1From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001 2From: Khem Raj <raj.khem@gmail.com> 3Date: Fri, 4 Oct 2024 21:21:11 -0700 4Subject: [PATCH 4/5] fast_float: Add single header library for from_char 5 implementation 6 7Document the process to re-generate the file whenever new release 8is made for fast_float upstream. 9 10This would make it work with llvm libc++ 11 12Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888] 13Signed-off-by: Khem Raj <raj.khem@gmail.com> 14--- 15 README.md | 17 + 16 src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++ 17 2 files changed, 3886 insertions(+) 18 create mode 100644 src/fast_float.hh 19 20diff --git a/README.md b/README.md 21index a32465a9..20ed5ba2 100644 22--- a/README.md 23+++ b/README.md 24@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any tarball for releases 25 after 0.60.3 were made by either the gnome release team or other 26 gnome contributors, but not by a VTE maintainer. 27 28+fast_float library[1] is used to provide from_chars implementation for faster 29+and more portable parsing of 64 decimal strings. 30+ 31+fast_float.hh is an amalgamation of the entire library, 32+which can be regenerated by using amalgamate.py script provided by 33+fast_float repository. Following command can be used to re-generate the 34+header file 35+ 36+``` 37+git clone https://github.com/fastfloat/fast_float 38+cd fast_float 39+git checkout v6.1.6 40+python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh 41+``` 42+ 43+[1]: https://github.com/fastfloat/fast_float 44+ 45 Installation 46 ------------ 47 48diff --git a/src/fast_float.hh b/src/fast_float.hh 49new file mode 100644 50index 00000000..e0d5dd53 51--- /dev/null 52+++ b/src/fast_float.hh 53@@ -0,0 +1,3869 @@ 54+// fast_float by Daniel Lemire 55+// fast_float by João Paulo Magalhaes 56+// 57+// 58+// with contributions from Eugene Golushkov 59+// with contributions from Maksim Kita 60+// with contributions from Marcin Wojdyr 61+// with contributions from Neal Richardson 62+// with contributions from Tim Paine 63+// with contributions from Fabio Pellacini 64+// with contributions from Lénárd Szolnoki 65+// with contributions from Jan Pharago 66+// with contributions from Maya Warrier 67+// with contributions from Taha Khokhar 68+// 69+// 70+// MIT License Notice 71+// 72+// MIT License 73+// 74+// Copyright (c) 2021 The fast_float authors 75+// 76+// Permission is hereby granted, free of charge, to any 77+// person obtaining a copy of this software and associated 78+// documentation files (the "Software"), to deal in the 79+// Software without restriction, including without 80+// limitation the rights to use, copy, modify, merge, 81+// publish, distribute, sublicense, and/or sell copies of 82+// the Software, and to permit persons to whom the Software 83+// is furnished to do so, subject to the following 84+// conditions: 85+// 86+// The above copyright notice and this permission notice 87+// shall be included in all copies or substantial portions 88+// of the Software. 89+// 90+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF 91+// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED 92+// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 93+// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT 94+// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 95+// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 96+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR 97+// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 98+// DEALINGS IN THE SOFTWARE. 99+// 100+ 101+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H 102+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H 103+ 104+#ifdef __has_include 105+#if __has_include(<version>) 106+#include <version> 107+#endif 108+#endif 109+ 110+// Testing for https://wg21.link/N3652, adopted in C++14 111+#if __cpp_constexpr >= 201304 112+#define FASTFLOAT_CONSTEXPR14 constexpr 113+#else 114+#define FASTFLOAT_CONSTEXPR14 115+#endif 116+ 117+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L 118+#define FASTFLOAT_HAS_BIT_CAST 1 119+#else 120+#define FASTFLOAT_HAS_BIT_CAST 0 121+#endif 122+ 123+#if defined(__cpp_lib_is_constant_evaluated) && \ 124+ __cpp_lib_is_constant_evaluated >= 201811L 125+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1 126+#else 127+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0 128+#endif 129+ 130+// Testing for relevant C++20 constexpr library features 131+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST && \ 132+ __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/ 133+#define FASTFLOAT_CONSTEXPR20 constexpr 134+#define FASTFLOAT_IS_CONSTEXPR 1 135+#else 136+#define FASTFLOAT_CONSTEXPR20 137+#define FASTFLOAT_IS_CONSTEXPR 0 138+#endif 139+ 140+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) 141+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0 142+#else 143+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1 144+#endif 145+ 146+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H 147+ 148+#ifndef FASTFLOAT_FLOAT_COMMON_H 149+#define FASTFLOAT_FLOAT_COMMON_H 150+ 151+#include <cfloat> 152+#include <cstdint> 153+#include <cassert> 154+#include <cstring> 155+#include <type_traits> 156+#include <system_error> 157+#ifdef __has_include 158+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L) 159+#include <stdfloat> 160+#endif 161+#endif 162+ 163+namespace fast_float { 164+ 165+#define FASTFLOAT_JSONFMT (1 << 5) 166+#define FASTFLOAT_FORTRANFMT (1 << 6) 167+ 168+enum chars_format { 169+ scientific = 1 << 0, 170+ fixed = 1 << 2, 171+ hex = 1 << 3, 172+ no_infnan = 1 << 4, 173+ // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6 174+ json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan, 175+ // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed. 176+ json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific, 177+ fortran = FASTFLOAT_FORTRANFMT | fixed | scientific, 178+ general = fixed | scientific 179+}; 180+ 181+template <typename UC> struct from_chars_result_t { 182+ UC const *ptr; 183+ std::errc ec; 184+}; 185+using from_chars_result = from_chars_result_t<char>; 186+ 187+template <typename UC> struct parse_options_t { 188+ constexpr explicit parse_options_t(chars_format fmt = chars_format::general, 189+ UC dot = UC('.')) 190+ : format(fmt), decimal_point(dot) {} 191+ 192+ /** Which number formats are accepted */ 193+ chars_format format; 194+ /** The character used as decimal point */ 195+ UC decimal_point; 196+}; 197+using parse_options = parse_options_t<char>; 198+ 199+} // namespace fast_float 200+ 201+#if FASTFLOAT_HAS_BIT_CAST 202+#include <bit> 203+#endif 204+ 205+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ 206+ defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) || \ 207+ defined(__MINGW64__) || defined(__s390x__) || \ 208+ (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || \ 209+ defined(__PPC64LE__)) || \ 210+ defined(__loongarch64)) 211+#define FASTFLOAT_64BIT 1 212+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ 213+ defined(__arm__) || defined(_M_ARM) || defined(__ppc__) || \ 214+ defined(__MINGW32__) || defined(__EMSCRIPTEN__)) 215+#define FASTFLOAT_32BIT 1 216+#else 217+ // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow. 218+// We can never tell the register width, but the SIZE_MAX is a good 219+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max 220+// portability. 221+#if SIZE_MAX == 0xffff 222+#error Unknown platform (16-bit, unsupported) 223+#elif SIZE_MAX == 0xffffffff 224+#define FASTFLOAT_32BIT 1 225+#elif SIZE_MAX == 0xffffffffffffffff 226+#define FASTFLOAT_64BIT 1 227+#else 228+#error Unknown platform (not 32-bit, not 64-bit?) 229+#endif 230+#endif 231+ 232+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) || \ 233+ (defined(_M_ARM64) && !defined(__MINGW32__)) 234+#include <intrin.h> 235+#endif 236+ 237+#if defined(_MSC_VER) && !defined(__clang__) 238+#define FASTFLOAT_VISUAL_STUDIO 1 239+#endif 240+ 241+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__ 242+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) 243+#elif defined _WIN32 244+#define FASTFLOAT_IS_BIG_ENDIAN 0 245+#else 246+#if defined(__APPLE__) || defined(__FreeBSD__) 247+#include <machine/endian.h> 248+#elif defined(sun) || defined(__sun) 249+#include <sys/byteorder.h> 250+#elif defined(__MVS__) 251+#include <sys/endian.h> 252+#else 253+#ifdef __has_include 254+#if __has_include(<endian.h>) 255+#include <endian.h> 256+#endif //__has_include(<endian.h>) 257+#endif //__has_include 258+#endif 259+# 260+#ifndef __BYTE_ORDER__ 261+// safe choice 262+#define FASTFLOAT_IS_BIG_ENDIAN 0 263+#endif 264+# 265+#ifndef __ORDER_LITTLE_ENDIAN__ 266+// safe choice 267+#define FASTFLOAT_IS_BIG_ENDIAN 0 268+#endif 269+# 270+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 271+#define FASTFLOAT_IS_BIG_ENDIAN 0 272+#else 273+#define FASTFLOAT_IS_BIG_ENDIAN 1 274+#endif 275+#endif 276+ 277+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) && \ 278+ (defined(_M_AMD64) || defined(_M_X64) || \ 279+ (defined(_M_IX86_FP) && _M_IX86_FP == 2))) 280+#define FASTFLOAT_SSE2 1 281+#endif 282+ 283+#if defined(__aarch64__) || defined(_M_ARM64) 284+#define FASTFLOAT_NEON 1 285+#endif 286+ 287+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON) 288+#define FASTFLOAT_HAS_SIMD 1 289+#endif 290+ 291+#if defined(__GNUC__) 292+// disable -Wcast-align=strict (GCC only) 293+#define FASTFLOAT_SIMD_DISABLE_WARNINGS \ 294+ _Pragma("GCC diagnostic push") \ 295+ _Pragma("GCC diagnostic ignored \"-Wcast-align\"") 296+#else 297+#define FASTFLOAT_SIMD_DISABLE_WARNINGS 298+#endif 299+ 300+#if defined(__GNUC__) 301+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop") 302+#else 303+#define FASTFLOAT_SIMD_RESTORE_WARNINGS 304+#endif 305+ 306+#ifdef FASTFLOAT_VISUAL_STUDIO 307+#define fastfloat_really_inline __forceinline 308+#else 309+#define fastfloat_really_inline inline __attribute__((always_inline)) 310+#endif 311+ 312+#ifndef FASTFLOAT_ASSERT 313+#define FASTFLOAT_ASSERT(x) \ 314+ { ((void)(x)); } 315+#endif 316+ 317+#ifndef FASTFLOAT_DEBUG_ASSERT 318+#define FASTFLOAT_DEBUG_ASSERT(x) \ 319+ { ((void)(x)); } 320+#endif 321+ 322+// rust style `try!()` macro, or `?` operator 323+#define FASTFLOAT_TRY(x) \ 324+ { \ 325+ if (!(x)) \ 326+ return false; \ 327+ } 328+ 329+#define FASTFLOAT_ENABLE_IF(...) \ 330+ typename std::enable_if<(__VA_ARGS__), int>::type 331+ 332+namespace fast_float { 333+ 334+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() { 335+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 336+ return std::is_constant_evaluated(); 337+#else 338+ return false; 339+#endif 340+} 341+ 342+template <typename T> 343+fastfloat_really_inline constexpr bool is_supported_float_type() { 344+ return std::is_same<T, float>::value || std::is_same<T, double>::value 345+#if __STDCPP_FLOAT32_T__ 346+ || std::is_same<T, std::float32_t>::value 347+#endif 348+#if __STDCPP_FLOAT64_T__ 349+ || std::is_same<T, std::float64_t>::value 350+#endif 351+ ; 352+} 353+ 354+template <typename UC> 355+fastfloat_really_inline constexpr bool is_supported_char_type() { 356+ return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value || 357+ std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value; 358+} 359+ 360+// Compares two ASCII strings in a case insensitive manner. 361+template <typename UC> 362+inline FASTFLOAT_CONSTEXPR14 bool 363+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) { 364+ char running_diff{0}; 365+ for (size_t i = 0; i < length; ++i) { 366+ running_diff |= (char(input1[i]) ^ char(input2[i])); 367+ } 368+ return (running_diff == 0) || (running_diff == 32); 369+} 370+ 371+#ifndef FLT_EVAL_METHOD 372+#error "FLT_EVAL_METHOD should be defined, please include cfloat." 373+#endif 374+ 375+// a pointer and a length to a contiguous block of memory 376+template <typename T> struct span { 377+ const T *ptr; 378+ size_t length; 379+ constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {} 380+ constexpr span() : ptr(nullptr), length(0) {} 381+ 382+ constexpr size_t len() const noexcept { return length; } 383+ 384+ FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept { 385+ FASTFLOAT_DEBUG_ASSERT(index < length); 386+ return ptr[index]; 387+ } 388+}; 389+ 390+struct value128 { 391+ uint64_t low; 392+ uint64_t high; 393+ constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {} 394+ constexpr value128() : low(0), high(0) {} 395+}; 396+ 397+/* Helper C++14 constexpr generic implementation of leading_zeroes */ 398+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int 399+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) { 400+ if (input_num & uint64_t(0xffffffff00000000)) { 401+ input_num >>= 32; 402+ last_bit |= 32; 403+ } 404+ if (input_num & uint64_t(0xffff0000)) { 405+ input_num >>= 16; 406+ last_bit |= 16; 407+ } 408+ if (input_num & uint64_t(0xff00)) { 409+ input_num >>= 8; 410+ last_bit |= 8; 411+ } 412+ if (input_num & uint64_t(0xf0)) { 413+ input_num >>= 4; 414+ last_bit |= 4; 415+ } 416+ if (input_num & uint64_t(0xc)) { 417+ input_num >>= 2; 418+ last_bit |= 2; 419+ } 420+ if (input_num & uint64_t(0x2)) { /* input_num >>= 1; */ 421+ last_bit |= 1; 422+ } 423+ return 63 - last_bit; 424+} 425+ 426+/* result might be undefined when input_num is zero */ 427+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int 428+leading_zeroes(uint64_t input_num) { 429+ assert(input_num > 0); 430+ if (cpp20_and_in_constexpr()) { 431+ return leading_zeroes_generic(input_num); 432+ } 433+#ifdef FASTFLOAT_VISUAL_STUDIO 434+#if defined(_M_X64) || defined(_M_ARM64) 435+ unsigned long leading_zero = 0; 436+ // Search the mask data from most significant bit (MSB) 437+ // to least significant bit (LSB) for a set bit (1). 438+ _BitScanReverse64(&leading_zero, input_num); 439+ return (int)(63 - leading_zero); 440+#else 441+ return leading_zeroes_generic(input_num); 442+#endif 443+#else 444+ return __builtin_clzll(input_num); 445+#endif 446+} 447+ 448+// slow emulation routine for 32-bit 449+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) { 450+ return x * (uint64_t)y; 451+} 452+ 453+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t 454+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) { 455+ uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd); 456+ uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd); 457+ uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32)); 458+ uint64_t adbc_carry = (uint64_t)(adbc < ad); 459+ uint64_t lo = bd + (adbc << 32); 460+ *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) + 461+ (adbc_carry << 32) + (uint64_t)(lo < bd); 462+ return lo; 463+} 464+ 465+#ifdef FASTFLOAT_32BIT 466+ 467+// slow emulation routine for 32-bit 468+#if !defined(__MINGW64__) 469+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab, 470+ uint64_t cd, 471+ uint64_t *hi) { 472+ return umul128_generic(ab, cd, hi); 473+} 474+#endif // !__MINGW64__ 475+ 476+#endif // FASTFLOAT_32BIT 477+ 478+// compute 64-bit a*b 479+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 480+full_multiplication(uint64_t a, uint64_t b) { 481+ if (cpp20_and_in_constexpr()) { 482+ value128 answer; 483+ answer.low = umul128_generic(a, b, &answer.high); 484+ return answer; 485+ } 486+ value128 answer; 487+#if defined(_M_ARM64) && !defined(__MINGW32__) 488+ // ARM64 has native support for 64-bit multiplications, no need to emulate 489+ // But MinGW on ARM64 doesn't have native support for 64-bit multiplications 490+ answer.high = __umulh(a, b); 491+ answer.low = a * b; 492+#elif defined(FASTFLOAT_32BIT) || \ 493+ (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64)) 494+ answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64 495+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__) 496+ __uint128_t r = ((__uint128_t)a) * b; 497+ answer.low = uint64_t(r); 498+ answer.high = uint64_t(r >> 64); 499+#else 500+ answer.low = umul128_generic(a, b, &answer.high); 501+#endif 502+ return answer; 503+} 504+ 505+struct adjusted_mantissa { 506+ uint64_t mantissa{0}; 507+ int32_t power2{0}; // a negative value indicates an invalid result 508+ adjusted_mantissa() = default; 509+ constexpr bool operator==(const adjusted_mantissa &o) const { 510+ return mantissa == o.mantissa && power2 == o.power2; 511+ } 512+ constexpr bool operator!=(const adjusted_mantissa &o) const { 513+ return mantissa != o.mantissa || power2 != o.power2; 514+ } 515+}; 516+ 517+// Bias so we can get the real exponent with an invalid adjusted_mantissa. 518+constexpr static int32_t invalid_am_bias = -0x8000; 519+ 520+// used for binary_format_lookup_tables<T>::max_mantissa 521+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5; 522+ 523+template <typename T, typename U = void> struct binary_format_lookup_tables; 524+ 525+template <typename T> struct binary_format : binary_format_lookup_tables<T> { 526+ using equiv_uint = 527+ typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type; 528+ 529+ static inline constexpr int mantissa_explicit_bits(); 530+ static inline constexpr int minimum_exponent(); 531+ static inline constexpr int infinite_power(); 532+ static inline constexpr int sign_index(); 533+ static inline constexpr int 534+ min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST 535+ static inline constexpr int max_exponent_fast_path(); 536+ static inline constexpr int max_exponent_round_to_even(); 537+ static inline constexpr int min_exponent_round_to_even(); 538+ static inline constexpr uint64_t max_mantissa_fast_path(int64_t power); 539+ static inline constexpr uint64_t 540+ max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST 541+ static inline constexpr int largest_power_of_ten(); 542+ static inline constexpr int smallest_power_of_ten(); 543+ static inline constexpr T exact_power_of_ten(int64_t power); 544+ static inline constexpr size_t max_digits(); 545+ static inline constexpr equiv_uint exponent_mask(); 546+ static inline constexpr equiv_uint mantissa_mask(); 547+ static inline constexpr equiv_uint hidden_bit_mask(); 548+}; 549+ 550+template <typename U> struct binary_format_lookup_tables<double, U> { 551+ static constexpr double powers_of_ten[] = { 552+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 553+ 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22}; 554+ 555+ // Largest integer value v so that (5**index * v) <= 1<<53. 556+ // 0x20000000000000 == 1 << 53 557+ static constexpr uint64_t max_mantissa[] = { 558+ 0x20000000000000, 559+ 0x20000000000000 / 5, 560+ 0x20000000000000 / (5 * 5), 561+ 0x20000000000000 / (5 * 5 * 5), 562+ 0x20000000000000 / (5 * 5 * 5 * 5), 563+ 0x20000000000000 / (constant_55555), 564+ 0x20000000000000 / (constant_55555 * 5), 565+ 0x20000000000000 / (constant_55555 * 5 * 5), 566+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5), 567+ 0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5), 568+ 0x20000000000000 / (constant_55555 * constant_55555), 569+ 0x20000000000000 / (constant_55555 * constant_55555 * 5), 570+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5), 571+ 0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5), 572+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555), 573+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5), 574+ 0x20000000000000 / 575+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5), 576+ 0x20000000000000 / 577+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5), 578+ 0x20000000000000 / 579+ (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5), 580+ 0x20000000000000 / 581+ (constant_55555 * constant_55555 * constant_55555 * constant_55555), 582+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 583+ constant_55555 * 5), 584+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 585+ constant_55555 * 5 * 5), 586+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 587+ constant_55555 * 5 * 5 * 5), 588+ 0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 589+ constant_55555 * 5 * 5 * 5 * 5)}; 590+}; 591+ 592+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 593+ 594+template <typename U> 595+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[]; 596+ 597+template <typename U> 598+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[]; 599+ 600+#endif 601+ 602+template <typename U> struct binary_format_lookup_tables<float, U> { 603+ static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f, 604+ 1e6f, 1e7f, 1e8f, 1e9f, 1e10f}; 605+ 606+ // Largest integer value v so that (5**index * v) <= 1<<24. 607+ // 0x1000000 == 1<<24 608+ static constexpr uint64_t max_mantissa[] = { 609+ 0x1000000, 610+ 0x1000000 / 5, 611+ 0x1000000 / (5 * 5), 612+ 0x1000000 / (5 * 5 * 5), 613+ 0x1000000 / (5 * 5 * 5 * 5), 614+ 0x1000000 / (constant_55555), 615+ 0x1000000 / (constant_55555 * 5), 616+ 0x1000000 / (constant_55555 * 5 * 5), 617+ 0x1000000 / (constant_55555 * 5 * 5 * 5), 618+ 0x1000000 / (constant_55555 * 5 * 5 * 5 * 5), 619+ 0x1000000 / (constant_55555 * constant_55555), 620+ 0x1000000 / (constant_55555 * constant_55555 * 5)}; 621+}; 622+ 623+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 624+ 625+template <typename U> 626+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[]; 627+ 628+template <typename U> 629+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[]; 630+ 631+#endif 632+ 633+template <> 634+inline constexpr int binary_format<double>::min_exponent_fast_path() { 635+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) 636+ return 0; 637+#else 638+ return -22; 639+#endif 640+} 641+ 642+template <> 643+inline constexpr int binary_format<float>::min_exponent_fast_path() { 644+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) 645+ return 0; 646+#else 647+ return -10; 648+#endif 649+} 650+ 651+template <> 652+inline constexpr int binary_format<double>::mantissa_explicit_bits() { 653+ return 52; 654+} 655+template <> 656+inline constexpr int binary_format<float>::mantissa_explicit_bits() { 657+ return 23; 658+} 659+ 660+template <> 661+inline constexpr int binary_format<double>::max_exponent_round_to_even() { 662+ return 23; 663+} 664+ 665+template <> 666+inline constexpr int binary_format<float>::max_exponent_round_to_even() { 667+ return 10; 668+} 669+ 670+template <> 671+inline constexpr int binary_format<double>::min_exponent_round_to_even() { 672+ return -4; 673+} 674+ 675+template <> 676+inline constexpr int binary_format<float>::min_exponent_round_to_even() { 677+ return -17; 678+} 679+ 680+template <> inline constexpr int binary_format<double>::minimum_exponent() { 681+ return -1023; 682+} 683+template <> inline constexpr int binary_format<float>::minimum_exponent() { 684+ return -127; 685+} 686+ 687+template <> inline constexpr int binary_format<double>::infinite_power() { 688+ return 0x7FF; 689+} 690+template <> inline constexpr int binary_format<float>::infinite_power() { 691+ return 0xFF; 692+} 693+ 694+template <> inline constexpr int binary_format<double>::sign_index() { 695+ return 63; 696+} 697+template <> inline constexpr int binary_format<float>::sign_index() { 698+ return 31; 699+} 700+ 701+template <> 702+inline constexpr int binary_format<double>::max_exponent_fast_path() { 703+ return 22; 704+} 705+template <> 706+inline constexpr int binary_format<float>::max_exponent_fast_path() { 707+ return 10; 708+} 709+ 710+template <> 711+inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() { 712+ return uint64_t(2) << mantissa_explicit_bits(); 713+} 714+template <> 715+inline constexpr uint64_t 716+binary_format<double>::max_mantissa_fast_path(int64_t power) { 717+ // caller is responsible to ensure that 718+ // power >= 0 && power <= 22 719+ // 720+ // Work around clang bug https://godbolt.org/z/zedh7rrhc 721+ return (void)max_mantissa[0], max_mantissa[power]; 722+} 723+template <> 724+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() { 725+ return uint64_t(2) << mantissa_explicit_bits(); 726+} 727+template <> 728+inline constexpr uint64_t 729+binary_format<float>::max_mantissa_fast_path(int64_t power) { 730+ // caller is responsible to ensure that 731+ // power >= 0 && power <= 10 732+ // 733+ // Work around clang bug https://godbolt.org/z/zedh7rrhc 734+ return (void)max_mantissa[0], max_mantissa[power]; 735+} 736+ 737+template <> 738+inline constexpr double 739+binary_format<double>::exact_power_of_ten(int64_t power) { 740+ // Work around clang bug https://godbolt.org/z/zedh7rrhc 741+ return (void)powers_of_ten[0], powers_of_ten[power]; 742+} 743+template <> 744+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) { 745+ // Work around clang bug https://godbolt.org/z/zedh7rrhc 746+ return (void)powers_of_ten[0], powers_of_ten[power]; 747+} 748+ 749+template <> inline constexpr int binary_format<double>::largest_power_of_ten() { 750+ return 308; 751+} 752+template <> inline constexpr int binary_format<float>::largest_power_of_ten() { 753+ return 38; 754+} 755+ 756+template <> 757+inline constexpr int binary_format<double>::smallest_power_of_ten() { 758+ return -342; 759+} 760+template <> inline constexpr int binary_format<float>::smallest_power_of_ten() { 761+ return -64; 762+} 763+ 764+template <> inline constexpr size_t binary_format<double>::max_digits() { 765+ return 769; 766+} 767+template <> inline constexpr size_t binary_format<float>::max_digits() { 768+ return 114; 769+} 770+ 771+template <> 772+inline constexpr binary_format<float>::equiv_uint 773+binary_format<float>::exponent_mask() { 774+ return 0x7F800000; 775+} 776+template <> 777+inline constexpr binary_format<double>::equiv_uint 778+binary_format<double>::exponent_mask() { 779+ return 0x7FF0000000000000; 780+} 781+ 782+template <> 783+inline constexpr binary_format<float>::equiv_uint 784+binary_format<float>::mantissa_mask() { 785+ return 0x007FFFFF; 786+} 787+template <> 788+inline constexpr binary_format<double>::equiv_uint 789+binary_format<double>::mantissa_mask() { 790+ return 0x000FFFFFFFFFFFFF; 791+} 792+ 793+template <> 794+inline constexpr binary_format<float>::equiv_uint 795+binary_format<float>::hidden_bit_mask() { 796+ return 0x00800000; 797+} 798+template <> 799+inline constexpr binary_format<double>::equiv_uint 800+binary_format<double>::hidden_bit_mask() { 801+ return 0x0010000000000000; 802+} 803+ 804+template <typename T> 805+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 806+to_float(bool negative, adjusted_mantissa am, T &value) { 807+ using fastfloat_uint = typename binary_format<T>::equiv_uint; 808+ fastfloat_uint word = (fastfloat_uint)am.mantissa; 809+ word |= fastfloat_uint(am.power2) 810+ << binary_format<T>::mantissa_explicit_bits(); 811+ word |= fastfloat_uint(negative) << binary_format<T>::sign_index(); 812+#if FASTFLOAT_HAS_BIT_CAST 813+ value = std::bit_cast<T>(word); 814+#else 815+ ::memcpy(&value, &word, sizeof(T)); 816+#endif 817+} 818+ 819+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default 820+template <typename = void> struct space_lut { 821+ static constexpr bool value[] = { 822+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 823+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 824+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 825+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 826+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 827+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 828+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 829+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 830+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 831+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 832+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 833+}; 834+ 835+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 836+ 837+template <typename T> constexpr bool space_lut<T>::value[]; 838+ 839+#endif 840+ 841+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; } 842+#endif 843+ 844+template <typename UC> static constexpr uint64_t int_cmp_zeros() { 845+ static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4), 846+ "Unsupported character size"); 847+ return (sizeof(UC) == 1) ? 0x3030303030303030 848+ : (sizeof(UC) == 2) 849+ ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 | 850+ uint64_t(UC('0')) << 16 | UC('0')) 851+ : (uint64_t(UC('0')) << 32 | UC('0')); 852+} 853+template <typename UC> static constexpr int int_cmp_len() { 854+ return sizeof(uint64_t) / sizeof(UC); 855+} 856+template <typename UC> static constexpr UC const *str_const_nan() { 857+ return nullptr; 858+} 859+template <> constexpr char const *str_const_nan<char>() { return "nan"; } 860+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; } 861+template <> constexpr char16_t const *str_const_nan<char16_t>() { 862+ return u"nan"; 863+} 864+template <> constexpr char32_t const *str_const_nan<char32_t>() { 865+ return U"nan"; 866+} 867+template <typename UC> static constexpr UC const *str_const_inf() { 868+ return nullptr; 869+} 870+template <> constexpr char const *str_const_inf<char>() { return "infinity"; } 871+template <> constexpr wchar_t const *str_const_inf<wchar_t>() { 872+ return L"infinity"; 873+} 874+template <> constexpr char16_t const *str_const_inf<char16_t>() { 875+ return u"infinity"; 876+} 877+template <> constexpr char32_t const *str_const_inf<char32_t>() { 878+ return U"infinity"; 879+} 880+ 881+template <typename = void> struct int_luts { 882+ static constexpr uint8_t chdigit[] = { 883+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 884+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 885+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 886+ 255, 255, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 255, 255, 887+ 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 888+ 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 889+ 35, 255, 255, 255, 255, 255, 255, 10, 11, 12, 13, 14, 15, 16, 17, 890+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 891+ 33, 34, 35, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 892+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 893+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 894+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 895+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 896+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 897+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 898+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 899+ 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 900+ 255}; 901+ 902+ static constexpr size_t maxdigits_u64[] = { 903+ 64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16, 904+ 15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13}; 905+ 906+ static constexpr uint64_t min_safe_u64[] = { 907+ 9223372036854775808ull, 12157665459056928801ull, 4611686018427387904, 908+ 7450580596923828125, 4738381338321616896, 3909821048582988049, 909+ 9223372036854775808ull, 12157665459056928801ull, 10000000000000000000ull, 910+ 5559917313492231481, 2218611106740436992, 8650415919381337933, 911+ 2177953337809371136, 6568408355712890625, 1152921504606846976, 912+ 2862423051509815793, 6746640616477458432, 15181127029874798299ull, 913+ 1638400000000000000, 3243919932521508681, 6221821273427820544, 914+ 11592836324538749809ull, 876488338465357824, 1490116119384765625, 915+ 2481152873203736576, 4052555153018976267, 6502111422497947648, 916+ 10260628712958602189ull, 15943230000000000000ull, 787662783788549761, 917+ 1152921504606846976, 1667889514952984961, 2386420683693101056, 918+ 3379220508056640625, 4738381338321616896}; 919+}; 920+ 921+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 922+ 923+template <typename T> constexpr uint8_t int_luts<T>::chdigit[]; 924+ 925+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[]; 926+ 927+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[]; 928+ 929+#endif 930+ 931+template <typename UC> 932+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) { 933+ return int_luts<>::chdigit[static_cast<unsigned char>(c)]; 934+} 935+ 936+fastfloat_really_inline constexpr size_t max_digits_u64(int base) { 937+ return int_luts<>::maxdigits_u64[base - 2]; 938+} 939+ 940+// If a u64 is exactly max_digits_u64() in length, this is 941+// the value below which it has definitely overflowed. 942+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) { 943+ return int_luts<>::min_safe_u64[base - 2]; 944+} 945+ 946+} // namespace fast_float 947+ 948+#endif 949+ 950+ 951+#ifndef FASTFLOAT_FAST_FLOAT_H 952+#define FASTFLOAT_FAST_FLOAT_H 953+ 954+ 955+namespace fast_float { 956+/** 957+ * This function parses the character sequence [first,last) for a number. It 958+ * parses floating-point numbers expecting a locale-indepent format equivalent 959+ * to what is used by std::strtod in the default ("C") locale. The resulting 960+ * floating-point value is the closest floating-point values (using either float 961+ * or double), using the "round to even" convention for values that would 962+ * otherwise fall right in-between two values. That is, we provide exact parsing 963+ * according to the IEEE standard. 964+ * 965+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to 966+ * point right after the parsed number, and the `value` referenced is set to the 967+ * parsed value. In case of error, the returned `ec` contains a representative 968+ * error, otherwise the default (`std::errc()`) value is stored. 969+ * 970+ * The implementation does not throw and does not allocate memory (e.g., with 971+ * `new` or `malloc`). 972+ * 973+ * Like the C++17 standard, the `fast_float::from_chars` functions take an 974+ * optional last argument of the type `fast_float::chars_format`. It is a bitset 975+ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt & 976+ * fast_float::chars_format::scientific` are set to determine whether we allow 977+ * the fixed point and scientific notation respectively. The default is 978+ * `fast_float::chars_format::general` which allows both `fixed` and 979+ * `scientific`. 980+ */ 981+template <typename T, typename UC = char, 982+ typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())> 983+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 984+from_chars(UC const *first, UC const *last, T &value, 985+ chars_format fmt = chars_format::general) noexcept; 986+ 987+/** 988+ * Like from_chars, but accepts an `options` argument to govern number parsing. 989+ */ 990+template <typename T, typename UC = char> 991+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 992+from_chars_advanced(UC const *first, UC const *last, T &value, 993+ parse_options_t<UC> options) noexcept; 994+/** 995+ * from_chars for integer types. 996+ */ 997+template <typename T, typename UC = char, 998+ typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())> 999+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 1000+from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept; 1001+ 1002+} // namespace fast_float 1003+#endif // FASTFLOAT_FAST_FLOAT_H 1004+ 1005+#ifndef FASTFLOAT_ASCII_NUMBER_H 1006+#define FASTFLOAT_ASCII_NUMBER_H 1007+ 1008+#include <cctype> 1009+#include <cstdint> 1010+#include <cstring> 1011+#include <iterator> 1012+#include <limits> 1013+#include <type_traits> 1014+ 1015+ 1016+#ifdef FASTFLOAT_SSE2 1017+#include <emmintrin.h> 1018+#endif 1019+ 1020+#ifdef FASTFLOAT_NEON 1021+#include <arm_neon.h> 1022+#endif 1023+ 1024+namespace fast_float { 1025+ 1026+template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() { 1027+#ifdef FASTFLOAT_HAS_SIMD 1028+ return std::is_same<UC, char16_t>::value; 1029+#else 1030+ return false; 1031+#endif 1032+} 1033+ 1034+// Next function can be micro-optimized, but compilers are entirely 1035+// able to optimize it well. 1036+template <typename UC> 1037+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept { 1038+ return !(c > UC('9') || c < UC('0')); 1039+} 1040+ 1041+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) { 1042+ return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | 1043+ (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | 1044+ (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | 1045+ (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; 1046+} 1047+ 1048+// Read 8 UC into a u64. Truncates UC if not char. 1049+template <typename UC> 1050+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t 1051+read8_to_u64(const UC *chars) { 1052+ if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) { 1053+ uint64_t val = 0; 1054+ for (int i = 0; i < 8; ++i) { 1055+ val |= uint64_t(uint8_t(*chars)) << (i * 8); 1056+ ++chars; 1057+ } 1058+ return val; 1059+ } 1060+ uint64_t val; 1061+ ::memcpy(&val, chars, sizeof(uint64_t)); 1062+#if FASTFLOAT_IS_BIG_ENDIAN == 1 1063+ // Need to read as-if the number was in little-endian order. 1064+ val = byteswap(val); 1065+#endif 1066+ return val; 1067+} 1068+ 1069+#ifdef FASTFLOAT_SSE2 1070+ 1071+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) { 1072+ FASTFLOAT_SIMD_DISABLE_WARNINGS 1073+ const __m128i packed = _mm_packus_epi16(data, data); 1074+#ifdef FASTFLOAT_64BIT 1075+ return uint64_t(_mm_cvtsi128_si64(packed)); 1076+#else 1077+ uint64_t value; 1078+ // Visual Studio + older versions of GCC don't support _mm_storeu_si64 1079+ _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed); 1080+ return value; 1081+#endif 1082+ FASTFLOAT_SIMD_RESTORE_WARNINGS 1083+} 1084+ 1085+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { 1086+ FASTFLOAT_SIMD_DISABLE_WARNINGS 1087+ return simd_read8_to_u64( 1088+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars))); 1089+ FASTFLOAT_SIMD_RESTORE_WARNINGS 1090+} 1091+ 1092+#elif defined(FASTFLOAT_NEON) 1093+ 1094+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) { 1095+ FASTFLOAT_SIMD_DISABLE_WARNINGS 1096+ uint8x8_t utf8_packed = vmovn_u16(data); 1097+ return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0); 1098+ FASTFLOAT_SIMD_RESTORE_WARNINGS 1099+} 1100+ 1101+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) { 1102+ FASTFLOAT_SIMD_DISABLE_WARNINGS 1103+ return simd_read8_to_u64( 1104+ vld1q_u16(reinterpret_cast<const uint16_t *>(chars))); 1105+ FASTFLOAT_SIMD_RESTORE_WARNINGS 1106+} 1107+ 1108+#endif // FASTFLOAT_SSE2 1109+ 1110+// MSVC SFINAE is broken pre-VS2017 1111+#if defined(_MSC_VER) && _MSC_VER <= 1900 1112+template <typename UC> 1113+#else 1114+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> 1115+#endif 1116+// dummy for compile 1117+uint64_t simd_read8_to_u64(UC const *) { 1118+ return 0; 1119+} 1120+ 1121+// credit @aqrit 1122+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t 1123+parse_eight_digits_unrolled(uint64_t val) { 1124+ const uint64_t mask = 0x000000FF000000FF; 1125+ const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) 1126+ const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) 1127+ val -= 0x3030303030303030; 1128+ val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; 1129+ val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; 1130+ return uint32_t(val); 1131+} 1132+ 1133+// Call this if chars are definitely 8 digits. 1134+template <typename UC> 1135+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t 1136+parse_eight_digits_unrolled(UC const *chars) noexcept { 1137+ if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) { 1138+ return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay 1139+ } 1140+ return parse_eight_digits_unrolled(simd_read8_to_u64(chars)); 1141+} 1142+ 1143+// credit @aqrit 1144+fastfloat_really_inline constexpr bool 1145+is_made_of_eight_digits_fast(uint64_t val) noexcept { 1146+ return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 1147+ 0x8080808080808080)); 1148+} 1149+ 1150+#ifdef FASTFLOAT_HAS_SIMD 1151+ 1152+// Call this if chars might not be 8 digits. 1153+// Using this style (instead of is_made_of_eight_digits_fast() then 1154+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice. 1155+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool 1156+simd_parse_if_eight_digits_unrolled(const char16_t *chars, 1157+ uint64_t &i) noexcept { 1158+ if (cpp20_and_in_constexpr()) { 1159+ return false; 1160+ } 1161+#ifdef FASTFLOAT_SSE2 1162+ FASTFLOAT_SIMD_DISABLE_WARNINGS 1163+ const __m128i data = 1164+ _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)); 1165+ 1166+ // (x - '0') <= 9 1167+ // http://0x80.pl/articles/simd-parsing-int-sequences.html 1168+ const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720)); 1169+ const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759)); 1170+ 1171+ if (_mm_movemask_epi8(t1) == 0) { 1172+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); 1173+ return true; 1174+ } else 1175+ return false; 1176+ FASTFLOAT_SIMD_RESTORE_WARNINGS 1177+#elif defined(FASTFLOAT_NEON) 1178+ FASTFLOAT_SIMD_DISABLE_WARNINGS 1179+ const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars)); 1180+ 1181+ // (x - '0') <= 9 1182+ // http://0x80.pl/articles/simd-parsing-int-sequences.html 1183+ const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0')); 1184+ const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1)); 1185+ 1186+ if (vminvq_u16(mask) == 0xFFFF) { 1187+ i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data)); 1188+ return true; 1189+ } else 1190+ return false; 1191+ FASTFLOAT_SIMD_RESTORE_WARNINGS 1192+#else 1193+ (void)chars; 1194+ (void)i; 1195+ return false; 1196+#endif // FASTFLOAT_SSE2 1197+} 1198+ 1199+#endif // FASTFLOAT_HAS_SIMD 1200+ 1201+// MSVC SFINAE is broken pre-VS2017 1202+#if defined(_MSC_VER) && _MSC_VER <= 1900 1203+template <typename UC> 1204+#else 1205+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0> 1206+#endif 1207+// dummy for compile 1208+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) { 1209+ return 0; 1210+} 1211+ 1212+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0> 1213+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 1214+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) { 1215+ if (!has_simd_opt<UC>()) { 1216+ return; 1217+ } 1218+ while ((std::distance(p, pend) >= 8) && 1219+ simd_parse_if_eight_digits_unrolled( 1220+ p, i)) { // in rare cases, this will overflow, but that's ok 1221+ p += 8; 1222+ } 1223+} 1224+ 1225+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 1226+loop_parse_if_eight_digits(const char *&p, const char *const pend, 1227+ uint64_t &i) { 1228+ // optimizes better than parse_if_eight_digits_unrolled() for UC = char. 1229+ while ((std::distance(p, pend) >= 8) && 1230+ is_made_of_eight_digits_fast(read8_to_u64(p))) { 1231+ i = i * 100000000 + 1232+ parse_eight_digits_unrolled(read8_to_u64( 1233+ p)); // in rare cases, this will overflow, but that's ok 1234+ p += 8; 1235+ } 1236+} 1237+ 1238+enum class parse_error { 1239+ no_error, 1240+ // [JSON-only] The minus sign must be followed by an integer. 1241+ missing_integer_after_sign, 1242+ // A sign must be followed by an integer or dot. 1243+ missing_integer_or_dot_after_sign, 1244+ // [JSON-only] The integer part must not have leading zeros. 1245+ leading_zeros_in_integer_part, 1246+ // [JSON-only] The integer part must have at least one digit. 1247+ no_digits_in_integer_part, 1248+ // [JSON-only] If there is a decimal point, there must be digits in the 1249+ // fractional part. 1250+ no_digits_in_fractional_part, 1251+ // The mantissa must have at least one digit. 1252+ no_digits_in_mantissa, 1253+ // Scientific notation requires an exponential part. 1254+ missing_exponential_part, 1255+}; 1256+ 1257+template <typename UC> struct parsed_number_string_t { 1258+ int64_t exponent{0}; 1259+ uint64_t mantissa{0}; 1260+ UC const *lastmatch{nullptr}; 1261+ bool negative{false}; 1262+ bool valid{false}; 1263+ bool too_many_digits{false}; 1264+ // contains the range of the significant digits 1265+ span<const UC> integer{}; // non-nullable 1266+ span<const UC> fraction{}; // nullable 1267+ parse_error error{parse_error::no_error}; 1268+}; 1269+ 1270+using byte_span = span<const char>; 1271+using parsed_number_string = parsed_number_string_t<char>; 1272+ 1273+template <typename UC> 1274+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> 1275+report_parse_error(UC const *p, parse_error error) { 1276+ parsed_number_string_t<UC> answer; 1277+ answer.valid = false; 1278+ answer.lastmatch = p; 1279+ answer.error = error; 1280+ return answer; 1281+} 1282+ 1283+// Assuming that you use no more than 19 digits, this will 1284+// parse an ASCII string. 1285+template <typename UC> 1286+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC> 1287+parse_number_string(UC const *p, UC const *pend, 1288+ parse_options_t<UC> options) noexcept { 1289+ chars_format const fmt = options.format; 1290+ UC const decimal_point = options.decimal_point; 1291+ 1292+ parsed_number_string_t<UC> answer; 1293+ answer.valid = false; 1294+ answer.too_many_digits = false; 1295+ answer.negative = (*p == UC('-')); 1296+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default 1297+ if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) { 1298+#else 1299+ if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here 1300+#endif 1301+ ++p; 1302+ if (p == pend) { 1303+ return report_parse_error<UC>( 1304+ p, parse_error::missing_integer_or_dot_after_sign); 1305+ } 1306+ if (fmt & FASTFLOAT_JSONFMT) { 1307+ if (!is_integer(*p)) { // a sign must be followed by an integer 1308+ return report_parse_error<UC>(p, 1309+ parse_error::missing_integer_after_sign); 1310+ } 1311+ } else { 1312+ if (!is_integer(*p) && 1313+ (*p != 1314+ decimal_point)) { // a sign must be followed by an integer or the dot 1315+ return report_parse_error<UC>( 1316+ p, parse_error::missing_integer_or_dot_after_sign); 1317+ } 1318+ } 1319+ } 1320+ UC const *const start_digits = p; 1321+ 1322+ uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) 1323+ 1324+ while ((p != pend) && is_integer(*p)) { 1325+ // a multiplication by 10 is cheaper than an arbitrary integer 1326+ // multiplication 1327+ i = 10 * i + 1328+ uint64_t(*p - 1329+ UC('0')); // might overflow, we will handle the overflow later 1330+ ++p; 1331+ } 1332+ UC const *const end_of_integer_part = p; 1333+ int64_t digit_count = int64_t(end_of_integer_part - start_digits); 1334+ answer.integer = span<const UC>(start_digits, size_t(digit_count)); 1335+ if (fmt & FASTFLOAT_JSONFMT) { 1336+ // at least 1 digit in integer part, without leading zeros 1337+ if (digit_count == 0) { 1338+ return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part); 1339+ } 1340+ if ((start_digits[0] == UC('0') && digit_count > 1)) { 1341+ return report_parse_error<UC>(start_digits, 1342+ parse_error::leading_zeros_in_integer_part); 1343+ } 1344+ } 1345+ 1346+ int64_t exponent = 0; 1347+ const bool has_decimal_point = (p != pend) && (*p == decimal_point); 1348+ if (has_decimal_point) { 1349+ ++p; 1350+ UC const *before = p; 1351+ // can occur at most twice without overflowing, but let it occur more, since 1352+ // for integers with many digits, digit parsing is the primary bottleneck. 1353+ loop_parse_if_eight_digits(p, pend, i); 1354+ 1355+ while ((p != pend) && is_integer(*p)) { 1356+ uint8_t digit = uint8_t(*p - UC('0')); 1357+ ++p; 1358+ i = i * 10 + digit; // in rare cases, this will overflow, but that's ok 1359+ } 1360+ exponent = before - p; 1361+ answer.fraction = span<const UC>(before, size_t(p - before)); 1362+ digit_count -= exponent; 1363+ } 1364+ if (fmt & FASTFLOAT_JSONFMT) { 1365+ // at least 1 digit in fractional part 1366+ if (has_decimal_point && exponent == 0) { 1367+ return report_parse_error<UC>(p, 1368+ parse_error::no_digits_in_fractional_part); 1369+ } 1370+ } else if (digit_count == 1371+ 0) { // we must have encountered at least one integer! 1372+ return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa); 1373+ } 1374+ int64_t exp_number = 0; // explicit exponential part 1375+ if (((fmt & chars_format::scientific) && (p != pend) && 1376+ ((UC('e') == *p) || (UC('E') == *p))) || 1377+ ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) && 1378+ ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) || 1379+ (UC('D') == *p)))) { 1380+ UC const *location_of_e = p; 1381+ if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) || 1382+ (UC('D') == *p)) { 1383+ ++p; 1384+ } 1385+ bool neg_exp = false; 1386+ if ((p != pend) && (UC('-') == *p)) { 1387+ neg_exp = true; 1388+ ++p; 1389+ } else if ((p != pend) && 1390+ (UC('+') == 1391+ *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) 1392+ ++p; 1393+ } 1394+ if ((p == pend) || !is_integer(*p)) { 1395+ if (!(fmt & chars_format::fixed)) { 1396+ // The exponential part is invalid for scientific notation, so it must 1397+ // be a trailing token for fixed notation. However, fixed notation is 1398+ // disabled, so report a scientific notation error. 1399+ return report_parse_error<UC>(p, parse_error::missing_exponential_part); 1400+ } 1401+ // Otherwise, we will be ignoring the 'e'. 1402+ p = location_of_e; 1403+ } else { 1404+ while ((p != pend) && is_integer(*p)) { 1405+ uint8_t digit = uint8_t(*p - UC('0')); 1406+ if (exp_number < 0x10000000) { 1407+ exp_number = 10 * exp_number + digit; 1408+ } 1409+ ++p; 1410+ } 1411+ if (neg_exp) { 1412+ exp_number = -exp_number; 1413+ } 1414+ exponent += exp_number; 1415+ } 1416+ } else { 1417+ // If it scientific and not fixed, we have to bail out. 1418+ if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { 1419+ return report_parse_error<UC>(p, parse_error::missing_exponential_part); 1420+ } 1421+ } 1422+ answer.lastmatch = p; 1423+ answer.valid = true; 1424+ 1425+ // If we frequently had to deal with long strings of digits, 1426+ // we could extend our code by using a 128-bit integer instead 1427+ // of a 64-bit integer. However, this is uncommon. 1428+ // 1429+ // We can deal with up to 19 digits. 1430+ if (digit_count > 19) { // this is uncommon 1431+ // It is possible that the integer had an overflow. 1432+ // We have to handle the case where we have 0.0000somenumber. 1433+ // We need to be mindful of the case where we only have zeroes... 1434+ // E.g., 0.000000000...000. 1435+ UC const *start = start_digits; 1436+ while ((start != pend) && (*start == UC('0') || *start == decimal_point)) { 1437+ if (*start == UC('0')) { 1438+ digit_count--; 1439+ } 1440+ start++; 1441+ } 1442+ 1443+ if (digit_count > 19) { 1444+ answer.too_many_digits = true; 1445+ // Let us start again, this time, avoiding overflows. 1446+ // We don't need to check if is_integer, since we use the 1447+ // pre-tokenized spans from above. 1448+ i = 0; 1449+ p = answer.integer.ptr; 1450+ UC const *int_end = p + answer.integer.len(); 1451+ const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; 1452+ while ((i < minimal_nineteen_digit_integer) && (p != int_end)) { 1453+ i = i * 10 + uint64_t(*p - UC('0')); 1454+ ++p; 1455+ } 1456+ if (i >= minimal_nineteen_digit_integer) { // We have a big integers 1457+ exponent = end_of_integer_part - p + exp_number; 1458+ } else { // We have a value with a fractional component. 1459+ p = answer.fraction.ptr; 1460+ UC const *frac_end = p + answer.fraction.len(); 1461+ while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) { 1462+ i = i * 10 + uint64_t(*p - UC('0')); 1463+ ++p; 1464+ } 1465+ exponent = answer.fraction.ptr - p + exp_number; 1466+ } 1467+ // We have now corrected both exponent and i, to a truncated value 1468+ } 1469+ } 1470+ answer.exponent = exponent; 1471+ answer.mantissa = i; 1472+ return answer; 1473+} 1474+ 1475+template <typename T, typename UC> 1476+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 1477+parse_int_string(UC const *p, UC const *pend, T &value, int base) { 1478+ from_chars_result_t<UC> answer; 1479+ 1480+ UC const *const first = p; 1481+ 1482+ bool negative = (*p == UC('-')); 1483+ if (!std::is_signed<T>::value && negative) { 1484+ answer.ec = std::errc::invalid_argument; 1485+ answer.ptr = first; 1486+ return answer; 1487+ } 1488+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default 1489+ if ((*p == UC('-')) || (*p == UC('+'))) { 1490+#else 1491+ if (*p == UC('-')) { 1492+#endif 1493+ ++p; 1494+ } 1495+ 1496+ UC const *const start_num = p; 1497+ 1498+ while (p != pend && *p == UC('0')) { 1499+ ++p; 1500+ } 1501+ 1502+ const bool has_leading_zeros = p > start_num; 1503+ 1504+ UC const *const start_digits = p; 1505+ 1506+ uint64_t i = 0; 1507+ if (base == 10) { 1508+ loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible 1509+ } 1510+ while (p != pend) { 1511+ uint8_t digit = ch_to_digit(*p); 1512+ if (digit >= base) { 1513+ break; 1514+ } 1515+ i = uint64_t(base) * i + digit; // might overflow, check this later 1516+ p++; 1517+ } 1518+ 1519+ size_t digit_count = size_t(p - start_digits); 1520+ 1521+ if (digit_count == 0) { 1522+ if (has_leading_zeros) { 1523+ value = 0; 1524+ answer.ec = std::errc(); 1525+ answer.ptr = p; 1526+ } else { 1527+ answer.ec = std::errc::invalid_argument; 1528+ answer.ptr = first; 1529+ } 1530+ return answer; 1531+ } 1532+ 1533+ answer.ptr = p; 1534+ 1535+ // check u64 overflow 1536+ size_t max_digits = max_digits_u64(base); 1537+ if (digit_count > max_digits) { 1538+ answer.ec = std::errc::result_out_of_range; 1539+ return answer; 1540+ } 1541+ // this check can be eliminated for all other types, but they will all require 1542+ // a max_digits(base) equivalent 1543+ if (digit_count == max_digits && i < min_safe_u64(base)) { 1544+ answer.ec = std::errc::result_out_of_range; 1545+ return answer; 1546+ } 1547+ 1548+ // check other types overflow 1549+ if (!std::is_same<T, uint64_t>::value) { 1550+ if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) { 1551+ answer.ec = std::errc::result_out_of_range; 1552+ return answer; 1553+ } 1554+ } 1555+ 1556+ if (negative) { 1557+#ifdef FASTFLOAT_VISUAL_STUDIO 1558+#pragma warning(push) 1559+#pragma warning(disable : 4146) 1560+#endif 1561+ // this weird workaround is required because: 1562+ // - converting unsigned to signed when its value is greater than signed max 1563+ // is UB pre-C++23. 1564+ // - reinterpret_casting (~i + 1) would work, but it is not constexpr 1565+ // this is always optimized into a neg instruction (note: T is an integer 1566+ // type) 1567+ value = T(-std::numeric_limits<T>::max() - 1568+ T(i - uint64_t(std::numeric_limits<T>::max()))); 1569+#ifdef FASTFLOAT_VISUAL_STUDIO 1570+#pragma warning(pop) 1571+#endif 1572+ } else { 1573+ value = T(i); 1574+ } 1575+ 1576+ answer.ec = std::errc(); 1577+ return answer; 1578+} 1579+ 1580+} // namespace fast_float 1581+ 1582+#endif 1583+ 1584+#ifndef FASTFLOAT_FAST_TABLE_H 1585+#define FASTFLOAT_FAST_TABLE_H 1586+ 1587+#include <cstdint> 1588+ 1589+namespace fast_float { 1590+ 1591+/** 1592+ * When mapping numbers from decimal to binary, 1593+ * we go from w * 10^q to m * 2^p but we have 1594+ * 10^q = 5^q * 2^q, so effectively 1595+ * we are trying to match 1596+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two 1597+ * are not a concern since they can be represented 1598+ * exactly using the binary notation, only the powers of five 1599+ * affect the binary significand. 1600+ */ 1601+ 1602+/** 1603+ * The smallest non-zero float (binary64) is 2^-1074. 1604+ * We take as input numbers of the form w x 10^q where w < 2^64. 1605+ * We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076. 1606+ * However, we have that 1607+ * (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074. 1608+ * Thus it is possible for a number of the form w * 10^-342 where 1609+ * w is a 64-bit value to be a non-zero floating-point number. 1610+ ********* 1611+ * Any number of form w * 10^309 where w>= 1 is going to be 1612+ * infinite in binary64 so we never need to worry about powers 1613+ * of 5 greater than 308. 1614+ */ 1615+template <class unused = void> struct powers_template { 1616+ 1617+ constexpr static int smallest_power_of_five = 1618+ binary_format<double>::smallest_power_of_ten(); 1619+ constexpr static int largest_power_of_five = 1620+ binary_format<double>::largest_power_of_ten(); 1621+ constexpr static int number_of_entries = 1622+ 2 * (largest_power_of_five - smallest_power_of_five + 1); 1623+ // Powers of five from 5^-342 all the way to 5^308 rounded toward one. 1624+ constexpr static uint64_t power_of_five_128[number_of_entries] = { 1625+ 0xeef453d6923bd65a, 0x113faa2906a13b3f, 1626+ 0x9558b4661b6565f8, 0x4ac7ca59a424c507, 1627+ 0xbaaee17fa23ebf76, 0x5d79bcf00d2df649, 1628+ 0xe95a99df8ace6f53, 0xf4d82c2c107973dc, 1629+ 0x91d8a02bb6c10594, 0x79071b9b8a4be869, 1630+ 0xb64ec836a47146f9, 0x9748e2826cdee284, 1631+ 0xe3e27a444d8d98b7, 0xfd1b1b2308169b25, 1632+ 0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7, 1633+ 0xb208ef855c969f4f, 0xbdbd2d335e51a935, 1634+ 0xde8b2b66b3bc4723, 0xad2c788035e61382, 1635+ 0x8b16fb203055ac76, 0x4c3bcb5021afcc31, 1636+ 0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d, 1637+ 0xd953e8624b85dd78, 0xd71d6dad34a2af0d, 1638+ 0x87d4713d6f33aa6b, 0x8672648c40e5ad68, 1639+ 0xa9c98d8ccb009506, 0x680efdaf511f18c2, 1640+ 0xd43bf0effdc0ba48, 0x212bd1b2566def2, 1641+ 0x84a57695fe98746d, 0x14bb630f7604b57, 1642+ 0xa5ced43b7e3e9188, 0x419ea3bd35385e2d, 1643+ 0xcf42894a5dce35ea, 0x52064cac828675b9, 1644+ 0x818995ce7aa0e1b2, 0x7343efebd1940993, 1645+ 0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8, 1646+ 0xca66fa129f9b60a6, 0xd41a26e077774ef6, 1647+ 0xfd00b897478238d0, 0x8920b098955522b4, 1648+ 0x9e20735e8cb16382, 0x55b46e5f5d5535b0, 1649+ 0xc5a890362fddbc62, 0xeb2189f734aa831d, 1650+ 0xf712b443bbd52b7b, 0xa5e9ec7501d523e4, 1651+ 0x9a6bb0aa55653b2d, 0x47b233c92125366e, 1652+ 0xc1069cd4eabe89f8, 0x999ec0bb696e840a, 1653+ 0xf148440a256e2c76, 0xc00670ea43ca250d, 1654+ 0x96cd2a865764dbca, 0x380406926a5e5728, 1655+ 0xbc807527ed3e12bc, 0xc605083704f5ecf2, 1656+ 0xeba09271e88d976b, 0xf7864a44c633682e, 1657+ 0x93445b8731587ea3, 0x7ab3ee6afbe0211d, 1658+ 0xb8157268fdae9e4c, 0x5960ea05bad82964, 1659+ 0xe61acf033d1a45df, 0x6fb92487298e33bd, 1660+ 0x8fd0c16206306bab, 0xa5d3b6d479f8e056, 1661+ 0xb3c4f1ba87bc8696, 0x8f48a4899877186c, 1662+ 0xe0b62e2929aba83c, 0x331acdabfe94de87, 1663+ 0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14, 1664+ 0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9, 1665+ 0xdb71e91432b1a24a, 0xc9e82cd9f69d6150, 1666+ 0x892731ac9faf056e, 0xbe311c083a225cd2, 1667+ 0xab70fe17c79ac6ca, 0x6dbd630a48aaf406, 1668+ 0xd64d3d9db981787d, 0x92cbbccdad5b108, 1669+ 0x85f0468293f0eb4e, 0x25bbf56008c58ea5, 1670+ 0xa76c582338ed2621, 0xaf2af2b80af6f24e, 1671+ 0xd1476e2c07286faa, 0x1af5af660db4aee1, 1672+ 0x82cca4db847945ca, 0x50d98d9fc890ed4d, 1673+ 0xa37fce126597973c, 0xe50ff107bab528a0, 1674+ 0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8, 1675+ 0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a, 1676+ 0x9faacf3df73609b1, 0x77b191618c54e9ac, 1677+ 0xc795830d75038c1d, 0xd59df5b9ef6a2417, 1678+ 0xf97ae3d0d2446f25, 0x4b0573286b44ad1d, 1679+ 0x9becce62836ac577, 0x4ee367f9430aec32, 1680+ 0xc2e801fb244576d5, 0x229c41f793cda73f, 1681+ 0xf3a20279ed56d48a, 0x6b43527578c1110f, 1682+ 0x9845418c345644d6, 0x830a13896b78aaa9, 1683+ 0xbe5691ef416bd60c, 0x23cc986bc656d553, 1684+ 0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8, 1685+ 0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9, 1686+ 0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53, 1687+ 0xe858ad248f5c22c9, 0xd1b3400f8f9cff68, 1688+ 0x91376c36d99995be, 0x23100809b9c21fa1, 1689+ 0xb58547448ffffb2d, 0xabd40a0c2832a78a, 1690+ 0xe2e69915b3fff9f9, 0x16c90c8f323f516c, 1691+ 0x8dd01fad907ffc3b, 0xae3da7d97f6792e3, 1692+ 0xb1442798f49ffb4a, 0x99cd11cfdf41779c, 1693+ 0xdd95317f31c7fa1d, 0x40405643d711d583, 1694+ 0x8a7d3eef7f1cfc52, 0x482835ea666b2572, 1695+ 0xad1c8eab5ee43b66, 0xda3243650005eecf, 1696+ 0xd863b256369d4a40, 0x90bed43e40076a82, 1697+ 0x873e4f75e2224e68, 0x5a7744a6e804a291, 1698+ 0xa90de3535aaae202, 0x711515d0a205cb36, 1699+ 0xd3515c2831559a83, 0xd5a5b44ca873e03, 1700+ 0x8412d9991ed58091, 0xe858790afe9486c2, 1701+ 0xa5178fff668ae0b6, 0x626e974dbe39a872, 1702+ 0xce5d73ff402d98e3, 0xfb0a3d212dc8128f, 1703+ 0x80fa687f881c7f8e, 0x7ce66634bc9d0b99, 1704+ 0xa139029f6a239f72, 0x1c1fffc1ebc44e80, 1705+ 0xc987434744ac874e, 0xa327ffb266b56220, 1706+ 0xfbe9141915d7a922, 0x4bf1ff9f0062baa8, 1707+ 0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9, 1708+ 0xc4ce17b399107c22, 0xcb550fb4384d21d3, 1709+ 0xf6019da07f549b2b, 0x7e2a53a146606a48, 1710+ 0x99c102844f94e0fb, 0x2eda7444cbfc426d, 1711+ 0xc0314325637a1939, 0xfa911155fefb5308, 1712+ 0xf03d93eebc589f88, 0x793555ab7eba27ca, 1713+ 0x96267c7535b763b5, 0x4bc1558b2f3458de, 1714+ 0xbbb01b9283253ca2, 0x9eb1aaedfb016f16, 1715+ 0xea9c227723ee8bcb, 0x465e15a979c1cadc, 1716+ 0x92a1958a7675175f, 0xbfacd89ec191ec9, 1717+ 0xb749faed14125d36, 0xcef980ec671f667b, 1718+ 0xe51c79a85916f484, 0x82b7e12780e7401a, 1719+ 0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810, 1720+ 0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15, 1721+ 0xdfbdcece67006ac9, 0x67a791e093e1d49a, 1722+ 0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0, 1723+ 0xaecc49914078536d, 0x58fae9f773886e18, 1724+ 0xda7f5bf590966848, 0xaf39a475506a899e, 1725+ 0x888f99797a5e012d, 0x6d8406c952429603, 1726+ 0xaab37fd7d8f58178, 0xc8e5087ba6d33b83, 1727+ 0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64, 1728+ 0x855c3be0a17fcd26, 0x5cf2eea09a55067f, 1729+ 0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e, 1730+ 0xd0601d8efc57b08b, 0xf13b94daf124da26, 1731+ 0x823c12795db6ce57, 0x76c53d08d6b70858, 1732+ 0xa2cb1717b52481ed, 0x54768c4b0c64ca6e, 1733+ 0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09, 1734+ 0xfe5d54150b090b02, 0xd3f93b35435d7c4c, 1735+ 0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf, 1736+ 0xc6b8e9b0709f109a, 0x359ab6419ca1091b, 1737+ 0xf867241c8cc6d4c0, 0xc30163d203c94b62, 1738+ 0x9b407691d7fc44f8, 0x79e0de63425dcf1d, 1739+ 0xc21094364dfb5636, 0x985915fc12f542e4, 1740+ 0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d, 1741+ 0x979cf3ca6cec5b5a, 0xa705992ceecf9c42, 1742+ 0xbd8430bd08277231, 0x50c6ff782a838353, 1743+ 0xece53cec4a314ebd, 0xa4f8bf5635246428, 1744+ 0x940f4613ae5ed136, 0x871b7795e136be99, 1745+ 0xb913179899f68584, 0x28e2557b59846e3f, 1746+ 0xe757dd7ec07426e5, 0x331aeada2fe589cf, 1747+ 0x9096ea6f3848984f, 0x3ff0d2c85def7621, 1748+ 0xb4bca50b065abe63, 0xfed077a756b53a9, 1749+ 0xe1ebce4dc7f16dfb, 0xd3e8495912c62894, 1750+ 0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c, 1751+ 0xb080392cc4349dec, 0xbd8d794d96aacfb3, 1752+ 0xdca04777f541c567, 0xecf0d7a0fc5583a0, 1753+ 0x89e42caaf9491b60, 0xf41686c49db57244, 1754+ 0xac5d37d5b79b6239, 0x311c2875c522ced5, 1755+ 0xd77485cb25823ac7, 0x7d633293366b828b, 1756+ 0x86a8d39ef77164bc, 0xae5dff9c02033197, 1757+ 0xa8530886b54dbdeb, 0xd9f57f830283fdfc, 1758+ 0xd267caa862a12d66, 0xd072df63c324fd7b, 1759+ 0x8380dea93da4bc60, 0x4247cb9e59f71e6d, 1760+ 0xa46116538d0deb78, 0x52d9be85f074e608, 1761+ 0xcd795be870516656, 0x67902e276c921f8b, 1762+ 0x806bd9714632dff6, 0xba1cd8a3db53b6, 1763+ 0xa086cfcd97bf97f3, 0x80e8a40eccd228a4, 1764+ 0xc8a883c0fdaf7df0, 0x6122cd128006b2cd, 1765+ 0xfad2a4b13d1b5d6c, 0x796b805720085f81, 1766+ 0x9cc3a6eec6311a63, 0xcbe3303674053bb0, 1767+ 0xc3f490aa77bd60fc, 0xbedbfc4411068a9c, 1768+ 0xf4f1b4d515acb93b, 0xee92fb5515482d44, 1769+ 0x991711052d8bf3c5, 0x751bdd152d4d1c4a, 1770+ 0xbf5cd54678eef0b6, 0xd262d45a78a0635d, 1771+ 0xef340a98172aace4, 0x86fb897116c87c34, 1772+ 0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0, 1773+ 0xbae0a846d2195712, 0x8974836059cca109, 1774+ 0xe998d258869facd7, 0x2bd1a438703fc94b, 1775+ 0x91ff83775423cc06, 0x7b6306a34627ddcf, 1776+ 0xb67f6455292cbf08, 0x1a3bc84c17b1d542, 1777+ 0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93, 1778+ 0x8e938662882af53e, 0x547eb47b7282ee9c, 1779+ 0xb23867fb2a35b28d, 0xe99e619a4f23aa43, 1780+ 0xdec681f9f4c31f31, 0x6405fa00e2ec94d4, 1781+ 0x8b3c113c38f9f37e, 0xde83bc408dd3dd04, 1782+ 0xae0b158b4738705e, 0x9624ab50b148d445, 1783+ 0xd98ddaee19068c76, 0x3badd624dd9b0957, 1784+ 0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6, 1785+ 0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c, 1786+ 0xd47487cc8470652b, 0x7647c3200069671f, 1787+ 0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073, 1788+ 0xa5fb0a17c777cf09, 0xf468107100525890, 1789+ 0xcf79cc9db955c2cc, 0x7182148d4066eeb4, 1790+ 0x81ac1fe293d599bf, 0xc6f14cd848405530, 1791+ 0xa21727db38cb002f, 0xb8ada00e5a506a7c, 1792+ 0xca9cf1d206fdc03b, 0xa6d90811f0e4851c, 1793+ 0xfd442e4688bd304a, 0x908f4a166d1da663, 1794+ 0x9e4a9cec15763e2e, 0x9a598e4e043287fe, 1795+ 0xc5dd44271ad3cdba, 0x40eff1e1853f29fd, 1796+ 0xf7549530e188c128, 0xd12bee59e68ef47c, 1797+ 0x9a94dd3e8cf578b9, 0x82bb74f8301958ce, 1798+ 0xc13a148e3032d6e7, 0xe36a52363c1faf01, 1799+ 0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1, 1800+ 0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9, 1801+ 0xbcb2b812db11a5de, 0x7415d448f6b6f0e7, 1802+ 0xebdf661791d60f56, 0x111b495b3464ad21, 1803+ 0x936b9fcebb25c995, 0xcab10dd900beec34, 1804+ 0xb84687c269ef3bfb, 0x3d5d514f40eea742, 1805+ 0xe65829b3046b0afa, 0xcb4a5a3112a5112, 1806+ 0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab, 1807+ 0xb3f4e093db73a093, 0x59ed216765690f56, 1808+ 0xe0f218b8d25088b8, 0x306869c13ec3532c, 1809+ 0x8c974f7383725573, 0x1e414218c73a13fb, 1810+ 0xafbd2350644eeacf, 0xe5d1929ef90898fa, 1811+ 0xdbac6c247d62a583, 0xdf45f746b74abf39, 1812+ 0x894bc396ce5da772, 0x6b8bba8c328eb783, 1813+ 0xab9eb47c81f5114f, 0x66ea92f3f326564, 1814+ 0xd686619ba27255a2, 0xc80a537b0efefebd, 1815+ 0x8613fd0145877585, 0xbd06742ce95f5f36, 1816+ 0xa798fc4196e952e7, 0x2c48113823b73704, 1817+ 0xd17f3b51fca3a7a0, 0xf75a15862ca504c5, 1818+ 0x82ef85133de648c4, 0x9a984d73dbe722fb, 1819+ 0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba, 1820+ 0xcc963fee10b7d1b3, 0x318df905079926a8, 1821+ 0xffbbcfe994e5c61f, 0xfdf17746497f7052, 1822+ 0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633, 1823+ 0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0, 1824+ 0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0, 1825+ 0x9c1661a651213e2d, 0x6bea10ca65c084e, 1826+ 0xc31bfa0fe5698db8, 0x486e494fcff30a62, 1827+ 0xf3e2f893dec3f126, 0x5a89dba3c3efccfa, 1828+ 0x986ddb5c6b3a76b7, 0xf89629465a75e01c, 1829+ 0xbe89523386091465, 0xf6bbb397f1135823, 1830+ 0xee2ba6c0678b597f, 0x746aa07ded582e2c, 1831+ 0x94db483840b717ef, 0xa8c2a44eb4571cdc, 1832+ 0xba121a4650e4ddeb, 0x92f34d62616ce413, 1833+ 0xe896a0d7e51e1566, 0x77b020baf9c81d17, 1834+ 0x915e2486ef32cd60, 0xace1474dc1d122e, 1835+ 0xb5b5ada8aaff80b8, 0xd819992132456ba, 1836+ 0xe3231912d5bf60e6, 0x10e1fff697ed6c69, 1837+ 0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1, 1838+ 0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2, 1839+ 0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde, 1840+ 0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b, 1841+ 0xad4ab7112eb3929d, 0x86c16c98d2c953c6, 1842+ 0xd89d64d57a607744, 0xe871c7bf077ba8b7, 1843+ 0x87625f056c7c4a8b, 0x11471cd764ad4972, 1844+ 0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf, 1845+ 0xd389b47879823479, 0x4aff1d108d4ec2c3, 1846+ 0x843610cb4bf160cb, 0xcedf722a585139ba, 1847+ 0xa54394fe1eedb8fe, 0xc2974eb4ee658828, 1848+ 0xce947a3da6a9273e, 0x733d226229feea32, 1849+ 0x811ccc668829b887, 0x806357d5a3f525f, 1850+ 0xa163ff802a3426a8, 0xca07c2dcb0cf26f7, 1851+ 0xc9bcff6034c13052, 0xfc89b393dd02f0b5, 1852+ 0xfc2c3f3841f17c67, 0xbbac2078d443ace2, 1853+ 0x9d9ba7832936edc0, 0xd54b944b84aa4c0d, 1854+ 0xc5029163f384a931, 0xa9e795e65d4df11, 1855+ 0xf64335bcf065d37d, 0x4d4617b5ff4a16d5, 1856+ 0x99ea0196163fa42e, 0x504bced1bf8e4e45, 1857+ 0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6, 1858+ 0xf07da27a82c37088, 0x5d767327bb4e5a4c, 1859+ 0x964e858c91ba2655, 0x3a6a07f8d510f86f, 1860+ 0xbbe226efb628afea, 0x890489f70a55368b, 1861+ 0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e, 1862+ 0x92c8ae6b464fc96f, 0x3b0b8bc90012929d, 1863+ 0xb77ada0617e3bbcb, 0x9ce6ebb40173744, 1864+ 0xe55990879ddcaabd, 0xcc420a6a101d0515, 1865+ 0x8f57fa54c2a9eab6, 0x9fa946824a12232d, 1866+ 0xb32df8e9f3546564, 0x47939822dc96abf9, 1867+ 0xdff9772470297ebd, 0x59787e2b93bc56f7, 1868+ 0x8bfbea76c619ef36, 0x57eb4edb3c55b65a, 1869+ 0xaefae51477a06b03, 0xede622920b6b23f1, 1870+ 0xdab99e59958885c4, 0xe95fab368e45eced, 1871+ 0x88b402f7fd75539b, 0x11dbcb0218ebb414, 1872+ 0xaae103b5fcd2a881, 0xd652bdc29f26a119, 1873+ 0xd59944a37c0752a2, 0x4be76d3346f0495f, 1874+ 0x857fcae62d8493a5, 0x6f70a4400c562ddb, 1875+ 0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952, 1876+ 0xd097ad07a71f26b2, 0x7e2000a41346a7a7, 1877+ 0x825ecc24c873782f, 0x8ed400668c0c28c8, 1878+ 0xa2f67f2dfa90563b, 0x728900802f0f32fa, 1879+ 0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9, 1880+ 0xfea126b7d78186bc, 0xe2f610c84987bfa8, 1881+ 0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9, 1882+ 0xc6ede63fa05d3143, 0x91503d1c79720dbb, 1883+ 0xf8a95fcf88747d94, 0x75a44c6397ce912a, 1884+ 0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba, 1885+ 0xc24452da229b021b, 0xfbe85badce996168, 1886+ 0xf2d56790ab41c2a2, 0xfae27299423fb9c3, 1887+ 0x97c560ba6b0919a5, 0xdccd879fc967d41a, 1888+ 0xbdb6b8e905cb600f, 0x5400e987bbc1c920, 1889+ 0xed246723473e3813, 0x290123e9aab23b68, 1890+ 0x9436c0760c86e30b, 0xf9a0b6720aaf6521, 1891+ 0xb94470938fa89bce, 0xf808e40e8d5b3e69, 1892+ 0xe7958cb87392c2c2, 0xb60b1d1230b20e04, 1893+ 0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2, 1894+ 0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3, 1895+ 0xe2280b6c20dd5232, 0x25c6da63c38de1b0, 1896+ 0x8d590723948a535f, 0x579c487e5a38ad0e, 1897+ 0xb0af48ec79ace837, 0x2d835a9df0c6d851, 1898+ 0xdcdb1b2798182244, 0xf8e431456cf88e65, 1899+ 0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff, 1900+ 0xac8b2d36eed2dac5, 0xe272467e3d222f3f, 1901+ 0xd7adf884aa879177, 0x5b0ed81dcc6abb0f, 1902+ 0x86ccbb52ea94baea, 0x98e947129fc2b4e9, 1903+ 0xa87fea27a539e9a5, 0x3f2398d747b36224, 1904+ 0xd29fe4b18e88640e, 0x8eec7f0d19a03aad, 1905+ 0x83a3eeeef9153e89, 0x1953cf68300424ac, 1906+ 0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7, 1907+ 0xcdb02555653131b6, 0x3792f412cb06794d, 1908+ 0x808e17555f3ebf11, 0xe2bbd88bbee40bd0, 1909+ 0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4, 1910+ 0xc8de047564d20a8b, 0xf245825a5a445275, 1911+ 0xfb158592be068d2e, 0xeed6e2f0f0d56712, 1912+ 0x9ced737bb6c4183d, 0x55464dd69685606b, 1913+ 0xc428d05aa4751e4c, 0xaa97e14c3c26b886, 1914+ 0xf53304714d9265df, 0xd53dd99f4b3066a8, 1915+ 0x993fe2c6d07b7fab, 0xe546a8038efe4029, 1916+ 0xbf8fdb78849a5f96, 0xde98520472bdd033, 1917+ 0xef73d256a5c0f77c, 0x963e66858f6d4440, 1918+ 0x95a8637627989aad, 0xdde7001379a44aa8, 1919+ 0xbb127c53b17ec159, 0x5560c018580d5d52, 1920+ 0xe9d71b689dde71af, 0xaab8f01e6e10b4a6, 1921+ 0x9226712162ab070d, 0xcab3961304ca70e8, 1922+ 0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22, 1923+ 0xe45c10c42a2b3b05, 0x8cb89a7db77c506a, 1924+ 0x8eb98a7a9a5b04e3, 0x77f3608e92adb242, 1925+ 0xb267ed1940f1c61c, 0x55f038b237591ed3, 1926+ 0xdf01e85f912e37a3, 0x6b6c46dec52f6688, 1927+ 0x8b61313bbabce2c6, 0x2323ac4b3b3da015, 1928+ 0xae397d8aa96c1b77, 0xabec975e0a0d081a, 1929+ 0xd9c7dced53c72255, 0x96e7bd358c904a21, 1930+ 0x881cea14545c7575, 0x7e50d64177da2e54, 1931+ 0xaa242499697392d2, 0xdde50bd1d5d0b9e9, 1932+ 0xd4ad2dbfc3d07787, 0x955e4ec64b44e864, 1933+ 0x84ec3c97da624ab4, 0xbd5af13bef0b113e, 1934+ 0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e, 1935+ 0xcfb11ead453994ba, 0x67de18eda5814af2, 1936+ 0x81ceb32c4b43fcf4, 0x80eacf948770ced7, 1937+ 0xa2425ff75e14fc31, 0xa1258379a94d028d, 1938+ 0xcad2f7f5359a3b3e, 0x96ee45813a04330, 1939+ 0xfd87b5f28300ca0d, 0x8bca9d6e188853fc, 1940+ 0x9e74d1b791e07e48, 0x775ea264cf55347e, 1941+ 0xc612062576589dda, 0x95364afe032a819e, 1942+ 0xf79687aed3eec551, 0x3a83ddbd83f52205, 1943+ 0x9abe14cd44753b52, 0xc4926a9672793543, 1944+ 0xc16d9a0095928a27, 0x75b7053c0f178294, 1945+ 0xf1c90080baf72cb1, 0x5324c68b12dd6339, 1946+ 0x971da05074da7bee, 0xd3f6fc16ebca5e04, 1947+ 0xbce5086492111aea, 0x88f4bb1ca6bcf585, 1948+ 0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6, 1949+ 0x9392ee8e921d5d07, 0x3aff322e62439fd0, 1950+ 0xb877aa3236a4b449, 0x9befeb9fad487c3, 1951+ 0xe69594bec44de15b, 0x4c2ebe687989a9b4, 1952+ 0x901d7cf73ab0acd9, 0xf9d37014bf60a11, 1953+ 0xb424dc35095cd80f, 0x538484c19ef38c95, 1954+ 0xe12e13424bb40e13, 0x2865a5f206b06fba, 1955+ 0x8cbccc096f5088cb, 0xf93f87b7442e45d4, 1956+ 0xafebff0bcb24aafe, 0xf78f69a51539d749, 1957+ 0xdbe6fecebdedd5be, 0xb573440e5a884d1c, 1958+ 0x89705f4136b4a597, 0x31680a88f8953031, 1959+ 0xabcc77118461cefc, 0xfdc20d2b36ba7c3e, 1960+ 0xd6bf94d5e57a42bc, 0x3d32907604691b4d, 1961+ 0x8637bd05af6c69b5, 0xa63f9a49c2c1b110, 1962+ 0xa7c5ac471b478423, 0xfcf80dc33721d54, 1963+ 0xd1b71758e219652b, 0xd3c36113404ea4a9, 1964+ 0x83126e978d4fdf3b, 0x645a1cac083126ea, 1965+ 0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4, 1966+ 0xcccccccccccccccc, 0xcccccccccccccccd, 1967+ 0x8000000000000000, 0x0, 1968+ 0xa000000000000000, 0x0, 1969+ 0xc800000000000000, 0x0, 1970+ 0xfa00000000000000, 0x0, 1971+ 0x9c40000000000000, 0x0, 1972+ 0xc350000000000000, 0x0, 1973+ 0xf424000000000000, 0x0, 1974+ 0x9896800000000000, 0x0, 1975+ 0xbebc200000000000, 0x0, 1976+ 0xee6b280000000000, 0x0, 1977+ 0x9502f90000000000, 0x0, 1978+ 0xba43b74000000000, 0x0, 1979+ 0xe8d4a51000000000, 0x0, 1980+ 0x9184e72a00000000, 0x0, 1981+ 0xb5e620f480000000, 0x0, 1982+ 0xe35fa931a0000000, 0x0, 1983+ 0x8e1bc9bf04000000, 0x0, 1984+ 0xb1a2bc2ec5000000, 0x0, 1985+ 0xde0b6b3a76400000, 0x0, 1986+ 0x8ac7230489e80000, 0x0, 1987+ 0xad78ebc5ac620000, 0x0, 1988+ 0xd8d726b7177a8000, 0x0, 1989+ 0x878678326eac9000, 0x0, 1990+ 0xa968163f0a57b400, 0x0, 1991+ 0xd3c21bcecceda100, 0x0, 1992+ 0x84595161401484a0, 0x0, 1993+ 0xa56fa5b99019a5c8, 0x0, 1994+ 0xcecb8f27f4200f3a, 0x0, 1995+ 0x813f3978f8940984, 0x4000000000000000, 1996+ 0xa18f07d736b90be5, 0x5000000000000000, 1997+ 0xc9f2c9cd04674ede, 0xa400000000000000, 1998+ 0xfc6f7c4045812296, 0x4d00000000000000, 1999+ 0x9dc5ada82b70b59d, 0xf020000000000000, 2000+ 0xc5371912364ce305, 0x6c28000000000000, 2001+ 0xf684df56c3e01bc6, 0xc732000000000000, 2002+ 0x9a130b963a6c115c, 0x3c7f400000000000, 2003+ 0xc097ce7bc90715b3, 0x4b9f100000000000, 2004+ 0xf0bdc21abb48db20, 0x1e86d40000000000, 2005+ 0x96769950b50d88f4, 0x1314448000000000, 2006+ 0xbc143fa4e250eb31, 0x17d955a000000000, 2007+ 0xeb194f8e1ae525fd, 0x5dcfab0800000000, 2008+ 0x92efd1b8d0cf37be, 0x5aa1cae500000000, 2009+ 0xb7abc627050305ad, 0xf14a3d9e40000000, 2010+ 0xe596b7b0c643c719, 0x6d9ccd05d0000000, 2011+ 0x8f7e32ce7bea5c6f, 0xe4820023a2000000, 2012+ 0xb35dbf821ae4f38b, 0xdda2802c8a800000, 2013+ 0xe0352f62a19e306e, 0xd50b2037ad200000, 2014+ 0x8c213d9da502de45, 0x4526f422cc340000, 2015+ 0xaf298d050e4395d6, 0x9670b12b7f410000, 2016+ 0xdaf3f04651d47b4c, 0x3c0cdd765f114000, 2017+ 0x88d8762bf324cd0f, 0xa5880a69fb6ac800, 2018+ 0xab0e93b6efee0053, 0x8eea0d047a457a00, 2019+ 0xd5d238a4abe98068, 0x72a4904598d6d880, 2020+ 0x85a36366eb71f041, 0x47a6da2b7f864750, 2021+ 0xa70c3c40a64e6c51, 0x999090b65f67d924, 2022+ 0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d, 2023+ 0x82818f1281ed449f, 0xbff8f10e7a8921a4, 2024+ 0xa321f2d7226895c7, 0xaff72d52192b6a0d, 2025+ 0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490, 2026+ 0xfee50b7025c36a08, 0x2f236d04753d5b4, 2027+ 0x9f4f2726179a2245, 0x1d762422c946590, 2028+ 0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5, 2029+ 0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2, 2030+ 0x9b934c3b330c8577, 0x63cc55f49f88eb2f, 2031+ 0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb, 2032+ 0xf316271c7fc3908a, 0x8bef464e3945ef7a, 2033+ 0x97edd871cfda3a56, 0x97758bf0e3cbb5ac, 2034+ 0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317, 2035+ 0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd, 2036+ 0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a, 2037+ 0xb975d6b6ee39e436, 0xb3e2fd538e122b44, 2038+ 0xe7d34c64a9c85d44, 0x60dbbca87196b616, 2039+ 0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd, 2040+ 0xb51d13aea4a488dd, 0x6babab6398bdbe41, 2041+ 0xe264589a4dcdab14, 0xc696963c7eed2dd1, 2042+ 0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2, 2043+ 0xb0de65388cc8ada8, 0x3b25a55f43294bcb, 2044+ 0xdd15fe86affad912, 0x49ef0eb713f39ebe, 2045+ 0x8a2dbf142dfcc7ab, 0x6e3569326c784337, 2046+ 0xacb92ed9397bf996, 0x49c2c37f07965404, 2047+ 0xd7e77a8f87daf7fb, 0xdc33745ec97be906, 2048+ 0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3, 2049+ 0xa8acd7c0222311bc, 0xc40832ea0d68ce0c, 2050+ 0xd2d80db02aabd62b, 0xf50a3fa490c30190, 2051+ 0x83c7088e1aab65db, 0x792667c6da79e0fa, 2052+ 0xa4b8cab1a1563f52, 0x577001b891185938, 2053+ 0xcde6fd5e09abcf26, 0xed4c0226b55e6f86, 2054+ 0x80b05e5ac60b6178, 0x544f8158315b05b4, 2055+ 0xa0dc75f1778e39d6, 0x696361ae3db1c721, 2056+ 0xc913936dd571c84c, 0x3bc3a19cd1e38e9, 2057+ 0xfb5878494ace3a5f, 0x4ab48a04065c723, 2058+ 0x9d174b2dcec0e47b, 0x62eb0d64283f9c76, 2059+ 0xc45d1df942711d9a, 0x3ba5d0bd324f8394, 2060+ 0xf5746577930d6500, 0xca8f44ec7ee36479, 2061+ 0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb, 2062+ 0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e, 2063+ 0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e, 2064+ 0x95d04aee3b80ece5, 0xbba1f1d158724a12, 2065+ 0xbb445da9ca61281f, 0x2a8a6e45ae8edc97, 2066+ 0xea1575143cf97226, 0xf52d09d71a3293bd, 2067+ 0x924d692ca61be758, 0x593c2626705f9c56, 2068+ 0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c, 2069+ 0xe498f455c38b997a, 0xb6dfb9c0f956447, 2070+ 0x8edf98b59a373fec, 0x4724bd4189bd5eac, 2071+ 0xb2977ee300c50fe7, 0x58edec91ec2cb657, 2072+ 0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed, 2073+ 0x8b865b215899f46c, 0xbd79e0d20082ee74, 2074+ 0xae67f1e9aec07187, 0xecd8590680a3aa11, 2075+ 0xda01ee641a708de9, 0xe80e6f4820cc9495, 2076+ 0x884134fe908658b2, 0x3109058d147fdcdd, 2077+ 0xaa51823e34a7eede, 0xbd4b46f0599fd415, 2078+ 0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a, 2079+ 0x850fadc09923329e, 0x3e2cf6bc604ddb0, 2080+ 0xa6539930bf6bff45, 0x84db8346b786151c, 2081+ 0xcfe87f7cef46ff16, 0xe612641865679a63, 2082+ 0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e, 2083+ 0xa26da3999aef7749, 0xe3be5e330f38f09d, 2084+ 0xcb090c8001ab551c, 0x5cadf5bfd3072cc5, 2085+ 0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6, 2086+ 0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa, 2087+ 0xc646d63501a1511d, 0xb281e1fd541501b8, 2088+ 0xf7d88bc24209a565, 0x1f225a7ca91a4226, 2089+ 0x9ae757596946075f, 0x3375788de9b06958, 2090+ 0xc1a12d2fc3978937, 0x52d6b1641c83ae, 2091+ 0xf209787bb47d6b84, 0xc0678c5dbd23a49a, 2092+ 0x9745eb4d50ce6332, 0xf840b7ba963646e0, 2093+ 0xbd176620a501fbff, 0xb650e5a93bc3d898, 2094+ 0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe, 2095+ 0x93ba47c980e98cdf, 0xc66f336c36b10137, 2096+ 0xb8a8d9bbe123f017, 0xb80b0047445d4184, 2097+ 0xe6d3102ad96cec1d, 0xa60dc059157491e5, 2098+ 0x9043ea1ac7e41392, 0x87c89837ad68db2f, 2099+ 0xb454e4a179dd1877, 0x29babe4598c311fb, 2100+ 0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a, 2101+ 0x8ce2529e2734bb1d, 0x1899e4a65f58660c, 2102+ 0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f, 2103+ 0xdc21a1171d42645d, 0x76707543f4fa1f73, 2104+ 0x899504ae72497eba, 0x6a06494a791c53a8, 2105+ 0xabfa45da0edbde69, 0x487db9d17636892, 2106+ 0xd6f8d7509292d603, 0x45a9d2845d3c42b6, 2107+ 0x865b86925b9bc5c2, 0xb8a2392ba45a9b2, 2108+ 0xa7f26836f282b732, 0x8e6cac7768d7141e, 2109+ 0xd1ef0244af2364ff, 0x3207d795430cd926, 2110+ 0x8335616aed761f1f, 0x7f44e6bd49e807b8, 2111+ 0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6, 2112+ 0xcd036837130890a1, 0x36dba887c37a8c0f, 2113+ 0x802221226be55a64, 0xc2494954da2c9789, 2114+ 0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c, 2115+ 0xc83553c5c8965d3d, 0x6f92829494e5acc7, 2116+ 0xfa42a8b73abbf48c, 0xcb772339ba1f17f9, 2117+ 0x9c69a97284b578d7, 0xff2a760414536efb, 2118+ 0xc38413cf25e2d70d, 0xfef5138519684aba, 2119+ 0xf46518c2ef5b8cd1, 0x7eb258665fc25d69, 2120+ 0x98bf2f79d5993802, 0xef2f773ffbd97a61, 2121+ 0xbeeefb584aff8603, 0xaafb550ffacfd8fa, 2122+ 0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38, 2123+ 0x952ab45cfa97a0b2, 0xdd945a747bf26183, 2124+ 0xba756174393d88df, 0x94f971119aeef9e4, 2125+ 0xe912b9d1478ceb17, 0x7a37cd5601aab85d, 2126+ 0x91abb422ccb812ee, 0xac62e055c10ab33a, 2127+ 0xb616a12b7fe617aa, 0x577b986b314d6009, 2128+ 0xe39c49765fdf9d94, 0xed5a7e85fda0b80b, 2129+ 0x8e41ade9fbebc27d, 0x14588f13be847307, 2130+ 0xb1d219647ae6b31c, 0x596eb2d8ae258fc8, 2131+ 0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb, 2132+ 0x8aec23d680043bee, 0x25de7bb9480d5854, 2133+ 0xada72ccc20054ae9, 0xaf561aa79a10ae6a, 2134+ 0xd910f7ff28069da4, 0x1b2ba1518094da04, 2135+ 0x87aa9aff79042286, 0x90fb44d2f05d0842, 2136+ 0xa99541bf57452b28, 0x353a1607ac744a53, 2137+ 0xd3fa922f2d1675f2, 0x42889b8997915ce8, 2138+ 0x847c9b5d7c2e09b7, 0x69956135febada11, 2139+ 0xa59bc234db398c25, 0x43fab9837e699095, 2140+ 0xcf02b2c21207ef2e, 0x94f967e45e03f4bb, 2141+ 0x8161afb94b44f57d, 0x1d1be0eebac278f5, 2142+ 0xa1ba1ba79e1632dc, 0x6462d92a69731732, 2143+ 0xca28a291859bbf93, 0x7d7b8f7503cfdcfe, 2144+ 0xfcb2cb35e702af78, 0x5cda735244c3d43e, 2145+ 0x9defbf01b061adab, 0x3a0888136afa64a7, 2146+ 0xc56baec21c7a1916, 0x88aaa1845b8fdd0, 2147+ 0xf6c69a72a3989f5b, 0x8aad549e57273d45, 2148+ 0x9a3c2087a63f6399, 0x36ac54e2f678864b, 2149+ 0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd, 2150+ 0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5, 2151+ 0x969eb7c47859e743, 0x9f644ae5a4b1b325, 2152+ 0xbc4665b596706114, 0x873d5d9f0dde1fee, 2153+ 0xeb57ff22fc0c7959, 0xa90cb506d155a7ea, 2154+ 0x9316ff75dd87cbd8, 0x9a7f12442d588f2, 2155+ 0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f, 2156+ 0xe5d3ef282a242e81, 0x8f1668c8a86da5fa, 2157+ 0x8fa475791a569d10, 0xf96e017d694487bc, 2158+ 0xb38d92d760ec4455, 0x37c981dcc395a9ac, 2159+ 0xe070f78d3927556a, 0x85bbe253f47b1417, 2160+ 0x8c469ab843b89562, 0x93956d7478ccec8e, 2161+ 0xaf58416654a6babb, 0x387ac8d1970027b2, 2162+ 0xdb2e51bfe9d0696a, 0x6997b05fcc0319e, 2163+ 0x88fcf317f22241e2, 0x441fece3bdf81f03, 2164+ 0xab3c2fddeeaad25a, 0xd527e81cad7626c3, 2165+ 0xd60b3bd56a5586f1, 0x8a71e223d8d3b074, 2166+ 0x85c7056562757456, 0xf6872d5667844e49, 2167+ 0xa738c6bebb12d16c, 0xb428f8ac016561db, 2168+ 0xd106f86e69d785c7, 0xe13336d701beba52, 2169+ 0x82a45b450226b39c, 0xecc0024661173473, 2170+ 0xa34d721642b06084, 0x27f002d7f95d0190, 2171+ 0xcc20ce9bd35c78a5, 0x31ec038df7b441f4, 2172+ 0xff290242c83396ce, 0x7e67047175a15271, 2173+ 0x9f79a169bd203e41, 0xf0062c6e984d386, 2174+ 0xc75809c42c684dd1, 0x52c07b78a3e60868, 2175+ 0xf92e0c3537826145, 0xa7709a56ccdf8a82, 2176+ 0x9bbcc7a142b17ccb, 0x88a66076400bb691, 2177+ 0xc2abf989935ddbfe, 0x6acff893d00ea435, 2178+ 0xf356f7ebf83552fe, 0x583f6b8c4124d43, 2179+ 0x98165af37b2153de, 0xc3727a337a8b704a, 2180+ 0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c, 2181+ 0xeda2ee1c7064130c, 0x1162def06f79df73, 2182+ 0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8, 2183+ 0xb9a74a0637ce2ee1, 0x6d953e2bd7173692, 2184+ 0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437, 2185+ 0x910ab1d4db9914a0, 0x1d9c9892400a22a2, 2186+ 0xb54d5e4a127f59c8, 0x2503beb6d00cab4b, 2187+ 0xe2a0b5dc971f303a, 0x2e44ae64840fd61d, 2188+ 0x8da471a9de737e24, 0x5ceaecfed289e5d2, 2189+ 0xb10d8e1456105dad, 0x7425a83e872c5f47, 2190+ 0xdd50f1996b947518, 0xd12f124e28f77719, 2191+ 0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f, 2192+ 0xace73cbfdc0bfb7b, 0x636cc64d1001550b, 2193+ 0xd8210befd30efa5a, 0x3c47f7e05401aa4e, 2194+ 0x8714a775e3e95c78, 0x65acfaec34810a71, 2195+ 0xa8d9d1535ce3b396, 0x7f1839a741a14d0d, 2196+ 0xd31045a8341ca07c, 0x1ede48111209a050, 2197+ 0x83ea2b892091e44d, 0x934aed0aab460432, 2198+ 0xa4e4b66b68b65d60, 0xf81da84d5617853f, 2199+ 0xce1de40642e3f4b9, 0x36251260ab9d668e, 2200+ 0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019, 2201+ 0xa1075a24e4421730, 0xb24cf65b8612f81f, 2202+ 0xc94930ae1d529cfc, 0xdee033f26797b627, 2203+ 0xfb9b7cd9a4a7443c, 0x169840ef017da3b1, 2204+ 0x9d412e0806e88aa5, 0x8e1f289560ee864e, 2205+ 0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2, 2206+ 0xf5b5d7ec8acb58a2, 0xae10af696774b1db, 2207+ 0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29, 2208+ 0xbff610b0cc6edd3f, 0x17fd090a58d32af3, 2209+ 0xeff394dcff8a948e, 0xddfc4b4cef07f5b0, 2210+ 0x95f83d0a1fb69cd9, 0x4abdaf101564f98e, 2211+ 0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1, 2212+ 0xea53df5fd18d5513, 0x84c86189216dc5ed, 2213+ 0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4, 2214+ 0xb7118682dbb66a77, 0x3fbc8c33221dc2a1, 2215+ 0xe4d5e82392a40515, 0xfabaf3feaa5334a, 2216+ 0x8f05b1163ba6832d, 0x29cb4d87f2a7400e, 2217+ 0xb2c71d5bca9023f8, 0x743e20e9ef511012, 2218+ 0xdf78e4b2bd342cf6, 0x914da9246b255416, 2219+ 0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e, 2220+ 0xae9672aba3d0c320, 0xa184ac2473b529b1, 2221+ 0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e, 2222+ 0x8865899617fb1871, 0x7e2fa67c7a658892, 2223+ 0xaa7eebfb9df9de8d, 0xddbb901b98feeab7, 2224+ 0xd51ea6fa85785631, 0x552a74227f3ea565, 2225+ 0x8533285c936b35de, 0xd53a88958f87275f, 2226+ 0xa67ff273b8460356, 0x8a892abaf368f137, 2227+ 0xd01fef10a657842c, 0x2d2b7569b0432d85, 2228+ 0x8213f56a67f6b29b, 0x9c3b29620e29fc73, 2229+ 0xa298f2c501f45f42, 0x8349f3ba91b47b8f, 2230+ 0xcb3f2f7642717713, 0x241c70a936219a73, 2231+ 0xfe0efb53d30dd4d7, 0xed238cd383aa0110, 2232+ 0x9ec95d1463e8a506, 0xf4363804324a40aa, 2233+ 0xc67bb4597ce2ce48, 0xb143c6053edcd0d5, 2234+ 0xf81aa16fdc1b81da, 0xdd94b7868e94050a, 2235+ 0x9b10a4e5e9913128, 0xca7cf2b4191c8326, 2236+ 0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0, 2237+ 0xf24a01a73cf2dccf, 0xbc633b39673c8cec, 2238+ 0x976e41088617ca01, 0xd5be0503e085d813, 2239+ 0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18, 2240+ 0xec9c459d51852ba2, 0xddf8e7d60ed1219e, 2241+ 0x93e1ab8252f33b45, 0xcabb90e5c942b503, 2242+ 0xb8da1662e7b00a17, 0x3d6a751f3b936243, 2243+ 0xe7109bfba19c0c9d, 0xcc512670a783ad4, 2244+ 0x906a617d450187e2, 0x27fb2b80668b24c5, 2245+ 0xb484f9dc9641e9da, 0xb1f9f660802dedf6, 2246+ 0xe1a63853bbd26451, 0x5e7873f8a0396973, 2247+ 0x8d07e33455637eb2, 0xdb0b487b6423e1e8, 2248+ 0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62, 2249+ 0xdc5c5301c56b75f7, 0x7641a140cc7810fb, 2250+ 0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d, 2251+ 0xac2820d9623bf429, 0x546345fa9fbdcd44, 2252+ 0xd732290fbacaf133, 0xa97c177947ad4095, 2253+ 0x867f59a9d4bed6c0, 0x49ed8eabcccc485d, 2254+ 0xa81f301449ee8c70, 0x5c68f256bfff5a74, 2255+ 0xd226fc195c6a2f8c, 0x73832eec6fff3111, 2256+ 0x83585d8fd9c25db7, 0xc831fd53c5ff7eab, 2257+ 0xa42e74f3d032f525, 0xba3e7ca8b77f5e55, 2258+ 0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb, 2259+ 0x80444b5e7aa7cf85, 0x7980d163cf5b81b3, 2260+ 0xa0555e361951c366, 0xd7e105bcc332621f, 2261+ 0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7, 2262+ 0xfa856334878fc150, 0xb14f98f6f0feb951, 2263+ 0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3, 2264+ 0xc3b8358109e84f07, 0xa862f80ec4700c8, 2265+ 0xf4a642e14c6262c8, 0xcd27bb612758c0fa, 2266+ 0x98e7e9cccfbd7dbd, 0x8038d51cb897789c, 2267+ 0xbf21e44003acdd2c, 0xe0470a63e6bd56c3, 2268+ 0xeeea5d5004981478, 0x1858ccfce06cac74, 2269+ 0x95527a5202df0ccb, 0xf37801e0c43ebc8, 2270+ 0xbaa718e68396cffd, 0xd30560258f54e6ba, 2271+ 0xe950df20247c83fd, 0x47c6b82ef32a2069, 2272+ 0x91d28b7416cdd27e, 0x4cdc331d57fa5441, 2273+ 0xb6472e511c81471d, 0xe0133fe4adf8e952, 2274+ 0xe3d8f9e563a198e5, 0x58180fddd97723a6, 2275+ 0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648, 2276+ }; 2277+}; 2278+ 2279+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 2280+ 2281+template <class unused> 2282+constexpr uint64_t 2283+ powers_template<unused>::power_of_five_128[number_of_entries]; 2284+ 2285+#endif 2286+ 2287+using powers = powers_template<>; 2288+ 2289+} // namespace fast_float 2290+ 2291+#endif 2292+ 2293+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H 2294+#define FASTFLOAT_DECIMAL_TO_BINARY_H 2295+ 2296+#include <cfloat> 2297+#include <cinttypes> 2298+#include <cmath> 2299+#include <cstdint> 2300+#include <cstdlib> 2301+#include <cstring> 2302+ 2303+namespace fast_float { 2304+ 2305+// This will compute or rather approximate w * 5**q and return a pair of 64-bit 2306+// words approximating the result, with the "high" part corresponding to the 2307+// most significant bits and the low part corresponding to the least significant 2308+// bits. 2309+// 2310+template <int bit_precision> 2311+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128 2312+compute_product_approximation(int64_t q, uint64_t w) { 2313+ const int index = 2 * int(q - powers::smallest_power_of_five); 2314+ // For small values of q, e.g., q in [0,27], the answer is always exact 2315+ // because The line value128 firstproduct = full_multiplication(w, 2316+ // power_of_five_128[index]); gives the exact answer. 2317+ value128 firstproduct = 2318+ full_multiplication(w, powers::power_of_five_128[index]); 2319+ static_assert((bit_precision >= 0) && (bit_precision <= 64), 2320+ " precision should be in (0,64]"); 2321+ constexpr uint64_t precision_mask = 2322+ (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision) 2323+ : uint64_t(0xFFFFFFFFFFFFFFFF); 2324+ if ((firstproduct.high & precision_mask) == 2325+ precision_mask) { // could further guard with (lower + w < lower) 2326+ // regarding the second product, we only need secondproduct.high, but our 2327+ // expectation is that the compiler will optimize this extra work away if 2328+ // needed. 2329+ value128 secondproduct = 2330+ full_multiplication(w, powers::power_of_five_128[index + 1]); 2331+ firstproduct.low += secondproduct.high; 2332+ if (secondproduct.high > firstproduct.low) { 2333+ firstproduct.high++; 2334+ } 2335+ } 2336+ return firstproduct; 2337+} 2338+ 2339+namespace detail { 2340+/** 2341+ * For q in (0,350), we have that 2342+ * f = (((152170 + 65536) * q ) >> 16); 2343+ * is equal to 2344+ * floor(p) + q 2345+ * where 2346+ * p = log(5**q)/log(2) = q * log(5)/log(2) 2347+ * 2348+ * For negative values of q in (-400,0), we have that 2349+ * f = (((152170 + 65536) * q ) >> 16); 2350+ * is equal to 2351+ * -ceil(p) + q 2352+ * where 2353+ * p = log(5**-q)/log(2) = -q * log(5)/log(2) 2354+ */ 2355+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept { 2356+ return (((152170 + 65536) * q) >> 16) + 63; 2357+} 2358+} // namespace detail 2359+ 2360+// create an adjusted mantissa, biased by the invalid power2 2361+// for significant digits already multiplied by 10 ** q. 2362+template <typename binary> 2363+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa 2364+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept { 2365+ int hilz = int(w >> 63) ^ 1; 2366+ adjusted_mantissa answer; 2367+ answer.mantissa = w << hilz; 2368+ int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent(); 2369+ answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + 2370+ invalid_am_bias); 2371+ return answer; 2372+} 2373+ 2374+// w * 10 ** q, without rounding the representation up. 2375+// the power2 in the exponent will be adjusted by invalid_am_bias. 2376+template <typename binary> 2377+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa 2378+compute_error(int64_t q, uint64_t w) noexcept { 2379+ int lz = leading_zeroes(w); 2380+ w <<= lz; 2381+ value128 product = 2382+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); 2383+ return compute_error_scaled<binary>(q, product.high, lz); 2384+} 2385+ 2386+// w * 10 ** q 2387+// The returned value should be a valid ieee64 number that simply need to be 2388+// packed. However, in some very rare cases, the computation will fail. In such 2389+// cases, we return an adjusted_mantissa with a negative power of 2: the caller 2390+// should recompute in such cases. 2391+template <typename binary> 2392+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa 2393+compute_float(int64_t q, uint64_t w) noexcept { 2394+ adjusted_mantissa answer; 2395+ if ((w == 0) || (q < binary::smallest_power_of_ten())) { 2396+ answer.power2 = 0; 2397+ answer.mantissa = 0; 2398+ // result should be zero 2399+ return answer; 2400+ } 2401+ if (q > binary::largest_power_of_ten()) { 2402+ // we want to get infinity: 2403+ answer.power2 = binary::infinite_power(); 2404+ answer.mantissa = 0; 2405+ return answer; 2406+ } 2407+ // At this point in time q is in [powers::smallest_power_of_five, 2408+ // powers::largest_power_of_five]. 2409+ 2410+ // We want the most significant bit of i to be 1. Shift if needed. 2411+ int lz = leading_zeroes(w); 2412+ w <<= lz; 2413+ 2414+ // The required precision is binary::mantissa_explicit_bits() + 3 because 2415+ // 1. We need the implicit bit 2416+ // 2. We need an extra bit for rounding purposes 2417+ // 3. We might lose a bit due to the "upperbit" routine (result too small, 2418+ // requiring a shift) 2419+ 2420+ value128 product = 2421+ compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w); 2422+ // The computed 'product' is always sufficient. 2423+ // Mathematical proof: 2424+ // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to 2425+ // appear) See script/mushtak_lemire.py 2426+ 2427+ // The "compute_product_approximation" function can be slightly slower than a 2428+ // branchless approach: value128 product = compute_product(q, w); but in 2429+ // practice, we can win big with the compute_product_approximation if its 2430+ // additional branch is easily predicted. Which is best is data specific. 2431+ int upperbit = int(product.high >> 63); 2432+ int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3; 2433+ 2434+ answer.mantissa = product.high >> shift; 2435+ 2436+ answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - 2437+ binary::minimum_exponent()); 2438+ if (answer.power2 <= 0) { // we have a subnormal? 2439+ // Here have that answer.power2 <= 0 so -answer.power2 >= 0 2440+ if (-answer.power2 + 1 >= 2441+ 64) { // if we have more than 64 bits below the minimum exponent, you 2442+ // have a zero for sure. 2443+ answer.power2 = 0; 2444+ answer.mantissa = 0; 2445+ // result should be zero 2446+ return answer; 2447+ } 2448+ // next line is safe because -answer.power2 + 1 < 64 2449+ answer.mantissa >>= -answer.power2 + 1; 2450+ // Thankfully, we can't have both "round-to-even" and subnormals because 2451+ // "round-to-even" only occurs for powers close to 0. 2452+ answer.mantissa += (answer.mantissa & 1); // round up 2453+ answer.mantissa >>= 1; 2454+ // There is a weird scenario where we don't have a subnormal but just. 2455+ // Suppose we start with 2.2250738585072013e-308, we end up 2456+ // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal 2457+ // whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round 2458+ // up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer 2459+ // subnormal, but we can only know this after rounding. 2460+ // So we only declare a subnormal if we are smaller than the threshold. 2461+ answer.power2 = 2462+ (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) 2463+ ? 0 2464+ : 1; 2465+ return answer; 2466+ } 2467+ 2468+ // usually, we round *up*, but if we fall right in between and and we have an 2469+ // even basis, we need to round down 2470+ // We are only concerned with the cases where 5**q fits in single 64-bit word. 2471+ if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && 2472+ (q <= binary::max_exponent_round_to_even()) && 2473+ ((answer.mantissa & 3) == 1)) { // we may fall between two floats! 2474+ // To be in-between two floats we need that in doing 2475+ // answer.mantissa = product.high >> (upperbit + 64 - 2476+ // binary::mantissa_explicit_bits() - 3); 2477+ // ... we dropped out only zeroes. But if this happened, then we can go 2478+ // back!!! 2479+ if ((answer.mantissa << shift) == product.high) { 2480+ answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up 2481+ } 2482+ } 2483+ 2484+ answer.mantissa += (answer.mantissa & 1); // round up 2485+ answer.mantissa >>= 1; 2486+ if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) { 2487+ answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits()); 2488+ answer.power2++; // undo previous addition 2489+ } 2490+ 2491+ answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits()); 2492+ if (answer.power2 >= binary::infinite_power()) { // infinity 2493+ answer.power2 = binary::infinite_power(); 2494+ answer.mantissa = 0; 2495+ } 2496+ return answer; 2497+} 2498+ 2499+} // namespace fast_float 2500+ 2501+#endif 2502+ 2503+#ifndef FASTFLOAT_BIGINT_H 2504+#define FASTFLOAT_BIGINT_H 2505+ 2506+#include <algorithm> 2507+#include <cstdint> 2508+#include <climits> 2509+#include <cstring> 2510+ 2511+ 2512+namespace fast_float { 2513+ 2514+// the limb width: we want efficient multiplication of double the bits in 2515+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can 2516+// extract the high and low parts efficiently. this is every 64-bit 2517+// architecture except for sparc, which emulates 128-bit multiplication. 2518+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid 2519+// doing `8 * sizeof(limb)`. 2520+#if defined(FASTFLOAT_64BIT) && !defined(__sparc) 2521+#define FASTFLOAT_64BIT_LIMB 1 2522+typedef uint64_t limb; 2523+constexpr size_t limb_bits = 64; 2524+#else 2525+#define FASTFLOAT_32BIT_LIMB 2526+typedef uint32_t limb; 2527+constexpr size_t limb_bits = 32; 2528+#endif 2529+ 2530+typedef span<limb> limb_span; 2531+ 2532+// number of bits in a bigint. this needs to be at least the number 2533+// of bits required to store the largest bigint, which is 2534+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or 2535+// ~3600 bits, so we round to 4000. 2536+constexpr size_t bigint_bits = 4000; 2537+constexpr size_t bigint_limbs = bigint_bits / limb_bits; 2538+ 2539+// vector-like type that is allocated on the stack. the entire 2540+// buffer is pre-allocated, and only the length changes. 2541+template <uint16_t size> struct stackvec { 2542+ limb data[size]; 2543+ // we never need more than 150 limbs 2544+ uint16_t length{0}; 2545+ 2546+ stackvec() = default; 2547+ stackvec(const stackvec &) = delete; 2548+ stackvec &operator=(const stackvec &) = delete; 2549+ stackvec(stackvec &&) = delete; 2550+ stackvec &operator=(stackvec &&other) = delete; 2551+ 2552+ // create stack vector from existing limb span. 2553+ FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) { 2554+ FASTFLOAT_ASSERT(try_extend(s)); 2555+ } 2556+ 2557+ FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept { 2558+ FASTFLOAT_DEBUG_ASSERT(index < length); 2559+ return data[index]; 2560+ } 2561+ FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept { 2562+ FASTFLOAT_DEBUG_ASSERT(index < length); 2563+ return data[index]; 2564+ } 2565+ // index from the end of the container 2566+ FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept { 2567+ FASTFLOAT_DEBUG_ASSERT(index < length); 2568+ size_t rindex = length - index - 1; 2569+ return data[rindex]; 2570+ } 2571+ 2572+ // set the length, without bounds checking. 2573+ FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept { 2574+ length = uint16_t(len); 2575+ } 2576+ constexpr size_t len() const noexcept { return length; } 2577+ constexpr bool is_empty() const noexcept { return length == 0; } 2578+ constexpr size_t capacity() const noexcept { return size; } 2579+ // append item to vector, without bounds checking 2580+ FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept { 2581+ data[length] = value; 2582+ length++; 2583+ } 2584+ // append item to vector, returning if item was added 2585+ FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept { 2586+ if (len() < capacity()) { 2587+ push_unchecked(value); 2588+ return true; 2589+ } else { 2590+ return false; 2591+ } 2592+ } 2593+ // add items to the vector, from a span, without bounds checking 2594+ FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept { 2595+ limb *ptr = data + length; 2596+ std::copy_n(s.ptr, s.len(), ptr); 2597+ set_len(len() + s.len()); 2598+ } 2599+ // try to add items to the vector, returning if items were added 2600+ FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept { 2601+ if (len() + s.len() <= capacity()) { 2602+ extend_unchecked(s); 2603+ return true; 2604+ } else { 2605+ return false; 2606+ } 2607+ } 2608+ // resize the vector, without bounds checking 2609+ // if the new size is longer than the vector, assign value to each 2610+ // appended item. 2611+ FASTFLOAT_CONSTEXPR20 2612+ void resize_unchecked(size_t new_len, limb value) noexcept { 2613+ if (new_len > len()) { 2614+ size_t count = new_len - len(); 2615+ limb *first = data + len(); 2616+ limb *last = first + count; 2617+ ::std::fill(first, last, value); 2618+ set_len(new_len); 2619+ } else { 2620+ set_len(new_len); 2621+ } 2622+ } 2623+ // try to resize the vector, returning if the vector was resized. 2624+ FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept { 2625+ if (new_len > capacity()) { 2626+ return false; 2627+ } else { 2628+ resize_unchecked(new_len, value); 2629+ return true; 2630+ } 2631+ } 2632+ // check if any limbs are non-zero after the given index. 2633+ // this needs to be done in reverse order, since the index 2634+ // is relative to the most significant limbs. 2635+ FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept { 2636+ while (index < len()) { 2637+ if (rindex(index) != 0) { 2638+ return true; 2639+ } 2640+ index++; 2641+ } 2642+ return false; 2643+ } 2644+ // normalize the big integer, so most-significant zero limbs are removed. 2645+ FASTFLOAT_CONSTEXPR14 void normalize() noexcept { 2646+ while (len() > 0 && rindex(0) == 0) { 2647+ length--; 2648+ } 2649+ } 2650+}; 2651+ 2652+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t 2653+empty_hi64(bool &truncated) noexcept { 2654+ truncated = false; 2655+ return 0; 2656+} 2657+ 2658+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t 2659+uint64_hi64(uint64_t r0, bool &truncated) noexcept { 2660+ truncated = false; 2661+ int shl = leading_zeroes(r0); 2662+ return r0 << shl; 2663+} 2664+ 2665+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t 2666+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept { 2667+ int shl = leading_zeroes(r0); 2668+ if (shl == 0) { 2669+ truncated = r1 != 0; 2670+ return r0; 2671+ } else { 2672+ int shr = 64 - shl; 2673+ truncated = (r1 << shl) != 0; 2674+ return (r0 << shl) | (r1 >> shr); 2675+ } 2676+} 2677+ 2678+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t 2679+uint32_hi64(uint32_t r0, bool &truncated) noexcept { 2680+ return uint64_hi64(r0, truncated); 2681+} 2682+ 2683+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t 2684+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept { 2685+ uint64_t x0 = r0; 2686+ uint64_t x1 = r1; 2687+ return uint64_hi64((x0 << 32) | x1, truncated); 2688+} 2689+ 2690+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t 2691+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept { 2692+ uint64_t x0 = r0; 2693+ uint64_t x1 = r1; 2694+ uint64_t x2 = r2; 2695+ return uint64_hi64(x0, (x1 << 32) | x2, truncated); 2696+} 2697+ 2698+// add two small integers, checking for overflow. 2699+// we want an efficient operation. for msvc, where 2700+// we don't have built-in intrinsics, this is still 2701+// pretty fast. 2702+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb 2703+scalar_add(limb x, limb y, bool &overflow) noexcept { 2704+ limb z; 2705+// gcc and clang 2706+#if defined(__has_builtin) 2707+#if __has_builtin(__builtin_add_overflow) 2708+ if (!cpp20_and_in_constexpr()) { 2709+ overflow = __builtin_add_overflow(x, y, &z); 2710+ return z; 2711+ } 2712+#endif 2713+#endif 2714+ 2715+ // generic, this still optimizes correctly on MSVC. 2716+ z = x + y; 2717+ overflow = z < x; 2718+ return z; 2719+} 2720+ 2721+// multiply two small integers, getting both the high and low bits. 2722+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb 2723+scalar_mul(limb x, limb y, limb &carry) noexcept { 2724+#ifdef FASTFLOAT_64BIT_LIMB 2725+#if defined(__SIZEOF_INT128__) 2726+ // GCC and clang both define it as an extension. 2727+ __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry); 2728+ carry = limb(z >> limb_bits); 2729+ return limb(z); 2730+#else 2731+ // fallback, no native 128-bit integer multiplication with carry. 2732+ // on msvc, this optimizes identically, somehow. 2733+ value128 z = full_multiplication(x, y); 2734+ bool overflow; 2735+ z.low = scalar_add(z.low, carry, overflow); 2736+ z.high += uint64_t(overflow); // cannot overflow 2737+ carry = z.high; 2738+ return z.low; 2739+#endif 2740+#else 2741+ uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry); 2742+ carry = limb(z >> limb_bits); 2743+ return limb(z); 2744+#endif 2745+} 2746+ 2747+// add scalar value to bigint starting from offset. 2748+// used in grade school multiplication 2749+template <uint16_t size> 2750+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y, 2751+ size_t start) noexcept { 2752+ size_t index = start; 2753+ limb carry = y; 2754+ bool overflow; 2755+ while (carry != 0 && index < vec.len()) { 2756+ vec[index] = scalar_add(vec[index], carry, overflow); 2757+ carry = limb(overflow); 2758+ index += 1; 2759+ } 2760+ if (carry != 0) { 2761+ FASTFLOAT_TRY(vec.try_push(carry)); 2762+ } 2763+ return true; 2764+} 2765+ 2766+// add scalar value to bigint. 2767+template <uint16_t size> 2768+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool 2769+small_add(stackvec<size> &vec, limb y) noexcept { 2770+ return small_add_from(vec, y, 0); 2771+} 2772+ 2773+// multiply bigint by scalar value. 2774+template <uint16_t size> 2775+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec, 2776+ limb y) noexcept { 2777+ limb carry = 0; 2778+ for (size_t index = 0; index < vec.len(); index++) { 2779+ vec[index] = scalar_mul(vec[index], y, carry); 2780+ } 2781+ if (carry != 0) { 2782+ FASTFLOAT_TRY(vec.try_push(carry)); 2783+ } 2784+ return true; 2785+} 2786+ 2787+// add bigint to bigint starting from index. 2788+// used in grade school multiplication 2789+template <uint16_t size> 2790+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y, 2791+ size_t start) noexcept { 2792+ // the effective x buffer is from `xstart..x.len()`, so exit early 2793+ // if we can't get that current range. 2794+ if (x.len() < start || y.len() > x.len() - start) { 2795+ FASTFLOAT_TRY(x.try_resize(y.len() + start, 0)); 2796+ } 2797+ 2798+ bool carry = false; 2799+ for (size_t index = 0; index < y.len(); index++) { 2800+ limb xi = x[index + start]; 2801+ limb yi = y[index]; 2802+ bool c1 = false; 2803+ bool c2 = false; 2804+ xi = scalar_add(xi, yi, c1); 2805+ if (carry) { 2806+ xi = scalar_add(xi, 1, c2); 2807+ } 2808+ x[index + start] = xi; 2809+ carry = c1 | c2; 2810+ } 2811+ 2812+ // handle overflow 2813+ if (carry) { 2814+ FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start)); 2815+ } 2816+ return true; 2817+} 2818+ 2819+// add bigint to bigint. 2820+template <uint16_t size> 2821+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool 2822+large_add_from(stackvec<size> &x, limb_span y) noexcept { 2823+ return large_add_from(x, y, 0); 2824+} 2825+ 2826+// grade-school multiplication algorithm 2827+template <uint16_t size> 2828+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept { 2829+ limb_span xs = limb_span(x.data, x.len()); 2830+ stackvec<size> z(xs); 2831+ limb_span zs = limb_span(z.data, z.len()); 2832+ 2833+ if (y.len() != 0) { 2834+ limb y0 = y[0]; 2835+ FASTFLOAT_TRY(small_mul(x, y0)); 2836+ for (size_t index = 1; index < y.len(); index++) { 2837+ limb yi = y[index]; 2838+ stackvec<size> zi; 2839+ if (yi != 0) { 2840+ // re-use the same buffer throughout 2841+ zi.set_len(0); 2842+ FASTFLOAT_TRY(zi.try_extend(zs)); 2843+ FASTFLOAT_TRY(small_mul(zi, yi)); 2844+ limb_span zis = limb_span(zi.data, zi.len()); 2845+ FASTFLOAT_TRY(large_add_from(x, zis, index)); 2846+ } 2847+ } 2848+ } 2849+ 2850+ x.normalize(); 2851+ return true; 2852+} 2853+ 2854+// grade-school multiplication algorithm 2855+template <uint16_t size> 2856+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept { 2857+ if (y.len() == 1) { 2858+ FASTFLOAT_TRY(small_mul(x, y[0])); 2859+ } else { 2860+ FASTFLOAT_TRY(long_mul(x, y)); 2861+ } 2862+ return true; 2863+} 2864+ 2865+template <typename = void> struct pow5_tables { 2866+ static constexpr uint32_t large_step = 135; 2867+ static constexpr uint64_t small_power_of_5[] = { 2868+ 1UL, 2869+ 5UL, 2870+ 25UL, 2871+ 125UL, 2872+ 625UL, 2873+ 3125UL, 2874+ 15625UL, 2875+ 78125UL, 2876+ 390625UL, 2877+ 1953125UL, 2878+ 9765625UL, 2879+ 48828125UL, 2880+ 244140625UL, 2881+ 1220703125UL, 2882+ 6103515625UL, 2883+ 30517578125UL, 2884+ 152587890625UL, 2885+ 762939453125UL, 2886+ 3814697265625UL, 2887+ 19073486328125UL, 2888+ 95367431640625UL, 2889+ 476837158203125UL, 2890+ 2384185791015625UL, 2891+ 11920928955078125UL, 2892+ 59604644775390625UL, 2893+ 298023223876953125UL, 2894+ 1490116119384765625UL, 2895+ 7450580596923828125UL, 2896+ }; 2897+#ifdef FASTFLOAT_64BIT_LIMB 2898+ constexpr static limb large_power_of_5[] = { 2899+ 1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL, 2900+ 10482974169319127550UL, 198276706040285095UL}; 2901+#else 2902+ constexpr static limb large_power_of_5[] = { 2903+ 4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U, 2904+ 1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U}; 2905+#endif 2906+}; 2907+ 2908+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 2909+ 2910+template <typename T> constexpr uint32_t pow5_tables<T>::large_step; 2911+ 2912+template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[]; 2913+ 2914+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[]; 2915+ 2916+#endif 2917+ 2918+// big integer type. implements a small subset of big integer 2919+// arithmetic, using simple algorithms since asymptotically 2920+// faster algorithms are slower for a small number of limbs. 2921+// all operations assume the big-integer is normalized. 2922+struct bigint : pow5_tables<> { 2923+ // storage of the limbs, in little-endian order. 2924+ stackvec<bigint_limbs> vec; 2925+ 2926+ FASTFLOAT_CONSTEXPR20 bigint() : vec() {} 2927+ bigint(const bigint &) = delete; 2928+ bigint &operator=(const bigint &) = delete; 2929+ bigint(bigint &&) = delete; 2930+ bigint &operator=(bigint &&other) = delete; 2931+ 2932+ FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() { 2933+#ifdef FASTFLOAT_64BIT_LIMB 2934+ vec.push_unchecked(value); 2935+#else 2936+ vec.push_unchecked(uint32_t(value)); 2937+ vec.push_unchecked(uint32_t(value >> 32)); 2938+#endif 2939+ vec.normalize(); 2940+ } 2941+ 2942+ // get the high 64 bits from the vector, and if bits were truncated. 2943+ // this is to get the significant digits for the float. 2944+ FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept { 2945+#ifdef FASTFLOAT_64BIT_LIMB 2946+ if (vec.len() == 0) { 2947+ return empty_hi64(truncated); 2948+ } else if (vec.len() == 1) { 2949+ return uint64_hi64(vec.rindex(0), truncated); 2950+ } else { 2951+ uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated); 2952+ truncated |= vec.nonzero(2); 2953+ return result; 2954+ } 2955+#else 2956+ if (vec.len() == 0) { 2957+ return empty_hi64(truncated); 2958+ } else if (vec.len() == 1) { 2959+ return uint32_hi64(vec.rindex(0), truncated); 2960+ } else if (vec.len() == 2) { 2961+ return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated); 2962+ } else { 2963+ uint64_t result = 2964+ uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated); 2965+ truncated |= vec.nonzero(3); 2966+ return result; 2967+ } 2968+#endif 2969+ } 2970+ 2971+ // compare two big integers, returning the large value. 2972+ // assumes both are normalized. if the return value is 2973+ // negative, other is larger, if the return value is 2974+ // positive, this is larger, otherwise they are equal. 2975+ // the limbs are stored in little-endian order, so we 2976+ // must compare the limbs in ever order. 2977+ FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept { 2978+ if (vec.len() > other.vec.len()) { 2979+ return 1; 2980+ } else if (vec.len() < other.vec.len()) { 2981+ return -1; 2982+ } else { 2983+ for (size_t index = vec.len(); index > 0; index--) { 2984+ limb xi = vec[index - 1]; 2985+ limb yi = other.vec[index - 1]; 2986+ if (xi > yi) { 2987+ return 1; 2988+ } else if (xi < yi) { 2989+ return -1; 2990+ } 2991+ } 2992+ return 0; 2993+ } 2994+ } 2995+ 2996+ // shift left each limb n bits, carrying over to the new limb 2997+ // returns true if we were able to shift all the digits. 2998+ FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept { 2999+ // Internally, for each item, we shift left by n, and add the previous 3000+ // right shifted limb-bits. 3001+ // For example, we transform (for u8) shifted left 2, to: 3002+ // b10100100 b01000010 3003+ // b10 b10010001 b00001000 3004+ FASTFLOAT_DEBUG_ASSERT(n != 0); 3005+ FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8); 3006+ 3007+ size_t shl = n; 3008+ size_t shr = limb_bits - shl; 3009+ limb prev = 0; 3010+ for (size_t index = 0; index < vec.len(); index++) { 3011+ limb xi = vec[index]; 3012+ vec[index] = (xi << shl) | (prev >> shr); 3013+ prev = xi; 3014+ } 3015+ 3016+ limb carry = prev >> shr; 3017+ if (carry != 0) { 3018+ return vec.try_push(carry); 3019+ } 3020+ return true; 3021+ } 3022+ 3023+ // move the limbs left by `n` limbs. 3024+ FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept { 3025+ FASTFLOAT_DEBUG_ASSERT(n != 0); 3026+ if (n + vec.len() > vec.capacity()) { 3027+ return false; 3028+ } else if (!vec.is_empty()) { 3029+ // move limbs 3030+ limb *dst = vec.data + n; 3031+ const limb *src = vec.data; 3032+ std::copy_backward(src, src + vec.len(), dst + vec.len()); 3033+ // fill in empty limbs 3034+ limb *first = vec.data; 3035+ limb *last = first + n; 3036+ ::std::fill(first, last, 0); 3037+ vec.set_len(n + vec.len()); 3038+ return true; 3039+ } else { 3040+ return true; 3041+ } 3042+ } 3043+ 3044+ // move the limbs left by `n` bits. 3045+ FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept { 3046+ size_t rem = n % limb_bits; 3047+ size_t div = n / limb_bits; 3048+ if (rem != 0) { 3049+ FASTFLOAT_TRY(shl_bits(rem)); 3050+ } 3051+ if (div != 0) { 3052+ FASTFLOAT_TRY(shl_limbs(div)); 3053+ } 3054+ return true; 3055+ } 3056+ 3057+ // get the number of leading zeros in the bigint. 3058+ FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept { 3059+ if (vec.is_empty()) { 3060+ return 0; 3061+ } else { 3062+#ifdef FASTFLOAT_64BIT_LIMB 3063+ return leading_zeroes(vec.rindex(0)); 3064+#else 3065+ // no use defining a specialized leading_zeroes for a 32-bit type. 3066+ uint64_t r0 = vec.rindex(0); 3067+ return leading_zeroes(r0 << 32); 3068+#endif 3069+ } 3070+ } 3071+ 3072+ // get the number of bits in the bigint. 3073+ FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept { 3074+ int lz = ctlz(); 3075+ return int(limb_bits * vec.len()) - lz; 3076+ } 3077+ 3078+ FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); } 3079+ 3080+ FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); } 3081+ 3082+ // multiply as if by 2 raised to a power. 3083+ FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); } 3084+ 3085+ // multiply as if by 5 raised to a power. 3086+ FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept { 3087+ // multiply by a power of 5 3088+ size_t large_length = sizeof(large_power_of_5) / sizeof(limb); 3089+ limb_span large = limb_span(large_power_of_5, large_length); 3090+ while (exp >= large_step) { 3091+ FASTFLOAT_TRY(large_mul(vec, large)); 3092+ exp -= large_step; 3093+ } 3094+#ifdef FASTFLOAT_64BIT_LIMB 3095+ uint32_t small_step = 27; 3096+ limb max_native = 7450580596923828125UL; 3097+#else 3098+ uint32_t small_step = 13; 3099+ limb max_native = 1220703125U; 3100+#endif 3101+ while (exp >= small_step) { 3102+ FASTFLOAT_TRY(small_mul(vec, max_native)); 3103+ exp -= small_step; 3104+ } 3105+ if (exp != 0) { 3106+ // Work around clang bug https://godbolt.org/z/zedh7rrhc 3107+ // This is similar to https://github.com/llvm/llvm-project/issues/47746, 3108+ // except the workaround described there don't work here 3109+ FASTFLOAT_TRY(small_mul( 3110+ vec, limb(((void)small_power_of_5[0], small_power_of_5[exp])))); 3111+ } 3112+ 3113+ return true; 3114+ } 3115+ 3116+ // multiply as if by 10 raised to a power. 3117+ FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept { 3118+ FASTFLOAT_TRY(pow5(exp)); 3119+ return pow2(exp); 3120+ } 3121+}; 3122+ 3123+} // namespace fast_float 3124+ 3125+#endif 3126+ 3127+#ifndef FASTFLOAT_DIGIT_COMPARISON_H 3128+#define FASTFLOAT_DIGIT_COMPARISON_H 3129+ 3130+#include <algorithm> 3131+#include <cstdint> 3132+#include <cstring> 3133+#include <iterator> 3134+ 3135+ 3136+namespace fast_float { 3137+ 3138+// 1e0 to 1e19 3139+constexpr static uint64_t powers_of_ten_uint64[] = {1UL, 3140+ 10UL, 3141+ 100UL, 3142+ 1000UL, 3143+ 10000UL, 3144+ 100000UL, 3145+ 1000000UL, 3146+ 10000000UL, 3147+ 100000000UL, 3148+ 1000000000UL, 3149+ 10000000000UL, 3150+ 100000000000UL, 3151+ 1000000000000UL, 3152+ 10000000000000UL, 3153+ 100000000000000UL, 3154+ 1000000000000000UL, 3155+ 10000000000000000UL, 3156+ 100000000000000000UL, 3157+ 1000000000000000000UL, 3158+ 10000000000000000000UL}; 3159+ 3160+// calculate the exponent, in scientific notation, of the number. 3161+// this algorithm is not even close to optimized, but it has no practical 3162+// effect on performance: in order to have a faster algorithm, we'd need 3163+// to slow down performance for faster algorithms, and this is still fast. 3164+template <typename UC> 3165+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t 3166+scientific_exponent(parsed_number_string_t<UC> &num) noexcept { 3167+ uint64_t mantissa = num.mantissa; 3168+ int32_t exponent = int32_t(num.exponent); 3169+ while (mantissa >= 10000) { 3170+ mantissa /= 10000; 3171+ exponent += 4; 3172+ } 3173+ while (mantissa >= 100) { 3174+ mantissa /= 100; 3175+ exponent += 2; 3176+ } 3177+ while (mantissa >= 10) { 3178+ mantissa /= 10; 3179+ exponent += 1; 3180+ } 3181+ return exponent; 3182+} 3183+ 3184+// this converts a native floating-point number to an extended-precision float. 3185+template <typename T> 3186+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa 3187+to_extended(T value) noexcept { 3188+ using equiv_uint = typename binary_format<T>::equiv_uint; 3189+ constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask(); 3190+ constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask(); 3191+ constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask(); 3192+ 3193+ adjusted_mantissa am; 3194+ int32_t bias = binary_format<T>::mantissa_explicit_bits() - 3195+ binary_format<T>::minimum_exponent(); 3196+ equiv_uint bits; 3197+#if FASTFLOAT_HAS_BIT_CAST 3198+ bits = std::bit_cast<equiv_uint>(value); 3199+#else 3200+ ::memcpy(&bits, &value, sizeof(T)); 3201+#endif 3202+ if ((bits & exponent_mask) == 0) { 3203+ // denormal 3204+ am.power2 = 1 - bias; 3205+ am.mantissa = bits & mantissa_mask; 3206+ } else { 3207+ // normal 3208+ am.power2 = int32_t((bits & exponent_mask) >> 3209+ binary_format<T>::mantissa_explicit_bits()); 3210+ am.power2 -= bias; 3211+ am.mantissa = (bits & mantissa_mask) | hidden_bit_mask; 3212+ } 3213+ 3214+ return am; 3215+} 3216+ 3217+// get the extended precision value of the halfway point between b and b+u. 3218+// we are given a native float that represents b, so we need to adjust it 3219+// halfway between b and b+u. 3220+template <typename T> 3221+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa 3222+to_extended_halfway(T value) noexcept { 3223+ adjusted_mantissa am = to_extended(value); 3224+ am.mantissa <<= 1; 3225+ am.mantissa += 1; 3226+ am.power2 -= 1; 3227+ return am; 3228+} 3229+ 3230+// round an extended-precision float to the nearest machine float. 3231+template <typename T, typename callback> 3232+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am, 3233+ callback cb) noexcept { 3234+ int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1; 3235+ if (-am.power2 >= mantissa_shift) { 3236+ // have a denormal float 3237+ int32_t shift = -am.power2 + 1; 3238+ cb(am, std::min<int32_t>(shift, 64)); 3239+ // check for round-up: if rounding-nearest carried us to the hidden bit. 3240+ am.power2 = (am.mantissa < 3241+ (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) 3242+ ? 0 3243+ : 1; 3244+ return; 3245+ } 3246+ 3247+ // have a normal float, use the default shift. 3248+ cb(am, mantissa_shift); 3249+ 3250+ // check for carry 3251+ if (am.mantissa >= 3252+ (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) { 3253+ am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); 3254+ am.power2++; 3255+ } 3256+ 3257+ // check for infinite: we could have carried to an infinite power 3258+ am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits()); 3259+ if (am.power2 >= binary_format<T>::infinite_power()) { 3260+ am.power2 = binary_format<T>::infinite_power(); 3261+ am.mantissa = 0; 3262+ } 3263+} 3264+ 3265+template <typename callback> 3266+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void 3267+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift, 3268+ callback cb) noexcept { 3269+ const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1; 3270+ const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1); 3271+ uint64_t truncated_bits = am.mantissa & mask; 3272+ bool is_above = truncated_bits > halfway; 3273+ bool is_halfway = truncated_bits == halfway; 3274+ 3275+ // shift digits into position 3276+ if (shift == 64) { 3277+ am.mantissa = 0; 3278+ } else { 3279+ am.mantissa >>= shift; 3280+ } 3281+ am.power2 += shift; 3282+ 3283+ bool is_odd = (am.mantissa & 1) == 1; 3284+ am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above)); 3285+} 3286+ 3287+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void 3288+round_down(adjusted_mantissa &am, int32_t shift) noexcept { 3289+ if (shift == 64) { 3290+ am.mantissa = 0; 3291+ } else { 3292+ am.mantissa >>= shift; 3293+ } 3294+ am.power2 += shift; 3295+} 3296+template <typename UC> 3297+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 3298+skip_zeros(UC const *&first, UC const *last) noexcept { 3299+ uint64_t val; 3300+ while (!cpp20_and_in_constexpr() && 3301+ std::distance(first, last) >= int_cmp_len<UC>()) { 3302+ ::memcpy(&val, first, sizeof(uint64_t)); 3303+ if (val != int_cmp_zeros<UC>()) { 3304+ break; 3305+ } 3306+ first += int_cmp_len<UC>(); 3307+ } 3308+ while (first != last) { 3309+ if (*first != UC('0')) { 3310+ break; 3311+ } 3312+ first++; 3313+ } 3314+} 3315+ 3316+// determine if any non-zero digits were truncated. 3317+// all characters must be valid digits. 3318+template <typename UC> 3319+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool 3320+is_truncated(UC const *first, UC const *last) noexcept { 3321+ // do 8-bit optimizations, can just compare to 8 literal 0s. 3322+ uint64_t val; 3323+ while (!cpp20_and_in_constexpr() && 3324+ std::distance(first, last) >= int_cmp_len<UC>()) { 3325+ ::memcpy(&val, first, sizeof(uint64_t)); 3326+ if (val != int_cmp_zeros<UC>()) { 3327+ return true; 3328+ } 3329+ first += int_cmp_len<UC>(); 3330+ } 3331+ while (first != last) { 3332+ if (*first != UC('0')) { 3333+ return true; 3334+ } 3335+ ++first; 3336+ } 3337+ return false; 3338+} 3339+template <typename UC> 3340+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool 3341+is_truncated(span<const UC> s) noexcept { 3342+ return is_truncated(s.ptr, s.ptr + s.len()); 3343+} 3344+ 3345+template <typename UC> 3346+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 3347+parse_eight_digits(const UC *&p, limb &value, size_t &counter, 3348+ size_t &count) noexcept { 3349+ value = value * 100000000 + parse_eight_digits_unrolled(p); 3350+ p += 8; 3351+ counter += 8; 3352+ count += 8; 3353+} 3354+ 3355+template <typename UC> 3356+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void 3357+parse_one_digit(UC const *&p, limb &value, size_t &counter, 3358+ size_t &count) noexcept { 3359+ value = value * 10 + limb(*p - UC('0')); 3360+ p++; 3361+ counter++; 3362+ count++; 3363+} 3364+ 3365+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 3366+add_native(bigint &big, limb power, limb value) noexcept { 3367+ big.mul(power); 3368+ big.add(value); 3369+} 3370+ 3371+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void 3372+round_up_bigint(bigint &big, size_t &count) noexcept { 3373+ // need to round-up the digits, but need to avoid rounding 3374+ // ....9999 to ...10000, which could cause a false halfway point. 3375+ add_native(big, 10, 1); 3376+ count++; 3377+} 3378+ 3379+// parse the significant digits into a big integer 3380+template <typename UC> 3381+inline FASTFLOAT_CONSTEXPR20 void 3382+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num, 3383+ size_t max_digits, size_t &digits) noexcept { 3384+ // try to minimize the number of big integer and scalar multiplication. 3385+ // therefore, try to parse 8 digits at a time, and multiply by the largest 3386+ // scalar value (9 or 19 digits) for each step. 3387+ size_t counter = 0; 3388+ digits = 0; 3389+ limb value = 0; 3390+#ifdef FASTFLOAT_64BIT_LIMB 3391+ size_t step = 19; 3392+#else 3393+ size_t step = 9; 3394+#endif 3395+ 3396+ // process all integer digits. 3397+ UC const *p = num.integer.ptr; 3398+ UC const *pend = p + num.integer.len(); 3399+ skip_zeros(p, pend); 3400+ // process all digits, in increments of step per loop 3401+ while (p != pend) { 3402+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && 3403+ (max_digits - digits >= 8)) { 3404+ parse_eight_digits(p, value, counter, digits); 3405+ } 3406+ while (counter < step && p != pend && digits < max_digits) { 3407+ parse_one_digit(p, value, counter, digits); 3408+ } 3409+ if (digits == max_digits) { 3410+ // add the temporary value, then check if we've truncated any digits 3411+ add_native(result, limb(powers_of_ten_uint64[counter]), value); 3412+ bool truncated = is_truncated(p, pend); 3413+ if (num.fraction.ptr != nullptr) { 3414+ truncated |= is_truncated(num.fraction); 3415+ } 3416+ if (truncated) { 3417+ round_up_bigint(result, digits); 3418+ } 3419+ return; 3420+ } else { 3421+ add_native(result, limb(powers_of_ten_uint64[counter]), value); 3422+ counter = 0; 3423+ value = 0; 3424+ } 3425+ } 3426+ 3427+ // add our fraction digits, if they're available. 3428+ if (num.fraction.ptr != nullptr) { 3429+ p = num.fraction.ptr; 3430+ pend = p + num.fraction.len(); 3431+ if (digits == 0) { 3432+ skip_zeros(p, pend); 3433+ } 3434+ // process all digits, in increments of step per loop 3435+ while (p != pend) { 3436+ while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && 3437+ (max_digits - digits >= 8)) { 3438+ parse_eight_digits(p, value, counter, digits); 3439+ } 3440+ while (counter < step && p != pend && digits < max_digits) { 3441+ parse_one_digit(p, value, counter, digits); 3442+ } 3443+ if (digits == max_digits) { 3444+ // add the temporary value, then check if we've truncated any digits 3445+ add_native(result, limb(powers_of_ten_uint64[counter]), value); 3446+ bool truncated = is_truncated(p, pend); 3447+ if (truncated) { 3448+ round_up_bigint(result, digits); 3449+ } 3450+ return; 3451+ } else { 3452+ add_native(result, limb(powers_of_ten_uint64[counter]), value); 3453+ counter = 0; 3454+ value = 0; 3455+ } 3456+ } 3457+ } 3458+ 3459+ if (counter != 0) { 3460+ add_native(result, limb(powers_of_ten_uint64[counter]), value); 3461+ } 3462+} 3463+ 3464+template <typename T> 3465+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa 3466+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept { 3467+ FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent))); 3468+ adjusted_mantissa answer; 3469+ bool truncated; 3470+ answer.mantissa = bigmant.hi64(truncated); 3471+ int bias = binary_format<T>::mantissa_explicit_bits() - 3472+ binary_format<T>::minimum_exponent(); 3473+ answer.power2 = bigmant.bit_length() - 64 + bias; 3474+ 3475+ round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) { 3476+ round_nearest_tie_even( 3477+ a, shift, 3478+ [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool { 3479+ return is_above || (is_halfway && truncated) || 3480+ (is_odd && is_halfway); 3481+ }); 3482+ }); 3483+ 3484+ return answer; 3485+} 3486+ 3487+// the scaling here is quite simple: we have, for the real digits `m * 10^e`, 3488+// and for the theoretical digits `n * 2^f`. Since `e` is always negative, 3489+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`. 3490+// we then need to scale by `2^(f- e)`, and then the two significant digits 3491+// are of the same magnitude. 3492+template <typename T> 3493+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp( 3494+ bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept { 3495+ bigint &real_digits = bigmant; 3496+ int32_t real_exp = exponent; 3497+ 3498+ // get the value of `b`, rounded down, and get a bigint representation of b+h 3499+ adjusted_mantissa am_b = am; 3500+ // gcc7 buf: use a lambda to remove the noexcept qualifier bug with 3501+ // -Wnoexcept-type. 3502+ round<T>(am_b, 3503+ [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); }); 3504+ T b; 3505+ to_float(false, am_b, b); 3506+ adjusted_mantissa theor = to_extended_halfway(b); 3507+ bigint theor_digits(theor.mantissa); 3508+ int32_t theor_exp = theor.power2; 3509+ 3510+ // scale real digits and theor digits to be same power. 3511+ int32_t pow2_exp = theor_exp - real_exp; 3512+ uint32_t pow5_exp = uint32_t(-real_exp); 3513+ if (pow5_exp != 0) { 3514+ FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp)); 3515+ } 3516+ if (pow2_exp > 0) { 3517+ FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp))); 3518+ } else if (pow2_exp < 0) { 3519+ FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp))); 3520+ } 3521+ 3522+ // compare digits, and use it to director rounding 3523+ int ord = real_digits.compare(theor_digits); 3524+ adjusted_mantissa answer = am; 3525+ round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) { 3526+ round_nearest_tie_even( 3527+ a, shift, [ord](bool is_odd, bool _, bool __) -> bool { 3528+ (void)_; // not needed, since we've done our comparison 3529+ (void)__; // not needed, since we've done our comparison 3530+ if (ord > 0) { 3531+ return true; 3532+ } else if (ord < 0) { 3533+ return false; 3534+ } else { 3535+ return is_odd; 3536+ } 3537+ }); 3538+ }); 3539+ 3540+ return answer; 3541+} 3542+ 3543+// parse the significant digits as a big integer to unambiguously round the 3544+// the significant digits. here, we are trying to determine how to round 3545+// an extended float representation close to `b+h`, halfway between `b` 3546+// (the float rounded-down) and `b+u`, the next positive float. this 3547+// algorithm is always correct, and uses one of two approaches. when 3548+// the exponent is positive relative to the significant digits (such as 3549+// 1234), we create a big-integer representation, get the high 64-bits, 3550+// determine if any lower bits are truncated, and use that to direct 3551+// rounding. in case of a negative exponent relative to the significant 3552+// digits (such as 1.2345), we create a theoretical representation of 3553+// `b` as a big-integer type, scaled to the same binary exponent as 3554+// the actual digits. we then compare the big integer representations 3555+// of both, and use that to direct rounding. 3556+template <typename T, typename UC> 3557+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa 3558+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept { 3559+ // remove the invalid exponent bias 3560+ am.power2 -= invalid_am_bias; 3561+ 3562+ int32_t sci_exp = scientific_exponent(num); 3563+ size_t max_digits = binary_format<T>::max_digits(); 3564+ size_t digits = 0; 3565+ bigint bigmant; 3566+ parse_mantissa(bigmant, num, max_digits, digits); 3567+ // can't underflow, since digits is at most max_digits. 3568+ int32_t exponent = sci_exp + 1 - int32_t(digits); 3569+ if (exponent >= 0) { 3570+ return positive_digit_comp<T>(bigmant, exponent); 3571+ } else { 3572+ return negative_digit_comp<T>(bigmant, am, exponent); 3573+ } 3574+} 3575+ 3576+} // namespace fast_float 3577+ 3578+#endif 3579+ 3580+#ifndef FASTFLOAT_PARSE_NUMBER_H 3581+#define FASTFLOAT_PARSE_NUMBER_H 3582+ 3583+ 3584+#include <cmath> 3585+#include <cstring> 3586+#include <limits> 3587+#include <system_error> 3588+namespace fast_float { 3589+ 3590+namespace detail { 3591+/** 3592+ * Special case +inf, -inf, nan, infinity, -infinity. 3593+ * The case comparisons could be made much faster given that we know that the 3594+ * strings a null-free and fixed. 3595+ **/ 3596+template <typename T, typename UC> 3597+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first, 3598+ UC const *last, 3599+ T &value) noexcept { 3600+ from_chars_result_t<UC> answer{}; 3601+ answer.ptr = first; 3602+ answer.ec = std::errc(); // be optimistic 3603+ bool minusSign = false; 3604+ if (*first == 3605+ UC('-')) { // assume first < last, so dereference without checks; 3606+ // C++17 20.19.3.(7.1) explicitly forbids '+' here 3607+ minusSign = true; 3608+ ++first; 3609+ } 3610+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default 3611+ if (*first == UC('+')) { 3612+ ++first; 3613+ } 3614+#endif 3615+ if (last - first >= 3) { 3616+ if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) { 3617+ answer.ptr = (first += 3); 3618+ value = minusSign ? -std::numeric_limits<T>::quiet_NaN() 3619+ : std::numeric_limits<T>::quiet_NaN(); 3620+ // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, 3621+ // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan). 3622+ if (first != last && *first == UC('(')) { 3623+ for (UC const *ptr = first + 1; ptr != last; ++ptr) { 3624+ if (*ptr == UC(')')) { 3625+ answer.ptr = ptr + 1; // valid nan(n-char-seq-opt) 3626+ break; 3627+ } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) || 3628+ (UC('A') <= *ptr && *ptr <= UC('Z')) || 3629+ (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_'))) 3630+ break; // forbidden char, not nan(n-char-seq-opt) 3631+ } 3632+ } 3633+ return answer; 3634+ } 3635+ if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) { 3636+ if ((last - first >= 8) && 3637+ fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) { 3638+ answer.ptr = first + 8; 3639+ } else { 3640+ answer.ptr = first + 3; 3641+ } 3642+ value = minusSign ? -std::numeric_limits<T>::infinity() 3643+ : std::numeric_limits<T>::infinity(); 3644+ return answer; 3645+ } 3646+ } 3647+ answer.ec = std::errc::invalid_argument; 3648+ return answer; 3649+} 3650+ 3651+/** 3652+ * Returns true if the floating-pointing rounding mode is to 'nearest'. 3653+ * It is the default on most system. This function is meant to be inexpensive. 3654+ * Credit : @mwalcott3 3655+ */ 3656+fastfloat_really_inline bool rounds_to_nearest() noexcept { 3657+ // https://lemire.me/blog/2020/06/26/gcc-not-nearest/ 3658+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0) 3659+ return false; 3660+#endif 3661+ // See 3662+ // A fast function to check your floating-point rounding mode 3663+ // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/ 3664+ // 3665+ // This function is meant to be equivalent to : 3666+ // prior: #include <cfenv> 3667+ // return fegetround() == FE_TONEAREST; 3668+ // However, it is expected to be much faster than the fegetround() 3669+ // function call. 3670+ // 3671+ // The volatile keywoard prevents the compiler from computing the function 3672+ // at compile-time. 3673+ // There might be other ways to prevent compile-time optimizations (e.g., 3674+ // asm). The value does not need to be std::numeric_limits<float>::min(), any 3675+ // small value so that 1 + x should round to 1 would do (after accounting for 3676+ // excess precision, as in 387 instructions). 3677+ static volatile float fmin = std::numeric_limits<float>::min(); 3678+ float fmini = fmin; // we copy it so that it gets loaded at most once. 3679+// 3680+// Explanation: 3681+// Only when fegetround() == FE_TONEAREST do we have that 3682+// fmin + 1.0f == 1.0f - fmin. 3683+// 3684+// FE_UPWARD: 3685+// fmin + 1.0f > 1 3686+// 1.0f - fmin == 1 3687+// 3688+// FE_DOWNWARD or FE_TOWARDZERO: 3689+// fmin + 1.0f == 1 3690+// 1.0f - fmin < 1 3691+// 3692+// Note: This may fail to be accurate if fast-math has been 3693+// enabled, as rounding conventions may not apply. 3694+#ifdef FASTFLOAT_VISUAL_STUDIO 3695+#pragma warning(push) 3696+// todo: is there a VS warning? 3697+// see 3698+// https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013 3699+#elif defined(__clang__) 3700+#pragma clang diagnostic push 3701+#pragma clang diagnostic ignored "-Wfloat-equal" 3702+#elif defined(__GNUC__) 3703+#pragma GCC diagnostic push 3704+#pragma GCC diagnostic ignored "-Wfloat-equal" 3705+#endif 3706+ return (fmini + 1.0f == 1.0f - fmini); 3707+#ifdef FASTFLOAT_VISUAL_STUDIO 3708+#pragma warning(pop) 3709+#elif defined(__clang__) 3710+#pragma clang diagnostic pop 3711+#elif defined(__GNUC__) 3712+#pragma GCC diagnostic pop 3713+#endif 3714+} 3715+ 3716+} // namespace detail 3717+ 3718+template <typename T> struct from_chars_caller { 3719+ template <typename UC> 3720+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> 3721+ call(UC const *first, UC const *last, T &value, 3722+ parse_options_t<UC> options) noexcept { 3723+ return from_chars_advanced(first, last, value, options); 3724+ } 3725+}; 3726+ 3727+#if __STDCPP_FLOAT32_T__ == 1 3728+template <> struct from_chars_caller<std::float32_t> { 3729+ template <typename UC> 3730+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> 3731+ call(UC const *first, UC const *last, std::float32_t &value, 3732+ parse_options_t<UC> options) noexcept { 3733+ // if std::float32_t is defined, and we are in C++23 mode; macro set for 3734+ // float32; set value to float due to equivalence between float and 3735+ // float32_t 3736+ float val; 3737+ auto ret = from_chars_advanced(first, last, val, options); 3738+ value = val; 3739+ return ret; 3740+ } 3741+}; 3742+#endif 3743+ 3744+#if __STDCPP_FLOAT64_T__ == 1 3745+template <> struct from_chars_caller<std::float64_t> { 3746+ template <typename UC> 3747+ FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC> 3748+ call(UC const *first, UC const *last, std::float64_t &value, 3749+ parse_options_t<UC> options) noexcept { 3750+ // if std::float64_t is defined, and we are in C++23 mode; macro set for 3751+ // float64; set value as double due to equivalence between double and 3752+ // float64_t 3753+ double val; 3754+ auto ret = from_chars_advanced(first, last, val, options); 3755+ value = val; 3756+ return ret; 3757+ } 3758+}; 3759+#endif 3760+ 3761+template <typename T, typename UC, typename> 3762+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 3763+from_chars(UC const *first, UC const *last, T &value, 3764+ chars_format fmt /*= chars_format::general*/) noexcept { 3765+ return from_chars_caller<T>::call(first, last, value, 3766+ parse_options_t<UC>(fmt)); 3767+} 3768+ 3769+/** 3770+ * This function overload takes parsed_number_string_t structure that is created 3771+ * and populated either by from_chars_advanced function taking chars range and 3772+ * parsing options or other parsing custom function implemented by user. 3773+ */ 3774+template <typename T, typename UC> 3775+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 3776+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept { 3777+ 3778+ static_assert(is_supported_float_type<T>(), 3779+ "only some floating-point types are supported"); 3780+ static_assert(is_supported_char_type<UC>(), 3781+ "only char, wchar_t, char16_t and char32_t are supported"); 3782+ 3783+ from_chars_result_t<UC> answer; 3784+ 3785+ answer.ec = std::errc(); // be optimistic 3786+ answer.ptr = pns.lastmatch; 3787+ // The implementation of the Clinger's fast path is convoluted because 3788+ // we want round-to-nearest in all cases, irrespective of the rounding mode 3789+ // selected on the thread. 3790+ // We proceed optimistically, assuming that detail::rounds_to_nearest() 3791+ // returns true. 3792+ if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && 3793+ pns.exponent <= binary_format<T>::max_exponent_fast_path() && 3794+ !pns.too_many_digits) { 3795+ // Unfortunately, the conventional Clinger's fast path is only possible 3796+ // when the system rounds to the nearest float. 3797+ // 3798+ // We expect the next branch to almost always be selected. 3799+ // We could check it first (before the previous branch), but 3800+ // there might be performance advantages at having the check 3801+ // be last. 3802+ if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) { 3803+ // We have that fegetround() == FE_TONEAREST. 3804+ // Next is Clinger's fast path. 3805+ if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) { 3806+ value = T(pns.mantissa); 3807+ if (pns.exponent < 0) { 3808+ value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); 3809+ } else { 3810+ value = value * binary_format<T>::exact_power_of_ten(pns.exponent); 3811+ } 3812+ if (pns.negative) { 3813+ value = -value; 3814+ } 3815+ return answer; 3816+ } 3817+ } else { 3818+ // We do not have that fegetround() == FE_TONEAREST. 3819+ // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's 3820+ // proposal 3821+ if (pns.exponent >= 0 && 3822+ pns.mantissa <= 3823+ binary_format<T>::max_mantissa_fast_path(pns.exponent)) { 3824+#if defined(__clang__) || defined(FASTFLOAT_32BIT) 3825+ // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD 3826+ if (pns.mantissa == 0) { 3827+ value = pns.negative ? T(-0.) : T(0.); 3828+ return answer; 3829+ } 3830+#endif 3831+ value = T(pns.mantissa) * 3832+ binary_format<T>::exact_power_of_ten(pns.exponent); 3833+ if (pns.negative) { 3834+ value = -value; 3835+ } 3836+ return answer; 3837+ } 3838+ } 3839+ } 3840+ adjusted_mantissa am = 3841+ compute_float<binary_format<T>>(pns.exponent, pns.mantissa); 3842+ if (pns.too_many_digits && am.power2 >= 0) { 3843+ if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) { 3844+ am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa); 3845+ } 3846+ } 3847+ // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) 3848+ // and we have an invalid power (am.power2 < 0), then we need to go the long 3849+ // way around again. This is very uncommon. 3850+ if (am.power2 < 0) { 3851+ am = digit_comp<T>(pns, am); 3852+ } 3853+ to_float(pns.negative, am, value); 3854+ // Test for over/underflow. 3855+ if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) || 3856+ am.power2 == binary_format<T>::infinite_power()) { 3857+ answer.ec = std::errc::result_out_of_range; 3858+ } 3859+ return answer; 3860+} 3861+ 3862+template <typename T, typename UC> 3863+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 3864+from_chars_advanced(UC const *first, UC const *last, T &value, 3865+ parse_options_t<UC> options) noexcept { 3866+ 3867+ static_assert(is_supported_float_type<T>(), 3868+ "only some floating-point types are supported"); 3869+ static_assert(is_supported_char_type<UC>(), 3870+ "only char, wchar_t, char16_t and char32_t are supported"); 3871+ 3872+ from_chars_result_t<UC> answer; 3873+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default 3874+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { 3875+ first++; 3876+ } 3877+#endif 3878+ if (first == last) { 3879+ answer.ec = std::errc::invalid_argument; 3880+ answer.ptr = first; 3881+ return answer; 3882+ } 3883+ parsed_number_string_t<UC> pns = 3884+ parse_number_string<UC>(first, last, options); 3885+ if (!pns.valid) { 3886+ if (options.format & chars_format::no_infnan) { 3887+ answer.ec = std::errc::invalid_argument; 3888+ answer.ptr = first; 3889+ return answer; 3890+ } else { 3891+ return detail::parse_infnan(first, last, value); 3892+ } 3893+ } 3894+ 3895+ // call overload that takes parsed_number_string_t directly. 3896+ return from_chars_advanced(pns, value); 3897+} 3898+ 3899+template <typename T, typename UC, typename> 3900+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC> 3901+from_chars(UC const *first, UC const *last, T &value, int base) noexcept { 3902+ static_assert(is_supported_char_type<UC>(), 3903+ "only char, wchar_t, char16_t and char32_t are supported"); 3904+ 3905+ from_chars_result_t<UC> answer; 3906+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default 3907+ while ((first != last) && fast_float::is_space(uint8_t(*first))) { 3908+ first++; 3909+ } 3910+#endif 3911+ if (first == last || base < 2 || base > 36) { 3912+ answer.ec = std::errc::invalid_argument; 3913+ answer.ptr = first; 3914+ return answer; 3915+ } 3916+ return parse_int_string(first, last, value, base); 3917+} 3918+ 3919+} // namespace fast_float 3920+ 3921+#endif 3922+ 3923