Home
last modified time | relevance | path

Searched hist:f7e47677 (Results 1 – 12 of 12) sorted by relevance

/openbmc/linux/include/uapi/linux/
H A Dwatch_queue.hf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Dkeyctl.hf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
/openbmc/linux/security/keys/
H A DKconfigf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Dcompat.cf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Dgc.cf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Dinternal.hf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Drequest_key.cf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Dkey.cf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
H A Dkeyring.cf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>

H A Dkeyctl.cf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>

/openbmc/linux/Documentation/security/keys/
H A Dcore.rstf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
/openbmc/linux/include/linux/
H A Dkey.hf7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
f7e47677 Tue Jan 14 11:07:11 CST 2020 David Howells <dhowells@redhat.com> watch_queue: Add a key/keyring notification facility

Add a key/keyring change notification facility whereby notifications about
changes in key and keyring content and attributes can be received.

Firstly, an event queue needs to be created:

pipe2(fds, O_NOTIFICATION_PIPE);
ioctl(fds[1], IOC_WATCH_QUEUE_SET_SIZE, 256);

then a notification can be set up to report notifications via that queue:

struct watch_notification_filter filter = {
.nr_filters = 1,
.filters = {
[0] = {
.type = WATCH_TYPE_KEY_NOTIFY,
.subtype_filter[0] = UINT_MAX,
},
},
};
ioctl(fds[1], IOC_WATCH_QUEUE_SET_FILTER, &filter);
keyctl_watch_key(KEY_SPEC_SESSION_KEYRING, fds[1], 0x01);

After that, records will be placed into the queue when events occur in
which keys are changed in some way. Records are of the following format:

struct key_notification {
struct watch_notification watch;
__u32 key_id;
__u32 aux;
} *n;

Where:

n->watch.type will be WATCH_TYPE_KEY_NOTIFY.

n->watch.subtype will indicate the type of event, such as
NOTIFY_KEY_REVOKED.

n->watch.info & WATCH_INFO_LENGTH will indicate the length of the
record.

n->watch.info & WATCH_INFO_ID will be the second argument to
keyctl_watch_key(), shifted.

n->key will be the ID of the affected key.

n->aux will hold subtype-dependent information, such as the key
being linked into the keyring specified by n->key in the case of
NOTIFY_KEY_LINKED.

Note that it is permissible for event records to be of variable length -
or, at least, the length may be dependent on the subtype. Note also that
the queue can be shared between multiple notifications of various types.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>