int optlen)
3723 {
3724 	const struct inet_connection_sock *icsk = inet_csk(sk);
3725 
3726 	if (level != SOL_TCP)
3727 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3728 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3729 								optval, optlen);
3730 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3731 }
3732 EXPORT_SYMBOL(tcp_setsockopt);
3733 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3734 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3735 				      struct tcp_info *info)
3736 {
3737 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3738 	enum tcp_chrono i;
3739 
3740 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3741 		stats[i] = tp->chrono_stat[i - 1];
3742 		if (i == tp->chrono_type)
3743 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3744 		stats[i] *= USEC_PER_SEC / HZ;
3745 		total += stats[i];
3746 	}
3747 
3748 	info->tcpi_busy_time = total;
3749 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3750 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3751 }
3752 
3753 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3754 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3755 {
3756 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3757 	const struct inet_connection_sock *icsk = inet_csk(sk);
3758 	unsigned long rate;
3759 	u32 now;
3760 	u64 rate64;
3761 	bool slow;
3762 
3763 	memset(info, 0, sizeof(*info));
3764 	if (sk->sk_type != SOCK_STREAM)
3765 		return;
3766 
3767 	info->tcpi_state = inet_sk_state_load(sk);
3768 
3769 	/* Report meaningful fields for all TCP states, including listeners */
3770 	rate = READ_ONCE(sk->sk_pacing_rate);
3771 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3772 	info->tcpi_pacing_rate = rate64;
3773 
3774 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3775 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3776 	info->tcpi_max_pacing_rate = rate64;
3777 
3778 	info->tcpi_reordering = tp->reordering;
3779 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3780 
3781 	if (info->tcpi_state == TCP_LISTEN) {
3782 		/* listeners aliased fields :
3783 		 * tcpi_unacked -> Number of children ready for accept()
3784 		 * tcpi_sacked  -> max backlog
3785 		 */
3786 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3787 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3788 		return;
3789 	}
3790 
3791 	slow = lock_sock_fast(sk);
3792 
3793 	info->tcpi_ca_state = icsk->icsk_ca_state;
3794 	info->tcpi_retransmits = icsk->icsk_retransmits;
3795 	info->tcpi_probes = icsk->icsk_probes_out;
3796 	info->tcpi_backoff = icsk->icsk_backoff;
3797 
3798 	if (tp->rx_opt.tstamp_ok)
3799 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3800 	if (tcp_is_sack(tp))
3801 		info->tcpi_options |= TCPI_OPT_SACK;
3802 	if (tp->rx_opt.wscale_ok) {
3803 		info->tcpi_options |= TCPI_OPT_WSCALE;
3804 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3805 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3806 	}
3807 
3808 	if (tp->ecn_flags & TCP_ECN_OK)
3809 		info->tcpi_options |= TCPI_OPT_ECN;
3810 	if (tp->ecn_flags & TCP_ECN_SEEN)
3811 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3812 	if (tp->syn_data_acked)
3813 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3814 
3815 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3816 	info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3817 					      tcp_delack_max(sk)));
3818 	info->tcpi_snd_mss = tp->mss_cache;
3819 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3820 
3821 	info->tcpi_unacked = tp->packets_out;
3822 	info->tcpi_sacked = tp->sacked_out;
3823 
3824 	info->tcpi_lost = tp->lost_out;
3825 	info->tcpi_retrans = tp->retrans_out;
3826 
3827 	now = tcp_jiffies32;
3828 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3829 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3830 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3831 
3832 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3833 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3834 	info->tcpi_rtt = tp->srtt_us >> 3;
3835 	info->tcpi_rttvar = tp->mdev_us >> 2;
3836 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3837 	info->tcpi_advmss = tp->advmss;
3838 
3839 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3840 	info->tcpi_rcv_space = tp->rcvq_space.space;
3841 
3842 	info->tcpi_total_retrans = tp->total_retrans;
3843 
3844 	info->tcpi_bytes_acked = tp->bytes_acked;
3845 	info->tcpi_bytes_received = tp->bytes_received;
3846 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3847 	tcp_get_info_chrono_stats(tp, info);
3848 
3849 	info->tcpi_segs_out = tp->segs_out;
3850 
3851 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3852 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3853 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3854 
3855 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3856 	info->tcpi_data_segs_out = tp->data_segs_out;
3857 
3858 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3859 	rate64 = tcp_compute_delivery_rate(tp);
3860 	if (rate64)
3861 		info->tcpi_delivery_rate = rate64;
3862 	info->tcpi_delivered = tp->delivered;
3863 	info->tcpi_delivered_ce = tp->delivered_ce;
3864 	info->tcpi_bytes_sent = tp->bytes_sent;
3865 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3866 	info->tcpi_dsack_dups = tp->dsack_dups;
3867 	info->tcpi_reord_seen = tp->reord_seen;
3868 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3869 	info->tcpi_snd_wnd = tp->snd_wnd;
3870 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3871 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3872 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3873 
3874 	info->tcpi_total_rto = tp->total_rto;
3875 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3876 	info->tcpi_total_rto_time = tp->total_rto_time;
3877 	if (tp->rto_stamp) {
3878 		info->tcpi_total_rto_time += tcp_time_stamp_raw() -
3879 						tp->rto_stamp;
3880 	}
3881 
3882 	unlock_sock_fast(sk, slow);
3883 }
3884 EXPORT_SYMBOL_GPL(tcp_get_info);
3885 
tcp_opt_stats_get_size(void)3886 static size_t tcp_opt_stats_get_size(void)
3887 {
3888 	return
3889 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3890 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3891 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3892 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3893 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3894 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3895 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3896 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3897 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3898 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3899 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3900 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3901 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3902 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3903 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3904 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3905 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3906 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3907 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3908 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3909 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3910 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3911 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3912 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3913 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3914 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3915 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3916 		0;
3917 }
3918 
3919 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3920 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3921 {
3922 	if (skb->protocol == htons(ETH_P_IP))
3923 		return ip_hdr(skb)->ttl;
3924 	else if (skb->protocol == htons(ETH_P_IPV6))
3925 		return ipv6_hdr(skb)->hop_limit;
3926 	else
3927 		return 0;
3928 }
3929 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3930 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3931 					       const struct sk_buff *orig_skb,
3932 					       const struct sk_buff *ack_skb)
3933 {
3934 	const struct tcp_sock *tp = tcp_sk(sk);
3935 	struct sk_buff *stats;
3936 	struct tcp_info info;
3937 	unsigned long rate;
3938 	u64 rate64;
3939 
3940 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3941 	if (!stats)
3942 		return NULL;
3943 
3944 	tcp_get_info_chrono_stats(tp, &info);
3945 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3946 			  info.tcpi_busy_time, TCP_NLA_PAD);
3947 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3948 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3949 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3950 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3951 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3952 			  tp->data_segs_out, TCP_NLA_PAD);
3953 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3954 			  tp->total_retrans, TCP_NLA_PAD);
3955 
3956 	rate = READ_ONCE(sk->sk_pacing_rate);
3957 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3958 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3959 
3960 	rate64 = tcp_compute_delivery_rate(tp);
3961 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3962 
3963 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3964 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3965 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3966 
3967 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3968 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3969 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3970 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3971 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3972 
3973 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3974 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3975 
3976 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3977 			  TCP_NLA_PAD);
3978 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3979 			  TCP_NLA_PAD);
3980 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3981 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3982 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3983 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3984 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3985 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3986 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3987 			  TCP_NLA_PAD);
3988 	if (ack_skb)
3989 		nla_put_u8(stats, TCP_NLA_TTL,
3990 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3991 
3992 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3993 	return stats;
3994 }
3995 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)3996 int do_tcp_getsockopt(struct sock *sk, int level,
3997 		      int optname, sockptr_t optval, sockptr_t optlen)
3998 {
3999 	struct inet_connection_sock *icsk = inet_csk(sk);
4000 	struct tcp_sock *tp = tcp_sk(sk);
4001 	struct net *net = sock_net(sk);
4002 	int val, len;
4003 
4004 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4005 		return -EFAULT;
4006 
4007 	if (len < 0)
4008 		return -EINVAL;
4009 
4010 	len = min_t(unsigned int, len, sizeof(int));
4011 
4012 	switch (optname) {
4013 	case TCP_MAXSEG:
4014 		val = tp->mss_cache;
4015 		if (tp->rx_opt.user_mss &&
4016 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4017 			val = tp->rx_opt.user_mss;
4018 		if (tp->repair)
4019 			val = tp->rx_opt.mss_clamp;
4020 		break;
4021 	case TCP_NODELAY:
4022 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4023 		break;
4024 	case TCP_CORK:
4025 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4026 		break;
4027 	case TCP_KEEPIDLE:
4028 		val = keepalive_time_when(tp) / HZ;
4029 		break;
4030 	case TCP_KEEPINTVL:
4031 		val = keepalive_intvl_when(tp) / HZ;
4032 		break;
4033 	case TCP_KEEPCNT:
4034 		val = keepalive_probes(tp);
4035 		break;
4036 	case TCP_SYNCNT:
4037 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4038 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4039 		break;
4040 	case TCP_LINGER2:
4041 		val = READ_ONCE(tp->linger2);
4042 		if (val >= 0)
4043 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4044 		break;
4045 	case TCP_DEFER_ACCEPT:
4046 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4047 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4048 				      TCP_RTO_MAX / HZ);
4049 		break;
4050 	case TCP_WINDOW_CLAMP:
4051 		val = READ_ONCE(tp->window_clamp);
4052 		break;
4053 	case TCP_INFO: {
4054 		struct tcp_info info;
4055 
4056 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4057 			return -EFAULT;
4058 
4059 		tcp_get_info(sk, &info);
4060 
4061 		len = min_t(unsigned int, len, sizeof(info));
4062 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4063 			return -EFAULT;
4064 		if (copy_to_sockptr(optval, &info, len))
4065 			return -EFAULT;
4066 		return 0;
4067 	}
4068 	case TCP_CC_INFO: {
4069 		const struct tcp_congestion_ops *ca_ops;
4070 		union tcp_cc_info info;
4071 		size_t sz = 0;
4072 		int attr;
4073 
4074 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4075 			return -EFAULT;
4076 
4077 		ca_ops = icsk->icsk_ca_ops;
4078 		if (ca_ops && ca_ops->get_info)
4079 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4080 
4081 		len = min_t(unsigned int, len, sz);
4082 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4083 			return -EFAULT;
4084 		if (copy_to_sockptr(optval, &info, len))
4085 			return -EFAULT;
4086 		return 0;
4087 	}
4088 	case TCP_QUICKACK:
4089 		val = !inet_csk_in_pingpong_mode(sk);
4090 		break;
4091 
4092 	case TCP_CONGESTION:
4093 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4094 			return -EFAULT;
4095 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4096 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4097 			return -EFAULT;
4098 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4099 			return -EFAULT;
4100 		return 0;
4101 
4102 	case TCP_ULP:
4103 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4104 			return -EFAULT;
4105 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4106 		if (!icsk->icsk_ulp_ops) {
4107 			len = 0;
4108 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4109 				return -EFAULT;
4110 			return 0;
4111 		}
4112 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4113 			return -EFAULT;
4114 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4115 			return -EFAULT;
4116 		return 0;
4117 
4118 	case TCP_FASTOPEN_KEY: {
4119 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4120 		unsigned int key_len;
4121 
4122 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4123 			return -EFAULT;
4124 
4125 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4126 				TCP_FASTOPEN_KEY_LENGTH;
4127 		len = min_t(unsigned int, len, key_len);
4128 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4129 			return -EFAULT;
4130 		if (copy_to_sockptr(optval, key, len))
4131 			return -EFAULT;
4132 		return 0;
4133 	}
4134 	case TCP_THIN_LINEAR_TIMEOUTS:
4135 		val = tp->thin_lto;
4136 		break;
4137 
4138 	case TCP_THIN_DUPACK:
4139 		val = 0;
4140 		break;
4141 
4142 	case TCP_REPAIR:
4143 		val = tp->repair;
4144 		break;
4145 
4146 	case TCP_REPAIR_QUEUE:
4147 		if (tp->repair)
4148 			val = tp->repair_queue;
4149 		else
4150 			return -EINVAL;
4151 		break;
4152 
4153 	case TCP_REPAIR_WINDOW: {
4154 		struct tcp_repair_window opt;
4155 
4156 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157 			return -EFAULT;
4158 
4159 		if (len != sizeof(opt))
4160 			return -EINVAL;
4161 
4162 		if (!tp->repair)
4163 			return -EPERM;
4164 
4165 		opt.snd_wl1	= tp->snd_wl1;
4166 		opt.snd_wnd	= tp->snd_wnd;
4167 		opt.max_window	= tp->max_window;
4168 		opt.rcv_wnd	= tp->rcv_wnd;
4169 		opt.rcv_wup	= tp->rcv_wup;
4170 
4171 		if (copy_to_sockptr(optval, &opt, len))
4172 			return -EFAULT;
4173 		return 0;
4174 	}
4175 	case TCP_QUEUE_SEQ:
4176 		if (tp->repair_queue == TCP_SEND_QUEUE)
4177 			val = tp->write_seq;
4178 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4179 			val = tp->rcv_nxt;
4180 		else
4181 			return -EINVAL;
4182 		break;
4183 
4184 	case TCP_USER_TIMEOUT:
4185 		val = READ_ONCE(icsk->icsk_user_timeout);
4186 		break;
4187 
4188 	case TCP_FASTOPEN:
4189 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4190 		break;
4191 
4192 	case TCP_FASTOPEN_CONNECT:
4193 		val = tp->fastopen_connect;
4194 		break;
4195 
4196 	case TCP_FASTOPEN_NO_COOKIE:
4197 		val = tp->fastopen_no_cookie;
4198 		break;
4199 
4200 	case TCP_TX_DELAY:
4201 		val = READ_ONCE(tp->tcp_tx_delay);
4202 		break;
4203 
4204 	case TCP_TIMESTAMP:
4205 		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4206 		break;
4207 	case TCP_NOTSENT_LOWAT:
4208 		val = READ_ONCE(tp->notsent_lowat);
4209 		break;
4210 	case TCP_INQ:
4211 		val = tp->recvmsg_inq;
4212 		break;
4213 	case TCP_SAVE_SYN:
4214 		val = tp->save_syn;
4215 		break;
4216 	case TCP_SAVED_SYN: {
4217 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4218 			return -EFAULT;
4219 
4220 		sockopt_lock_sock(sk);
4221 		if (tp->saved_syn) {
4222 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4223 				len = tcp_saved_syn_len(tp->saved_syn);
4224 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4225 					sockopt_release_sock(sk);
4226 					return -EFAULT;
4227 				}
4228 				sockopt_release_sock(sk);
4229 				return -EINVAL;
4230 			}
4231 			len = tcp_saved_syn_len(tp->saved_syn);
4232 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4233 				sockopt_release_sock(sk);
4234 				return -EFAULT;
4235 			}
4236 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4237 				sockopt_release_sock(sk);
4238 				return -EFAULT;
4239 			}
4240 			tcp_saved_syn_free(tp);
4241 			sockopt_release_sock(sk);
4242 		} else {
4243 			sockopt_release_sock(sk);
4244 			len = 0;
4245 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4246 				return -EFAULT;
4247 		}
4248 		return 0;
4249 	}
4250 #ifdef CONFIG_MMU
4251 	case TCP_ZEROCOPY_RECEIVE: {
4252 		struct scm_timestamping_internal tss;
4253 		struct tcp_zerocopy_receive zc = {};
4254 		int err;
4255 
4256 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4257 			return -EFAULT;
4258 		if (len < 0 ||
4259 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4260 			return -EINVAL;
4261 		if (unlikely(len > sizeof(zc))) {
4262 			err = check_zeroed_sockptr(optval, sizeof(zc),
4263 						   len - sizeof(zc));
4264 			if (err < 1)
4265 				return err == 0 ? -EINVAL : err;
4266 			len = sizeof(zc);
4267 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4268 				return -EFAULT;
4269 		}
4270 		if (copy_from_sockptr(&zc, optval, len))
4271 			return -EFAULT;
4272 		if (zc.reserved)
4273 			return -EINVAL;
4274 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4275 			return -EINVAL;
4276 		sockopt_lock_sock(sk);
4277 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4278 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4279 							  &zc, &len, err);
4280 		sockopt_release_sock(sk);
4281 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4282 			goto zerocopy_rcv_cmsg;
4283 		switch (len) {
4284 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4285 			goto zerocopy_rcv_cmsg;
4286 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4287 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4288 		case offsetofend(struct tcp_zerocopy_receive, flags):
4289 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4290 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4291 		case offsetofend(struct tcp_zerocopy_receive, err):
4292 			goto zerocopy_rcv_sk_err;
4293 		case offsetofend(struct tcp_zerocopy_receive, inq):
4294 			goto zerocopy_rcv_inq;
4295 		case offsetofend(struct tcp_zerocopy_receive, length):
4296 		default:
4297 			goto zerocopy_rcv_out;
4298 		}
4299 zerocopy_rcv_cmsg:
4300 		if (zc.msg_flags & TCP_CMSG_TS)
4301 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4302 		else
4303 			zc.msg_flags = 0;
4304 zerocopy_rcv_sk_err:
4305 		if (!err)
4306 			zc.err = sock_error(sk);
4307 zerocopy_rcv_inq:
4308 		zc.inq = tcp_inq_hint(sk);
4309 zerocopy_rcv_out:
4310 		if (!err && copy_to_sockptr(optval, &zc, len))
4311 			err = -EFAULT;
4312 		return err;
4313 	}
4314 #endif
4315 	default:
4316 		return -ENOPROTOOPT;
4317 	}
4318 
4319 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4320 		return -EFAULT;
4321 	if (copy_to_sockptr(optval, &val, len))
4322 		return -EFAULT;
4323 	return 0;
4324 }
4325 
tcp_bpf_bypass_getsockopt(int level,int optname)4326 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4327 {
4328 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4329 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4330 	 */
4331 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4332 		return true;
4333 
4334 	return false;
4335 }
4336 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4337 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4338 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4339 		   int __user *optlen)
4340 {
4341 	struct inet_connection_sock *icsk = inet_csk(sk);
4342 
4343 	if (level != SOL_TCP)
4344 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4345 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4346 								optval, optlen);
4347 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4348 				 USER_SOCKPTR(optlen));
4349 }
4350 EXPORT_SYMBOL(tcp_getsockopt);
4351 
4352 #ifdef CONFIG_TCP_MD5SIG
4353 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4354 static DEFINE_MUTEX(tcp_md5sig_mutex);
4355 static bool tcp_md5sig_pool_populated = false;
4356 
__tcp_alloc_md5sig_pool(void)4357 static void __tcp_alloc_md5sig_pool(void)
4358 {
4359 	struct crypto_ahash *hash;
4360 	int cpu;
4361 
4362 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4363 	if (IS_ERR(hash))
4364 		return;
4365 
4366 	for_each_possible_cpu(cpu) {
4367 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4368 		struct ahash_request *req;
4369 
4370 		if (!scratch) {
4371 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4372 					       sizeof(struct tcphdr),
4373 					       GFP_KERNEL,
4374 					       cpu_to_node(cpu));
4375 			if (!scratch)
4376 				return;
4377 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4378 		}
4379 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4380 			continue;
4381 
4382 		req = ahash_request_alloc(hash, GFP_KERNEL);
4383 		if (!req)
4384 			return;
4385 
4386 		ahash_request_set_callback(req, 0, NULL, NULL);
4387 
4388 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4389 	}
4390 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4391 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4392 	 */
4393 	smp_wmb();
4394 	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4395 	 * and tcp_get_md5sig_pool().
4396 	*/
4397 	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4398 }
4399 
tcp_alloc_md5sig_pool(void)4400 bool tcp_alloc_md5sig_pool(void)
4401 {
4402 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4403 	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4404 		mutex_lock(&tcp_md5sig_mutex);
4405 
4406 		if (!tcp_md5sig_pool_populated)
4407 			__tcp_alloc_md5sig_pool();
4408 
4409 		mutex_unlock(&tcp_md5sig_mutex);
4410 	}
4411 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4412 	return READ_ONCE(tcp_md5sig_pool_populated);
4413 }
4414 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4415 
4416 
4417 /**
4418  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4419  *
4420  *	We use percpu structure, so if we succeed, we exit with preemption
4421  *	and BH disabled, to make sure another thread or softirq handling
4422  *	wont try to get same context.
4423  */
tcp_get_md5sig_pool(void)4424 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4425 {
4426 	local_bh_disable();
4427 
4428 	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4429 	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4430 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4431 		smp_rmb();
4432 		return this_cpu_ptr(&tcp_md5sig_pool);
4433 	}
4434 	local_bh_enable();
4435 	return NULL;
4436 }
4437 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4438 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4439 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4440 			  const struct sk_buff *skb, unsigned int header_len)
4441 {
4442 	struct scatterlist sg;
4443 	const struct tcphdr *tp = tcp_hdr(skb);
4444 	struct ahash_request *req = hp->md5_req;
4445 	unsigned int i;
4446 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4447 					   skb_headlen(skb) - header_len : 0;
4448 	const struct skb_shared_info *shi = skb_shinfo(skb);
4449 	struct sk_buff *frag_iter;
4450 
4451 	sg_init_table(&sg, 1);
4452 
4453 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4454 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4455 	if (crypto_ahash_update(req))
4456 		return 1;
4457 
4458 	for (i = 0; i < shi->nr_frags; ++i) {
4459 		const skb_frag_t *f = &shi->frags[i];
4460 		unsigned int offset = skb_frag_off(f);
4461 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4462 
4463 		sg_set_page(&sg, page, skb_frag_size(f),
4464 			    offset_in_page(offset));
4465 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4466 		if (crypto_ahash_update(req))
4467 			return 1;
4468 	}
4469 
4470 	skb_walk_frags(skb, frag_iter)
4471 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4472 			return 1;
4473 
4474 	return 0;
4475 }
4476 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4477 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4478 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4479 {
4480 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4481 	struct scatterlist sg;
4482 
4483 	sg_init_one(&sg, key->key, keylen);
4484 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4485 
4486 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4487 	return data_race(crypto_ahash_update(hp->md5_req));
4488 }
4489 EXPORT_SYMBOL(tcp_md5_hash_key);
4490 
4491 /* Called with rcu_read_lock() */
4492 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4493 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4494 		     const void *saddr, const void *daddr,
4495 		     int family, int dif, int sdif)
4496 {
4497 	/*
4498 	 * This gets called for each TCP segment that arrives
4499 	 * so we want to be efficient.
4500 	 * We have 3 drop cases:
4501 	 * o No MD5 hash and one expected.
4502 	 * o MD5 hash and we're not expecting one.
4503 	 * o MD5 hash and its wrong.
4504 	 */
4505 	const __u8 *hash_location = NULL;
4506 	struct tcp_md5sig_key *hash_expected;
4507 	const struct tcphdr *th = tcp_hdr(skb);
4508 	const struct tcp_sock *tp = tcp_sk(sk);
4509 	int genhash, l3index;
4510 	u8 newhash[16];
4511 
4512 	/* sdif set, means packet ingressed via a device
4513 	 * in an L3 domain and dif is set to the l3mdev
4514 	 */
4515 	l3index = sdif ? dif : 0;
4516 
4517 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4518 	hash_location = tcp_parse_md5sig_option(th);
4519 
4520 	/* We've parsed the options - do we have a hash? */
4521 	if (!hash_expected && !hash_location)
4522 		return SKB_NOT_DROPPED_YET;
4523 
4524 	if (hash_expected && !hash_location) {
4525 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4526 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4527 	}
4528 
4529 	if (!hash_expected && hash_location) {
4530 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4531 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4532 	}
4533 
4534 	/* Check the signature.
4535 	 * To support dual stack listeners, we need to handle
4536 	 * IPv4-mapped case.
4537 	 */
4538 	if (family == AF_INET)
4539 		genhash = tcp_v4_md5_hash_skb(newhash,
4540 					      hash_expected,
4541 					      NULL, skb);
4542 	else
4543 		genhash = tp->af_specific->calc_md5_hash(newhash,
4544 							 hash_expected,
4545 							 NULL, skb);
4546 
4547 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4548 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4549 		if (family == AF_INET) {
4550 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4551 					saddr, ntohs(th->source),
4552 					daddr, ntohs(th->dest),
4553 					genhash ? " tcp_v4_calc_md5_hash failed"
4554 					: "", l3index);
4555 		} else {
4556 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4557 					genhash ? "failed" : "mismatch",
4558 					saddr, ntohs(th->source),
4559 					daddr, ntohs(th->dest), l3index);
4560 		}
4561 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4562 	}
4563 	return SKB_NOT_DROPPED_YET;
4564 }
4565 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4566 
4567 #endif
4568 
tcp_done(struct sock * sk)4569 void tcp_done(struct sock *sk)
4570 {
4571 	struct request_sock *req;
4572 
4573 	/* We might be called with a new socket, after
4574 	 * inet_csk_prepare_forced_close() has been called
4575 	 * so we can not use lockdep_sock_is_held(sk)
4576 	 */
4577 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4578 
4579 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4580 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4581 
4582 	tcp_set_state(sk, TCP_CLOSE);
4583 	tcp_clear_xmit_timers(sk);
4584 	if (req)
4585 		reqsk_fastopen_remove(sk, req, false);
4586 
4587 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4588 
4589 	if (!sock_flag(sk, SOCK_DEAD))
4590 		sk->sk_state_change(sk);
4591 	else
4592 		inet_csk_destroy_sock(sk);
4593 }
4594 EXPORT_SYMBOL_GPL(tcp_done);
4595 
tcp_abort(struct sock * sk,int err)4596 int tcp_abort(struct sock *sk, int err)
4597 {
4598 	int state = inet_sk_state_load(sk);
4599 
4600 	if (state == TCP_NEW_SYN_RECV) {
4601 		struct request_sock *req = inet_reqsk(sk);
4602 
4603 		local_bh_disable();
4604 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4605 		local_bh_enable();
4606 		return 0;
4607 	}
4608 	if (state == TCP_TIME_WAIT) {
4609 		struct inet_timewait_sock *tw = inet_twsk(sk);
4610 
4611 		refcount_inc(&tw->tw_refcnt);
4612 		local_bh_disable();
4613 		inet_twsk_deschedule_put(tw);
4614 		local_bh_enable();
4615 		return 0;
4616 	}
4617 
4618 	/* BPF context ensures sock locking. */
4619 	if (!has_current_bpf_ctx())
4620 		/* Don't race with userspace socket closes such as tcp_close. */
4621 		lock_sock(sk);
4622 
4623 	if (sk->sk_state == TCP_LISTEN) {
4624 		tcp_set_state(sk, TCP_CLOSE);
4625 		inet_csk_listen_stop(sk);
4626 	}
4627 
4628 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4629 	local_bh_disable();
4630 	bh_lock_sock(sk);
4631 
4632 	if (!sock_flag(sk, SOCK_DEAD)) {
4633 		WRITE_ONCE(sk->sk_err, err);
4634 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4635 		smp_wmb();
4636 		sk_error_report(sk);
4637 		if (tcp_need_reset(sk->sk_state))
4638 			tcp_send_active_reset(sk, GFP_ATOMIC);
4639 		tcp_done(sk);
4640 	}
4641 
4642 	bh_unlock_sock(sk);
4643 	local_bh_enable();
4644 	tcp_write_queue_purge(sk);
4645 	if (!has_current_bpf_ctx())
4646 		release_sock(sk);
4647 	return 0;
4648 }
4649 EXPORT_SYMBOL_GPL(tcp_abort);
4650 
4651 extern struct tcp_congestion_ops tcp_reno;
4652 
4653 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4654 static int __init set_thash_entries(char *str)
4655 {
4656 	ssize_t ret;
4657 
4658 	if (!str)
4659 		return 0;
4660 
4661 	ret = kstrtoul(str, 0, &thash_entries);
4662 	if (ret)
4663 		return 0;
4664 
4665 	return 1;
4666 }
4667 __setup("thash_entries=", set_thash_entries);
4668 
tcp_init_mem(void)4669 static void __init tcp_init_mem(void)
4670 {
4671 	unsigned long limit = nr_free_buffer_pages() / 16;
4672 
4673 	limit = max(limit, 128UL);
4674 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4675 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4676 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4677 }
4678 
tcp_init(void)4679 void __init tcp_init(void)
4680 {
4681 	int max_rshare, max_wshare, cnt;
4682 	unsigned long limit;
4683 	unsigned int i;
4684 
4685 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4686 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4687 		     sizeof_field(struct sk_buff, cb));
4688 
4689 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4690 
4691 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4692 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4693 
4694 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4695 			    thash_entries, 21,  /* one slot per 2 MB*/
4696 			    0, 64 * 1024);
4697 	tcp_hashinfo.bind_bucket_cachep =
4698 		kmem_cache_create("tcp_bind_bucket",
4699 				  sizeof(struct inet_bind_bucket), 0,
4700 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4701 				  SLAB_ACCOUNT,
4702 				  NULL);
4703 	tcp_hashinfo.bind2_bucket_cachep =
4704 		kmem_cache_create("tcp_bind2_bucket",
4705 				  sizeof(struct inet_bind2_bucket), 0,
4706 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4707 				  SLAB_ACCOUNT,
4708 				  NULL);
4709 
4710 	/* Size and allocate the main established and bind bucket
4711 	 * hash tables.
4712 	 *
4713 	 * The methodology is similar to that of the buffer cache.
4714 	 */
4715 	tcp_hashinfo.ehash =
4716 		alloc_large_system_hash("TCP established",
4717 					sizeof(struct inet_ehash_bucket),
4718 					thash_entries,
4719 					17, /* one slot per 128 KB of memory */
4720 					0,
4721 					NULL,
4722 					&tcp_hashinfo.ehash_mask,
4723 					0,
4724 					thash_entries ? 0 : 512 * 1024);
4725 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4726 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4727 
4728 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4729 		panic("TCP: failed to alloc ehash_locks");
4730 	tcp_hashinfo.bhash =
4731 		alloc_large_system_hash("TCP bind",
4732 					2 * sizeof(struct inet_bind_hashbucket),
4733 					tcp_hashinfo.ehash_mask + 1,
4734 					17, /* one slot per 128 KB of memory */
4735 					0,
4736 					&tcp_hashinfo.bhash_size,
4737 					NULL,
4738 					0,
4739 					64 * 1024);
4740 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4741 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4742 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4743 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4744 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4745 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4746 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4747 	}
4748 
4749 	tcp_hashinfo.pernet = false;
4750 
4751 	cnt = tcp_hashinfo.ehash_mask + 1;
4752 	sysctl_tcp_max_orphans = cnt / 2;
4753 
4754 	tcp_init_mem();
4755 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4756 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4757 	max_wshare = min(4UL*1024*1024, limit);
4758 	max_rshare = min(6UL*1024*1024, limit);
4759 
4760 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4761 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4762 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4763 
4764 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4765 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4766 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4767 
4768 	pr_info("Hash tables configured (established %u bind %u)\n",
4769 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4770 
4771 	tcp_v4_init();
4772 	tcp_metrics_init();
4773 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4774 	tcp_tasklet_init();
4775 	mptcp_init();
4776 }
4777