Home
last modified time | relevance | path

Searched hist:"08 f051ed" (Results 1 – 8 of 8) sorted by relevance

/openbmc/linux/arch/riscv/include/asm/
H A Dmmu_context.h08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
H A Dmmu.h08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
H A Dtlbflush.h08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
H A Dcacheflush.h08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
H A Dpgtable.h08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
/openbmc/linux/arch/riscv/mm/
H A Dcacheflush.c08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
H A DMakefile08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
/openbmc/linux/arch/riscv/kernel/
H A Dsmp.c08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
08f051ed Wed Oct 25 16:30:32 CDT 2017 Andrew Waterman <andrew@sifive.com> RISC-V: Flush I$ when making a dirty page executable

The RISC-V ISA allows for instruction caches that are not coherent WRT
stores, even on a single hart. As a result, we need to explicitly flush
the instruction cache whenever marking a dirty page as executable in
order to preserve the correct system behavior.

Local instruction caches aren't that scary (our implementations actually
flush the cache, but RISC-V is defined to allow higher-performance
implementations to exist), but RISC-V defines no way to perform an
instruction cache shootdown. When explicitly asked to do so we can
shoot down remote instruction caches via an IPI, but this is a bit on
the slow side.

Instead of requiring an IPI to all harts whenever marking a page as
executable, we simply flush the currently running harts. In order to
maintain correct behavior, we additionally mark every other hart as
needing a deferred instruction cache which will be taken before anything
runs on it.

Signed-off-by: Andrew Waterman <andrew@sifive.com>
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>