Home
last modified time | relevance | path

Searched hist:"2 c8cdd6e" (Results 1 – 3 of 3) sorted by relevance

/openbmc/linux/fs/btrfs/
H A Draid56.c2c8cdd6e Fri Nov 14 02:06:25 CST 2014 Miao Xie <miaox@cn.fujitsu.com> Btrfs, replace: write dirty pages into the replace target device

The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2c8cdd6e Fri Nov 14 02:06:25 CST 2014 Miao Xie <miaox@cn.fujitsu.com> Btrfs, replace: write dirty pages into the replace target device

The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
H A Dvolumes.h2c8cdd6e Fri Nov 14 02:06:25 CST 2014 Miao Xie <miaox@cn.fujitsu.com> Btrfs, replace: write dirty pages into the replace target device

The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2c8cdd6e Fri Nov 14 02:06:25 CST 2014 Miao Xie <miaox@cn.fujitsu.com> Btrfs, replace: write dirty pages into the replace target device

The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
H A Dvolumes.c2c8cdd6e Fri Nov 14 02:06:25 CST 2014 Miao Xie <miaox@cn.fujitsu.com> Btrfs, replace: write dirty pages into the replace target device

The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
2c8cdd6e Fri Nov 14 02:06:25 CST 2014 Miao Xie <miaox@cn.fujitsu.com> Btrfs, replace: write dirty pages into the replace target device

The implementation is simple:
- In order to avoid changing the code logic of btrfs_map_bio and
RAID56, we add the stripes of the replace target devices at the
end of the stripe array in btrfs bio, and we sort those target
device stripes in the array. And we keep the number of the target
device stripes in the btrfs bio.
- Except write operation on RAID56, all the other operation don't
take the target device stripes into account.
- When we do write operation, we read the data from the common devices
and calculate the parity. Then write the dirty data and new parity
out, at this time, we will find the relative replace target stripes
and wirte the relative data into it.

Note: The function that copying old data on the source device to
the target device was implemented in the past, it is similar to
the other RAID type.

Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>