1From 2a32e43e43b04771a3357d3d4ccbafa7714e0114 Mon Sep 17 00:00:00 2001
2From: Khem Raj <raj.khem@gmail.com>
3Date: Fri, 4 Oct 2024 21:21:11 -0700
4Subject: [PATCH 4/5] fast_float: Add single header library for from_char
5 implementation
6
7Document the process to re-generate the file whenever new release
8is made for fast_float upstream.
9
10This would make it work with llvm libc++
11
12Upstream-Status: Submitted [https://gitlab.gnome.org/GNOME/vte/-/issues/2823#note_2239888]
13Signed-off-by: Khem Raj <raj.khem@gmail.com>
14---
15 README.md         |   17 +
16 src/fast_float.hh | 3869 +++++++++++++++++++++++++++++++++++++++++++++
17 2 files changed, 3886 insertions(+)
18 create mode 100644 src/fast_float.hh
19
20diff --git a/README.md b/README.md
21index a32465a9..20ed5ba2 100644
22--- a/README.md
23+++ b/README.md
24@@ -21,6 +21,23 @@ on download.gnome.org, but please note that any tarball for releases
25 after 0.60.3 were made by either the gnome release team or other
26 gnome contributors, but not by a VTE maintainer.
27
28+fast_float library[1] is used to provide from_chars implementation for faster
29+and more portable parsing of 64 decimal strings.
30+
31+fast_float.hh is an amalgamation of the entire library,
32+which can be regenerated by using amalgamate.py script provided by
33+fast_float repository. Following command can be used to re-generate the
34+header file
35+
36+```
37+git clone https://github.com/fastfloat/fast_float
38+cd fast_float
39+git checkout v6.1.6
40+python3 ./script/amalgamate.py --license=MIT > $VTE_SRC/src/fast_float.hh
41+```
42+
43+[1]: https://github.com/fastfloat/fast_float
44+
45 Installation
46 ------------
47
48diff --git a/src/fast_float.hh b/src/fast_float.hh
49new file mode 100644
50index 00000000..e0d5dd53
51--- /dev/null
52+++ b/src/fast_float.hh
53@@ -0,0 +1,3869 @@
54+// fast_float by Daniel Lemire
55+// fast_float by João Paulo Magalhaes
56+//
57+//
58+// with contributions from Eugene Golushkov
59+// with contributions from Maksim Kita
60+// with contributions from Marcin Wojdyr
61+// with contributions from Neal Richardson
62+// with contributions from Tim Paine
63+// with contributions from Fabio Pellacini
64+// with contributions from Lénárd Szolnoki
65+// with contributions from Jan Pharago
66+// with contributions from Maya Warrier
67+// with contributions from Taha Khokhar
68+//
69+//
70+// MIT License Notice
71+//
72+//    MIT License
73+//
74+//    Copyright (c) 2021 The fast_float authors
75+//
76+//    Permission is hereby granted, free of charge, to any
77+//    person obtaining a copy of this software and associated
78+//    documentation files (the "Software"), to deal in the
79+//    Software without restriction, including without
80+//    limitation the rights to use, copy, modify, merge,
81+//    publish, distribute, sublicense, and/or sell copies of
82+//    the Software, and to permit persons to whom the Software
83+//    is furnished to do so, subject to the following
84+//    conditions:
85+//
86+//    The above copyright notice and this permission notice
87+//    shall be included in all copies or substantial portions
88+//    of the Software.
89+//
90+//    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
91+//    ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
92+//    TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
93+//    PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
94+//    SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
95+//    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
96+//    OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
97+//    IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
98+//    DEALINGS IN THE SOFTWARE.
99+//
100+
101+#ifndef FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
102+#define FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
103+
104+#ifdef __has_include
105+#if __has_include(<version>)
106+#include <version>
107+#endif
108+#endif
109+
110+// Testing for https://wg21.link/N3652, adopted in C++14
111+#if __cpp_constexpr >= 201304
112+#define FASTFLOAT_CONSTEXPR14 constexpr
113+#else
114+#define FASTFLOAT_CONSTEXPR14
115+#endif
116+
117+#if defined(__cpp_lib_bit_cast) && __cpp_lib_bit_cast >= 201806L
118+#define FASTFLOAT_HAS_BIT_CAST 1
119+#else
120+#define FASTFLOAT_HAS_BIT_CAST 0
121+#endif
122+
123+#if defined(__cpp_lib_is_constant_evaluated) &&                                \
124+    __cpp_lib_is_constant_evaluated >= 201811L
125+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 1
126+#else
127+#define FASTFLOAT_HAS_IS_CONSTANT_EVALUATED 0
128+#endif
129+
130+// Testing for relevant C++20 constexpr library features
131+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED && FASTFLOAT_HAS_BIT_CAST &&           \
132+    __cpp_lib_constexpr_algorithms >= 201806L /*For std::copy and std::fill*/
133+#define FASTFLOAT_CONSTEXPR20 constexpr
134+#define FASTFLOAT_IS_CONSTEXPR 1
135+#else
136+#define FASTFLOAT_CONSTEXPR20
137+#define FASTFLOAT_IS_CONSTEXPR 0
138+#endif
139+
140+#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
141+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 0
142+#else
143+#define FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE 1
144+#endif
145+
146+#endif // FASTFLOAT_CONSTEXPR_FEATURE_DETECT_H
147+
148+#ifndef FASTFLOAT_FLOAT_COMMON_H
149+#define FASTFLOAT_FLOAT_COMMON_H
150+
151+#include <cfloat>
152+#include <cstdint>
153+#include <cassert>
154+#include <cstring>
155+#include <type_traits>
156+#include <system_error>
157+#ifdef __has_include
158+#if __has_include(<stdfloat>) && (__cplusplus > 202002L || _MSVC_LANG > 202002L)
159+#include <stdfloat>
160+#endif
161+#endif
162+
163+namespace fast_float {
164+
165+#define FASTFLOAT_JSONFMT (1 << 5)
166+#define FASTFLOAT_FORTRANFMT (1 << 6)
167+
168+enum chars_format {
169+  scientific = 1 << 0,
170+  fixed = 1 << 2,
171+  hex = 1 << 3,
172+  no_infnan = 1 << 4,
173+  // RFC 8259: https://datatracker.ietf.org/doc/html/rfc8259#section-6
174+  json = FASTFLOAT_JSONFMT | fixed | scientific | no_infnan,
175+  // Extension of RFC 8259 where, e.g., "inf" and "nan" are allowed.
176+  json_or_infnan = FASTFLOAT_JSONFMT | fixed | scientific,
177+  fortran = FASTFLOAT_FORTRANFMT | fixed | scientific,
178+  general = fixed | scientific
179+};
180+
181+template <typename UC> struct from_chars_result_t {
182+  UC const *ptr;
183+  std::errc ec;
184+};
185+using from_chars_result = from_chars_result_t<char>;
186+
187+template <typename UC> struct parse_options_t {
188+  constexpr explicit parse_options_t(chars_format fmt = chars_format::general,
189+                                     UC dot = UC('.'))
190+      : format(fmt), decimal_point(dot) {}
191+
192+  /** Which number formats are accepted */
193+  chars_format format;
194+  /** The character used as decimal point */
195+  UC decimal_point;
196+};
197+using parse_options = parse_options_t<char>;
198+
199+} // namespace fast_float
200+
201+#if FASTFLOAT_HAS_BIT_CAST
202+#include <bit>
203+#endif
204+
205+#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) ||            \
206+     defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) ||          \
207+     defined(__MINGW64__) || defined(__s390x__) ||                             \
208+     (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) ||      \
209+      defined(__PPC64LE__)) ||                                                 \
210+     defined(__loongarch64))
211+#define FASTFLOAT_64BIT 1
212+#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) ||             \
213+       defined(__arm__) || defined(_M_ARM) || defined(__ppc__) ||              \
214+       defined(__MINGW32__) || defined(__EMSCRIPTEN__))
215+#define FASTFLOAT_32BIT 1
216+#else
217+  // Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
218+// We can never tell the register width, but the SIZE_MAX is a good
219+// approximation. UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max
220+// portability.
221+#if SIZE_MAX == 0xffff
222+#error Unknown platform (16-bit, unsupported)
223+#elif SIZE_MAX == 0xffffffff
224+#define FASTFLOAT_32BIT 1
225+#elif SIZE_MAX == 0xffffffffffffffff
226+#define FASTFLOAT_64BIT 1
227+#else
228+#error Unknown platform (not 32-bit, not 64-bit?)
229+#endif
230+#endif
231+
232+#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__)) ||           \
233+    (defined(_M_ARM64) && !defined(__MINGW32__))
234+#include <intrin.h>
235+#endif
236+
237+#if defined(_MSC_VER) && !defined(__clang__)
238+#define FASTFLOAT_VISUAL_STUDIO 1
239+#endif
240+
241+#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
242+#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
243+#elif defined _WIN32
244+#define FASTFLOAT_IS_BIG_ENDIAN 0
245+#else
246+#if defined(__APPLE__) || defined(__FreeBSD__)
247+#include <machine/endian.h>
248+#elif defined(sun) || defined(__sun)
249+#include <sys/byteorder.h>
250+#elif defined(__MVS__)
251+#include <sys/endian.h>
252+#else
253+#ifdef __has_include
254+#if __has_include(<endian.h>)
255+#include <endian.h>
256+#endif //__has_include(<endian.h>)
257+#endif //__has_include
258+#endif
259+#
260+#ifndef __BYTE_ORDER__
261+// safe choice
262+#define FASTFLOAT_IS_BIG_ENDIAN 0
263+#endif
264+#
265+#ifndef __ORDER_LITTLE_ENDIAN__
266+// safe choice
267+#define FASTFLOAT_IS_BIG_ENDIAN 0
268+#endif
269+#
270+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
271+#define FASTFLOAT_IS_BIG_ENDIAN 0
272+#else
273+#define FASTFLOAT_IS_BIG_ENDIAN 1
274+#endif
275+#endif
276+
277+#if defined(__SSE2__) || (defined(FASTFLOAT_VISUAL_STUDIO) &&                  \
278+                          (defined(_M_AMD64) || defined(_M_X64) ||             \
279+                           (defined(_M_IX86_FP) && _M_IX86_FP == 2)))
280+#define FASTFLOAT_SSE2 1
281+#endif
282+
283+#if defined(__aarch64__) || defined(_M_ARM64)
284+#define FASTFLOAT_NEON 1
285+#endif
286+
287+#if defined(FASTFLOAT_SSE2) || defined(FASTFLOAT_NEON)
288+#define FASTFLOAT_HAS_SIMD 1
289+#endif
290+
291+#if defined(__GNUC__)
292+// disable -Wcast-align=strict (GCC only)
293+#define FASTFLOAT_SIMD_DISABLE_WARNINGS                                        \
294+  _Pragma("GCC diagnostic push")                                               \
295+      _Pragma("GCC diagnostic ignored \"-Wcast-align\"")
296+#else
297+#define FASTFLOAT_SIMD_DISABLE_WARNINGS
298+#endif
299+
300+#if defined(__GNUC__)
301+#define FASTFLOAT_SIMD_RESTORE_WARNINGS _Pragma("GCC diagnostic pop")
302+#else
303+#define FASTFLOAT_SIMD_RESTORE_WARNINGS
304+#endif
305+
306+#ifdef FASTFLOAT_VISUAL_STUDIO
307+#define fastfloat_really_inline __forceinline
308+#else
309+#define fastfloat_really_inline inline __attribute__((always_inline))
310+#endif
311+
312+#ifndef FASTFLOAT_ASSERT
313+#define FASTFLOAT_ASSERT(x)                                                    \
314+  { ((void)(x)); }
315+#endif
316+
317+#ifndef FASTFLOAT_DEBUG_ASSERT
318+#define FASTFLOAT_DEBUG_ASSERT(x)                                              \
319+  { ((void)(x)); }
320+#endif
321+
322+// rust style `try!()` macro, or `?` operator
323+#define FASTFLOAT_TRY(x)                                                       \
324+  {                                                                            \
325+    if (!(x))                                                                  \
326+      return false;                                                            \
327+  }
328+
329+#define FASTFLOAT_ENABLE_IF(...)                                               \
330+  typename std::enable_if<(__VA_ARGS__), int>::type
331+
332+namespace fast_float {
333+
334+fastfloat_really_inline constexpr bool cpp20_and_in_constexpr() {
335+#if FASTFLOAT_HAS_IS_CONSTANT_EVALUATED
336+  return std::is_constant_evaluated();
337+#else
338+  return false;
339+#endif
340+}
341+
342+template <typename T>
343+fastfloat_really_inline constexpr bool is_supported_float_type() {
344+  return std::is_same<T, float>::value || std::is_same<T, double>::value
345+#if __STDCPP_FLOAT32_T__
346+         || std::is_same<T, std::float32_t>::value
347+#endif
348+#if __STDCPP_FLOAT64_T__
349+         || std::is_same<T, std::float64_t>::value
350+#endif
351+      ;
352+}
353+
354+template <typename UC>
355+fastfloat_really_inline constexpr bool is_supported_char_type() {
356+  return std::is_same<UC, char>::value || std::is_same<UC, wchar_t>::value ||
357+         std::is_same<UC, char16_t>::value || std::is_same<UC, char32_t>::value;
358+}
359+
360+// Compares two ASCII strings in a case insensitive manner.
361+template <typename UC>
362+inline FASTFLOAT_CONSTEXPR14 bool
363+fastfloat_strncasecmp(UC const *input1, UC const *input2, size_t length) {
364+  char running_diff{0};
365+  for (size_t i = 0; i < length; ++i) {
366+    running_diff |= (char(input1[i]) ^ char(input2[i]));
367+  }
368+  return (running_diff == 0) || (running_diff == 32);
369+}
370+
371+#ifndef FLT_EVAL_METHOD
372+#error "FLT_EVAL_METHOD should be defined, please include cfloat."
373+#endif
374+
375+// a pointer and a length to a contiguous block of memory
376+template <typename T> struct span {
377+  const T *ptr;
378+  size_t length;
379+  constexpr span(const T *_ptr, size_t _length) : ptr(_ptr), length(_length) {}
380+  constexpr span() : ptr(nullptr), length(0) {}
381+
382+  constexpr size_t len() const noexcept { return length; }
383+
384+  FASTFLOAT_CONSTEXPR14 const T &operator[](size_t index) const noexcept {
385+    FASTFLOAT_DEBUG_ASSERT(index < length);
386+    return ptr[index];
387+  }
388+};
389+
390+struct value128 {
391+  uint64_t low;
392+  uint64_t high;
393+  constexpr value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
394+  constexpr value128() : low(0), high(0) {}
395+};
396+
397+/* Helper C++14 constexpr generic implementation of leading_zeroes */
398+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int
399+leading_zeroes_generic(uint64_t input_num, int last_bit = 0) {
400+  if (input_num & uint64_t(0xffffffff00000000)) {
401+    input_num >>= 32;
402+    last_bit |= 32;
403+  }
404+  if (input_num & uint64_t(0xffff0000)) {
405+    input_num >>= 16;
406+    last_bit |= 16;
407+  }
408+  if (input_num & uint64_t(0xff00)) {
409+    input_num >>= 8;
410+    last_bit |= 8;
411+  }
412+  if (input_num & uint64_t(0xf0)) {
413+    input_num >>= 4;
414+    last_bit |= 4;
415+  }
416+  if (input_num & uint64_t(0xc)) {
417+    input_num >>= 2;
418+    last_bit |= 2;
419+  }
420+  if (input_num & uint64_t(0x2)) { /* input_num >>=  1; */
421+    last_bit |= 1;
422+  }
423+  return 63 - last_bit;
424+}
425+
426+/* result might be undefined when input_num is zero */
427+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 int
428+leading_zeroes(uint64_t input_num) {
429+  assert(input_num > 0);
430+  if (cpp20_and_in_constexpr()) {
431+    return leading_zeroes_generic(input_num);
432+  }
433+#ifdef FASTFLOAT_VISUAL_STUDIO
434+#if defined(_M_X64) || defined(_M_ARM64)
435+  unsigned long leading_zero = 0;
436+  // Search the mask data from most significant bit (MSB)
437+  // to least significant bit (LSB) for a set bit (1).
438+  _BitScanReverse64(&leading_zero, input_num);
439+  return (int)(63 - leading_zero);
440+#else
441+  return leading_zeroes_generic(input_num);
442+#endif
443+#else
444+  return __builtin_clzll(input_num);
445+#endif
446+}
447+
448+// slow emulation routine for 32-bit
449+fastfloat_really_inline constexpr uint64_t emulu(uint32_t x, uint32_t y) {
450+  return x * (uint64_t)y;
451+}
452+
453+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
454+umul128_generic(uint64_t ab, uint64_t cd, uint64_t *hi) {
455+  uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
456+  uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
457+  uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
458+  uint64_t adbc_carry = (uint64_t)(adbc < ad);
459+  uint64_t lo = bd + (adbc << 32);
460+  *hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
461+        (adbc_carry << 32) + (uint64_t)(lo < bd);
462+  return lo;
463+}
464+
465+#ifdef FASTFLOAT_32BIT
466+
467+// slow emulation routine for 32-bit
468+#if !defined(__MINGW64__)
469+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t _umul128(uint64_t ab,
470+                                                                uint64_t cd,
471+                                                                uint64_t *hi) {
472+  return umul128_generic(ab, cd, hi);
473+}
474+#endif // !__MINGW64__
475+
476+#endif // FASTFLOAT_32BIT
477+
478+// compute 64-bit a*b
479+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
480+full_multiplication(uint64_t a, uint64_t b) {
481+  if (cpp20_and_in_constexpr()) {
482+    value128 answer;
483+    answer.low = umul128_generic(a, b, &answer.high);
484+    return answer;
485+  }
486+  value128 answer;
487+#if defined(_M_ARM64) && !defined(__MINGW32__)
488+  // ARM64 has native support for 64-bit multiplications, no need to emulate
489+  // But MinGW on ARM64 doesn't have native support for 64-bit multiplications
490+  answer.high = __umulh(a, b);
491+  answer.low = a * b;
492+#elif defined(FASTFLOAT_32BIT) ||                                              \
493+    (defined(_WIN64) && !defined(__clang__) && !defined(_M_ARM64))
494+  answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
495+#elif defined(FASTFLOAT_64BIT) && defined(__SIZEOF_INT128__)
496+  __uint128_t r = ((__uint128_t)a) * b;
497+  answer.low = uint64_t(r);
498+  answer.high = uint64_t(r >> 64);
499+#else
500+  answer.low = umul128_generic(a, b, &answer.high);
501+#endif
502+  return answer;
503+}
504+
505+struct adjusted_mantissa {
506+  uint64_t mantissa{0};
507+  int32_t power2{0}; // a negative value indicates an invalid result
508+  adjusted_mantissa() = default;
509+  constexpr bool operator==(const adjusted_mantissa &o) const {
510+    return mantissa == o.mantissa && power2 == o.power2;
511+  }
512+  constexpr bool operator!=(const adjusted_mantissa &o) const {
513+    return mantissa != o.mantissa || power2 != o.power2;
514+  }
515+};
516+
517+// Bias so we can get the real exponent with an invalid adjusted_mantissa.
518+constexpr static int32_t invalid_am_bias = -0x8000;
519+
520+// used for binary_format_lookup_tables<T>::max_mantissa
521+constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
522+
523+template <typename T, typename U = void> struct binary_format_lookup_tables;
524+
525+template <typename T> struct binary_format : binary_format_lookup_tables<T> {
526+  using equiv_uint =
527+      typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
528+
529+  static inline constexpr int mantissa_explicit_bits();
530+  static inline constexpr int minimum_exponent();
531+  static inline constexpr int infinite_power();
532+  static inline constexpr int sign_index();
533+  static inline constexpr int
534+  min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
535+  static inline constexpr int max_exponent_fast_path();
536+  static inline constexpr int max_exponent_round_to_even();
537+  static inline constexpr int min_exponent_round_to_even();
538+  static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
539+  static inline constexpr uint64_t
540+  max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
541+  static inline constexpr int largest_power_of_ten();
542+  static inline constexpr int smallest_power_of_ten();
543+  static inline constexpr T exact_power_of_ten(int64_t power);
544+  static inline constexpr size_t max_digits();
545+  static inline constexpr equiv_uint exponent_mask();
546+  static inline constexpr equiv_uint mantissa_mask();
547+  static inline constexpr equiv_uint hidden_bit_mask();
548+};
549+
550+template <typename U> struct binary_format_lookup_tables<double, U> {
551+  static constexpr double powers_of_ten[] = {
552+      1e0,  1e1,  1e2,  1e3,  1e4,  1e5,  1e6,  1e7,  1e8,  1e9,  1e10, 1e11,
553+      1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
554+
555+  // Largest integer value v so that (5**index * v) <= 1<<53.
556+  // 0x20000000000000 == 1 << 53
557+  static constexpr uint64_t max_mantissa[] = {
558+      0x20000000000000,
559+      0x20000000000000 / 5,
560+      0x20000000000000 / (5 * 5),
561+      0x20000000000000 / (5 * 5 * 5),
562+      0x20000000000000 / (5 * 5 * 5 * 5),
563+      0x20000000000000 / (constant_55555),
564+      0x20000000000000 / (constant_55555 * 5),
565+      0x20000000000000 / (constant_55555 * 5 * 5),
566+      0x20000000000000 / (constant_55555 * 5 * 5 * 5),
567+      0x20000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
568+      0x20000000000000 / (constant_55555 * constant_55555),
569+      0x20000000000000 / (constant_55555 * constant_55555 * 5),
570+      0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5),
571+      0x20000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
572+      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555),
573+      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
574+      0x20000000000000 /
575+          (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
576+      0x20000000000000 /
577+          (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
578+      0x20000000000000 /
579+          (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
580+      0x20000000000000 /
581+          (constant_55555 * constant_55555 * constant_55555 * constant_55555),
582+      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
583+                          constant_55555 * 5),
584+      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
585+                          constant_55555 * 5 * 5),
586+      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
587+                          constant_55555 * 5 * 5 * 5),
588+      0x20000000000000 / (constant_55555 * constant_55555 * constant_55555 *
589+                          constant_55555 * 5 * 5 * 5 * 5)};
590+};
591+
592+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
593+
594+template <typename U>
595+constexpr double binary_format_lookup_tables<double, U>::powers_of_ten[];
596+
597+template <typename U>
598+constexpr uint64_t binary_format_lookup_tables<double, U>::max_mantissa[];
599+
600+#endif
601+
602+template <typename U> struct binary_format_lookup_tables<float, U> {
603+  static constexpr float powers_of_ten[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
604+                                            1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
605+
606+  // Largest integer value v so that (5**index * v) <= 1<<24.
607+  // 0x1000000 == 1<<24
608+  static constexpr uint64_t max_mantissa[] = {
609+      0x1000000,
610+      0x1000000 / 5,
611+      0x1000000 / (5 * 5),
612+      0x1000000 / (5 * 5 * 5),
613+      0x1000000 / (5 * 5 * 5 * 5),
614+      0x1000000 / (constant_55555),
615+      0x1000000 / (constant_55555 * 5),
616+      0x1000000 / (constant_55555 * 5 * 5),
617+      0x1000000 / (constant_55555 * 5 * 5 * 5),
618+      0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
619+      0x1000000 / (constant_55555 * constant_55555),
620+      0x1000000 / (constant_55555 * constant_55555 * 5)};
621+};
622+
623+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
624+
625+template <typename U>
626+constexpr float binary_format_lookup_tables<float, U>::powers_of_ten[];
627+
628+template <typename U>
629+constexpr uint64_t binary_format_lookup_tables<float, U>::max_mantissa[];
630+
631+#endif
632+
633+template <>
634+inline constexpr int binary_format<double>::min_exponent_fast_path() {
635+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
636+  return 0;
637+#else
638+  return -22;
639+#endif
640+}
641+
642+template <>
643+inline constexpr int binary_format<float>::min_exponent_fast_path() {
644+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
645+  return 0;
646+#else
647+  return -10;
648+#endif
649+}
650+
651+template <>
652+inline constexpr int binary_format<double>::mantissa_explicit_bits() {
653+  return 52;
654+}
655+template <>
656+inline constexpr int binary_format<float>::mantissa_explicit_bits() {
657+  return 23;
658+}
659+
660+template <>
661+inline constexpr int binary_format<double>::max_exponent_round_to_even() {
662+  return 23;
663+}
664+
665+template <>
666+inline constexpr int binary_format<float>::max_exponent_round_to_even() {
667+  return 10;
668+}
669+
670+template <>
671+inline constexpr int binary_format<double>::min_exponent_round_to_even() {
672+  return -4;
673+}
674+
675+template <>
676+inline constexpr int binary_format<float>::min_exponent_round_to_even() {
677+  return -17;
678+}
679+
680+template <> inline constexpr int binary_format<double>::minimum_exponent() {
681+  return -1023;
682+}
683+template <> inline constexpr int binary_format<float>::minimum_exponent() {
684+  return -127;
685+}
686+
687+template <> inline constexpr int binary_format<double>::infinite_power() {
688+  return 0x7FF;
689+}
690+template <> inline constexpr int binary_format<float>::infinite_power() {
691+  return 0xFF;
692+}
693+
694+template <> inline constexpr int binary_format<double>::sign_index() {
695+  return 63;
696+}
697+template <> inline constexpr int binary_format<float>::sign_index() {
698+  return 31;
699+}
700+
701+template <>
702+inline constexpr int binary_format<double>::max_exponent_fast_path() {
703+  return 22;
704+}
705+template <>
706+inline constexpr int binary_format<float>::max_exponent_fast_path() {
707+  return 10;
708+}
709+
710+template <>
711+inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
712+  return uint64_t(2) << mantissa_explicit_bits();
713+}
714+template <>
715+inline constexpr uint64_t
716+binary_format<double>::max_mantissa_fast_path(int64_t power) {
717+  // caller is responsible to ensure that
718+  // power >= 0 && power <= 22
719+  //
720+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
721+  return (void)max_mantissa[0], max_mantissa[power];
722+}
723+template <>
724+inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
725+  return uint64_t(2) << mantissa_explicit_bits();
726+}
727+template <>
728+inline constexpr uint64_t
729+binary_format<float>::max_mantissa_fast_path(int64_t power) {
730+  // caller is responsible to ensure that
731+  // power >= 0 && power <= 10
732+  //
733+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
734+  return (void)max_mantissa[0], max_mantissa[power];
735+}
736+
737+template <>
738+inline constexpr double
739+binary_format<double>::exact_power_of_ten(int64_t power) {
740+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
741+  return (void)powers_of_ten[0], powers_of_ten[power];
742+}
743+template <>
744+inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
745+  // Work around clang bug https://godbolt.org/z/zedh7rrhc
746+  return (void)powers_of_ten[0], powers_of_ten[power];
747+}
748+
749+template <> inline constexpr int binary_format<double>::largest_power_of_ten() {
750+  return 308;
751+}
752+template <> inline constexpr int binary_format<float>::largest_power_of_ten() {
753+  return 38;
754+}
755+
756+template <>
757+inline constexpr int binary_format<double>::smallest_power_of_ten() {
758+  return -342;
759+}
760+template <> inline constexpr int binary_format<float>::smallest_power_of_ten() {
761+  return -64;
762+}
763+
764+template <> inline constexpr size_t binary_format<double>::max_digits() {
765+  return 769;
766+}
767+template <> inline constexpr size_t binary_format<float>::max_digits() {
768+  return 114;
769+}
770+
771+template <>
772+inline constexpr binary_format<float>::equiv_uint
773+binary_format<float>::exponent_mask() {
774+  return 0x7F800000;
775+}
776+template <>
777+inline constexpr binary_format<double>::equiv_uint
778+binary_format<double>::exponent_mask() {
779+  return 0x7FF0000000000000;
780+}
781+
782+template <>
783+inline constexpr binary_format<float>::equiv_uint
784+binary_format<float>::mantissa_mask() {
785+  return 0x007FFFFF;
786+}
787+template <>
788+inline constexpr binary_format<double>::equiv_uint
789+binary_format<double>::mantissa_mask() {
790+  return 0x000FFFFFFFFFFFFF;
791+}
792+
793+template <>
794+inline constexpr binary_format<float>::equiv_uint
795+binary_format<float>::hidden_bit_mask() {
796+  return 0x00800000;
797+}
798+template <>
799+inline constexpr binary_format<double>::equiv_uint
800+binary_format<double>::hidden_bit_mask() {
801+  return 0x0010000000000000;
802+}
803+
804+template <typename T>
805+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
806+to_float(bool negative, adjusted_mantissa am, T &value) {
807+  using fastfloat_uint = typename binary_format<T>::equiv_uint;
808+  fastfloat_uint word = (fastfloat_uint)am.mantissa;
809+  word |= fastfloat_uint(am.power2)
810+          << binary_format<T>::mantissa_explicit_bits();
811+  word |= fastfloat_uint(negative) << binary_format<T>::sign_index();
812+#if FASTFLOAT_HAS_BIT_CAST
813+  value = std::bit_cast<T>(word);
814+#else
815+  ::memcpy(&value, &word, sizeof(T));
816+#endif
817+}
818+
819+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
820+template <typename = void> struct space_lut {
821+  static constexpr bool value[] = {
822+      0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
823+      0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
824+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
825+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
826+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
827+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
828+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
829+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
830+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
831+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
832+      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
833+};
834+
835+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
836+
837+template <typename T> constexpr bool space_lut<T>::value[];
838+
839+#endif
840+
841+inline constexpr bool is_space(uint8_t c) { return space_lut<>::value[c]; }
842+#endif
843+
844+template <typename UC> static constexpr uint64_t int_cmp_zeros() {
845+  static_assert((sizeof(UC) == 1) || (sizeof(UC) == 2) || (sizeof(UC) == 4),
846+                "Unsupported character size");
847+  return (sizeof(UC) == 1) ? 0x3030303030303030
848+         : (sizeof(UC) == 2)
849+             ? (uint64_t(UC('0')) << 48 | uint64_t(UC('0')) << 32 |
850+                uint64_t(UC('0')) << 16 | UC('0'))
851+             : (uint64_t(UC('0')) << 32 | UC('0'));
852+}
853+template <typename UC> static constexpr int int_cmp_len() {
854+  return sizeof(uint64_t) / sizeof(UC);
855+}
856+template <typename UC> static constexpr UC const *str_const_nan() {
857+  return nullptr;
858+}
859+template <> constexpr char const *str_const_nan<char>() { return "nan"; }
860+template <> constexpr wchar_t const *str_const_nan<wchar_t>() { return L"nan"; }
861+template <> constexpr char16_t const *str_const_nan<char16_t>() {
862+  return u"nan";
863+}
864+template <> constexpr char32_t const *str_const_nan<char32_t>() {
865+  return U"nan";
866+}
867+template <typename UC> static constexpr UC const *str_const_inf() {
868+  return nullptr;
869+}
870+template <> constexpr char const *str_const_inf<char>() { return "infinity"; }
871+template <> constexpr wchar_t const *str_const_inf<wchar_t>() {
872+  return L"infinity";
873+}
874+template <> constexpr char16_t const *str_const_inf<char16_t>() {
875+  return u"infinity";
876+}
877+template <> constexpr char32_t const *str_const_inf<char32_t>() {
878+  return U"infinity";
879+}
880+
881+template <typename = void> struct int_luts {
882+  static constexpr uint8_t chdigit[] = {
883+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
884+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
885+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
886+      255, 255, 255, 0,   1,   2,   3,   4,   5,   6,   7,   8,   9,   255, 255,
887+      255, 255, 255, 255, 255, 10,  11,  12,  13,  14,  15,  16,  17,  18,  19,
888+      20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,  33,  34,
889+      35,  255, 255, 255, 255, 255, 255, 10,  11,  12,  13,  14,  15,  16,  17,
890+      18,  19,  20,  21,  22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,
891+      33,  34,  35,  255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
892+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
893+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
894+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
895+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
896+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
897+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
898+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
899+      255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
900+      255};
901+
902+  static constexpr size_t maxdigits_u64[] = {
903+      64, 41, 32, 28, 25, 23, 22, 21, 20, 19, 18, 18, 17, 17, 16, 16, 16, 16,
904+      15, 15, 15, 15, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13};
905+
906+  static constexpr uint64_t min_safe_u64[] = {
907+      9223372036854775808ull,  12157665459056928801ull, 4611686018427387904,
908+      7450580596923828125,     4738381338321616896,     3909821048582988049,
909+      9223372036854775808ull,  12157665459056928801ull, 10000000000000000000ull,
910+      5559917313492231481,     2218611106740436992,     8650415919381337933,
911+      2177953337809371136,     6568408355712890625,     1152921504606846976,
912+      2862423051509815793,     6746640616477458432,     15181127029874798299ull,
913+      1638400000000000000,     3243919932521508681,     6221821273427820544,
914+      11592836324538749809ull, 876488338465357824,      1490116119384765625,
915+      2481152873203736576,     4052555153018976267,     6502111422497947648,
916+      10260628712958602189ull, 15943230000000000000ull, 787662783788549761,
917+      1152921504606846976,     1667889514952984961,     2386420683693101056,
918+      3379220508056640625,     4738381338321616896};
919+};
920+
921+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
922+
923+template <typename T> constexpr uint8_t int_luts<T>::chdigit[];
924+
925+template <typename T> constexpr size_t int_luts<T>::maxdigits_u64[];
926+
927+template <typename T> constexpr uint64_t int_luts<T>::min_safe_u64[];
928+
929+#endif
930+
931+template <typename UC>
932+fastfloat_really_inline constexpr uint8_t ch_to_digit(UC c) {
933+  return int_luts<>::chdigit[static_cast<unsigned char>(c)];
934+}
935+
936+fastfloat_really_inline constexpr size_t max_digits_u64(int base) {
937+  return int_luts<>::maxdigits_u64[base - 2];
938+}
939+
940+// If a u64 is exactly max_digits_u64() in length, this is
941+// the value below which it has definitely overflowed.
942+fastfloat_really_inline constexpr uint64_t min_safe_u64(int base) {
943+  return int_luts<>::min_safe_u64[base - 2];
944+}
945+
946+} // namespace fast_float
947+
948+#endif
949+
950+
951+#ifndef FASTFLOAT_FAST_FLOAT_H
952+#define FASTFLOAT_FAST_FLOAT_H
953+
954+
955+namespace fast_float {
956+/**
957+ * This function parses the character sequence [first,last) for a number. It
958+ * parses floating-point numbers expecting a locale-indepent format equivalent
959+ * to what is used by std::strtod in the default ("C") locale. The resulting
960+ * floating-point value is the closest floating-point values (using either float
961+ * or double), using the "round to even" convention for values that would
962+ * otherwise fall right in-between two values. That is, we provide exact parsing
963+ * according to the IEEE standard.
964+ *
965+ * Given a successful parse, the pointer (`ptr`) in the returned value is set to
966+ * point right after the parsed number, and the `value` referenced is set to the
967+ * parsed value. In case of error, the returned `ec` contains a representative
968+ * error, otherwise the default (`std::errc()`) value is stored.
969+ *
970+ * The implementation does not throw and does not allocate memory (e.g., with
971+ * `new` or `malloc`).
972+ *
973+ * Like the C++17 standard, the `fast_float::from_chars` functions take an
974+ * optional last argument of the type `fast_float::chars_format`. It is a bitset
975+ * value: we check whether `fmt & fast_float::chars_format::fixed` and `fmt &
976+ * fast_float::chars_format::scientific` are set to determine whether we allow
977+ * the fixed point and scientific notation respectively. The default is
978+ * `fast_float::chars_format::general` which allows both `fixed` and
979+ * `scientific`.
980+ */
981+template <typename T, typename UC = char,
982+          typename = FASTFLOAT_ENABLE_IF(is_supported_float_type<T>())>
983+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
984+from_chars(UC const *first, UC const *last, T &value,
985+           chars_format fmt = chars_format::general) noexcept;
986+
987+/**
988+ * Like from_chars, but accepts an `options` argument to govern number parsing.
989+ */
990+template <typename T, typename UC = char>
991+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
992+from_chars_advanced(UC const *first, UC const *last, T &value,
993+                    parse_options_t<UC> options) noexcept;
994+/**
995+ * from_chars for integer types.
996+ */
997+template <typename T, typename UC = char,
998+          typename = FASTFLOAT_ENABLE_IF(!is_supported_float_type<T>())>
999+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
1000+from_chars(UC const *first, UC const *last, T &value, int base = 10) noexcept;
1001+
1002+} // namespace fast_float
1003+#endif // FASTFLOAT_FAST_FLOAT_H
1004+
1005+#ifndef FASTFLOAT_ASCII_NUMBER_H
1006+#define FASTFLOAT_ASCII_NUMBER_H
1007+
1008+#include <cctype>
1009+#include <cstdint>
1010+#include <cstring>
1011+#include <iterator>
1012+#include <limits>
1013+#include <type_traits>
1014+
1015+
1016+#ifdef FASTFLOAT_SSE2
1017+#include <emmintrin.h>
1018+#endif
1019+
1020+#ifdef FASTFLOAT_NEON
1021+#include <arm_neon.h>
1022+#endif
1023+
1024+namespace fast_float {
1025+
1026+template <typename UC> fastfloat_really_inline constexpr bool has_simd_opt() {
1027+#ifdef FASTFLOAT_HAS_SIMD
1028+  return std::is_same<UC, char16_t>::value;
1029+#else
1030+  return false;
1031+#endif
1032+}
1033+
1034+// Next function can be micro-optimized, but compilers are entirely
1035+// able to optimize it well.
1036+template <typename UC>
1037+fastfloat_really_inline constexpr bool is_integer(UC c) noexcept {
1038+  return !(c > UC('9') || c < UC('0'));
1039+}
1040+
1041+fastfloat_really_inline constexpr uint64_t byteswap(uint64_t val) {
1042+  return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 |
1043+         (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 |
1044+         (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 |
1045+         (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56;
1046+}
1047+
1048+// Read 8 UC into a u64. Truncates UC if not char.
1049+template <typename UC>
1050+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
1051+read8_to_u64(const UC *chars) {
1052+  if (cpp20_and_in_constexpr() || !std::is_same<UC, char>::value) {
1053+    uint64_t val = 0;
1054+    for (int i = 0; i < 8; ++i) {
1055+      val |= uint64_t(uint8_t(*chars)) << (i * 8);
1056+      ++chars;
1057+    }
1058+    return val;
1059+  }
1060+  uint64_t val;
1061+  ::memcpy(&val, chars, sizeof(uint64_t));
1062+#if FASTFLOAT_IS_BIG_ENDIAN == 1
1063+  // Need to read as-if the number was in little-endian order.
1064+  val = byteswap(val);
1065+#endif
1066+  return val;
1067+}
1068+
1069+#ifdef FASTFLOAT_SSE2
1070+
1071+fastfloat_really_inline uint64_t simd_read8_to_u64(const __m128i data) {
1072+  FASTFLOAT_SIMD_DISABLE_WARNINGS
1073+  const __m128i packed = _mm_packus_epi16(data, data);
1074+#ifdef FASTFLOAT_64BIT
1075+  return uint64_t(_mm_cvtsi128_si64(packed));
1076+#else
1077+  uint64_t value;
1078+  // Visual Studio + older versions of GCC don't support _mm_storeu_si64
1079+  _mm_storel_epi64(reinterpret_cast<__m128i *>(&value), packed);
1080+  return value;
1081+#endif
1082+  FASTFLOAT_SIMD_RESTORE_WARNINGS
1083+}
1084+
1085+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
1086+  FASTFLOAT_SIMD_DISABLE_WARNINGS
1087+  return simd_read8_to_u64(
1088+      _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars)));
1089+  FASTFLOAT_SIMD_RESTORE_WARNINGS
1090+}
1091+
1092+#elif defined(FASTFLOAT_NEON)
1093+
1094+fastfloat_really_inline uint64_t simd_read8_to_u64(const uint16x8_t data) {
1095+  FASTFLOAT_SIMD_DISABLE_WARNINGS
1096+  uint8x8_t utf8_packed = vmovn_u16(data);
1097+  return vget_lane_u64(vreinterpret_u64_u8(utf8_packed), 0);
1098+  FASTFLOAT_SIMD_RESTORE_WARNINGS
1099+}
1100+
1101+fastfloat_really_inline uint64_t simd_read8_to_u64(const char16_t *chars) {
1102+  FASTFLOAT_SIMD_DISABLE_WARNINGS
1103+  return simd_read8_to_u64(
1104+      vld1q_u16(reinterpret_cast<const uint16_t *>(chars)));
1105+  FASTFLOAT_SIMD_RESTORE_WARNINGS
1106+}
1107+
1108+#endif // FASTFLOAT_SSE2
1109+
1110+// MSVC SFINAE is broken pre-VS2017
1111+#if defined(_MSC_VER) && _MSC_VER <= 1900
1112+template <typename UC>
1113+#else
1114+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
1115+#endif
1116+// dummy for compile
1117+uint64_t simd_read8_to_u64(UC const *) {
1118+  return 0;
1119+}
1120+
1121+// credit  @aqrit
1122+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint32_t
1123+parse_eight_digits_unrolled(uint64_t val) {
1124+  const uint64_t mask = 0x000000FF000000FF;
1125+  const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
1126+  const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
1127+  val -= 0x3030303030303030;
1128+  val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
1129+  val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
1130+  return uint32_t(val);
1131+}
1132+
1133+// Call this if chars are definitely 8 digits.
1134+template <typename UC>
1135+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint32_t
1136+parse_eight_digits_unrolled(UC const *chars) noexcept {
1137+  if (cpp20_and_in_constexpr() || !has_simd_opt<UC>()) {
1138+    return parse_eight_digits_unrolled(read8_to_u64(chars)); // truncation okay
1139+  }
1140+  return parse_eight_digits_unrolled(simd_read8_to_u64(chars));
1141+}
1142+
1143+// credit @aqrit
1144+fastfloat_really_inline constexpr bool
1145+is_made_of_eight_digits_fast(uint64_t val) noexcept {
1146+  return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
1147+            0x8080808080808080));
1148+}
1149+
1150+#ifdef FASTFLOAT_HAS_SIMD
1151+
1152+// Call this if chars might not be 8 digits.
1153+// Using this style (instead of is_made_of_eight_digits_fast() then
1154+// parse_eight_digits_unrolled()) ensures we don't load SIMD registers twice.
1155+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
1156+simd_parse_if_eight_digits_unrolled(const char16_t *chars,
1157+                                    uint64_t &i) noexcept {
1158+  if (cpp20_and_in_constexpr()) {
1159+    return false;
1160+  }
1161+#ifdef FASTFLOAT_SSE2
1162+  FASTFLOAT_SIMD_DISABLE_WARNINGS
1163+  const __m128i data =
1164+      _mm_loadu_si128(reinterpret_cast<const __m128i *>(chars));
1165+
1166+  // (x - '0') <= 9
1167+  // http://0x80.pl/articles/simd-parsing-int-sequences.html
1168+  const __m128i t0 = _mm_add_epi16(data, _mm_set1_epi16(32720));
1169+  const __m128i t1 = _mm_cmpgt_epi16(t0, _mm_set1_epi16(-32759));
1170+
1171+  if (_mm_movemask_epi8(t1) == 0) {
1172+    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
1173+    return true;
1174+  } else
1175+    return false;
1176+  FASTFLOAT_SIMD_RESTORE_WARNINGS
1177+#elif defined(FASTFLOAT_NEON)
1178+  FASTFLOAT_SIMD_DISABLE_WARNINGS
1179+  const uint16x8_t data = vld1q_u16(reinterpret_cast<const uint16_t *>(chars));
1180+
1181+  // (x - '0') <= 9
1182+  // http://0x80.pl/articles/simd-parsing-int-sequences.html
1183+  const uint16x8_t t0 = vsubq_u16(data, vmovq_n_u16('0'));
1184+  const uint16x8_t mask = vcltq_u16(t0, vmovq_n_u16('9' - '0' + 1));
1185+
1186+  if (vminvq_u16(mask) == 0xFFFF) {
1187+    i = i * 100000000 + parse_eight_digits_unrolled(simd_read8_to_u64(data));
1188+    return true;
1189+  } else
1190+    return false;
1191+  FASTFLOAT_SIMD_RESTORE_WARNINGS
1192+#else
1193+  (void)chars;
1194+  (void)i;
1195+  return false;
1196+#endif // FASTFLOAT_SSE2
1197+}
1198+
1199+#endif // FASTFLOAT_HAS_SIMD
1200+
1201+// MSVC SFINAE is broken pre-VS2017
1202+#if defined(_MSC_VER) && _MSC_VER <= 1900
1203+template <typename UC>
1204+#else
1205+template <typename UC, FASTFLOAT_ENABLE_IF(!has_simd_opt<UC>()) = 0>
1206+#endif
1207+// dummy for compile
1208+bool simd_parse_if_eight_digits_unrolled(UC const *, uint64_t &) {
1209+  return 0;
1210+}
1211+
1212+template <typename UC, FASTFLOAT_ENABLE_IF(!std::is_same<UC, char>::value) = 0>
1213+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
1214+loop_parse_if_eight_digits(const UC *&p, const UC *const pend, uint64_t &i) {
1215+  if (!has_simd_opt<UC>()) {
1216+    return;
1217+  }
1218+  while ((std::distance(p, pend) >= 8) &&
1219+         simd_parse_if_eight_digits_unrolled(
1220+             p, i)) { // in rare cases, this will overflow, but that's ok
1221+    p += 8;
1222+  }
1223+}
1224+
1225+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
1226+loop_parse_if_eight_digits(const char *&p, const char *const pend,
1227+                           uint64_t &i) {
1228+  // optimizes better than parse_if_eight_digits_unrolled() for UC = char.
1229+  while ((std::distance(p, pend) >= 8) &&
1230+         is_made_of_eight_digits_fast(read8_to_u64(p))) {
1231+    i = i * 100000000 +
1232+        parse_eight_digits_unrolled(read8_to_u64(
1233+            p)); // in rare cases, this will overflow, but that's ok
1234+    p += 8;
1235+  }
1236+}
1237+
1238+enum class parse_error {
1239+  no_error,
1240+  // [JSON-only] The minus sign must be followed by an integer.
1241+  missing_integer_after_sign,
1242+  // A sign must be followed by an integer or dot.
1243+  missing_integer_or_dot_after_sign,
1244+  // [JSON-only] The integer part must not have leading zeros.
1245+  leading_zeros_in_integer_part,
1246+  // [JSON-only] The integer part must have at least one digit.
1247+  no_digits_in_integer_part,
1248+  // [JSON-only] If there is a decimal point, there must be digits in the
1249+  // fractional part.
1250+  no_digits_in_fractional_part,
1251+  // The mantissa must have at least one digit.
1252+  no_digits_in_mantissa,
1253+  // Scientific notation requires an exponential part.
1254+  missing_exponential_part,
1255+};
1256+
1257+template <typename UC> struct parsed_number_string_t {
1258+  int64_t exponent{0};
1259+  uint64_t mantissa{0};
1260+  UC const *lastmatch{nullptr};
1261+  bool negative{false};
1262+  bool valid{false};
1263+  bool too_many_digits{false};
1264+  // contains the range of the significant digits
1265+  span<const UC> integer{};  // non-nullable
1266+  span<const UC> fraction{}; // nullable
1267+  parse_error error{parse_error::no_error};
1268+};
1269+
1270+using byte_span = span<const char>;
1271+using parsed_number_string = parsed_number_string_t<char>;
1272+
1273+template <typename UC>
1274+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
1275+report_parse_error(UC const *p, parse_error error) {
1276+  parsed_number_string_t<UC> answer;
1277+  answer.valid = false;
1278+  answer.lastmatch = p;
1279+  answer.error = error;
1280+  return answer;
1281+}
1282+
1283+// Assuming that you use no more than 19 digits, this will
1284+// parse an ASCII string.
1285+template <typename UC>
1286+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 parsed_number_string_t<UC>
1287+parse_number_string(UC const *p, UC const *pend,
1288+                    parse_options_t<UC> options) noexcept {
1289+  chars_format const fmt = options.format;
1290+  UC const decimal_point = options.decimal_point;
1291+
1292+  parsed_number_string_t<UC> answer;
1293+  answer.valid = false;
1294+  answer.too_many_digits = false;
1295+  answer.negative = (*p == UC('-'));
1296+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
1297+  if ((*p == UC('-')) || (!(fmt & FASTFLOAT_JSONFMT) && *p == UC('+'))) {
1298+#else
1299+  if (*p == UC('-')) { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
1300+#endif
1301+    ++p;
1302+    if (p == pend) {
1303+      return report_parse_error<UC>(
1304+          p, parse_error::missing_integer_or_dot_after_sign);
1305+    }
1306+    if (fmt & FASTFLOAT_JSONFMT) {
1307+      if (!is_integer(*p)) { // a sign must be followed by an integer
1308+        return report_parse_error<UC>(p,
1309+                                      parse_error::missing_integer_after_sign);
1310+      }
1311+    } else {
1312+      if (!is_integer(*p) &&
1313+          (*p !=
1314+           decimal_point)) { // a sign must be followed by an integer or the dot
1315+        return report_parse_error<UC>(
1316+            p, parse_error::missing_integer_or_dot_after_sign);
1317+      }
1318+    }
1319+  }
1320+  UC const *const start_digits = p;
1321+
1322+  uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
1323+
1324+  while ((p != pend) && is_integer(*p)) {
1325+    // a multiplication by 10 is cheaper than an arbitrary integer
1326+    // multiplication
1327+    i = 10 * i +
1328+        uint64_t(*p -
1329+                 UC('0')); // might overflow, we will handle the overflow later
1330+    ++p;
1331+  }
1332+  UC const *const end_of_integer_part = p;
1333+  int64_t digit_count = int64_t(end_of_integer_part - start_digits);
1334+  answer.integer = span<const UC>(start_digits, size_t(digit_count));
1335+  if (fmt & FASTFLOAT_JSONFMT) {
1336+    // at least 1 digit in integer part, without leading zeros
1337+    if (digit_count == 0) {
1338+      return report_parse_error<UC>(p, parse_error::no_digits_in_integer_part);
1339+    }
1340+    if ((start_digits[0] == UC('0') && digit_count > 1)) {
1341+      return report_parse_error<UC>(start_digits,
1342+                                    parse_error::leading_zeros_in_integer_part);
1343+    }
1344+  }
1345+
1346+  int64_t exponent = 0;
1347+  const bool has_decimal_point = (p != pend) && (*p == decimal_point);
1348+  if (has_decimal_point) {
1349+    ++p;
1350+    UC const *before = p;
1351+    // can occur at most twice without overflowing, but let it occur more, since
1352+    // for integers with many digits, digit parsing is the primary bottleneck.
1353+    loop_parse_if_eight_digits(p, pend, i);
1354+
1355+    while ((p != pend) && is_integer(*p)) {
1356+      uint8_t digit = uint8_t(*p - UC('0'));
1357+      ++p;
1358+      i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
1359+    }
1360+    exponent = before - p;
1361+    answer.fraction = span<const UC>(before, size_t(p - before));
1362+    digit_count -= exponent;
1363+  }
1364+  if (fmt & FASTFLOAT_JSONFMT) {
1365+    // at least 1 digit in fractional part
1366+    if (has_decimal_point && exponent == 0) {
1367+      return report_parse_error<UC>(p,
1368+                                    parse_error::no_digits_in_fractional_part);
1369+    }
1370+  } else if (digit_count ==
1371+             0) { // we must have encountered at least one integer!
1372+    return report_parse_error<UC>(p, parse_error::no_digits_in_mantissa);
1373+  }
1374+  int64_t exp_number = 0; // explicit exponential part
1375+  if (((fmt & chars_format::scientific) && (p != pend) &&
1376+       ((UC('e') == *p) || (UC('E') == *p))) ||
1377+      ((fmt & FASTFLOAT_FORTRANFMT) && (p != pend) &&
1378+       ((UC('+') == *p) || (UC('-') == *p) || (UC('d') == *p) ||
1379+        (UC('D') == *p)))) {
1380+    UC const *location_of_e = p;
1381+    if ((UC('e') == *p) || (UC('E') == *p) || (UC('d') == *p) ||
1382+        (UC('D') == *p)) {
1383+      ++p;
1384+    }
1385+    bool neg_exp = false;
1386+    if ((p != pend) && (UC('-') == *p)) {
1387+      neg_exp = true;
1388+      ++p;
1389+    } else if ((p != pend) &&
1390+               (UC('+') ==
1391+                *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
1392+      ++p;
1393+    }
1394+    if ((p == pend) || !is_integer(*p)) {
1395+      if (!(fmt & chars_format::fixed)) {
1396+        // The exponential part is invalid for scientific notation, so it must
1397+        // be a trailing token for fixed notation. However, fixed notation is
1398+        // disabled, so report a scientific notation error.
1399+        return report_parse_error<UC>(p, parse_error::missing_exponential_part);
1400+      }
1401+      // Otherwise, we will be ignoring the 'e'.
1402+      p = location_of_e;
1403+    } else {
1404+      while ((p != pend) && is_integer(*p)) {
1405+        uint8_t digit = uint8_t(*p - UC('0'));
1406+        if (exp_number < 0x10000000) {
1407+          exp_number = 10 * exp_number + digit;
1408+        }
1409+        ++p;
1410+      }
1411+      if (neg_exp) {
1412+        exp_number = -exp_number;
1413+      }
1414+      exponent += exp_number;
1415+    }
1416+  } else {
1417+    // If it scientific and not fixed, we have to bail out.
1418+    if ((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) {
1419+      return report_parse_error<UC>(p, parse_error::missing_exponential_part);
1420+    }
1421+  }
1422+  answer.lastmatch = p;
1423+  answer.valid = true;
1424+
1425+  // If we frequently had to deal with long strings of digits,
1426+  // we could extend our code by using a 128-bit integer instead
1427+  // of a 64-bit integer. However, this is uncommon.
1428+  //
1429+  // We can deal with up to 19 digits.
1430+  if (digit_count > 19) { // this is uncommon
1431+    // It is possible that the integer had an overflow.
1432+    // We have to handle the case where we have 0.0000somenumber.
1433+    // We need to be mindful of the case where we only have zeroes...
1434+    // E.g., 0.000000000...000.
1435+    UC const *start = start_digits;
1436+    while ((start != pend) && (*start == UC('0') || *start == decimal_point)) {
1437+      if (*start == UC('0')) {
1438+        digit_count--;
1439+      }
1440+      start++;
1441+    }
1442+
1443+    if (digit_count > 19) {
1444+      answer.too_many_digits = true;
1445+      // Let us start again, this time, avoiding overflows.
1446+      // We don't need to check if is_integer, since we use the
1447+      // pre-tokenized spans from above.
1448+      i = 0;
1449+      p = answer.integer.ptr;
1450+      UC const *int_end = p + answer.integer.len();
1451+      const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
1452+      while ((i < minimal_nineteen_digit_integer) && (p != int_end)) {
1453+        i = i * 10 + uint64_t(*p - UC('0'));
1454+        ++p;
1455+      }
1456+      if (i >= minimal_nineteen_digit_integer) { // We have a big integers
1457+        exponent = end_of_integer_part - p + exp_number;
1458+      } else { // We have a value with a fractional component.
1459+        p = answer.fraction.ptr;
1460+        UC const *frac_end = p + answer.fraction.len();
1461+        while ((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
1462+          i = i * 10 + uint64_t(*p - UC('0'));
1463+          ++p;
1464+        }
1465+        exponent = answer.fraction.ptr - p + exp_number;
1466+      }
1467+      // We have now corrected both exponent and i, to a truncated value
1468+    }
1469+  }
1470+  answer.exponent = exponent;
1471+  answer.mantissa = i;
1472+  return answer;
1473+}
1474+
1475+template <typename T, typename UC>
1476+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
1477+parse_int_string(UC const *p, UC const *pend, T &value, int base) {
1478+  from_chars_result_t<UC> answer;
1479+
1480+  UC const *const first = p;
1481+
1482+  bool negative = (*p == UC('-'));
1483+  if (!std::is_signed<T>::value && negative) {
1484+    answer.ec = std::errc::invalid_argument;
1485+    answer.ptr = first;
1486+    return answer;
1487+  }
1488+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
1489+  if ((*p == UC('-')) || (*p == UC('+'))) {
1490+#else
1491+  if (*p == UC('-')) {
1492+#endif
1493+    ++p;
1494+  }
1495+
1496+  UC const *const start_num = p;
1497+
1498+  while (p != pend && *p == UC('0')) {
1499+    ++p;
1500+  }
1501+
1502+  const bool has_leading_zeros = p > start_num;
1503+
1504+  UC const *const start_digits = p;
1505+
1506+  uint64_t i = 0;
1507+  if (base == 10) {
1508+    loop_parse_if_eight_digits(p, pend, i); // use SIMD if possible
1509+  }
1510+  while (p != pend) {
1511+    uint8_t digit = ch_to_digit(*p);
1512+    if (digit >= base) {
1513+      break;
1514+    }
1515+    i = uint64_t(base) * i + digit; // might overflow, check this later
1516+    p++;
1517+  }
1518+
1519+  size_t digit_count = size_t(p - start_digits);
1520+
1521+  if (digit_count == 0) {
1522+    if (has_leading_zeros) {
1523+      value = 0;
1524+      answer.ec = std::errc();
1525+      answer.ptr = p;
1526+    } else {
1527+      answer.ec = std::errc::invalid_argument;
1528+      answer.ptr = first;
1529+    }
1530+    return answer;
1531+  }
1532+
1533+  answer.ptr = p;
1534+
1535+  // check u64 overflow
1536+  size_t max_digits = max_digits_u64(base);
1537+  if (digit_count > max_digits) {
1538+    answer.ec = std::errc::result_out_of_range;
1539+    return answer;
1540+  }
1541+  // this check can be eliminated for all other types, but they will all require
1542+  // a max_digits(base) equivalent
1543+  if (digit_count == max_digits && i < min_safe_u64(base)) {
1544+    answer.ec = std::errc::result_out_of_range;
1545+    return answer;
1546+  }
1547+
1548+  // check other types overflow
1549+  if (!std::is_same<T, uint64_t>::value) {
1550+    if (i > uint64_t(std::numeric_limits<T>::max()) + uint64_t(negative)) {
1551+      answer.ec = std::errc::result_out_of_range;
1552+      return answer;
1553+    }
1554+  }
1555+
1556+  if (negative) {
1557+#ifdef FASTFLOAT_VISUAL_STUDIO
1558+#pragma warning(push)
1559+#pragma warning(disable : 4146)
1560+#endif
1561+    // this weird workaround is required because:
1562+    // - converting unsigned to signed when its value is greater than signed max
1563+    // is UB pre-C++23.
1564+    // - reinterpret_casting (~i + 1) would work, but it is not constexpr
1565+    // this is always optimized into a neg instruction (note: T is an integer
1566+    // type)
1567+    value = T(-std::numeric_limits<T>::max() -
1568+              T(i - uint64_t(std::numeric_limits<T>::max())));
1569+#ifdef FASTFLOAT_VISUAL_STUDIO
1570+#pragma warning(pop)
1571+#endif
1572+  } else {
1573+    value = T(i);
1574+  }
1575+
1576+  answer.ec = std::errc();
1577+  return answer;
1578+}
1579+
1580+} // namespace fast_float
1581+
1582+#endif
1583+
1584+#ifndef FASTFLOAT_FAST_TABLE_H
1585+#define FASTFLOAT_FAST_TABLE_H
1586+
1587+#include <cstdint>
1588+
1589+namespace fast_float {
1590+
1591+/**
1592+ * When mapping numbers from decimal to binary,
1593+ * we go from w * 10^q to m * 2^p but we have
1594+ * 10^q = 5^q * 2^q, so effectively
1595+ * we are trying to match
1596+ * w * 2^q * 5^q to m * 2^p. Thus the powers of two
1597+ * are not a concern since they can be represented
1598+ * exactly using the binary notation, only the powers of five
1599+ * affect the binary significand.
1600+ */
1601+
1602+/**
1603+ * The smallest non-zero float (binary64) is 2^-1074.
1604+ * We take as input numbers of the form w x 10^q where w < 2^64.
1605+ * We have that w * 10^-343  <  2^(64-344) 5^-343 < 2^-1076.
1606+ * However, we have that
1607+ * (2^64-1) * 10^-342 =  (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
1608+ * Thus it is possible for a number of the form w * 10^-342 where
1609+ * w is a 64-bit value to be a non-zero floating-point number.
1610+ *********
1611+ * Any number of form w * 10^309 where w>= 1 is going to be
1612+ * infinite in binary64 so we never need to worry about powers
1613+ * of 5 greater than 308.
1614+ */
1615+template <class unused = void> struct powers_template {
1616+
1617+  constexpr static int smallest_power_of_five =
1618+      binary_format<double>::smallest_power_of_ten();
1619+  constexpr static int largest_power_of_five =
1620+      binary_format<double>::largest_power_of_ten();
1621+  constexpr static int number_of_entries =
1622+      2 * (largest_power_of_five - smallest_power_of_five + 1);
1623+  // Powers of five from 5^-342 all the way to 5^308 rounded toward one.
1624+  constexpr static uint64_t power_of_five_128[number_of_entries] = {
1625+      0xeef453d6923bd65a, 0x113faa2906a13b3f,
1626+      0x9558b4661b6565f8, 0x4ac7ca59a424c507,
1627+      0xbaaee17fa23ebf76, 0x5d79bcf00d2df649,
1628+      0xe95a99df8ace6f53, 0xf4d82c2c107973dc,
1629+      0x91d8a02bb6c10594, 0x79071b9b8a4be869,
1630+      0xb64ec836a47146f9, 0x9748e2826cdee284,
1631+      0xe3e27a444d8d98b7, 0xfd1b1b2308169b25,
1632+      0x8e6d8c6ab0787f72, 0xfe30f0f5e50e20f7,
1633+      0xb208ef855c969f4f, 0xbdbd2d335e51a935,
1634+      0xde8b2b66b3bc4723, 0xad2c788035e61382,
1635+      0x8b16fb203055ac76, 0x4c3bcb5021afcc31,
1636+      0xaddcb9e83c6b1793, 0xdf4abe242a1bbf3d,
1637+      0xd953e8624b85dd78, 0xd71d6dad34a2af0d,
1638+      0x87d4713d6f33aa6b, 0x8672648c40e5ad68,
1639+      0xa9c98d8ccb009506, 0x680efdaf511f18c2,
1640+      0xd43bf0effdc0ba48, 0x212bd1b2566def2,
1641+      0x84a57695fe98746d, 0x14bb630f7604b57,
1642+      0xa5ced43b7e3e9188, 0x419ea3bd35385e2d,
1643+      0xcf42894a5dce35ea, 0x52064cac828675b9,
1644+      0x818995ce7aa0e1b2, 0x7343efebd1940993,
1645+      0xa1ebfb4219491a1f, 0x1014ebe6c5f90bf8,
1646+      0xca66fa129f9b60a6, 0xd41a26e077774ef6,
1647+      0xfd00b897478238d0, 0x8920b098955522b4,
1648+      0x9e20735e8cb16382, 0x55b46e5f5d5535b0,
1649+      0xc5a890362fddbc62, 0xeb2189f734aa831d,
1650+      0xf712b443bbd52b7b, 0xa5e9ec7501d523e4,
1651+      0x9a6bb0aa55653b2d, 0x47b233c92125366e,
1652+      0xc1069cd4eabe89f8, 0x999ec0bb696e840a,
1653+      0xf148440a256e2c76, 0xc00670ea43ca250d,
1654+      0x96cd2a865764dbca, 0x380406926a5e5728,
1655+      0xbc807527ed3e12bc, 0xc605083704f5ecf2,
1656+      0xeba09271e88d976b, 0xf7864a44c633682e,
1657+      0x93445b8731587ea3, 0x7ab3ee6afbe0211d,
1658+      0xb8157268fdae9e4c, 0x5960ea05bad82964,
1659+      0xe61acf033d1a45df, 0x6fb92487298e33bd,
1660+      0x8fd0c16206306bab, 0xa5d3b6d479f8e056,
1661+      0xb3c4f1ba87bc8696, 0x8f48a4899877186c,
1662+      0xe0b62e2929aba83c, 0x331acdabfe94de87,
1663+      0x8c71dcd9ba0b4925, 0x9ff0c08b7f1d0b14,
1664+      0xaf8e5410288e1b6f, 0x7ecf0ae5ee44dd9,
1665+      0xdb71e91432b1a24a, 0xc9e82cd9f69d6150,
1666+      0x892731ac9faf056e, 0xbe311c083a225cd2,
1667+      0xab70fe17c79ac6ca, 0x6dbd630a48aaf406,
1668+      0xd64d3d9db981787d, 0x92cbbccdad5b108,
1669+      0x85f0468293f0eb4e, 0x25bbf56008c58ea5,
1670+      0xa76c582338ed2621, 0xaf2af2b80af6f24e,
1671+      0xd1476e2c07286faa, 0x1af5af660db4aee1,
1672+      0x82cca4db847945ca, 0x50d98d9fc890ed4d,
1673+      0xa37fce126597973c, 0xe50ff107bab528a0,
1674+      0xcc5fc196fefd7d0c, 0x1e53ed49a96272c8,
1675+      0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7a,
1676+      0x9faacf3df73609b1, 0x77b191618c54e9ac,
1677+      0xc795830d75038c1d, 0xd59df5b9ef6a2417,
1678+      0xf97ae3d0d2446f25, 0x4b0573286b44ad1d,
1679+      0x9becce62836ac577, 0x4ee367f9430aec32,
1680+      0xc2e801fb244576d5, 0x229c41f793cda73f,
1681+      0xf3a20279ed56d48a, 0x6b43527578c1110f,
1682+      0x9845418c345644d6, 0x830a13896b78aaa9,
1683+      0xbe5691ef416bd60c, 0x23cc986bc656d553,
1684+      0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa8,
1685+      0x94b3a202eb1c3f39, 0x7bf7d71432f3d6a9,
1686+      0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc53,
1687+      0xe858ad248f5c22c9, 0xd1b3400f8f9cff68,
1688+      0x91376c36d99995be, 0x23100809b9c21fa1,
1689+      0xb58547448ffffb2d, 0xabd40a0c2832a78a,
1690+      0xe2e69915b3fff9f9, 0x16c90c8f323f516c,
1691+      0x8dd01fad907ffc3b, 0xae3da7d97f6792e3,
1692+      0xb1442798f49ffb4a, 0x99cd11cfdf41779c,
1693+      0xdd95317f31c7fa1d, 0x40405643d711d583,
1694+      0x8a7d3eef7f1cfc52, 0x482835ea666b2572,
1695+      0xad1c8eab5ee43b66, 0xda3243650005eecf,
1696+      0xd863b256369d4a40, 0x90bed43e40076a82,
1697+      0x873e4f75e2224e68, 0x5a7744a6e804a291,
1698+      0xa90de3535aaae202, 0x711515d0a205cb36,
1699+      0xd3515c2831559a83, 0xd5a5b44ca873e03,
1700+      0x8412d9991ed58091, 0xe858790afe9486c2,
1701+      0xa5178fff668ae0b6, 0x626e974dbe39a872,
1702+      0xce5d73ff402d98e3, 0xfb0a3d212dc8128f,
1703+      0x80fa687f881c7f8e, 0x7ce66634bc9d0b99,
1704+      0xa139029f6a239f72, 0x1c1fffc1ebc44e80,
1705+      0xc987434744ac874e, 0xa327ffb266b56220,
1706+      0xfbe9141915d7a922, 0x4bf1ff9f0062baa8,
1707+      0x9d71ac8fada6c9b5, 0x6f773fc3603db4a9,
1708+      0xc4ce17b399107c22, 0xcb550fb4384d21d3,
1709+      0xf6019da07f549b2b, 0x7e2a53a146606a48,
1710+      0x99c102844f94e0fb, 0x2eda7444cbfc426d,
1711+      0xc0314325637a1939, 0xfa911155fefb5308,
1712+      0xf03d93eebc589f88, 0x793555ab7eba27ca,
1713+      0x96267c7535b763b5, 0x4bc1558b2f3458de,
1714+      0xbbb01b9283253ca2, 0x9eb1aaedfb016f16,
1715+      0xea9c227723ee8bcb, 0x465e15a979c1cadc,
1716+      0x92a1958a7675175f, 0xbfacd89ec191ec9,
1717+      0xb749faed14125d36, 0xcef980ec671f667b,
1718+      0xe51c79a85916f484, 0x82b7e12780e7401a,
1719+      0x8f31cc0937ae58d2, 0xd1b2ecb8b0908810,
1720+      0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa15,
1721+      0xdfbdcece67006ac9, 0x67a791e093e1d49a,
1722+      0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e0,
1723+      0xaecc49914078536d, 0x58fae9f773886e18,
1724+      0xda7f5bf590966848, 0xaf39a475506a899e,
1725+      0x888f99797a5e012d, 0x6d8406c952429603,
1726+      0xaab37fd7d8f58178, 0xc8e5087ba6d33b83,
1727+      0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a64,
1728+      0x855c3be0a17fcd26, 0x5cf2eea09a55067f,
1729+      0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481e,
1730+      0xd0601d8efc57b08b, 0xf13b94daf124da26,
1731+      0x823c12795db6ce57, 0x76c53d08d6b70858,
1732+      0xa2cb1717b52481ed, 0x54768c4b0c64ca6e,
1733+      0xcb7ddcdda26da268, 0xa9942f5dcf7dfd09,
1734+      0xfe5d54150b090b02, 0xd3f93b35435d7c4c,
1735+      0x9efa548d26e5a6e1, 0xc47bc5014a1a6daf,
1736+      0xc6b8e9b0709f109a, 0x359ab6419ca1091b,
1737+      0xf867241c8cc6d4c0, 0xc30163d203c94b62,
1738+      0x9b407691d7fc44f8, 0x79e0de63425dcf1d,
1739+      0xc21094364dfb5636, 0x985915fc12f542e4,
1740+      0xf294b943e17a2bc4, 0x3e6f5b7b17b2939d,
1741+      0x979cf3ca6cec5b5a, 0xa705992ceecf9c42,
1742+      0xbd8430bd08277231, 0x50c6ff782a838353,
1743+      0xece53cec4a314ebd, 0xa4f8bf5635246428,
1744+      0x940f4613ae5ed136, 0x871b7795e136be99,
1745+      0xb913179899f68584, 0x28e2557b59846e3f,
1746+      0xe757dd7ec07426e5, 0x331aeada2fe589cf,
1747+      0x9096ea6f3848984f, 0x3ff0d2c85def7621,
1748+      0xb4bca50b065abe63, 0xfed077a756b53a9,
1749+      0xe1ebce4dc7f16dfb, 0xd3e8495912c62894,
1750+      0x8d3360f09cf6e4bd, 0x64712dd7abbbd95c,
1751+      0xb080392cc4349dec, 0xbd8d794d96aacfb3,
1752+      0xdca04777f541c567, 0xecf0d7a0fc5583a0,
1753+      0x89e42caaf9491b60, 0xf41686c49db57244,
1754+      0xac5d37d5b79b6239, 0x311c2875c522ced5,
1755+      0xd77485cb25823ac7, 0x7d633293366b828b,
1756+      0x86a8d39ef77164bc, 0xae5dff9c02033197,
1757+      0xa8530886b54dbdeb, 0xd9f57f830283fdfc,
1758+      0xd267caa862a12d66, 0xd072df63c324fd7b,
1759+      0x8380dea93da4bc60, 0x4247cb9e59f71e6d,
1760+      0xa46116538d0deb78, 0x52d9be85f074e608,
1761+      0xcd795be870516656, 0x67902e276c921f8b,
1762+      0x806bd9714632dff6, 0xba1cd8a3db53b6,
1763+      0xa086cfcd97bf97f3, 0x80e8a40eccd228a4,
1764+      0xc8a883c0fdaf7df0, 0x6122cd128006b2cd,
1765+      0xfad2a4b13d1b5d6c, 0x796b805720085f81,
1766+      0x9cc3a6eec6311a63, 0xcbe3303674053bb0,
1767+      0xc3f490aa77bd60fc, 0xbedbfc4411068a9c,
1768+      0xf4f1b4d515acb93b, 0xee92fb5515482d44,
1769+      0x991711052d8bf3c5, 0x751bdd152d4d1c4a,
1770+      0xbf5cd54678eef0b6, 0xd262d45a78a0635d,
1771+      0xef340a98172aace4, 0x86fb897116c87c34,
1772+      0x9580869f0e7aac0e, 0xd45d35e6ae3d4da0,
1773+      0xbae0a846d2195712, 0x8974836059cca109,
1774+      0xe998d258869facd7, 0x2bd1a438703fc94b,
1775+      0x91ff83775423cc06, 0x7b6306a34627ddcf,
1776+      0xb67f6455292cbf08, 0x1a3bc84c17b1d542,
1777+      0xe41f3d6a7377eeca, 0x20caba5f1d9e4a93,
1778+      0x8e938662882af53e, 0x547eb47b7282ee9c,
1779+      0xb23867fb2a35b28d, 0xe99e619a4f23aa43,
1780+      0xdec681f9f4c31f31, 0x6405fa00e2ec94d4,
1781+      0x8b3c113c38f9f37e, 0xde83bc408dd3dd04,
1782+      0xae0b158b4738705e, 0x9624ab50b148d445,
1783+      0xd98ddaee19068c76, 0x3badd624dd9b0957,
1784+      0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d6,
1785+      0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4c,
1786+      0xd47487cc8470652b, 0x7647c3200069671f,
1787+      0x84c8d4dfd2c63f3b, 0x29ecd9f40041e073,
1788+      0xa5fb0a17c777cf09, 0xf468107100525890,
1789+      0xcf79cc9db955c2cc, 0x7182148d4066eeb4,
1790+      0x81ac1fe293d599bf, 0xc6f14cd848405530,
1791+      0xa21727db38cb002f, 0xb8ada00e5a506a7c,
1792+      0xca9cf1d206fdc03b, 0xa6d90811f0e4851c,
1793+      0xfd442e4688bd304a, 0x908f4a166d1da663,
1794+      0x9e4a9cec15763e2e, 0x9a598e4e043287fe,
1795+      0xc5dd44271ad3cdba, 0x40eff1e1853f29fd,
1796+      0xf7549530e188c128, 0xd12bee59e68ef47c,
1797+      0x9a94dd3e8cf578b9, 0x82bb74f8301958ce,
1798+      0xc13a148e3032d6e7, 0xe36a52363c1faf01,
1799+      0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac1,
1800+      0x96f5600f15a7b7e5, 0x29ab103a5ef8c0b9,
1801+      0xbcb2b812db11a5de, 0x7415d448f6b6f0e7,
1802+      0xebdf661791d60f56, 0x111b495b3464ad21,
1803+      0x936b9fcebb25c995, 0xcab10dd900beec34,
1804+      0xb84687c269ef3bfb, 0x3d5d514f40eea742,
1805+      0xe65829b3046b0afa, 0xcb4a5a3112a5112,
1806+      0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ab,
1807+      0xb3f4e093db73a093, 0x59ed216765690f56,
1808+      0xe0f218b8d25088b8, 0x306869c13ec3532c,
1809+      0x8c974f7383725573, 0x1e414218c73a13fb,
1810+      0xafbd2350644eeacf, 0xe5d1929ef90898fa,
1811+      0xdbac6c247d62a583, 0xdf45f746b74abf39,
1812+      0x894bc396ce5da772, 0x6b8bba8c328eb783,
1813+      0xab9eb47c81f5114f, 0x66ea92f3f326564,
1814+      0xd686619ba27255a2, 0xc80a537b0efefebd,
1815+      0x8613fd0145877585, 0xbd06742ce95f5f36,
1816+      0xa798fc4196e952e7, 0x2c48113823b73704,
1817+      0xd17f3b51fca3a7a0, 0xf75a15862ca504c5,
1818+      0x82ef85133de648c4, 0x9a984d73dbe722fb,
1819+      0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebba,
1820+      0xcc963fee10b7d1b3, 0x318df905079926a8,
1821+      0xffbbcfe994e5c61f, 0xfdf17746497f7052,
1822+      0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa633,
1823+      0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc0,
1824+      0xf9bd690a1b68637b, 0x3dfdce7aa3c673b0,
1825+      0x9c1661a651213e2d, 0x6bea10ca65c084e,
1826+      0xc31bfa0fe5698db8, 0x486e494fcff30a62,
1827+      0xf3e2f893dec3f126, 0x5a89dba3c3efccfa,
1828+      0x986ddb5c6b3a76b7, 0xf89629465a75e01c,
1829+      0xbe89523386091465, 0xf6bbb397f1135823,
1830+      0xee2ba6c0678b597f, 0x746aa07ded582e2c,
1831+      0x94db483840b717ef, 0xa8c2a44eb4571cdc,
1832+      0xba121a4650e4ddeb, 0x92f34d62616ce413,
1833+      0xe896a0d7e51e1566, 0x77b020baf9c81d17,
1834+      0x915e2486ef32cd60, 0xace1474dc1d122e,
1835+      0xb5b5ada8aaff80b8, 0xd819992132456ba,
1836+      0xe3231912d5bf60e6, 0x10e1fff697ed6c69,
1837+      0x8df5efabc5979c8f, 0xca8d3ffa1ef463c1,
1838+      0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb2,
1839+      0xddd0467c64bce4a0, 0xac7cb3f6d05ddbde,
1840+      0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96b,
1841+      0xad4ab7112eb3929d, 0x86c16c98d2c953c6,
1842+      0xd89d64d57a607744, 0xe871c7bf077ba8b7,
1843+      0x87625f056c7c4a8b, 0x11471cd764ad4972,
1844+      0xa93af6c6c79b5d2d, 0xd598e40d3dd89bcf,
1845+      0xd389b47879823479, 0x4aff1d108d4ec2c3,
1846+      0x843610cb4bf160cb, 0xcedf722a585139ba,
1847+      0xa54394fe1eedb8fe, 0xc2974eb4ee658828,
1848+      0xce947a3da6a9273e, 0x733d226229feea32,
1849+      0x811ccc668829b887, 0x806357d5a3f525f,
1850+      0xa163ff802a3426a8, 0xca07c2dcb0cf26f7,
1851+      0xc9bcff6034c13052, 0xfc89b393dd02f0b5,
1852+      0xfc2c3f3841f17c67, 0xbbac2078d443ace2,
1853+      0x9d9ba7832936edc0, 0xd54b944b84aa4c0d,
1854+      0xc5029163f384a931, 0xa9e795e65d4df11,
1855+      0xf64335bcf065d37d, 0x4d4617b5ff4a16d5,
1856+      0x99ea0196163fa42e, 0x504bced1bf8e4e45,
1857+      0xc06481fb9bcf8d39, 0xe45ec2862f71e1d6,
1858+      0xf07da27a82c37088, 0x5d767327bb4e5a4c,
1859+      0x964e858c91ba2655, 0x3a6a07f8d510f86f,
1860+      0xbbe226efb628afea, 0x890489f70a55368b,
1861+      0xeadab0aba3b2dbe5, 0x2b45ac74ccea842e,
1862+      0x92c8ae6b464fc96f, 0x3b0b8bc90012929d,
1863+      0xb77ada0617e3bbcb, 0x9ce6ebb40173744,
1864+      0xe55990879ddcaabd, 0xcc420a6a101d0515,
1865+      0x8f57fa54c2a9eab6, 0x9fa946824a12232d,
1866+      0xb32df8e9f3546564, 0x47939822dc96abf9,
1867+      0xdff9772470297ebd, 0x59787e2b93bc56f7,
1868+      0x8bfbea76c619ef36, 0x57eb4edb3c55b65a,
1869+      0xaefae51477a06b03, 0xede622920b6b23f1,
1870+      0xdab99e59958885c4, 0xe95fab368e45eced,
1871+      0x88b402f7fd75539b, 0x11dbcb0218ebb414,
1872+      0xaae103b5fcd2a881, 0xd652bdc29f26a119,
1873+      0xd59944a37c0752a2, 0x4be76d3346f0495f,
1874+      0x857fcae62d8493a5, 0x6f70a4400c562ddb,
1875+      0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb952,
1876+      0xd097ad07a71f26b2, 0x7e2000a41346a7a7,
1877+      0x825ecc24c873782f, 0x8ed400668c0c28c8,
1878+      0xa2f67f2dfa90563b, 0x728900802f0f32fa,
1879+      0xcbb41ef979346bca, 0x4f2b40a03ad2ffb9,
1880+      0xfea126b7d78186bc, 0xe2f610c84987bfa8,
1881+      0x9f24b832e6b0f436, 0xdd9ca7d2df4d7c9,
1882+      0xc6ede63fa05d3143, 0x91503d1c79720dbb,
1883+      0xf8a95fcf88747d94, 0x75a44c6397ce912a,
1884+      0x9b69dbe1b548ce7c, 0xc986afbe3ee11aba,
1885+      0xc24452da229b021b, 0xfbe85badce996168,
1886+      0xf2d56790ab41c2a2, 0xfae27299423fb9c3,
1887+      0x97c560ba6b0919a5, 0xdccd879fc967d41a,
1888+      0xbdb6b8e905cb600f, 0x5400e987bbc1c920,
1889+      0xed246723473e3813, 0x290123e9aab23b68,
1890+      0x9436c0760c86e30b, 0xf9a0b6720aaf6521,
1891+      0xb94470938fa89bce, 0xf808e40e8d5b3e69,
1892+      0xe7958cb87392c2c2, 0xb60b1d1230b20e04,
1893+      0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c2,
1894+      0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af3,
1895+      0xe2280b6c20dd5232, 0x25c6da63c38de1b0,
1896+      0x8d590723948a535f, 0x579c487e5a38ad0e,
1897+      0xb0af48ec79ace837, 0x2d835a9df0c6d851,
1898+      0xdcdb1b2798182244, 0xf8e431456cf88e65,
1899+      0x8a08f0f8bf0f156b, 0x1b8e9ecb641b58ff,
1900+      0xac8b2d36eed2dac5, 0xe272467e3d222f3f,
1901+      0xd7adf884aa879177, 0x5b0ed81dcc6abb0f,
1902+      0x86ccbb52ea94baea, 0x98e947129fc2b4e9,
1903+      0xa87fea27a539e9a5, 0x3f2398d747b36224,
1904+      0xd29fe4b18e88640e, 0x8eec7f0d19a03aad,
1905+      0x83a3eeeef9153e89, 0x1953cf68300424ac,
1906+      0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd7,
1907+      0xcdb02555653131b6, 0x3792f412cb06794d,
1908+      0x808e17555f3ebf11, 0xe2bbd88bbee40bd0,
1909+      0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec4,
1910+      0xc8de047564d20a8b, 0xf245825a5a445275,
1911+      0xfb158592be068d2e, 0xeed6e2f0f0d56712,
1912+      0x9ced737bb6c4183d, 0x55464dd69685606b,
1913+      0xc428d05aa4751e4c, 0xaa97e14c3c26b886,
1914+      0xf53304714d9265df, 0xd53dd99f4b3066a8,
1915+      0x993fe2c6d07b7fab, 0xe546a8038efe4029,
1916+      0xbf8fdb78849a5f96, 0xde98520472bdd033,
1917+      0xef73d256a5c0f77c, 0x963e66858f6d4440,
1918+      0x95a8637627989aad, 0xdde7001379a44aa8,
1919+      0xbb127c53b17ec159, 0x5560c018580d5d52,
1920+      0xe9d71b689dde71af, 0xaab8f01e6e10b4a6,
1921+      0x9226712162ab070d, 0xcab3961304ca70e8,
1922+      0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d22,
1923+      0xe45c10c42a2b3b05, 0x8cb89a7db77c506a,
1924+      0x8eb98a7a9a5b04e3, 0x77f3608e92adb242,
1925+      0xb267ed1940f1c61c, 0x55f038b237591ed3,
1926+      0xdf01e85f912e37a3, 0x6b6c46dec52f6688,
1927+      0x8b61313bbabce2c6, 0x2323ac4b3b3da015,
1928+      0xae397d8aa96c1b77, 0xabec975e0a0d081a,
1929+      0xd9c7dced53c72255, 0x96e7bd358c904a21,
1930+      0x881cea14545c7575, 0x7e50d64177da2e54,
1931+      0xaa242499697392d2, 0xdde50bd1d5d0b9e9,
1932+      0xd4ad2dbfc3d07787, 0x955e4ec64b44e864,
1933+      0x84ec3c97da624ab4, 0xbd5af13bef0b113e,
1934+      0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58e,
1935+      0xcfb11ead453994ba, 0x67de18eda5814af2,
1936+      0x81ceb32c4b43fcf4, 0x80eacf948770ced7,
1937+      0xa2425ff75e14fc31, 0xa1258379a94d028d,
1938+      0xcad2f7f5359a3b3e, 0x96ee45813a04330,
1939+      0xfd87b5f28300ca0d, 0x8bca9d6e188853fc,
1940+      0x9e74d1b791e07e48, 0x775ea264cf55347e,
1941+      0xc612062576589dda, 0x95364afe032a819e,
1942+      0xf79687aed3eec551, 0x3a83ddbd83f52205,
1943+      0x9abe14cd44753b52, 0xc4926a9672793543,
1944+      0xc16d9a0095928a27, 0x75b7053c0f178294,
1945+      0xf1c90080baf72cb1, 0x5324c68b12dd6339,
1946+      0x971da05074da7bee, 0xd3f6fc16ebca5e04,
1947+      0xbce5086492111aea, 0x88f4bb1ca6bcf585,
1948+      0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6,
1949+      0x9392ee8e921d5d07, 0x3aff322e62439fd0,
1950+      0xb877aa3236a4b449, 0x9befeb9fad487c3,
1951+      0xe69594bec44de15b, 0x4c2ebe687989a9b4,
1952+      0x901d7cf73ab0acd9, 0xf9d37014bf60a11,
1953+      0xb424dc35095cd80f, 0x538484c19ef38c95,
1954+      0xe12e13424bb40e13, 0x2865a5f206b06fba,
1955+      0x8cbccc096f5088cb, 0xf93f87b7442e45d4,
1956+      0xafebff0bcb24aafe, 0xf78f69a51539d749,
1957+      0xdbe6fecebdedd5be, 0xb573440e5a884d1c,
1958+      0x89705f4136b4a597, 0x31680a88f8953031,
1959+      0xabcc77118461cefc, 0xfdc20d2b36ba7c3e,
1960+      0xd6bf94d5e57a42bc, 0x3d32907604691b4d,
1961+      0x8637bd05af6c69b5, 0xa63f9a49c2c1b110,
1962+      0xa7c5ac471b478423, 0xfcf80dc33721d54,
1963+      0xd1b71758e219652b, 0xd3c36113404ea4a9,
1964+      0x83126e978d4fdf3b, 0x645a1cac083126ea,
1965+      0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4,
1966+      0xcccccccccccccccc, 0xcccccccccccccccd,
1967+      0x8000000000000000, 0x0,
1968+      0xa000000000000000, 0x0,
1969+      0xc800000000000000, 0x0,
1970+      0xfa00000000000000, 0x0,
1971+      0x9c40000000000000, 0x0,
1972+      0xc350000000000000, 0x0,
1973+      0xf424000000000000, 0x0,
1974+      0x9896800000000000, 0x0,
1975+      0xbebc200000000000, 0x0,
1976+      0xee6b280000000000, 0x0,
1977+      0x9502f90000000000, 0x0,
1978+      0xba43b74000000000, 0x0,
1979+      0xe8d4a51000000000, 0x0,
1980+      0x9184e72a00000000, 0x0,
1981+      0xb5e620f480000000, 0x0,
1982+      0xe35fa931a0000000, 0x0,
1983+      0x8e1bc9bf04000000, 0x0,
1984+      0xb1a2bc2ec5000000, 0x0,
1985+      0xde0b6b3a76400000, 0x0,
1986+      0x8ac7230489e80000, 0x0,
1987+      0xad78ebc5ac620000, 0x0,
1988+      0xd8d726b7177a8000, 0x0,
1989+      0x878678326eac9000, 0x0,
1990+      0xa968163f0a57b400, 0x0,
1991+      0xd3c21bcecceda100, 0x0,
1992+      0x84595161401484a0, 0x0,
1993+      0xa56fa5b99019a5c8, 0x0,
1994+      0xcecb8f27f4200f3a, 0x0,
1995+      0x813f3978f8940984, 0x4000000000000000,
1996+      0xa18f07d736b90be5, 0x5000000000000000,
1997+      0xc9f2c9cd04674ede, 0xa400000000000000,
1998+      0xfc6f7c4045812296, 0x4d00000000000000,
1999+      0x9dc5ada82b70b59d, 0xf020000000000000,
2000+      0xc5371912364ce305, 0x6c28000000000000,
2001+      0xf684df56c3e01bc6, 0xc732000000000000,
2002+      0x9a130b963a6c115c, 0x3c7f400000000000,
2003+      0xc097ce7bc90715b3, 0x4b9f100000000000,
2004+      0xf0bdc21abb48db20, 0x1e86d40000000000,
2005+      0x96769950b50d88f4, 0x1314448000000000,
2006+      0xbc143fa4e250eb31, 0x17d955a000000000,
2007+      0xeb194f8e1ae525fd, 0x5dcfab0800000000,
2008+      0x92efd1b8d0cf37be, 0x5aa1cae500000000,
2009+      0xb7abc627050305ad, 0xf14a3d9e40000000,
2010+      0xe596b7b0c643c719, 0x6d9ccd05d0000000,
2011+      0x8f7e32ce7bea5c6f, 0xe4820023a2000000,
2012+      0xb35dbf821ae4f38b, 0xdda2802c8a800000,
2013+      0xe0352f62a19e306e, 0xd50b2037ad200000,
2014+      0x8c213d9da502de45, 0x4526f422cc340000,
2015+      0xaf298d050e4395d6, 0x9670b12b7f410000,
2016+      0xdaf3f04651d47b4c, 0x3c0cdd765f114000,
2017+      0x88d8762bf324cd0f, 0xa5880a69fb6ac800,
2018+      0xab0e93b6efee0053, 0x8eea0d047a457a00,
2019+      0xd5d238a4abe98068, 0x72a4904598d6d880,
2020+      0x85a36366eb71f041, 0x47a6da2b7f864750,
2021+      0xa70c3c40a64e6c51, 0x999090b65f67d924,
2022+      0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d,
2023+      0x82818f1281ed449f, 0xbff8f10e7a8921a4,
2024+      0xa321f2d7226895c7, 0xaff72d52192b6a0d,
2025+      0xcbea6f8ceb02bb39, 0x9bf4f8a69f764490,
2026+      0xfee50b7025c36a08, 0x2f236d04753d5b4,
2027+      0x9f4f2726179a2245, 0x1d762422c946590,
2028+      0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef5,
2029+      0xf8ebad2b84e0d58b, 0xd2e0898765a7deb2,
2030+      0x9b934c3b330c8577, 0x63cc55f49f88eb2f,
2031+      0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fb,
2032+      0xf316271c7fc3908a, 0x8bef464e3945ef7a,
2033+      0x97edd871cfda3a56, 0x97758bf0e3cbb5ac,
2034+      0xbde94e8e43d0c8ec, 0x3d52eeed1cbea317,
2035+      0xed63a231d4c4fb27, 0x4ca7aaa863ee4bdd,
2036+      0x945e455f24fb1cf8, 0x8fe8caa93e74ef6a,
2037+      0xb975d6b6ee39e436, 0xb3e2fd538e122b44,
2038+      0xe7d34c64a9c85d44, 0x60dbbca87196b616,
2039+      0x90e40fbeea1d3a4a, 0xbc8955e946fe31cd,
2040+      0xb51d13aea4a488dd, 0x6babab6398bdbe41,
2041+      0xe264589a4dcdab14, 0xc696963c7eed2dd1,
2042+      0x8d7eb76070a08aec, 0xfc1e1de5cf543ca2,
2043+      0xb0de65388cc8ada8, 0x3b25a55f43294bcb,
2044+      0xdd15fe86affad912, 0x49ef0eb713f39ebe,
2045+      0x8a2dbf142dfcc7ab, 0x6e3569326c784337,
2046+      0xacb92ed9397bf996, 0x49c2c37f07965404,
2047+      0xd7e77a8f87daf7fb, 0xdc33745ec97be906,
2048+      0x86f0ac99b4e8dafd, 0x69a028bb3ded71a3,
2049+      0xa8acd7c0222311bc, 0xc40832ea0d68ce0c,
2050+      0xd2d80db02aabd62b, 0xf50a3fa490c30190,
2051+      0x83c7088e1aab65db, 0x792667c6da79e0fa,
2052+      0xa4b8cab1a1563f52, 0x577001b891185938,
2053+      0xcde6fd5e09abcf26, 0xed4c0226b55e6f86,
2054+      0x80b05e5ac60b6178, 0x544f8158315b05b4,
2055+      0xa0dc75f1778e39d6, 0x696361ae3db1c721,
2056+      0xc913936dd571c84c, 0x3bc3a19cd1e38e9,
2057+      0xfb5878494ace3a5f, 0x4ab48a04065c723,
2058+      0x9d174b2dcec0e47b, 0x62eb0d64283f9c76,
2059+      0xc45d1df942711d9a, 0x3ba5d0bd324f8394,
2060+      0xf5746577930d6500, 0xca8f44ec7ee36479,
2061+      0x9968bf6abbe85f20, 0x7e998b13cf4e1ecb,
2062+      0xbfc2ef456ae276e8, 0x9e3fedd8c321a67e,
2063+      0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101e,
2064+      0x95d04aee3b80ece5, 0xbba1f1d158724a12,
2065+      0xbb445da9ca61281f, 0x2a8a6e45ae8edc97,
2066+      0xea1575143cf97226, 0xf52d09d71a3293bd,
2067+      0x924d692ca61be758, 0x593c2626705f9c56,
2068+      0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836c,
2069+      0xe498f455c38b997a, 0xb6dfb9c0f956447,
2070+      0x8edf98b59a373fec, 0x4724bd4189bd5eac,
2071+      0xb2977ee300c50fe7, 0x58edec91ec2cb657,
2072+      0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ed,
2073+      0x8b865b215899f46c, 0xbd79e0d20082ee74,
2074+      0xae67f1e9aec07187, 0xecd8590680a3aa11,
2075+      0xda01ee641a708de9, 0xe80e6f4820cc9495,
2076+      0x884134fe908658b2, 0x3109058d147fdcdd,
2077+      0xaa51823e34a7eede, 0xbd4b46f0599fd415,
2078+      0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91a,
2079+      0x850fadc09923329e, 0x3e2cf6bc604ddb0,
2080+      0xa6539930bf6bff45, 0x84db8346b786151c,
2081+      0xcfe87f7cef46ff16, 0xe612641865679a63,
2082+      0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07e,
2083+      0xa26da3999aef7749, 0xe3be5e330f38f09d,
2084+      0xcb090c8001ab551c, 0x5cadf5bfd3072cc5,
2085+      0xfdcb4fa002162a63, 0x73d9732fc7c8f7f6,
2086+      0x9e9f11c4014dda7e, 0x2867e7fddcdd9afa,
2087+      0xc646d63501a1511d, 0xb281e1fd541501b8,
2088+      0xf7d88bc24209a565, 0x1f225a7ca91a4226,
2089+      0x9ae757596946075f, 0x3375788de9b06958,
2090+      0xc1a12d2fc3978937, 0x52d6b1641c83ae,
2091+      0xf209787bb47d6b84, 0xc0678c5dbd23a49a,
2092+      0x9745eb4d50ce6332, 0xf840b7ba963646e0,
2093+      0xbd176620a501fbff, 0xb650e5a93bc3d898,
2094+      0xec5d3fa8ce427aff, 0xa3e51f138ab4cebe,
2095+      0x93ba47c980e98cdf, 0xc66f336c36b10137,
2096+      0xb8a8d9bbe123f017, 0xb80b0047445d4184,
2097+      0xe6d3102ad96cec1d, 0xa60dc059157491e5,
2098+      0x9043ea1ac7e41392, 0x87c89837ad68db2f,
2099+      0xb454e4a179dd1877, 0x29babe4598c311fb,
2100+      0xe16a1dc9d8545e94, 0xf4296dd6fef3d67a,
2101+      0x8ce2529e2734bb1d, 0x1899e4a65f58660c,
2102+      0xb01ae745b101e9e4, 0x5ec05dcff72e7f8f,
2103+      0xdc21a1171d42645d, 0x76707543f4fa1f73,
2104+      0x899504ae72497eba, 0x6a06494a791c53a8,
2105+      0xabfa45da0edbde69, 0x487db9d17636892,
2106+      0xd6f8d7509292d603, 0x45a9d2845d3c42b6,
2107+      0x865b86925b9bc5c2, 0xb8a2392ba45a9b2,
2108+      0xa7f26836f282b732, 0x8e6cac7768d7141e,
2109+      0xd1ef0244af2364ff, 0x3207d795430cd926,
2110+      0x8335616aed761f1f, 0x7f44e6bd49e807b8,
2111+      0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a6,
2112+      0xcd036837130890a1, 0x36dba887c37a8c0f,
2113+      0x802221226be55a64, 0xc2494954da2c9789,
2114+      0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6c,
2115+      0xc83553c5c8965d3d, 0x6f92829494e5acc7,
2116+      0xfa42a8b73abbf48c, 0xcb772339ba1f17f9,
2117+      0x9c69a97284b578d7, 0xff2a760414536efb,
2118+      0xc38413cf25e2d70d, 0xfef5138519684aba,
2119+      0xf46518c2ef5b8cd1, 0x7eb258665fc25d69,
2120+      0x98bf2f79d5993802, 0xef2f773ffbd97a61,
2121+      0xbeeefb584aff8603, 0xaafb550ffacfd8fa,
2122+      0xeeaaba2e5dbf6784, 0x95ba2a53f983cf38,
2123+      0x952ab45cfa97a0b2, 0xdd945a747bf26183,
2124+      0xba756174393d88df, 0x94f971119aeef9e4,
2125+      0xe912b9d1478ceb17, 0x7a37cd5601aab85d,
2126+      0x91abb422ccb812ee, 0xac62e055c10ab33a,
2127+      0xb616a12b7fe617aa, 0x577b986b314d6009,
2128+      0xe39c49765fdf9d94, 0xed5a7e85fda0b80b,
2129+      0x8e41ade9fbebc27d, 0x14588f13be847307,
2130+      0xb1d219647ae6b31c, 0x596eb2d8ae258fc8,
2131+      0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bb,
2132+      0x8aec23d680043bee, 0x25de7bb9480d5854,
2133+      0xada72ccc20054ae9, 0xaf561aa79a10ae6a,
2134+      0xd910f7ff28069da4, 0x1b2ba1518094da04,
2135+      0x87aa9aff79042286, 0x90fb44d2f05d0842,
2136+      0xa99541bf57452b28, 0x353a1607ac744a53,
2137+      0xd3fa922f2d1675f2, 0x42889b8997915ce8,
2138+      0x847c9b5d7c2e09b7, 0x69956135febada11,
2139+      0xa59bc234db398c25, 0x43fab9837e699095,
2140+      0xcf02b2c21207ef2e, 0x94f967e45e03f4bb,
2141+      0x8161afb94b44f57d, 0x1d1be0eebac278f5,
2142+      0xa1ba1ba79e1632dc, 0x6462d92a69731732,
2143+      0xca28a291859bbf93, 0x7d7b8f7503cfdcfe,
2144+      0xfcb2cb35e702af78, 0x5cda735244c3d43e,
2145+      0x9defbf01b061adab, 0x3a0888136afa64a7,
2146+      0xc56baec21c7a1916, 0x88aaa1845b8fdd0,
2147+      0xf6c69a72a3989f5b, 0x8aad549e57273d45,
2148+      0x9a3c2087a63f6399, 0x36ac54e2f678864b,
2149+      0xc0cb28a98fcf3c7f, 0x84576a1bb416a7dd,
2150+      0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d5,
2151+      0x969eb7c47859e743, 0x9f644ae5a4b1b325,
2152+      0xbc4665b596706114, 0x873d5d9f0dde1fee,
2153+      0xeb57ff22fc0c7959, 0xa90cb506d155a7ea,
2154+      0x9316ff75dd87cbd8, 0x9a7f12442d588f2,
2155+      0xb7dcbf5354e9bece, 0xc11ed6d538aeb2f,
2156+      0xe5d3ef282a242e81, 0x8f1668c8a86da5fa,
2157+      0x8fa475791a569d10, 0xf96e017d694487bc,
2158+      0xb38d92d760ec4455, 0x37c981dcc395a9ac,
2159+      0xe070f78d3927556a, 0x85bbe253f47b1417,
2160+      0x8c469ab843b89562, 0x93956d7478ccec8e,
2161+      0xaf58416654a6babb, 0x387ac8d1970027b2,
2162+      0xdb2e51bfe9d0696a, 0x6997b05fcc0319e,
2163+      0x88fcf317f22241e2, 0x441fece3bdf81f03,
2164+      0xab3c2fddeeaad25a, 0xd527e81cad7626c3,
2165+      0xd60b3bd56a5586f1, 0x8a71e223d8d3b074,
2166+      0x85c7056562757456, 0xf6872d5667844e49,
2167+      0xa738c6bebb12d16c, 0xb428f8ac016561db,
2168+      0xd106f86e69d785c7, 0xe13336d701beba52,
2169+      0x82a45b450226b39c, 0xecc0024661173473,
2170+      0xa34d721642b06084, 0x27f002d7f95d0190,
2171+      0xcc20ce9bd35c78a5, 0x31ec038df7b441f4,
2172+      0xff290242c83396ce, 0x7e67047175a15271,
2173+      0x9f79a169bd203e41, 0xf0062c6e984d386,
2174+      0xc75809c42c684dd1, 0x52c07b78a3e60868,
2175+      0xf92e0c3537826145, 0xa7709a56ccdf8a82,
2176+      0x9bbcc7a142b17ccb, 0x88a66076400bb691,
2177+      0xc2abf989935ddbfe, 0x6acff893d00ea435,
2178+      0xf356f7ebf83552fe, 0x583f6b8c4124d43,
2179+      0x98165af37b2153de, 0xc3727a337a8b704a,
2180+      0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5c,
2181+      0xeda2ee1c7064130c, 0x1162def06f79df73,
2182+      0x9485d4d1c63e8be7, 0x8addcb5645ac2ba8,
2183+      0xb9a74a0637ce2ee1, 0x6d953e2bd7173692,
2184+      0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0437,
2185+      0x910ab1d4db9914a0, 0x1d9c9892400a22a2,
2186+      0xb54d5e4a127f59c8, 0x2503beb6d00cab4b,
2187+      0xe2a0b5dc971f303a, 0x2e44ae64840fd61d,
2188+      0x8da471a9de737e24, 0x5ceaecfed289e5d2,
2189+      0xb10d8e1456105dad, 0x7425a83e872c5f47,
2190+      0xdd50f1996b947518, 0xd12f124e28f77719,
2191+      0x8a5296ffe33cc92f, 0x82bd6b70d99aaa6f,
2192+      0xace73cbfdc0bfb7b, 0x636cc64d1001550b,
2193+      0xd8210befd30efa5a, 0x3c47f7e05401aa4e,
2194+      0x8714a775e3e95c78, 0x65acfaec34810a71,
2195+      0xa8d9d1535ce3b396, 0x7f1839a741a14d0d,
2196+      0xd31045a8341ca07c, 0x1ede48111209a050,
2197+      0x83ea2b892091e44d, 0x934aed0aab460432,
2198+      0xa4e4b66b68b65d60, 0xf81da84d5617853f,
2199+      0xce1de40642e3f4b9, 0x36251260ab9d668e,
2200+      0x80d2ae83e9ce78f3, 0xc1d72b7c6b426019,
2201+      0xa1075a24e4421730, 0xb24cf65b8612f81f,
2202+      0xc94930ae1d529cfc, 0xdee033f26797b627,
2203+      0xfb9b7cd9a4a7443c, 0x169840ef017da3b1,
2204+      0x9d412e0806e88aa5, 0x8e1f289560ee864e,
2205+      0xc491798a08a2ad4e, 0xf1a6f2bab92a27e2,
2206+      0xf5b5d7ec8acb58a2, 0xae10af696774b1db,
2207+      0x9991a6f3d6bf1765, 0xacca6da1e0a8ef29,
2208+      0xbff610b0cc6edd3f, 0x17fd090a58d32af3,
2209+      0xeff394dcff8a948e, 0xddfc4b4cef07f5b0,
2210+      0x95f83d0a1fb69cd9, 0x4abdaf101564f98e,
2211+      0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f1,
2212+      0xea53df5fd18d5513, 0x84c86189216dc5ed,
2213+      0x92746b9be2f8552c, 0x32fd3cf5b4e49bb4,
2214+      0xb7118682dbb66a77, 0x3fbc8c33221dc2a1,
2215+      0xe4d5e82392a40515, 0xfabaf3feaa5334a,
2216+      0x8f05b1163ba6832d, 0x29cb4d87f2a7400e,
2217+      0xb2c71d5bca9023f8, 0x743e20e9ef511012,
2218+      0xdf78e4b2bd342cf6, 0x914da9246b255416,
2219+      0x8bab8eefb6409c1a, 0x1ad089b6c2f7548e,
2220+      0xae9672aba3d0c320, 0xa184ac2473b529b1,
2221+      0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741e,
2222+      0x8865899617fb1871, 0x7e2fa67c7a658892,
2223+      0xaa7eebfb9df9de8d, 0xddbb901b98feeab7,
2224+      0xd51ea6fa85785631, 0x552a74227f3ea565,
2225+      0x8533285c936b35de, 0xd53a88958f87275f,
2226+      0xa67ff273b8460356, 0x8a892abaf368f137,
2227+      0xd01fef10a657842c, 0x2d2b7569b0432d85,
2228+      0x8213f56a67f6b29b, 0x9c3b29620e29fc73,
2229+      0xa298f2c501f45f42, 0x8349f3ba91b47b8f,
2230+      0xcb3f2f7642717713, 0x241c70a936219a73,
2231+      0xfe0efb53d30dd4d7, 0xed238cd383aa0110,
2232+      0x9ec95d1463e8a506, 0xf4363804324a40aa,
2233+      0xc67bb4597ce2ce48, 0xb143c6053edcd0d5,
2234+      0xf81aa16fdc1b81da, 0xdd94b7868e94050a,
2235+      0x9b10a4e5e9913128, 0xca7cf2b4191c8326,
2236+      0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f0,
2237+      0xf24a01a73cf2dccf, 0xbc633b39673c8cec,
2238+      0x976e41088617ca01, 0xd5be0503e085d813,
2239+      0xbd49d14aa79dbc82, 0x4b2d8644d8a74e18,
2240+      0xec9c459d51852ba2, 0xddf8e7d60ed1219e,
2241+      0x93e1ab8252f33b45, 0xcabb90e5c942b503,
2242+      0xb8da1662e7b00a17, 0x3d6a751f3b936243,
2243+      0xe7109bfba19c0c9d, 0xcc512670a783ad4,
2244+      0x906a617d450187e2, 0x27fb2b80668b24c5,
2245+      0xb484f9dc9641e9da, 0xb1f9f660802dedf6,
2246+      0xe1a63853bbd26451, 0x5e7873f8a0396973,
2247+      0x8d07e33455637eb2, 0xdb0b487b6423e1e8,
2248+      0xb049dc016abc5e5f, 0x91ce1a9a3d2cda62,
2249+      0xdc5c5301c56b75f7, 0x7641a140cc7810fb,
2250+      0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9d,
2251+      0xac2820d9623bf429, 0x546345fa9fbdcd44,
2252+      0xd732290fbacaf133, 0xa97c177947ad4095,
2253+      0x867f59a9d4bed6c0, 0x49ed8eabcccc485d,
2254+      0xa81f301449ee8c70, 0x5c68f256bfff5a74,
2255+      0xd226fc195c6a2f8c, 0x73832eec6fff3111,
2256+      0x83585d8fd9c25db7, 0xc831fd53c5ff7eab,
2257+      0xa42e74f3d032f525, 0xba3e7ca8b77f5e55,
2258+      0xcd3a1230c43fb26f, 0x28ce1bd2e55f35eb,
2259+      0x80444b5e7aa7cf85, 0x7980d163cf5b81b3,
2260+      0xa0555e361951c366, 0xd7e105bcc332621f,
2261+      0xc86ab5c39fa63440, 0x8dd9472bf3fefaa7,
2262+      0xfa856334878fc150, 0xb14f98f6f0feb951,
2263+      0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d3,
2264+      0xc3b8358109e84f07, 0xa862f80ec4700c8,
2265+      0xf4a642e14c6262c8, 0xcd27bb612758c0fa,
2266+      0x98e7e9cccfbd7dbd, 0x8038d51cb897789c,
2267+      0xbf21e44003acdd2c, 0xe0470a63e6bd56c3,
2268+      0xeeea5d5004981478, 0x1858ccfce06cac74,
2269+      0x95527a5202df0ccb, 0xf37801e0c43ebc8,
2270+      0xbaa718e68396cffd, 0xd30560258f54e6ba,
2271+      0xe950df20247c83fd, 0x47c6b82ef32a2069,
2272+      0x91d28b7416cdd27e, 0x4cdc331d57fa5441,
2273+      0xb6472e511c81471d, 0xe0133fe4adf8e952,
2274+      0xe3d8f9e563a198e5, 0x58180fddd97723a6,
2275+      0x8e679c2f5e44ff8f, 0x570f09eaa7ea7648,
2276+  };
2277+};
2278+
2279+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
2280+
2281+template <class unused>
2282+constexpr uint64_t
2283+    powers_template<unused>::power_of_five_128[number_of_entries];
2284+
2285+#endif
2286+
2287+using powers = powers_template<>;
2288+
2289+} // namespace fast_float
2290+
2291+#endif
2292+
2293+#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
2294+#define FASTFLOAT_DECIMAL_TO_BINARY_H
2295+
2296+#include <cfloat>
2297+#include <cinttypes>
2298+#include <cmath>
2299+#include <cstdint>
2300+#include <cstdlib>
2301+#include <cstring>
2302+
2303+namespace fast_float {
2304+
2305+// This will compute or rather approximate w * 5**q and return a pair of 64-bit
2306+// words approximating the result, with the "high" part corresponding to the
2307+// most significant bits and the low part corresponding to the least significant
2308+// bits.
2309+//
2310+template <int bit_precision>
2311+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 value128
2312+compute_product_approximation(int64_t q, uint64_t w) {
2313+  const int index = 2 * int(q - powers::smallest_power_of_five);
2314+  // For small values of q, e.g., q in [0,27], the answer is always exact
2315+  // because The line value128 firstproduct = full_multiplication(w,
2316+  // power_of_five_128[index]); gives the exact answer.
2317+  value128 firstproduct =
2318+      full_multiplication(w, powers::power_of_five_128[index]);
2319+  static_assert((bit_precision >= 0) && (bit_precision <= 64),
2320+                " precision should  be in (0,64]");
2321+  constexpr uint64_t precision_mask =
2322+      (bit_precision < 64) ? (uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
2323+                           : uint64_t(0xFFFFFFFFFFFFFFFF);
2324+  if ((firstproduct.high & precision_mask) ==
2325+      precision_mask) { // could further guard with  (lower + w < lower)
2326+    // regarding the second product, we only need secondproduct.high, but our
2327+    // expectation is that the compiler will optimize this extra work away if
2328+    // needed.
2329+    value128 secondproduct =
2330+        full_multiplication(w, powers::power_of_five_128[index + 1]);
2331+    firstproduct.low += secondproduct.high;
2332+    if (secondproduct.high > firstproduct.low) {
2333+      firstproduct.high++;
2334+    }
2335+  }
2336+  return firstproduct;
2337+}
2338+
2339+namespace detail {
2340+/**
2341+ * For q in (0,350), we have that
2342+ *  f = (((152170 + 65536) * q ) >> 16);
2343+ * is equal to
2344+ *   floor(p) + q
2345+ * where
2346+ *   p = log(5**q)/log(2) = q * log(5)/log(2)
2347+ *
2348+ * For negative values of q in (-400,0), we have that
2349+ *  f = (((152170 + 65536) * q ) >> 16);
2350+ * is equal to
2351+ *   -ceil(p) + q
2352+ * where
2353+ *   p = log(5**-q)/log(2) = -q * log(5)/log(2)
2354+ */
2355+constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
2356+  return (((152170 + 65536) * q) >> 16) + 63;
2357+}
2358+} // namespace detail
2359+
2360+// create an adjusted mantissa, biased by the invalid power2
2361+// for significant digits already multiplied by 10 ** q.
2362+template <typename binary>
2363+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 adjusted_mantissa
2364+compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
2365+  int hilz = int(w >> 63) ^ 1;
2366+  adjusted_mantissa answer;
2367+  answer.mantissa = w << hilz;
2368+  int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
2369+  answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 +
2370+                          invalid_am_bias);
2371+  return answer;
2372+}
2373+
2374+// w * 10 ** q, without rounding the representation up.
2375+// the power2 in the exponent will be adjusted by invalid_am_bias.
2376+template <typename binary>
2377+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
2378+compute_error(int64_t q, uint64_t w) noexcept {
2379+  int lz = leading_zeroes(w);
2380+  w <<= lz;
2381+  value128 product =
2382+      compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
2383+  return compute_error_scaled<binary>(q, product.high, lz);
2384+}
2385+
2386+// w * 10 ** q
2387+// The returned value should be a valid ieee64 number that simply need to be
2388+// packed. However, in some very rare cases, the computation will fail. In such
2389+// cases, we return an adjusted_mantissa with a negative power of 2: the caller
2390+// should recompute in such cases.
2391+template <typename binary>
2392+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
2393+compute_float(int64_t q, uint64_t w) noexcept {
2394+  adjusted_mantissa answer;
2395+  if ((w == 0) || (q < binary::smallest_power_of_ten())) {
2396+    answer.power2 = 0;
2397+    answer.mantissa = 0;
2398+    // result should be zero
2399+    return answer;
2400+  }
2401+  if (q > binary::largest_power_of_ten()) {
2402+    // we want to get infinity:
2403+    answer.power2 = binary::infinite_power();
2404+    answer.mantissa = 0;
2405+    return answer;
2406+  }
2407+  // At this point in time q is in [powers::smallest_power_of_five,
2408+  // powers::largest_power_of_five].
2409+
2410+  // We want the most significant bit of i to be 1. Shift if needed.
2411+  int lz = leading_zeroes(w);
2412+  w <<= lz;
2413+
2414+  // The required precision is binary::mantissa_explicit_bits() + 3 because
2415+  // 1. We need the implicit bit
2416+  // 2. We need an extra bit for rounding purposes
2417+  // 3. We might lose a bit due to the "upperbit" routine (result too small,
2418+  // requiring a shift)
2419+
2420+  value128 product =
2421+      compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
2422+  // The computed 'product' is always sufficient.
2423+  // Mathematical proof:
2424+  // Noble Mushtak and Daniel Lemire, Fast Number Parsing Without Fallback (to
2425+  // appear) See script/mushtak_lemire.py
2426+
2427+  // The "compute_product_approximation" function can be slightly slower than a
2428+  // branchless approach: value128 product = compute_product(q, w); but in
2429+  // practice, we can win big with the compute_product_approximation if its
2430+  // additional branch is easily predicted. Which is best is data specific.
2431+  int upperbit = int(product.high >> 63);
2432+  int shift = upperbit + 64 - binary::mantissa_explicit_bits() - 3;
2433+
2434+  answer.mantissa = product.high >> shift;
2435+
2436+  answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz -
2437+                          binary::minimum_exponent());
2438+  if (answer.power2 <= 0) { // we have a subnormal?
2439+    // Here have that answer.power2 <= 0 so -answer.power2 >= 0
2440+    if (-answer.power2 + 1 >=
2441+        64) { // if we have more than 64 bits below the minimum exponent, you
2442+              // have a zero for sure.
2443+      answer.power2 = 0;
2444+      answer.mantissa = 0;
2445+      // result should be zero
2446+      return answer;
2447+    }
2448+    // next line is safe because -answer.power2 + 1 < 64
2449+    answer.mantissa >>= -answer.power2 + 1;
2450+    // Thankfully, we can't have both "round-to-even" and subnormals because
2451+    // "round-to-even" only occurs for powers close to 0.
2452+    answer.mantissa += (answer.mantissa & 1); // round up
2453+    answer.mantissa >>= 1;
2454+    // There is a weird scenario where we don't have a subnormal but just.
2455+    // Suppose we start with 2.2250738585072013e-308, we end up
2456+    // with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
2457+    // whereas 0x40000000000000 x 2^-1023-53  is normal. Now, we need to round
2458+    // up 0x3fffffffffffff x 2^-1023-53  and once we do, we are no longer
2459+    // subnormal, but we can only know this after rounding.
2460+    // So we only declare a subnormal if we are smaller than the threshold.
2461+    answer.power2 =
2462+        (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits()))
2463+            ? 0
2464+            : 1;
2465+    return answer;
2466+  }
2467+
2468+  // usually, we round *up*, but if we fall right in between and and we have an
2469+  // even basis, we need to round down
2470+  // We are only concerned with the cases where 5**q fits in single 64-bit word.
2471+  if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) &&
2472+      (q <= binary::max_exponent_round_to_even()) &&
2473+      ((answer.mantissa & 3) == 1)) { // we may fall between two floats!
2474+    // To be in-between two floats we need that in doing
2475+    //   answer.mantissa = product.high >> (upperbit + 64 -
2476+    //   binary::mantissa_explicit_bits() - 3);
2477+    // ... we dropped out only zeroes. But if this happened, then we can go
2478+    // back!!!
2479+    if ((answer.mantissa << shift) == product.high) {
2480+      answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
2481+    }
2482+  }
2483+
2484+  answer.mantissa += (answer.mantissa & 1); // round up
2485+  answer.mantissa >>= 1;
2486+  if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
2487+    answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
2488+    answer.power2++; // undo previous addition
2489+  }
2490+
2491+  answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
2492+  if (answer.power2 >= binary::infinite_power()) { // infinity
2493+    answer.power2 = binary::infinite_power();
2494+    answer.mantissa = 0;
2495+  }
2496+  return answer;
2497+}
2498+
2499+} // namespace fast_float
2500+
2501+#endif
2502+
2503+#ifndef FASTFLOAT_BIGINT_H
2504+#define FASTFLOAT_BIGINT_H
2505+
2506+#include <algorithm>
2507+#include <cstdint>
2508+#include <climits>
2509+#include <cstring>
2510+
2511+
2512+namespace fast_float {
2513+
2514+// the limb width: we want efficient multiplication of double the bits in
2515+// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
2516+// extract the high and low parts efficiently. this is every 64-bit
2517+// architecture except for sparc, which emulates 128-bit multiplication.
2518+// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
2519+// doing `8 * sizeof(limb)`.
2520+#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
2521+#define FASTFLOAT_64BIT_LIMB 1
2522+typedef uint64_t limb;
2523+constexpr size_t limb_bits = 64;
2524+#else
2525+#define FASTFLOAT_32BIT_LIMB
2526+typedef uint32_t limb;
2527+constexpr size_t limb_bits = 32;
2528+#endif
2529+
2530+typedef span<limb> limb_span;
2531+
2532+// number of bits in a bigint. this needs to be at least the number
2533+// of bits required to store the largest bigint, which is
2534+// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
2535+// ~3600 bits, so we round to 4000.
2536+constexpr size_t bigint_bits = 4000;
2537+constexpr size_t bigint_limbs = bigint_bits / limb_bits;
2538+
2539+// vector-like type that is allocated on the stack. the entire
2540+// buffer is pre-allocated, and only the length changes.
2541+template <uint16_t size> struct stackvec {
2542+  limb data[size];
2543+  // we never need more than 150 limbs
2544+  uint16_t length{0};
2545+
2546+  stackvec() = default;
2547+  stackvec(const stackvec &) = delete;
2548+  stackvec &operator=(const stackvec &) = delete;
2549+  stackvec(stackvec &&) = delete;
2550+  stackvec &operator=(stackvec &&other) = delete;
2551+
2552+  // create stack vector from existing limb span.
2553+  FASTFLOAT_CONSTEXPR20 stackvec(limb_span s) {
2554+    FASTFLOAT_ASSERT(try_extend(s));
2555+  }
2556+
2557+  FASTFLOAT_CONSTEXPR14 limb &operator[](size_t index) noexcept {
2558+    FASTFLOAT_DEBUG_ASSERT(index < length);
2559+    return data[index];
2560+  }
2561+  FASTFLOAT_CONSTEXPR14 const limb &operator[](size_t index) const noexcept {
2562+    FASTFLOAT_DEBUG_ASSERT(index < length);
2563+    return data[index];
2564+  }
2565+  // index from the end of the container
2566+  FASTFLOAT_CONSTEXPR14 const limb &rindex(size_t index) const noexcept {
2567+    FASTFLOAT_DEBUG_ASSERT(index < length);
2568+    size_t rindex = length - index - 1;
2569+    return data[rindex];
2570+  }
2571+
2572+  // set the length, without bounds checking.
2573+  FASTFLOAT_CONSTEXPR14 void set_len(size_t len) noexcept {
2574+    length = uint16_t(len);
2575+  }
2576+  constexpr size_t len() const noexcept { return length; }
2577+  constexpr bool is_empty() const noexcept { return length == 0; }
2578+  constexpr size_t capacity() const noexcept { return size; }
2579+  // append item to vector, without bounds checking
2580+  FASTFLOAT_CONSTEXPR14 void push_unchecked(limb value) noexcept {
2581+    data[length] = value;
2582+    length++;
2583+  }
2584+  // append item to vector, returning if item was added
2585+  FASTFLOAT_CONSTEXPR14 bool try_push(limb value) noexcept {
2586+    if (len() < capacity()) {
2587+      push_unchecked(value);
2588+      return true;
2589+    } else {
2590+      return false;
2591+    }
2592+  }
2593+  // add items to the vector, from a span, without bounds checking
2594+  FASTFLOAT_CONSTEXPR20 void extend_unchecked(limb_span s) noexcept {
2595+    limb *ptr = data + length;
2596+    std::copy_n(s.ptr, s.len(), ptr);
2597+    set_len(len() + s.len());
2598+  }
2599+  // try to add items to the vector, returning if items were added
2600+  FASTFLOAT_CONSTEXPR20 bool try_extend(limb_span s) noexcept {
2601+    if (len() + s.len() <= capacity()) {
2602+      extend_unchecked(s);
2603+      return true;
2604+    } else {
2605+      return false;
2606+    }
2607+  }
2608+  // resize the vector, without bounds checking
2609+  // if the new size is longer than the vector, assign value to each
2610+  // appended item.
2611+  FASTFLOAT_CONSTEXPR20
2612+  void resize_unchecked(size_t new_len, limb value) noexcept {
2613+    if (new_len > len()) {
2614+      size_t count = new_len - len();
2615+      limb *first = data + len();
2616+      limb *last = first + count;
2617+      ::std::fill(first, last, value);
2618+      set_len(new_len);
2619+    } else {
2620+      set_len(new_len);
2621+    }
2622+  }
2623+  // try to resize the vector, returning if the vector was resized.
2624+  FASTFLOAT_CONSTEXPR20 bool try_resize(size_t new_len, limb value) noexcept {
2625+    if (new_len > capacity()) {
2626+      return false;
2627+    } else {
2628+      resize_unchecked(new_len, value);
2629+      return true;
2630+    }
2631+  }
2632+  // check if any limbs are non-zero after the given index.
2633+  // this needs to be done in reverse order, since the index
2634+  // is relative to the most significant limbs.
2635+  FASTFLOAT_CONSTEXPR14 bool nonzero(size_t index) const noexcept {
2636+    while (index < len()) {
2637+      if (rindex(index) != 0) {
2638+        return true;
2639+      }
2640+      index++;
2641+    }
2642+    return false;
2643+  }
2644+  // normalize the big integer, so most-significant zero limbs are removed.
2645+  FASTFLOAT_CONSTEXPR14 void normalize() noexcept {
2646+    while (len() > 0 && rindex(0) == 0) {
2647+      length--;
2648+    }
2649+  }
2650+};
2651+
2652+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 uint64_t
2653+empty_hi64(bool &truncated) noexcept {
2654+  truncated = false;
2655+  return 0;
2656+}
2657+
2658+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2659+uint64_hi64(uint64_t r0, bool &truncated) noexcept {
2660+  truncated = false;
2661+  int shl = leading_zeroes(r0);
2662+  return r0 << shl;
2663+}
2664+
2665+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2666+uint64_hi64(uint64_t r0, uint64_t r1, bool &truncated) noexcept {
2667+  int shl = leading_zeroes(r0);
2668+  if (shl == 0) {
2669+    truncated = r1 != 0;
2670+    return r0;
2671+  } else {
2672+    int shr = 64 - shl;
2673+    truncated = (r1 << shl) != 0;
2674+    return (r0 << shl) | (r1 >> shr);
2675+  }
2676+}
2677+
2678+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2679+uint32_hi64(uint32_t r0, bool &truncated) noexcept {
2680+  return uint64_hi64(r0, truncated);
2681+}
2682+
2683+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2684+uint32_hi64(uint32_t r0, uint32_t r1, bool &truncated) noexcept {
2685+  uint64_t x0 = r0;
2686+  uint64_t x1 = r1;
2687+  return uint64_hi64((x0 << 32) | x1, truncated);
2688+}
2689+
2690+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 uint64_t
2691+uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool &truncated) noexcept {
2692+  uint64_t x0 = r0;
2693+  uint64_t x1 = r1;
2694+  uint64_t x2 = r2;
2695+  return uint64_hi64(x0, (x1 << 32) | x2, truncated);
2696+}
2697+
2698+// add two small integers, checking for overflow.
2699+// we want an efficient operation. for msvc, where
2700+// we don't have built-in intrinsics, this is still
2701+// pretty fast.
2702+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
2703+scalar_add(limb x, limb y, bool &overflow) noexcept {
2704+  limb z;
2705+// gcc and clang
2706+#if defined(__has_builtin)
2707+#if __has_builtin(__builtin_add_overflow)
2708+  if (!cpp20_and_in_constexpr()) {
2709+    overflow = __builtin_add_overflow(x, y, &z);
2710+    return z;
2711+  }
2712+#endif
2713+#endif
2714+
2715+  // generic, this still optimizes correctly on MSVC.
2716+  z = x + y;
2717+  overflow = z < x;
2718+  return z;
2719+}
2720+
2721+// multiply two small integers, getting both the high and low bits.
2722+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 limb
2723+scalar_mul(limb x, limb y, limb &carry) noexcept {
2724+#ifdef FASTFLOAT_64BIT_LIMB
2725+#if defined(__SIZEOF_INT128__)
2726+  // GCC and clang both define it as an extension.
2727+  __uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
2728+  carry = limb(z >> limb_bits);
2729+  return limb(z);
2730+#else
2731+  // fallback, no native 128-bit integer multiplication with carry.
2732+  // on msvc, this optimizes identically, somehow.
2733+  value128 z = full_multiplication(x, y);
2734+  bool overflow;
2735+  z.low = scalar_add(z.low, carry, overflow);
2736+  z.high += uint64_t(overflow); // cannot overflow
2737+  carry = z.high;
2738+  return z.low;
2739+#endif
2740+#else
2741+  uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
2742+  carry = limb(z >> limb_bits);
2743+  return limb(z);
2744+#endif
2745+}
2746+
2747+// add scalar value to bigint starting from offset.
2748+// used in grade school multiplication
2749+template <uint16_t size>
2750+inline FASTFLOAT_CONSTEXPR20 bool small_add_from(stackvec<size> &vec, limb y,
2751+                                                 size_t start) noexcept {
2752+  size_t index = start;
2753+  limb carry = y;
2754+  bool overflow;
2755+  while (carry != 0 && index < vec.len()) {
2756+    vec[index] = scalar_add(vec[index], carry, overflow);
2757+    carry = limb(overflow);
2758+    index += 1;
2759+  }
2760+  if (carry != 0) {
2761+    FASTFLOAT_TRY(vec.try_push(carry));
2762+  }
2763+  return true;
2764+}
2765+
2766+// add scalar value to bigint.
2767+template <uint16_t size>
2768+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
2769+small_add(stackvec<size> &vec, limb y) noexcept {
2770+  return small_add_from(vec, y, 0);
2771+}
2772+
2773+// multiply bigint by scalar value.
2774+template <uint16_t size>
2775+inline FASTFLOAT_CONSTEXPR20 bool small_mul(stackvec<size> &vec,
2776+                                            limb y) noexcept {
2777+  limb carry = 0;
2778+  for (size_t index = 0; index < vec.len(); index++) {
2779+    vec[index] = scalar_mul(vec[index], y, carry);
2780+  }
2781+  if (carry != 0) {
2782+    FASTFLOAT_TRY(vec.try_push(carry));
2783+  }
2784+  return true;
2785+}
2786+
2787+// add bigint to bigint starting from index.
2788+// used in grade school multiplication
2789+template <uint16_t size>
2790+FASTFLOAT_CONSTEXPR20 bool large_add_from(stackvec<size> &x, limb_span y,
2791+                                          size_t start) noexcept {
2792+  // the effective x buffer is from `xstart..x.len()`, so exit early
2793+  // if we can't get that current range.
2794+  if (x.len() < start || y.len() > x.len() - start) {
2795+    FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
2796+  }
2797+
2798+  bool carry = false;
2799+  for (size_t index = 0; index < y.len(); index++) {
2800+    limb xi = x[index + start];
2801+    limb yi = y[index];
2802+    bool c1 = false;
2803+    bool c2 = false;
2804+    xi = scalar_add(xi, yi, c1);
2805+    if (carry) {
2806+      xi = scalar_add(xi, 1, c2);
2807+    }
2808+    x[index + start] = xi;
2809+    carry = c1 | c2;
2810+  }
2811+
2812+  // handle overflow
2813+  if (carry) {
2814+    FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
2815+  }
2816+  return true;
2817+}
2818+
2819+// add bigint to bigint.
2820+template <uint16_t size>
2821+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
2822+large_add_from(stackvec<size> &x, limb_span y) noexcept {
2823+  return large_add_from(x, y, 0);
2824+}
2825+
2826+// grade-school multiplication algorithm
2827+template <uint16_t size>
2828+FASTFLOAT_CONSTEXPR20 bool long_mul(stackvec<size> &x, limb_span y) noexcept {
2829+  limb_span xs = limb_span(x.data, x.len());
2830+  stackvec<size> z(xs);
2831+  limb_span zs = limb_span(z.data, z.len());
2832+
2833+  if (y.len() != 0) {
2834+    limb y0 = y[0];
2835+    FASTFLOAT_TRY(small_mul(x, y0));
2836+    for (size_t index = 1; index < y.len(); index++) {
2837+      limb yi = y[index];
2838+      stackvec<size> zi;
2839+      if (yi != 0) {
2840+        // re-use the same buffer throughout
2841+        zi.set_len(0);
2842+        FASTFLOAT_TRY(zi.try_extend(zs));
2843+        FASTFLOAT_TRY(small_mul(zi, yi));
2844+        limb_span zis = limb_span(zi.data, zi.len());
2845+        FASTFLOAT_TRY(large_add_from(x, zis, index));
2846+      }
2847+    }
2848+  }
2849+
2850+  x.normalize();
2851+  return true;
2852+}
2853+
2854+// grade-school multiplication algorithm
2855+template <uint16_t size>
2856+FASTFLOAT_CONSTEXPR20 bool large_mul(stackvec<size> &x, limb_span y) noexcept {
2857+  if (y.len() == 1) {
2858+    FASTFLOAT_TRY(small_mul(x, y[0]));
2859+  } else {
2860+    FASTFLOAT_TRY(long_mul(x, y));
2861+  }
2862+  return true;
2863+}
2864+
2865+template <typename = void> struct pow5_tables {
2866+  static constexpr uint32_t large_step = 135;
2867+  static constexpr uint64_t small_power_of_5[] = {
2868+      1UL,
2869+      5UL,
2870+      25UL,
2871+      125UL,
2872+      625UL,
2873+      3125UL,
2874+      15625UL,
2875+      78125UL,
2876+      390625UL,
2877+      1953125UL,
2878+      9765625UL,
2879+      48828125UL,
2880+      244140625UL,
2881+      1220703125UL,
2882+      6103515625UL,
2883+      30517578125UL,
2884+      152587890625UL,
2885+      762939453125UL,
2886+      3814697265625UL,
2887+      19073486328125UL,
2888+      95367431640625UL,
2889+      476837158203125UL,
2890+      2384185791015625UL,
2891+      11920928955078125UL,
2892+      59604644775390625UL,
2893+      298023223876953125UL,
2894+      1490116119384765625UL,
2895+      7450580596923828125UL,
2896+  };
2897+#ifdef FASTFLOAT_64BIT_LIMB
2898+  constexpr static limb large_power_of_5[] = {
2899+      1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
2900+      10482974169319127550UL, 198276706040285095UL};
2901+#else
2902+  constexpr static limb large_power_of_5[] = {
2903+      4279965485U, 329373468U,  4020270615U, 2137533757U, 4287402176U,
2904+      1057042919U, 1071430142U, 2440757623U, 381945767U,  46164893U};
2905+#endif
2906+};
2907+
2908+#if FASTFLOAT_DETAIL_MUST_DEFINE_CONSTEXPR_VARIABLE
2909+
2910+template <typename T> constexpr uint32_t pow5_tables<T>::large_step;
2911+
2912+template <typename T> constexpr uint64_t pow5_tables<T>::small_power_of_5[];
2913+
2914+template <typename T> constexpr limb pow5_tables<T>::large_power_of_5[];
2915+
2916+#endif
2917+
2918+// big integer type. implements a small subset of big integer
2919+// arithmetic, using simple algorithms since asymptotically
2920+// faster algorithms are slower for a small number of limbs.
2921+// all operations assume the big-integer is normalized.
2922+struct bigint : pow5_tables<> {
2923+  // storage of the limbs, in little-endian order.
2924+  stackvec<bigint_limbs> vec;
2925+
2926+  FASTFLOAT_CONSTEXPR20 bigint() : vec() {}
2927+  bigint(const bigint &) = delete;
2928+  bigint &operator=(const bigint &) = delete;
2929+  bigint(bigint &&) = delete;
2930+  bigint &operator=(bigint &&other) = delete;
2931+
2932+  FASTFLOAT_CONSTEXPR20 bigint(uint64_t value) : vec() {
2933+#ifdef FASTFLOAT_64BIT_LIMB
2934+    vec.push_unchecked(value);
2935+#else
2936+    vec.push_unchecked(uint32_t(value));
2937+    vec.push_unchecked(uint32_t(value >> 32));
2938+#endif
2939+    vec.normalize();
2940+  }
2941+
2942+  // get the high 64 bits from the vector, and if bits were truncated.
2943+  // this is to get the significant digits for the float.
2944+  FASTFLOAT_CONSTEXPR20 uint64_t hi64(bool &truncated) const noexcept {
2945+#ifdef FASTFLOAT_64BIT_LIMB
2946+    if (vec.len() == 0) {
2947+      return empty_hi64(truncated);
2948+    } else if (vec.len() == 1) {
2949+      return uint64_hi64(vec.rindex(0), truncated);
2950+    } else {
2951+      uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
2952+      truncated |= vec.nonzero(2);
2953+      return result;
2954+    }
2955+#else
2956+    if (vec.len() == 0) {
2957+      return empty_hi64(truncated);
2958+    } else if (vec.len() == 1) {
2959+      return uint32_hi64(vec.rindex(0), truncated);
2960+    } else if (vec.len() == 2) {
2961+      return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
2962+    } else {
2963+      uint64_t result =
2964+          uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
2965+      truncated |= vec.nonzero(3);
2966+      return result;
2967+    }
2968+#endif
2969+  }
2970+
2971+  // compare two big integers, returning the large value.
2972+  // assumes both are normalized. if the return value is
2973+  // negative, other is larger, if the return value is
2974+  // positive, this is larger, otherwise they are equal.
2975+  // the limbs are stored in little-endian order, so we
2976+  // must compare the limbs in ever order.
2977+  FASTFLOAT_CONSTEXPR20 int compare(const bigint &other) const noexcept {
2978+    if (vec.len() > other.vec.len()) {
2979+      return 1;
2980+    } else if (vec.len() < other.vec.len()) {
2981+      return -1;
2982+    } else {
2983+      for (size_t index = vec.len(); index > 0; index--) {
2984+        limb xi = vec[index - 1];
2985+        limb yi = other.vec[index - 1];
2986+        if (xi > yi) {
2987+          return 1;
2988+        } else if (xi < yi) {
2989+          return -1;
2990+        }
2991+      }
2992+      return 0;
2993+    }
2994+  }
2995+
2996+  // shift left each limb n bits, carrying over to the new limb
2997+  // returns true if we were able to shift all the digits.
2998+  FASTFLOAT_CONSTEXPR20 bool shl_bits(size_t n) noexcept {
2999+    // Internally, for each item, we shift left by n, and add the previous
3000+    // right shifted limb-bits.
3001+    // For example, we transform (for u8) shifted left 2, to:
3002+    //      b10100100 b01000010
3003+    //      b10 b10010001 b00001000
3004+    FASTFLOAT_DEBUG_ASSERT(n != 0);
3005+    FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
3006+
3007+    size_t shl = n;
3008+    size_t shr = limb_bits - shl;
3009+    limb prev = 0;
3010+    for (size_t index = 0; index < vec.len(); index++) {
3011+      limb xi = vec[index];
3012+      vec[index] = (xi << shl) | (prev >> shr);
3013+      prev = xi;
3014+    }
3015+
3016+    limb carry = prev >> shr;
3017+    if (carry != 0) {
3018+      return vec.try_push(carry);
3019+    }
3020+    return true;
3021+  }
3022+
3023+  // move the limbs left by `n` limbs.
3024+  FASTFLOAT_CONSTEXPR20 bool shl_limbs(size_t n) noexcept {
3025+    FASTFLOAT_DEBUG_ASSERT(n != 0);
3026+    if (n + vec.len() > vec.capacity()) {
3027+      return false;
3028+    } else if (!vec.is_empty()) {
3029+      // move limbs
3030+      limb *dst = vec.data + n;
3031+      const limb *src = vec.data;
3032+      std::copy_backward(src, src + vec.len(), dst + vec.len());
3033+      // fill in empty limbs
3034+      limb *first = vec.data;
3035+      limb *last = first + n;
3036+      ::std::fill(first, last, 0);
3037+      vec.set_len(n + vec.len());
3038+      return true;
3039+    } else {
3040+      return true;
3041+    }
3042+  }
3043+
3044+  // move the limbs left by `n` bits.
3045+  FASTFLOAT_CONSTEXPR20 bool shl(size_t n) noexcept {
3046+    size_t rem = n % limb_bits;
3047+    size_t div = n / limb_bits;
3048+    if (rem != 0) {
3049+      FASTFLOAT_TRY(shl_bits(rem));
3050+    }
3051+    if (div != 0) {
3052+      FASTFLOAT_TRY(shl_limbs(div));
3053+    }
3054+    return true;
3055+  }
3056+
3057+  // get the number of leading zeros in the bigint.
3058+  FASTFLOAT_CONSTEXPR20 int ctlz() const noexcept {
3059+    if (vec.is_empty()) {
3060+      return 0;
3061+    } else {
3062+#ifdef FASTFLOAT_64BIT_LIMB
3063+      return leading_zeroes(vec.rindex(0));
3064+#else
3065+      // no use defining a specialized leading_zeroes for a 32-bit type.
3066+      uint64_t r0 = vec.rindex(0);
3067+      return leading_zeroes(r0 << 32);
3068+#endif
3069+    }
3070+  }
3071+
3072+  // get the number of bits in the bigint.
3073+  FASTFLOAT_CONSTEXPR20 int bit_length() const noexcept {
3074+    int lz = ctlz();
3075+    return int(limb_bits * vec.len()) - lz;
3076+  }
3077+
3078+  FASTFLOAT_CONSTEXPR20 bool mul(limb y) noexcept { return small_mul(vec, y); }
3079+
3080+  FASTFLOAT_CONSTEXPR20 bool add(limb y) noexcept { return small_add(vec, y); }
3081+
3082+  // multiply as if by 2 raised to a power.
3083+  FASTFLOAT_CONSTEXPR20 bool pow2(uint32_t exp) noexcept { return shl(exp); }
3084+
3085+  // multiply as if by 5 raised to a power.
3086+  FASTFLOAT_CONSTEXPR20 bool pow5(uint32_t exp) noexcept {
3087+    // multiply by a power of 5
3088+    size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
3089+    limb_span large = limb_span(large_power_of_5, large_length);
3090+    while (exp >= large_step) {
3091+      FASTFLOAT_TRY(large_mul(vec, large));
3092+      exp -= large_step;
3093+    }
3094+#ifdef FASTFLOAT_64BIT_LIMB
3095+    uint32_t small_step = 27;
3096+    limb max_native = 7450580596923828125UL;
3097+#else
3098+    uint32_t small_step = 13;
3099+    limb max_native = 1220703125U;
3100+#endif
3101+    while (exp >= small_step) {
3102+      FASTFLOAT_TRY(small_mul(vec, max_native));
3103+      exp -= small_step;
3104+    }
3105+    if (exp != 0) {
3106+      // Work around clang bug https://godbolt.org/z/zedh7rrhc
3107+      // This is similar to https://github.com/llvm/llvm-project/issues/47746,
3108+      // except the workaround described there don't work here
3109+      FASTFLOAT_TRY(small_mul(
3110+          vec, limb(((void)small_power_of_5[0], small_power_of_5[exp]))));
3111+    }
3112+
3113+    return true;
3114+  }
3115+
3116+  // multiply as if by 10 raised to a power.
3117+  FASTFLOAT_CONSTEXPR20 bool pow10(uint32_t exp) noexcept {
3118+    FASTFLOAT_TRY(pow5(exp));
3119+    return pow2(exp);
3120+  }
3121+};
3122+
3123+} // namespace fast_float
3124+
3125+#endif
3126+
3127+#ifndef FASTFLOAT_DIGIT_COMPARISON_H
3128+#define FASTFLOAT_DIGIT_COMPARISON_H
3129+
3130+#include <algorithm>
3131+#include <cstdint>
3132+#include <cstring>
3133+#include <iterator>
3134+
3135+
3136+namespace fast_float {
3137+
3138+// 1e0 to 1e19
3139+constexpr static uint64_t powers_of_ten_uint64[] = {1UL,
3140+                                                    10UL,
3141+                                                    100UL,
3142+                                                    1000UL,
3143+                                                    10000UL,
3144+                                                    100000UL,
3145+                                                    1000000UL,
3146+                                                    10000000UL,
3147+                                                    100000000UL,
3148+                                                    1000000000UL,
3149+                                                    10000000000UL,
3150+                                                    100000000000UL,
3151+                                                    1000000000000UL,
3152+                                                    10000000000000UL,
3153+                                                    100000000000000UL,
3154+                                                    1000000000000000UL,
3155+                                                    10000000000000000UL,
3156+                                                    100000000000000000UL,
3157+                                                    1000000000000000000UL,
3158+                                                    10000000000000000000UL};
3159+
3160+// calculate the exponent, in scientific notation, of the number.
3161+// this algorithm is not even close to optimized, but it has no practical
3162+// effect on performance: in order to have a faster algorithm, we'd need
3163+// to slow down performance for faster algorithms, and this is still fast.
3164+template <typename UC>
3165+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 int32_t
3166+scientific_exponent(parsed_number_string_t<UC> &num) noexcept {
3167+  uint64_t mantissa = num.mantissa;
3168+  int32_t exponent = int32_t(num.exponent);
3169+  while (mantissa >= 10000) {
3170+    mantissa /= 10000;
3171+    exponent += 4;
3172+  }
3173+  while (mantissa >= 100) {
3174+    mantissa /= 100;
3175+    exponent += 2;
3176+  }
3177+  while (mantissa >= 10) {
3178+    mantissa /= 10;
3179+    exponent += 1;
3180+  }
3181+  return exponent;
3182+}
3183+
3184+// this converts a native floating-point number to an extended-precision float.
3185+template <typename T>
3186+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3187+to_extended(T value) noexcept {
3188+  using equiv_uint = typename binary_format<T>::equiv_uint;
3189+  constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
3190+  constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
3191+  constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
3192+
3193+  adjusted_mantissa am;
3194+  int32_t bias = binary_format<T>::mantissa_explicit_bits() -
3195+                 binary_format<T>::minimum_exponent();
3196+  equiv_uint bits;
3197+#if FASTFLOAT_HAS_BIT_CAST
3198+  bits = std::bit_cast<equiv_uint>(value);
3199+#else
3200+  ::memcpy(&bits, &value, sizeof(T));
3201+#endif
3202+  if ((bits & exponent_mask) == 0) {
3203+    // denormal
3204+    am.power2 = 1 - bias;
3205+    am.mantissa = bits & mantissa_mask;
3206+  } else {
3207+    // normal
3208+    am.power2 = int32_t((bits & exponent_mask) >>
3209+                        binary_format<T>::mantissa_explicit_bits());
3210+    am.power2 -= bias;
3211+    am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
3212+  }
3213+
3214+  return am;
3215+}
3216+
3217+// get the extended precision value of the halfway point between b and b+u.
3218+// we are given a native float that represents b, so we need to adjust it
3219+// halfway between b and b+u.
3220+template <typename T>
3221+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3222+to_extended_halfway(T value) noexcept {
3223+  adjusted_mantissa am = to_extended(value);
3224+  am.mantissa <<= 1;
3225+  am.mantissa += 1;
3226+  am.power2 -= 1;
3227+  return am;
3228+}
3229+
3230+// round an extended-precision float to the nearest machine float.
3231+template <typename T, typename callback>
3232+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void round(adjusted_mantissa &am,
3233+                                                         callback cb) noexcept {
3234+  int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
3235+  if (-am.power2 >= mantissa_shift) {
3236+    // have a denormal float
3237+    int32_t shift = -am.power2 + 1;
3238+    cb(am, std::min<int32_t>(shift, 64));
3239+    // check for round-up: if rounding-nearest carried us to the hidden bit.
3240+    am.power2 = (am.mantissa <
3241+                 (uint64_t(1) << binary_format<T>::mantissa_explicit_bits()))
3242+                    ? 0
3243+                    : 1;
3244+    return;
3245+  }
3246+
3247+  // have a normal float, use the default shift.
3248+  cb(am, mantissa_shift);
3249+
3250+  // check for carry
3251+  if (am.mantissa >=
3252+      (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
3253+    am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
3254+    am.power2++;
3255+  }
3256+
3257+  // check for infinite: we could have carried to an infinite power
3258+  am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
3259+  if (am.power2 >= binary_format<T>::infinite_power()) {
3260+    am.power2 = binary_format<T>::infinite_power();
3261+    am.mantissa = 0;
3262+  }
3263+}
3264+
3265+template <typename callback>
3266+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
3267+round_nearest_tie_even(adjusted_mantissa &am, int32_t shift,
3268+                       callback cb) noexcept {
3269+  const uint64_t mask = (shift == 64) ? UINT64_MAX : (uint64_t(1) << shift) - 1;
3270+  const uint64_t halfway = (shift == 0) ? 0 : uint64_t(1) << (shift - 1);
3271+  uint64_t truncated_bits = am.mantissa & mask;
3272+  bool is_above = truncated_bits > halfway;
3273+  bool is_halfway = truncated_bits == halfway;
3274+
3275+  // shift digits into position
3276+  if (shift == 64) {
3277+    am.mantissa = 0;
3278+  } else {
3279+    am.mantissa >>= shift;
3280+  }
3281+  am.power2 += shift;
3282+
3283+  bool is_odd = (am.mantissa & 1) == 1;
3284+  am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
3285+}
3286+
3287+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
3288+round_down(adjusted_mantissa &am, int32_t shift) noexcept {
3289+  if (shift == 64) {
3290+    am.mantissa = 0;
3291+  } else {
3292+    am.mantissa >>= shift;
3293+  }
3294+  am.power2 += shift;
3295+}
3296+template <typename UC>
3297+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3298+skip_zeros(UC const *&first, UC const *last) noexcept {
3299+  uint64_t val;
3300+  while (!cpp20_and_in_constexpr() &&
3301+         std::distance(first, last) >= int_cmp_len<UC>()) {
3302+    ::memcpy(&val, first, sizeof(uint64_t));
3303+    if (val != int_cmp_zeros<UC>()) {
3304+      break;
3305+    }
3306+    first += int_cmp_len<UC>();
3307+  }
3308+  while (first != last) {
3309+    if (*first != UC('0')) {
3310+      break;
3311+    }
3312+    first++;
3313+  }
3314+}
3315+
3316+// determine if any non-zero digits were truncated.
3317+// all characters must be valid digits.
3318+template <typename UC>
3319+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
3320+is_truncated(UC const *first, UC const *last) noexcept {
3321+  // do 8-bit optimizations, can just compare to 8 literal 0s.
3322+  uint64_t val;
3323+  while (!cpp20_and_in_constexpr() &&
3324+         std::distance(first, last) >= int_cmp_len<UC>()) {
3325+    ::memcpy(&val, first, sizeof(uint64_t));
3326+    if (val != int_cmp_zeros<UC>()) {
3327+      return true;
3328+    }
3329+    first += int_cmp_len<UC>();
3330+  }
3331+  while (first != last) {
3332+    if (*first != UC('0')) {
3333+      return true;
3334+    }
3335+    ++first;
3336+  }
3337+  return false;
3338+}
3339+template <typename UC>
3340+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 bool
3341+is_truncated(span<const UC> s) noexcept {
3342+  return is_truncated(s.ptr, s.ptr + s.len());
3343+}
3344+
3345+template <typename UC>
3346+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3347+parse_eight_digits(const UC *&p, limb &value, size_t &counter,
3348+                   size_t &count) noexcept {
3349+  value = value * 100000000 + parse_eight_digits_unrolled(p);
3350+  p += 8;
3351+  counter += 8;
3352+  count += 8;
3353+}
3354+
3355+template <typename UC>
3356+fastfloat_really_inline FASTFLOAT_CONSTEXPR14 void
3357+parse_one_digit(UC const *&p, limb &value, size_t &counter,
3358+                size_t &count) noexcept {
3359+  value = value * 10 + limb(*p - UC('0'));
3360+  p++;
3361+  counter++;
3362+  count++;
3363+}
3364+
3365+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3366+add_native(bigint &big, limb power, limb value) noexcept {
3367+  big.mul(power);
3368+  big.add(value);
3369+}
3370+
3371+fastfloat_really_inline FASTFLOAT_CONSTEXPR20 void
3372+round_up_bigint(bigint &big, size_t &count) noexcept {
3373+  // need to round-up the digits, but need to avoid rounding
3374+  // ....9999 to ...10000, which could cause a false halfway point.
3375+  add_native(big, 10, 1);
3376+  count++;
3377+}
3378+
3379+// parse the significant digits into a big integer
3380+template <typename UC>
3381+inline FASTFLOAT_CONSTEXPR20 void
3382+parse_mantissa(bigint &result, parsed_number_string_t<UC> &num,
3383+               size_t max_digits, size_t &digits) noexcept {
3384+  // try to minimize the number of big integer and scalar multiplication.
3385+  // therefore, try to parse 8 digits at a time, and multiply by the largest
3386+  // scalar value (9 or 19 digits) for each step.
3387+  size_t counter = 0;
3388+  digits = 0;
3389+  limb value = 0;
3390+#ifdef FASTFLOAT_64BIT_LIMB
3391+  size_t step = 19;
3392+#else
3393+  size_t step = 9;
3394+#endif
3395+
3396+  // process all integer digits.
3397+  UC const *p = num.integer.ptr;
3398+  UC const *pend = p + num.integer.len();
3399+  skip_zeros(p, pend);
3400+  // process all digits, in increments of step per loop
3401+  while (p != pend) {
3402+    while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
3403+           (max_digits - digits >= 8)) {
3404+      parse_eight_digits(p, value, counter, digits);
3405+    }
3406+    while (counter < step && p != pend && digits < max_digits) {
3407+      parse_one_digit(p, value, counter, digits);
3408+    }
3409+    if (digits == max_digits) {
3410+      // add the temporary value, then check if we've truncated any digits
3411+      add_native(result, limb(powers_of_ten_uint64[counter]), value);
3412+      bool truncated = is_truncated(p, pend);
3413+      if (num.fraction.ptr != nullptr) {
3414+        truncated |= is_truncated(num.fraction);
3415+      }
3416+      if (truncated) {
3417+        round_up_bigint(result, digits);
3418+      }
3419+      return;
3420+    } else {
3421+      add_native(result, limb(powers_of_ten_uint64[counter]), value);
3422+      counter = 0;
3423+      value = 0;
3424+    }
3425+  }
3426+
3427+  // add our fraction digits, if they're available.
3428+  if (num.fraction.ptr != nullptr) {
3429+    p = num.fraction.ptr;
3430+    pend = p + num.fraction.len();
3431+    if (digits == 0) {
3432+      skip_zeros(p, pend);
3433+    }
3434+    // process all digits, in increments of step per loop
3435+    while (p != pend) {
3436+      while ((std::distance(p, pend) >= 8) && (step - counter >= 8) &&
3437+             (max_digits - digits >= 8)) {
3438+        parse_eight_digits(p, value, counter, digits);
3439+      }
3440+      while (counter < step && p != pend && digits < max_digits) {
3441+        parse_one_digit(p, value, counter, digits);
3442+      }
3443+      if (digits == max_digits) {
3444+        // add the temporary value, then check if we've truncated any digits
3445+        add_native(result, limb(powers_of_ten_uint64[counter]), value);
3446+        bool truncated = is_truncated(p, pend);
3447+        if (truncated) {
3448+          round_up_bigint(result, digits);
3449+        }
3450+        return;
3451+      } else {
3452+        add_native(result, limb(powers_of_ten_uint64[counter]), value);
3453+        counter = 0;
3454+        value = 0;
3455+      }
3456+    }
3457+  }
3458+
3459+  if (counter != 0) {
3460+    add_native(result, limb(powers_of_ten_uint64[counter]), value);
3461+  }
3462+}
3463+
3464+template <typename T>
3465+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3466+positive_digit_comp(bigint &bigmant, int32_t exponent) noexcept {
3467+  FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
3468+  adjusted_mantissa answer;
3469+  bool truncated;
3470+  answer.mantissa = bigmant.hi64(truncated);
3471+  int bias = binary_format<T>::mantissa_explicit_bits() -
3472+             binary_format<T>::minimum_exponent();
3473+  answer.power2 = bigmant.bit_length() - 64 + bias;
3474+
3475+  round<T>(answer, [truncated](adjusted_mantissa &a, int32_t shift) {
3476+    round_nearest_tie_even(
3477+        a, shift,
3478+        [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
3479+          return is_above || (is_halfway && truncated) ||
3480+                 (is_odd && is_halfway);
3481+        });
3482+  });
3483+
3484+  return answer;
3485+}
3486+
3487+// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
3488+// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
3489+// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
3490+// we then need to scale by `2^(f- e)`, and then the two significant digits
3491+// are of the same magnitude.
3492+template <typename T>
3493+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa negative_digit_comp(
3494+    bigint &bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
3495+  bigint &real_digits = bigmant;
3496+  int32_t real_exp = exponent;
3497+
3498+  // get the value of `b`, rounded down, and get a bigint representation of b+h
3499+  adjusted_mantissa am_b = am;
3500+  // gcc7 buf: use a lambda to remove the noexcept qualifier bug with
3501+  // -Wnoexcept-type.
3502+  round<T>(am_b,
3503+           [](adjusted_mantissa &a, int32_t shift) { round_down(a, shift); });
3504+  T b;
3505+  to_float(false, am_b, b);
3506+  adjusted_mantissa theor = to_extended_halfway(b);
3507+  bigint theor_digits(theor.mantissa);
3508+  int32_t theor_exp = theor.power2;
3509+
3510+  // scale real digits and theor digits to be same power.
3511+  int32_t pow2_exp = theor_exp - real_exp;
3512+  uint32_t pow5_exp = uint32_t(-real_exp);
3513+  if (pow5_exp != 0) {
3514+    FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
3515+  }
3516+  if (pow2_exp > 0) {
3517+    FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
3518+  } else if (pow2_exp < 0) {
3519+    FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
3520+  }
3521+
3522+  // compare digits, and use it to director rounding
3523+  int ord = real_digits.compare(theor_digits);
3524+  adjusted_mantissa answer = am;
3525+  round<T>(answer, [ord](adjusted_mantissa &a, int32_t shift) {
3526+    round_nearest_tie_even(
3527+        a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
3528+          (void)_;  // not needed, since we've done our comparison
3529+          (void)__; // not needed, since we've done our comparison
3530+          if (ord > 0) {
3531+            return true;
3532+          } else if (ord < 0) {
3533+            return false;
3534+          } else {
3535+            return is_odd;
3536+          }
3537+        });
3538+  });
3539+
3540+  return answer;
3541+}
3542+
3543+// parse the significant digits as a big integer to unambiguously round the
3544+// the significant digits. here, we are trying to determine how to round
3545+// an extended float representation close to `b+h`, halfway between `b`
3546+// (the float rounded-down) and `b+u`, the next positive float. this
3547+// algorithm is always correct, and uses one of two approaches. when
3548+// the exponent is positive relative to the significant digits (such as
3549+// 1234), we create a big-integer representation, get the high 64-bits,
3550+// determine if any lower bits are truncated, and use that to direct
3551+// rounding. in case of a negative exponent relative to the significant
3552+// digits (such as 1.2345), we create a theoretical representation of
3553+// `b` as a big-integer type, scaled to the same binary exponent as
3554+// the actual digits. we then compare the big integer representations
3555+// of both, and use that to direct rounding.
3556+template <typename T, typename UC>
3557+inline FASTFLOAT_CONSTEXPR20 adjusted_mantissa
3558+digit_comp(parsed_number_string_t<UC> &num, adjusted_mantissa am) noexcept {
3559+  // remove the invalid exponent bias
3560+  am.power2 -= invalid_am_bias;
3561+
3562+  int32_t sci_exp = scientific_exponent(num);
3563+  size_t max_digits = binary_format<T>::max_digits();
3564+  size_t digits = 0;
3565+  bigint bigmant;
3566+  parse_mantissa(bigmant, num, max_digits, digits);
3567+  // can't underflow, since digits is at most max_digits.
3568+  int32_t exponent = sci_exp + 1 - int32_t(digits);
3569+  if (exponent >= 0) {
3570+    return positive_digit_comp<T>(bigmant, exponent);
3571+  } else {
3572+    return negative_digit_comp<T>(bigmant, am, exponent);
3573+  }
3574+}
3575+
3576+} // namespace fast_float
3577+
3578+#endif
3579+
3580+#ifndef FASTFLOAT_PARSE_NUMBER_H
3581+#define FASTFLOAT_PARSE_NUMBER_H
3582+
3583+
3584+#include <cmath>
3585+#include <cstring>
3586+#include <limits>
3587+#include <system_error>
3588+namespace fast_float {
3589+
3590+namespace detail {
3591+/**
3592+ * Special case +inf, -inf, nan, infinity, -infinity.
3593+ * The case comparisons could be made much faster given that we know that the
3594+ * strings a null-free and fixed.
3595+ **/
3596+template <typename T, typename UC>
3597+from_chars_result_t<UC> FASTFLOAT_CONSTEXPR14 parse_infnan(UC const *first,
3598+                                                           UC const *last,
3599+                                                           T &value) noexcept {
3600+  from_chars_result_t<UC> answer{};
3601+  answer.ptr = first;
3602+  answer.ec = std::errc(); // be optimistic
3603+  bool minusSign = false;
3604+  if (*first ==
3605+      UC('-')) { // assume first < last, so dereference without checks;
3606+                 // C++17 20.19.3.(7.1) explicitly forbids '+' here
3607+    minusSign = true;
3608+    ++first;
3609+  }
3610+#ifdef FASTFLOAT_ALLOWS_LEADING_PLUS // disabled by default
3611+  if (*first == UC('+')) {
3612+    ++first;
3613+  }
3614+#endif
3615+  if (last - first >= 3) {
3616+    if (fastfloat_strncasecmp(first, str_const_nan<UC>(), 3)) {
3617+      answer.ptr = (first += 3);
3618+      value = minusSign ? -std::numeric_limits<T>::quiet_NaN()
3619+                        : std::numeric_limits<T>::quiet_NaN();
3620+      // Check for possible nan(n-char-seq-opt), C++17 20.19.3.7,
3621+      // C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
3622+      if (first != last && *first == UC('(')) {
3623+        for (UC const *ptr = first + 1; ptr != last; ++ptr) {
3624+          if (*ptr == UC(')')) {
3625+            answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
3626+            break;
3627+          } else if (!((UC('a') <= *ptr && *ptr <= UC('z')) ||
3628+                       (UC('A') <= *ptr && *ptr <= UC('Z')) ||
3629+                       (UC('0') <= *ptr && *ptr <= UC('9')) || *ptr == UC('_')))
3630+            break; // forbidden char, not nan(n-char-seq-opt)
3631+        }
3632+      }
3633+      return answer;
3634+    }
3635+    if (fastfloat_strncasecmp(first, str_const_inf<UC>(), 3)) {
3636+      if ((last - first >= 8) &&
3637+          fastfloat_strncasecmp(first + 3, str_const_inf<UC>() + 3, 5)) {
3638+        answer.ptr = first + 8;
3639+      } else {
3640+        answer.ptr = first + 3;
3641+      }
3642+      value = minusSign ? -std::numeric_limits<T>::infinity()
3643+                        : std::numeric_limits<T>::infinity();
3644+      return answer;
3645+    }
3646+  }
3647+  answer.ec = std::errc::invalid_argument;
3648+  return answer;
3649+}
3650+
3651+/**
3652+ * Returns true if the floating-pointing rounding mode is to 'nearest'.
3653+ * It is the default on most system. This function is meant to be inexpensive.
3654+ * Credit : @mwalcott3
3655+ */
3656+fastfloat_really_inline bool rounds_to_nearest() noexcept {
3657+  // https://lemire.me/blog/2020/06/26/gcc-not-nearest/
3658+#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
3659+  return false;
3660+#endif
3661+  // See
3662+  // A fast function to check your floating-point rounding mode
3663+  // https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
3664+  //
3665+  // This function is meant to be equivalent to :
3666+  // prior: #include <cfenv>
3667+  //  return fegetround() == FE_TONEAREST;
3668+  // However, it is expected to be much faster than the fegetround()
3669+  // function call.
3670+  //
3671+  // The volatile keywoard prevents the compiler from computing the function
3672+  // at compile-time.
3673+  // There might be other ways to prevent compile-time optimizations (e.g.,
3674+  // asm). The value does not need to be std::numeric_limits<float>::min(), any
3675+  // small value so that 1 + x should round to 1 would do (after accounting for
3676+  // excess precision, as in 387 instructions).
3677+  static volatile float fmin = std::numeric_limits<float>::min();
3678+  float fmini = fmin; // we copy it so that it gets loaded at most once.
3679+//
3680+// Explanation:
3681+// Only when fegetround() == FE_TONEAREST do we have that
3682+// fmin + 1.0f == 1.0f - fmin.
3683+//
3684+// FE_UPWARD:
3685+//  fmin + 1.0f > 1
3686+//  1.0f - fmin == 1
3687+//
3688+// FE_DOWNWARD or  FE_TOWARDZERO:
3689+//  fmin + 1.0f == 1
3690+//  1.0f - fmin < 1
3691+//
3692+// Note: This may fail to be accurate if fast-math has been
3693+// enabled, as rounding conventions may not apply.
3694+#ifdef FASTFLOAT_VISUAL_STUDIO
3695+#pragma warning(push)
3696+//  todo: is there a VS warning?
3697+//  see
3698+//  https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
3699+#elif defined(__clang__)
3700+#pragma clang diagnostic push
3701+#pragma clang diagnostic ignored "-Wfloat-equal"
3702+#elif defined(__GNUC__)
3703+#pragma GCC diagnostic push
3704+#pragma GCC diagnostic ignored "-Wfloat-equal"
3705+#endif
3706+  return (fmini + 1.0f == 1.0f - fmini);
3707+#ifdef FASTFLOAT_VISUAL_STUDIO
3708+#pragma warning(pop)
3709+#elif defined(__clang__)
3710+#pragma clang diagnostic pop
3711+#elif defined(__GNUC__)
3712+#pragma GCC diagnostic pop
3713+#endif
3714+}
3715+
3716+} // namespace detail
3717+
3718+template <typename T> struct from_chars_caller {
3719+  template <typename UC>
3720+  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
3721+  call(UC const *first, UC const *last, T &value,
3722+       parse_options_t<UC> options) noexcept {
3723+    return from_chars_advanced(first, last, value, options);
3724+  }
3725+};
3726+
3727+#if __STDCPP_FLOAT32_T__ == 1
3728+template <> struct from_chars_caller<std::float32_t> {
3729+  template <typename UC>
3730+  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
3731+  call(UC const *first, UC const *last, std::float32_t &value,
3732+       parse_options_t<UC> options) noexcept {
3733+    // if std::float32_t is defined, and we are in C++23 mode; macro set for
3734+    // float32; set value to float due to equivalence between float and
3735+    // float32_t
3736+    float val;
3737+    auto ret = from_chars_advanced(first, last, val, options);
3738+    value = val;
3739+    return ret;
3740+  }
3741+};
3742+#endif
3743+
3744+#if __STDCPP_FLOAT64_T__ == 1
3745+template <> struct from_chars_caller<std::float64_t> {
3746+  template <typename UC>
3747+  FASTFLOAT_CONSTEXPR20 static from_chars_result_t<UC>
3748+  call(UC const *first, UC const *last, std::float64_t &value,
3749+       parse_options_t<UC> options) noexcept {
3750+    // if std::float64_t is defined, and we are in C++23 mode; macro set for
3751+    // float64; set value as double due to equivalence between double and
3752+    // float64_t
3753+    double val;
3754+    auto ret = from_chars_advanced(first, last, val, options);
3755+    value = val;
3756+    return ret;
3757+  }
3758+};
3759+#endif
3760+
3761+template <typename T, typename UC, typename>
3762+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3763+from_chars(UC const *first, UC const *last, T &value,
3764+           chars_format fmt /*= chars_format::general*/) noexcept {
3765+  return from_chars_caller<T>::call(first, last, value,
3766+                                    parse_options_t<UC>(fmt));
3767+}
3768+
3769+/**
3770+ * This function overload takes parsed_number_string_t structure that is created
3771+ * and populated either by from_chars_advanced function taking chars range and
3772+ * parsing options or other parsing custom function implemented by user.
3773+ */
3774+template <typename T, typename UC>
3775+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3776+from_chars_advanced(parsed_number_string_t<UC> &pns, T &value) noexcept {
3777+
3778+  static_assert(is_supported_float_type<T>(),
3779+                "only some floating-point types are supported");
3780+  static_assert(is_supported_char_type<UC>(),
3781+                "only char, wchar_t, char16_t and char32_t are supported");
3782+
3783+  from_chars_result_t<UC> answer;
3784+
3785+  answer.ec = std::errc(); // be optimistic
3786+  answer.ptr = pns.lastmatch;
3787+  // The implementation of the Clinger's fast path is convoluted because
3788+  // we want round-to-nearest in all cases, irrespective of the rounding mode
3789+  // selected on the thread.
3790+  // We proceed optimistically, assuming that detail::rounds_to_nearest()
3791+  // returns true.
3792+  if (binary_format<T>::min_exponent_fast_path() <= pns.exponent &&
3793+      pns.exponent <= binary_format<T>::max_exponent_fast_path() &&
3794+      !pns.too_many_digits) {
3795+    // Unfortunately, the conventional Clinger's fast path is only possible
3796+    // when the system rounds to the nearest float.
3797+    //
3798+    // We expect the next branch to almost always be selected.
3799+    // We could check it first (before the previous branch), but
3800+    // there might be performance advantages at having the check
3801+    // be last.
3802+    if (!cpp20_and_in_constexpr() && detail::rounds_to_nearest()) {
3803+      // We have that fegetround() == FE_TONEAREST.
3804+      // Next is Clinger's fast path.
3805+      if (pns.mantissa <= binary_format<T>::max_mantissa_fast_path()) {
3806+        value = T(pns.mantissa);
3807+        if (pns.exponent < 0) {
3808+          value = value / binary_format<T>::exact_power_of_ten(-pns.exponent);
3809+        } else {
3810+          value = value * binary_format<T>::exact_power_of_ten(pns.exponent);
3811+        }
3812+        if (pns.negative) {
3813+          value = -value;
3814+        }
3815+        return answer;
3816+      }
3817+    } else {
3818+      // We do not have that fegetround() == FE_TONEAREST.
3819+      // Next is a modified Clinger's fast path, inspired by Jakub Jelínek's
3820+      // proposal
3821+      if (pns.exponent >= 0 &&
3822+          pns.mantissa <=
3823+              binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
3824+#if defined(__clang__) || defined(FASTFLOAT_32BIT)
3825+        // Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
3826+        if (pns.mantissa == 0) {
3827+          value = pns.negative ? T(-0.) : T(0.);
3828+          return answer;
3829+        }
3830+#endif
3831+        value = T(pns.mantissa) *
3832+                binary_format<T>::exact_power_of_ten(pns.exponent);
3833+        if (pns.negative) {
3834+          value = -value;
3835+        }
3836+        return answer;
3837+      }
3838+    }
3839+  }
3840+  adjusted_mantissa am =
3841+      compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
3842+  if (pns.too_many_digits && am.power2 >= 0) {
3843+    if (am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
3844+      am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
3845+    }
3846+  }
3847+  // If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa)
3848+  // and we have an invalid power (am.power2 < 0), then we need to go the long
3849+  // way around again. This is very uncommon.
3850+  if (am.power2 < 0) {
3851+    am = digit_comp<T>(pns, am);
3852+  }
3853+  to_float(pns.negative, am, value);
3854+  // Test for over/underflow.
3855+  if ((pns.mantissa != 0 && am.mantissa == 0 && am.power2 == 0) ||
3856+      am.power2 == binary_format<T>::infinite_power()) {
3857+    answer.ec = std::errc::result_out_of_range;
3858+  }
3859+  return answer;
3860+}
3861+
3862+template <typename T, typename UC>
3863+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3864+from_chars_advanced(UC const *first, UC const *last, T &value,
3865+                    parse_options_t<UC> options) noexcept {
3866+
3867+  static_assert(is_supported_float_type<T>(),
3868+                "only some floating-point types are supported");
3869+  static_assert(is_supported_char_type<UC>(),
3870+                "only char, wchar_t, char16_t and char32_t are supported");
3871+
3872+  from_chars_result_t<UC> answer;
3873+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
3874+  while ((first != last) && fast_float::is_space(uint8_t(*first))) {
3875+    first++;
3876+  }
3877+#endif
3878+  if (first == last) {
3879+    answer.ec = std::errc::invalid_argument;
3880+    answer.ptr = first;
3881+    return answer;
3882+  }
3883+  parsed_number_string_t<UC> pns =
3884+      parse_number_string<UC>(first, last, options);
3885+  if (!pns.valid) {
3886+    if (options.format & chars_format::no_infnan) {
3887+      answer.ec = std::errc::invalid_argument;
3888+      answer.ptr = first;
3889+      return answer;
3890+    } else {
3891+      return detail::parse_infnan(first, last, value);
3892+    }
3893+  }
3894+
3895+  // call overload that takes parsed_number_string_t directly.
3896+  return from_chars_advanced(pns, value);
3897+}
3898+
3899+template <typename T, typename UC, typename>
3900+FASTFLOAT_CONSTEXPR20 from_chars_result_t<UC>
3901+from_chars(UC const *first, UC const *last, T &value, int base) noexcept {
3902+  static_assert(is_supported_char_type<UC>(),
3903+                "only char, wchar_t, char16_t and char32_t are supported");
3904+
3905+  from_chars_result_t<UC> answer;
3906+#ifdef FASTFLOAT_SKIP_WHITE_SPACE // disabled by default
3907+  while ((first != last) && fast_float::is_space(uint8_t(*first))) {
3908+    first++;
3909+  }
3910+#endif
3911+  if (first == last || base < 2 || base > 36) {
3912+    answer.ec = std::errc::invalid_argument;
3913+    answer.ptr = first;
3914+    return answer;
3915+  }
3916+  return parse_int_string(first, last, value, base);
3917+}
3918+
3919+} // namespace fast_float
3920+
3921+#endif
3922+
3923