Home
last modified time | relevance | path

Searched hist:a631be92 (Results 1 – 3 of 3) sorted by relevance

/openbmc/linux/include/linux/
H A Dcpuhotplug.ha631be92 Fri May 12 16:07:45 CDT 2023 Thomas Gleixner <tglx@linutronix.de> cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism

The bring up logic of a to be onlined CPU consists of several parts, which
are considered to be a single hotplug state:

1) Control CPU issues the wake-up

2) To be onlined CPU starts up, does the minimal initialization,
reports to be alive and waits for release into the complete bring-up.

3) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.

Allow to split this into two states:

1) Control CPU issues the wake-up

After that the to be onlined CPU starts up, does the minimal
initialization, reports to be alive and waits for release into the
full bring-up. As this can run after the control CPU dropped the
hotplug locks the code which is executed on the AP before it reports
alive has to be carefully audited to not violate any of the hotplug
constraints, especially not modifying any of the various cpumasks.

This is really only meant to avoid waiting for the AP to react on the
wake-up. Of course an architecture can move strict CPU related setup
functionality, e.g. microcode loading, with care before the
synchronization point to save further pointless waiting time.

2) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.

This allows that the two states can be split up to run all to be onlined
CPUs up to state #1 on the control CPU and then at a later point run state
#2. This spares some of the latencies of the full serialized per CPU
bringup by avoiding the per CPU wakeup/wait serialization. The assumption
is that the first AP already waits when the last AP has been woken up. This
obvioulsy depends on the hardware latencies and depending on the timings
this might still not completely eliminate all wait scenarios.

This split is just a preparatory step for enabling the parallel bringup
later. The boot time bringup is still fully serialized. It has a separate
config switch so that architectures which want to support parallel bringup
can test the split of the CPUHP_BRINGUG step separately.

To enable this the architecture must support the CPU hotplug core sync
mechanism and has to be audited that there are no implicit hotplug state
dependencies which require a fully serialized bringup.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.080801387@linutronix.de
/openbmc/linux/kernel/
H A Dcpu.ca631be92 Fri May 12 16:07:45 CDT 2023 Thomas Gleixner <tglx@linutronix.de> cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism

The bring up logic of a to be onlined CPU consists of several parts, which
are considered to be a single hotplug state:

1) Control CPU issues the wake-up

2) To be onlined CPU starts up, does the minimal initialization,
reports to be alive and waits for release into the complete bring-up.

3) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.

Allow to split this into two states:

1) Control CPU issues the wake-up

After that the to be onlined CPU starts up, does the minimal
initialization, reports to be alive and waits for release into the
full bring-up. As this can run after the control CPU dropped the
hotplug locks the code which is executed on the AP before it reports
alive has to be carefully audited to not violate any of the hotplug
constraints, especially not modifying any of the various cpumasks.

This is really only meant to avoid waiting for the AP to react on the
wake-up. Of course an architecture can move strict CPU related setup
functionality, e.g. microcode loading, with care before the
synchronization point to save further pointless waiting time.

2) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.

This allows that the two states can be split up to run all to be onlined
CPUs up to state #1 on the control CPU and then at a later point run state
#2. This spares some of the latencies of the full serialized per CPU
bringup by avoiding the per CPU wakeup/wait serialization. The assumption
is that the first AP already waits when the last AP has been woken up. This
obvioulsy depends on the hardware latencies and depending on the timings
this might still not completely eliminate all wait scenarios.

This split is just a preparatory step for enabling the parallel bringup
later. The boot time bringup is still fully serialized. It has a separate
config switch so that architectures which want to support parallel bringup
can test the split of the CPUHP_BRINGUG step separately.

To enable this the architecture must support the CPU hotplug core sync
mechanism and has to be audited that there are no implicit hotplug state
dependencies which require a fully serialized bringup.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.080801387@linutronix.de
/openbmc/linux/arch/
H A DKconfiga631be92 Fri May 12 16:07:45 CDT 2023 Thomas Gleixner <tglx@linutronix.de> cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism

The bring up logic of a to be onlined CPU consists of several parts, which
are considered to be a single hotplug state:

1) Control CPU issues the wake-up

2) To be onlined CPU starts up, does the minimal initialization,
reports to be alive and waits for release into the complete bring-up.

3) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.

Allow to split this into two states:

1) Control CPU issues the wake-up

After that the to be onlined CPU starts up, does the minimal
initialization, reports to be alive and waits for release into the
full bring-up. As this can run after the control CPU dropped the
hotplug locks the code which is executed on the AP before it reports
alive has to be carefully audited to not violate any of the hotplug
constraints, especially not modifying any of the various cpumasks.

This is really only meant to avoid waiting for the AP to react on the
wake-up. Of course an architecture can move strict CPU related setup
functionality, e.g. microcode loading, with care before the
synchronization point to save further pointless waiting time.

2) Control CPU waits for the alive report and releases the upcoming CPU
for the complete bring-up.

This allows that the two states can be split up to run all to be onlined
CPUs up to state #1 on the control CPU and then at a later point run state
#2. This spares some of the latencies of the full serialized per CPU
bringup by avoiding the per CPU wakeup/wait serialization. The assumption
is that the first AP already waits when the last AP has been woken up. This
obvioulsy depends on the hardware latencies and depending on the timings
this might still not completely eliminate all wait scenarios.

This split is just a preparatory step for enabling the parallel bringup
later. The boot time bringup is still fully serialized. It has a separate
config switch so that architectures which want to support parallel bringup
can test the split of the CPUHP_BRINGUG step separately.

To enable this the architecture must support the CPU hotplug core sync
mechanism and has to be audited that there are no implicit hotplug state
dependencies which require a fully serialized bringup.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.080801387@linutronix.de