Home
last modified time | relevance | path

Searched hist:"71 ae8aac" (Results 1 – 3 of 3) sorted by relevance

/openbmc/linux/include/linux/
H A Dhash.h71ae8aac Thu Dec 12 09:09:05 CST 2013 Francesco Fusco <ffusco@redhat.com> lib: introduce arch optimized hash library

We introduce a new hashing library that is meant to be used in
the contexts where speed is more important than uniformity of the
hashed values. The hash library leverages architecture specific
implementation to achieve high performance and fall backs to
jhash() for the generic case.

On Intel-based x86 architectures, the library can exploit the crc32l
instruction, part of the Intel SSE4.2 instruction set, if the
instruction is supported by the processor. This implementation
is twice as fast as the jhash() implementation on an i7 processor.

Additional architectures, such as Arm64 provide instructions for
accelerating the computation of CRC, so they could be added as well
in follow-up work.

Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Thomas Graf <tgraf@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
71ae8aac Thu Dec 12 09:09:05 CST 2013 Francesco Fusco <ffusco@redhat.com> lib: introduce arch optimized hash library

We introduce a new hashing library that is meant to be used in
the contexts where speed is more important than uniformity of the
hashed values. The hash library leverages architecture specific
implementation to achieve high performance and fall backs to
jhash() for the generic case.

On Intel-based x86 architectures, the library can exploit the crc32l
instruction, part of the Intel SSE4.2 instruction set, if the
instruction is supported by the processor. This implementation
is twice as fast as the jhash() implementation on an i7 processor.

Additional architectures, such as Arm64 provide instructions for
accelerating the computation of CRC, so they could be added as well
in follow-up work.

Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Thomas Graf <tgraf@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
/openbmc/linux/arch/x86/lib/
H A DMakefile71ae8aac Thu Dec 12 09:09:05 CST 2013 Francesco Fusco <ffusco@redhat.com> lib: introduce arch optimized hash library

We introduce a new hashing library that is meant to be used in
the contexts where speed is more important than uniformity of the
hashed values. The hash library leverages architecture specific
implementation to achieve high performance and fall backs to
jhash() for the generic case.

On Intel-based x86 architectures, the library can exploit the crc32l
instruction, part of the Intel SSE4.2 instruction set, if the
instruction is supported by the processor. This implementation
is twice as fast as the jhash() implementation on an i7 processor.

Additional architectures, such as Arm64 provide instructions for
accelerating the computation of CRC, so they could be added as well
in follow-up work.

Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Thomas Graf <tgraf@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
71ae8aac Thu Dec 12 09:09:05 CST 2013 Francesco Fusco <ffusco@redhat.com> lib: introduce arch optimized hash library

We introduce a new hashing library that is meant to be used in
the contexts where speed is more important than uniformity of the
hashed values. The hash library leverages architecture specific
implementation to achieve high performance and fall backs to
jhash() for the generic case.

On Intel-based x86 architectures, the library can exploit the crc32l
instruction, part of the Intel SSE4.2 instruction set, if the
instruction is supported by the processor. This implementation
is twice as fast as the jhash() implementation on an i7 processor.

Additional architectures, such as Arm64 provide instructions for
accelerating the computation of CRC, so they could be added as well
in follow-up work.

Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Thomas Graf <tgraf@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
/openbmc/linux/lib/
H A DMakefile71ae8aac Thu Dec 12 09:09:05 CST 2013 Francesco Fusco <ffusco@redhat.com> lib: introduce arch optimized hash library

We introduce a new hashing library that is meant to be used in
the contexts where speed is more important than uniformity of the
hashed values. The hash library leverages architecture specific
implementation to achieve high performance and fall backs to
jhash() for the generic case.

On Intel-based x86 architectures, the library can exploit the crc32l
instruction, part of the Intel SSE4.2 instruction set, if the
instruction is supported by the processor. This implementation
is twice as fast as the jhash() implementation on an i7 processor.

Additional architectures, such as Arm64 provide instructions for
accelerating the computation of CRC, so they could be added as well
in follow-up work.

Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Thomas Graf <tgraf@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
71ae8aac Thu Dec 12 09:09:05 CST 2013 Francesco Fusco <ffusco@redhat.com> lib: introduce arch optimized hash library

We introduce a new hashing library that is meant to be used in
the contexts where speed is more important than uniformity of the
hashed values. The hash library leverages architecture specific
implementation to achieve high performance and fall backs to
jhash() for the generic case.

On Intel-based x86 architectures, the library can exploit the crc32l
instruction, part of the Intel SSE4.2 instruction set, if the
instruction is supported by the processor. This implementation
is twice as fast as the jhash() implementation on an i7 processor.

Additional architectures, such as Arm64 provide instructions for
accelerating the computation of CRC, so they could be added as well
in follow-up work.

Signed-off-by: Francesco Fusco <ffusco@redhat.com>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Thomas Graf <tgraf@redhat.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>