xref: /openbmc/linux/net/netfilter/x_tables.c (revision 6a1f088f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * x_tables core - Backend for {ip,ip6,arp}_tables
4  *
5  * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
6  * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
7  *
8  * Based on existing ip_tables code which is
9  *   Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
10  *   Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
11  */
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/socket.h>
16 #include <linux/net.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/string.h>
20 #include <linux/vmalloc.h>
21 #include <linux/mutex.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/audit.h>
25 #include <linux/user_namespace.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28 
29 #include <linux/netfilter/x_tables.h>
30 #include <linux/netfilter_arp.h>
31 #include <linux/netfilter_ipv4/ip_tables.h>
32 #include <linux/netfilter_ipv6/ip6_tables.h>
33 #include <linux/netfilter_arp/arp_tables.h>
34 
35 MODULE_LICENSE("GPL");
36 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
37 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
38 
39 #define XT_PCPU_BLOCK_SIZE 4096
40 #define XT_MAX_TABLE_SIZE	(512 * 1024 * 1024)
41 
42 struct xt_template {
43 	struct list_head list;
44 
45 	/* called when table is needed in the given netns */
46 	int (*table_init)(struct net *net);
47 
48 	struct module *me;
49 
50 	/* A unique name... */
51 	char name[XT_TABLE_MAXNAMELEN];
52 };
53 
54 static struct list_head xt_templates[NFPROTO_NUMPROTO];
55 
56 struct xt_pernet {
57 	struct list_head tables[NFPROTO_NUMPROTO];
58 };
59 
60 struct compat_delta {
61 	unsigned int offset; /* offset in kernel */
62 	int delta; /* delta in 32bit user land */
63 };
64 
65 struct xt_af {
66 	struct mutex mutex;
67 	struct list_head match;
68 	struct list_head target;
69 #ifdef CONFIG_NETFILTER_XTABLES_COMPAT
70 	struct mutex compat_mutex;
71 	struct compat_delta *compat_tab;
72 	unsigned int number; /* number of slots in compat_tab[] */
73 	unsigned int cur; /* number of used slots in compat_tab[] */
74 #endif
75 };
76 
77 static unsigned int xt_pernet_id __read_mostly;
78 static struct xt_af *xt __read_mostly;
79 
80 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
81 	[NFPROTO_UNSPEC] = "x",
82 	[NFPROTO_IPV4]   = "ip",
83 	[NFPROTO_ARP]    = "arp",
84 	[NFPROTO_BRIDGE] = "eb",
85 	[NFPROTO_IPV6]   = "ip6",
86 };
87 
88 /* Registration hooks for targets. */
xt_register_target(struct xt_target * target)89 int xt_register_target(struct xt_target *target)
90 {
91 	u_int8_t af = target->family;
92 
93 	mutex_lock(&xt[af].mutex);
94 	list_add(&target->list, &xt[af].target);
95 	mutex_unlock(&xt[af].mutex);
96 	return 0;
97 }
98 EXPORT_SYMBOL(xt_register_target);
99 
100 void
xt_unregister_target(struct xt_target * target)101 xt_unregister_target(struct xt_target *target)
102 {
103 	u_int8_t af = target->family;
104 
105 	mutex_lock(&xt[af].mutex);
106 	list_del(&target->list);
107 	mutex_unlock(&xt[af].mutex);
108 }
109 EXPORT_SYMBOL(xt_unregister_target);
110 
111 int
xt_register_targets(struct xt_target * target,unsigned int n)112 xt_register_targets(struct xt_target *target, unsigned int n)
113 {
114 	unsigned int i;
115 	int err = 0;
116 
117 	for (i = 0; i < n; i++) {
118 		err = xt_register_target(&target[i]);
119 		if (err)
120 			goto err;
121 	}
122 	return err;
123 
124 err:
125 	if (i > 0)
126 		xt_unregister_targets(target, i);
127 	return err;
128 }
129 EXPORT_SYMBOL(xt_register_targets);
130 
131 void
xt_unregister_targets(struct xt_target * target,unsigned int n)132 xt_unregister_targets(struct xt_target *target, unsigned int n)
133 {
134 	while (n-- > 0)
135 		xt_unregister_target(&target[n]);
136 }
137 EXPORT_SYMBOL(xt_unregister_targets);
138 
xt_register_match(struct xt_match * match)139 int xt_register_match(struct xt_match *match)
140 {
141 	u_int8_t af = match->family;
142 
143 	mutex_lock(&xt[af].mutex);
144 	list_add(&match->list, &xt[af].match);
145 	mutex_unlock(&xt[af].mutex);
146 	return 0;
147 }
148 EXPORT_SYMBOL(xt_register_match);
149 
150 void
xt_unregister_match(struct xt_match * match)151 xt_unregister_match(struct xt_match *match)
152 {
153 	u_int8_t af = match->family;
154 
155 	mutex_lock(&xt[af].mutex);
156 	list_del(&match->list);
157 	mutex_unlock(&xt[af].mutex);
158 }
159 EXPORT_SYMBOL(xt_unregister_match);
160 
161 int
xt_register_matches(struct xt_match * match,unsigned int n)162 xt_register_matches(struct xt_match *match, unsigned int n)
163 {
164 	unsigned int i;
165 	int err = 0;
166 
167 	for (i = 0; i < n; i++) {
168 		err = xt_register_match(&match[i]);
169 		if (err)
170 			goto err;
171 	}
172 	return err;
173 
174 err:
175 	if (i > 0)
176 		xt_unregister_matches(match, i);
177 	return err;
178 }
179 EXPORT_SYMBOL(xt_register_matches);
180 
181 void
xt_unregister_matches(struct xt_match * match,unsigned int n)182 xt_unregister_matches(struct xt_match *match, unsigned int n)
183 {
184 	while (n-- > 0)
185 		xt_unregister_match(&match[n]);
186 }
187 EXPORT_SYMBOL(xt_unregister_matches);
188 
189 
190 /*
191  * These are weird, but module loading must not be done with mutex
192  * held (since they will register), and we have to have a single
193  * function to use.
194  */
195 
196 /* Find match, grabs ref.  Returns ERR_PTR() on error. */
xt_find_match(u8 af,const char * name,u8 revision)197 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
198 {
199 	struct xt_match *m;
200 	int err = -ENOENT;
201 
202 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
203 		return ERR_PTR(-EINVAL);
204 
205 	mutex_lock(&xt[af].mutex);
206 	list_for_each_entry(m, &xt[af].match, list) {
207 		if (strcmp(m->name, name) == 0) {
208 			if (m->revision == revision) {
209 				if (try_module_get(m->me)) {
210 					mutex_unlock(&xt[af].mutex);
211 					return m;
212 				}
213 			} else
214 				err = -EPROTOTYPE; /* Found something. */
215 		}
216 	}
217 	mutex_unlock(&xt[af].mutex);
218 
219 	if (af != NFPROTO_UNSPEC)
220 		/* Try searching again in the family-independent list */
221 		return xt_find_match(NFPROTO_UNSPEC, name, revision);
222 
223 	return ERR_PTR(err);
224 }
225 EXPORT_SYMBOL(xt_find_match);
226 
227 struct xt_match *
xt_request_find_match(uint8_t nfproto,const char * name,uint8_t revision)228 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
229 {
230 	struct xt_match *match;
231 
232 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
233 		return ERR_PTR(-EINVAL);
234 
235 	match = xt_find_match(nfproto, name, revision);
236 	if (IS_ERR(match)) {
237 		request_module("%st_%s", xt_prefix[nfproto], name);
238 		match = xt_find_match(nfproto, name, revision);
239 	}
240 
241 	return match;
242 }
243 EXPORT_SYMBOL_GPL(xt_request_find_match);
244 
245 /* Find target, grabs ref.  Returns ERR_PTR() on error. */
xt_find_target(u8 af,const char * name,u8 revision)246 static struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
247 {
248 	struct xt_target *t;
249 	int err = -ENOENT;
250 
251 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
252 		return ERR_PTR(-EINVAL);
253 
254 	mutex_lock(&xt[af].mutex);
255 	list_for_each_entry(t, &xt[af].target, list) {
256 		if (strcmp(t->name, name) == 0) {
257 			if (t->revision == revision) {
258 				if (try_module_get(t->me)) {
259 					mutex_unlock(&xt[af].mutex);
260 					return t;
261 				}
262 			} else
263 				err = -EPROTOTYPE; /* Found something. */
264 		}
265 	}
266 	mutex_unlock(&xt[af].mutex);
267 
268 	if (af != NFPROTO_UNSPEC)
269 		/* Try searching again in the family-independent list */
270 		return xt_find_target(NFPROTO_UNSPEC, name, revision);
271 
272 	return ERR_PTR(err);
273 }
274 
xt_request_find_target(u8 af,const char * name,u8 revision)275 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
276 {
277 	struct xt_target *target;
278 
279 	if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
280 		return ERR_PTR(-EINVAL);
281 
282 	target = xt_find_target(af, name, revision);
283 	if (IS_ERR(target)) {
284 		request_module("%st_%s", xt_prefix[af], name);
285 		target = xt_find_target(af, name, revision);
286 	}
287 
288 	return target;
289 }
290 EXPORT_SYMBOL_GPL(xt_request_find_target);
291 
292 
xt_obj_to_user(u16 __user * psize,u16 size,void __user * pname,const char * name,u8 __user * prev,u8 rev)293 static int xt_obj_to_user(u16 __user *psize, u16 size,
294 			  void __user *pname, const char *name,
295 			  u8 __user *prev, u8 rev)
296 {
297 	if (put_user(size, psize))
298 		return -EFAULT;
299 	if (copy_to_user(pname, name, strlen(name) + 1))
300 		return -EFAULT;
301 	if (put_user(rev, prev))
302 		return -EFAULT;
303 
304 	return 0;
305 }
306 
307 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE)				\
308 	xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size,	\
309 		       U->u.user.name, K->u.kernel.TYPE->name,		\
310 		       &U->u.user.revision, K->u.kernel.TYPE->revision)
311 
xt_data_to_user(void __user * dst,const void * src,int usersize,int size,int aligned_size)312 int xt_data_to_user(void __user *dst, const void *src,
313 		    int usersize, int size, int aligned_size)
314 {
315 	usersize = usersize ? : size;
316 	if (copy_to_user(dst, src, usersize))
317 		return -EFAULT;
318 	if (usersize != aligned_size &&
319 	    clear_user(dst + usersize, aligned_size - usersize))
320 		return -EFAULT;
321 
322 	return 0;
323 }
324 EXPORT_SYMBOL_GPL(xt_data_to_user);
325 
326 #define XT_DATA_TO_USER(U, K, TYPE)					\
327 	xt_data_to_user(U->data, K->data,				\
328 			K->u.kernel.TYPE->usersize,			\
329 			K->u.kernel.TYPE->TYPE##size,			\
330 			XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
331 
xt_match_to_user(const struct xt_entry_match * m,struct xt_entry_match __user * u)332 int xt_match_to_user(const struct xt_entry_match *m,
333 		     struct xt_entry_match __user *u)
334 {
335 	return XT_OBJ_TO_USER(u, m, match, 0) ||
336 	       XT_DATA_TO_USER(u, m, match);
337 }
338 EXPORT_SYMBOL_GPL(xt_match_to_user);
339 
xt_target_to_user(const struct xt_entry_target * t,struct xt_entry_target __user * u)340 int xt_target_to_user(const struct xt_entry_target *t,
341 		      struct xt_entry_target __user *u)
342 {
343 	return XT_OBJ_TO_USER(u, t, target, 0) ||
344 	       XT_DATA_TO_USER(u, t, target);
345 }
346 EXPORT_SYMBOL_GPL(xt_target_to_user);
347 
match_revfn(u8 af,const char * name,u8 revision,int * bestp)348 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
349 {
350 	const struct xt_match *m;
351 	int have_rev = 0;
352 
353 	mutex_lock(&xt[af].mutex);
354 	list_for_each_entry(m, &xt[af].match, list) {
355 		if (strcmp(m->name, name) == 0) {
356 			if (m->revision > *bestp)
357 				*bestp = m->revision;
358 			if (m->revision == revision)
359 				have_rev = 1;
360 		}
361 	}
362 	mutex_unlock(&xt[af].mutex);
363 
364 	if (af != NFPROTO_UNSPEC && !have_rev)
365 		return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
366 
367 	return have_rev;
368 }
369 
target_revfn(u8 af,const char * name,u8 revision,int * bestp)370 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
371 {
372 	const struct xt_target *t;
373 	int have_rev = 0;
374 
375 	mutex_lock(&xt[af].mutex);
376 	list_for_each_entry(t, &xt[af].target, list) {
377 		if (strcmp(t->name, name) == 0) {
378 			if (t->revision > *bestp)
379 				*bestp = t->revision;
380 			if (t->revision == revision)
381 				have_rev = 1;
382 		}
383 	}
384 	mutex_unlock(&xt[af].mutex);
385 
386 	if (af != NFPROTO_UNSPEC && !have_rev)
387 		return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
388 
389 	return have_rev;
390 }
391 
392 /* Returns true or false (if no such extension at all) */
xt_find_revision(u8 af,const char * name,u8 revision,int target,int * err)393 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
394 		     int *err)
395 {
396 	int have_rev, best = -1;
397 
398 	if (target == 1)
399 		have_rev = target_revfn(af, name, revision, &best);
400 	else
401 		have_rev = match_revfn(af, name, revision, &best);
402 
403 	/* Nothing at all?  Return 0 to try loading module. */
404 	if (best == -1) {
405 		*err = -ENOENT;
406 		return 0;
407 	}
408 
409 	*err = best;
410 	if (!have_rev)
411 		*err = -EPROTONOSUPPORT;
412 	return 1;
413 }
414 EXPORT_SYMBOL_GPL(xt_find_revision);
415 
416 static char *
textify_hooks(char * buf,size_t size,unsigned int mask,uint8_t nfproto)417 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
418 {
419 	static const char *const inetbr_names[] = {
420 		"PREROUTING", "INPUT", "FORWARD",
421 		"OUTPUT", "POSTROUTING", "BROUTING",
422 	};
423 	static const char *const arp_names[] = {
424 		"INPUT", "FORWARD", "OUTPUT",
425 	};
426 	const char *const *names;
427 	unsigned int i, max;
428 	char *p = buf;
429 	bool np = false;
430 	int res;
431 
432 	names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
433 	max   = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
434 	                                   ARRAY_SIZE(inetbr_names);
435 	*p = '\0';
436 	for (i = 0; i < max; ++i) {
437 		if (!(mask & (1 << i)))
438 			continue;
439 		res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
440 		if (res > 0) {
441 			size -= res;
442 			p += res;
443 		}
444 		np = true;
445 	}
446 
447 	return buf;
448 }
449 
450 /**
451  * xt_check_proc_name - check that name is suitable for /proc file creation
452  *
453  * @name: file name candidate
454  * @size: length of buffer
455  *
456  * some x_tables modules wish to create a file in /proc.
457  * This function makes sure that the name is suitable for this
458  * purpose, it checks that name is NUL terminated and isn't a 'special'
459  * name, like "..".
460  *
461  * returns negative number on error or 0 if name is useable.
462  */
xt_check_proc_name(const char * name,unsigned int size)463 int xt_check_proc_name(const char *name, unsigned int size)
464 {
465 	if (name[0] == '\0')
466 		return -EINVAL;
467 
468 	if (strnlen(name, size) == size)
469 		return -ENAMETOOLONG;
470 
471 	if (strcmp(name, ".") == 0 ||
472 	    strcmp(name, "..") == 0 ||
473 	    strchr(name, '/'))
474 		return -EINVAL;
475 
476 	return 0;
477 }
478 EXPORT_SYMBOL(xt_check_proc_name);
479 
xt_check_match(struct xt_mtchk_param * par,unsigned int size,u16 proto,bool inv_proto)480 int xt_check_match(struct xt_mtchk_param *par,
481 		   unsigned int size, u16 proto, bool inv_proto)
482 {
483 	int ret;
484 
485 	if (XT_ALIGN(par->match->matchsize) != size &&
486 	    par->match->matchsize != -1) {
487 		/*
488 		 * ebt_among is exempt from centralized matchsize checking
489 		 * because it uses a dynamic-size data set.
490 		 */
491 		pr_err_ratelimited("%s_tables: %s.%u match: invalid size %u (kernel) != (user) %u\n",
492 				   xt_prefix[par->family], par->match->name,
493 				   par->match->revision,
494 				   XT_ALIGN(par->match->matchsize), size);
495 		return -EINVAL;
496 	}
497 	if (par->match->table != NULL &&
498 	    strcmp(par->match->table, par->table) != 0) {
499 		pr_info_ratelimited("%s_tables: %s match: only valid in %s table, not %s\n",
500 				    xt_prefix[par->family], par->match->name,
501 				    par->match->table, par->table);
502 		return -EINVAL;
503 	}
504 	if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
505 		char used[64], allow[64];
506 
507 		pr_info_ratelimited("%s_tables: %s match: used from hooks %s, but only valid from %s\n",
508 				    xt_prefix[par->family], par->match->name,
509 				    textify_hooks(used, sizeof(used),
510 						  par->hook_mask, par->family),
511 				    textify_hooks(allow, sizeof(allow),
512 						  par->match->hooks,
513 						  par->family));
514 		return -EINVAL;
515 	}
516 	if (par->match->proto && (par->match->proto != proto || inv_proto)) {
517 		pr_info_ratelimited("%s_tables: %s match: only valid for protocol %u\n",
518 				    xt_prefix[par->family], par->match->name,
519 				    par->match->proto);
520 		return -EINVAL;
521 	}
522 	if (par->match->checkentry != NULL) {
523 		ret = par->match->checkentry(par);
524 		if (ret < 0)
525 			return ret;
526 		else if (ret > 0)
527 			/* Flag up potential errors. */
528 			return -EIO;
529 	}
530 	return 0;
531 }
532 EXPORT_SYMBOL_GPL(xt_check_match);
533 
534 /** xt_check_entry_match - check that matches end before start of target
535  *
536  * @match: beginning of xt_entry_match
537  * @target: beginning of this rules target (alleged end of matches)
538  * @alignment: alignment requirement of match structures
539  *
540  * Validates that all matches add up to the beginning of the target,
541  * and that each match covers at least the base structure size.
542  *
543  * Return: 0 on success, negative errno on failure.
544  */
xt_check_entry_match(const char * match,const char * target,const size_t alignment)545 static int xt_check_entry_match(const char *match, const char *target,
546 				const size_t alignment)
547 {
548 	const struct xt_entry_match *pos;
549 	int length = target - match;
550 
551 	if (length == 0) /* no matches */
552 		return 0;
553 
554 	pos = (struct xt_entry_match *)match;
555 	do {
556 		if ((unsigned long)pos % alignment)
557 			return -EINVAL;
558 
559 		if (length < (int)sizeof(struct xt_entry_match))
560 			return -EINVAL;
561 
562 		if (pos->u.match_size < sizeof(struct xt_entry_match))
563 			return -EINVAL;
564 
565 		if (pos->u.match_size > length)
566 			return -EINVAL;
567 
568 		length -= pos->u.match_size;
569 		pos = ((void *)((char *)(pos) + (pos)->u.match_size));
570 	} while (length > 0);
571 
572 	return 0;
573 }
574 
575 /** xt_check_table_hooks - check hook entry points are sane
576  *
577  * @info xt_table_info to check
578  * @valid_hooks - hook entry points that we can enter from
579  *
580  * Validates that the hook entry and underflows points are set up.
581  *
582  * Return: 0 on success, negative errno on failure.
583  */
xt_check_table_hooks(const struct xt_table_info * info,unsigned int valid_hooks)584 int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks)
585 {
586 	const char *err = "unsorted underflow";
587 	unsigned int i, max_uflow, max_entry;
588 	bool check_hooks = false;
589 
590 	BUILD_BUG_ON(ARRAY_SIZE(info->hook_entry) != ARRAY_SIZE(info->underflow));
591 
592 	max_entry = 0;
593 	max_uflow = 0;
594 
595 	for (i = 0; i < ARRAY_SIZE(info->hook_entry); i++) {
596 		if (!(valid_hooks & (1 << i)))
597 			continue;
598 
599 		if (info->hook_entry[i] == 0xFFFFFFFF)
600 			return -EINVAL;
601 		if (info->underflow[i] == 0xFFFFFFFF)
602 			return -EINVAL;
603 
604 		if (check_hooks) {
605 			if (max_uflow > info->underflow[i])
606 				goto error;
607 
608 			if (max_uflow == info->underflow[i]) {
609 				err = "duplicate underflow";
610 				goto error;
611 			}
612 			if (max_entry > info->hook_entry[i]) {
613 				err = "unsorted entry";
614 				goto error;
615 			}
616 			if (max_entry == info->hook_entry[i]) {
617 				err = "duplicate entry";
618 				goto error;
619 			}
620 		}
621 		max_entry = info->hook_entry[i];
622 		max_uflow = info->underflow[i];
623 		check_hooks = true;
624 	}
625 
626 	return 0;
627 error:
628 	pr_err_ratelimited("%s at hook %d\n", err, i);
629 	return -EINVAL;
630 }
631 EXPORT_SYMBOL(xt_check_table_hooks);
632 
verdict_ok(int verdict)633 static bool verdict_ok(int verdict)
634 {
635 	if (verdict > 0)
636 		return true;
637 
638 	if (verdict < 0) {
639 		int v = -verdict - 1;
640 
641 		if (verdict == XT_RETURN)
642 			return true;
643 
644 		switch (v) {
645 		case NF_ACCEPT: return true;
646 		case NF_DROP: return true;
647 		case NF_QUEUE: return true;
648 		default:
649 			break;
650 		}
651 
652 		return false;
653 	}
654 
655 	return false;
656 }
657 
error_tg_ok(unsigned int usersize,unsigned int kernsize,const char * msg,unsigned int msglen)658 static bool error_tg_ok(unsigned int usersize, unsigned int kernsize,
659 			const char *msg, unsigned int msglen)
660 {
661 	return usersize == kernsize && strnlen(msg, msglen) < msglen;
662 }
663 
664 #ifdef CONFIG_NETFILTER_XTABLES_COMPAT
xt_compat_add_offset(u_int8_t af,unsigned int offset,int delta)665 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
666 {
667 	struct xt_af *xp = &xt[af];
668 
669 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
670 
671 	if (WARN_ON(!xp->compat_tab))
672 		return -ENOMEM;
673 
674 	if (xp->cur >= xp->number)
675 		return -EINVAL;
676 
677 	if (xp->cur)
678 		delta += xp->compat_tab[xp->cur - 1].delta;
679 	xp->compat_tab[xp->cur].offset = offset;
680 	xp->compat_tab[xp->cur].delta = delta;
681 	xp->cur++;
682 	return 0;
683 }
684 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
685 
xt_compat_flush_offsets(u_int8_t af)686 void xt_compat_flush_offsets(u_int8_t af)
687 {
688 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
689 
690 	if (xt[af].compat_tab) {
691 		vfree(xt[af].compat_tab);
692 		xt[af].compat_tab = NULL;
693 		xt[af].number = 0;
694 		xt[af].cur = 0;
695 	}
696 }
697 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
698 
xt_compat_calc_jump(u_int8_t af,unsigned int offset)699 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
700 {
701 	struct compat_delta *tmp = xt[af].compat_tab;
702 	int mid, left = 0, right = xt[af].cur - 1;
703 
704 	while (left <= right) {
705 		mid = (left + right) >> 1;
706 		if (offset > tmp[mid].offset)
707 			left = mid + 1;
708 		else if (offset < tmp[mid].offset)
709 			right = mid - 1;
710 		else
711 			return mid ? tmp[mid - 1].delta : 0;
712 	}
713 	return left ? tmp[left - 1].delta : 0;
714 }
715 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
716 
xt_compat_init_offsets(u8 af,unsigned int number)717 int xt_compat_init_offsets(u8 af, unsigned int number)
718 {
719 	size_t mem;
720 
721 	WARN_ON(!mutex_is_locked(&xt[af].compat_mutex));
722 
723 	if (!number || number > (INT_MAX / sizeof(struct compat_delta)))
724 		return -EINVAL;
725 
726 	if (WARN_ON(xt[af].compat_tab))
727 		return -EINVAL;
728 
729 	mem = sizeof(struct compat_delta) * number;
730 	if (mem > XT_MAX_TABLE_SIZE)
731 		return -ENOMEM;
732 
733 	xt[af].compat_tab = vmalloc(mem);
734 	if (!xt[af].compat_tab)
735 		return -ENOMEM;
736 
737 	xt[af].number = number;
738 	xt[af].cur = 0;
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL(xt_compat_init_offsets);
743 
xt_compat_match_offset(const struct xt_match * match)744 int xt_compat_match_offset(const struct xt_match *match)
745 {
746 	u_int16_t csize = match->compatsize ? : match->matchsize;
747 	return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
748 }
749 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
750 
xt_compat_match_from_user(struct xt_entry_match * m,void ** dstptr,unsigned int * size)751 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
752 			       unsigned int *size)
753 {
754 	const struct xt_match *match = m->u.kernel.match;
755 	struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
756 	int off = xt_compat_match_offset(match);
757 	u_int16_t msize = cm->u.user.match_size;
758 	char name[sizeof(m->u.user.name)];
759 
760 	m = *dstptr;
761 	memcpy(m, cm, sizeof(*cm));
762 	if (match->compat_from_user)
763 		match->compat_from_user(m->data, cm->data);
764 	else
765 		memcpy(m->data, cm->data, msize - sizeof(*cm));
766 
767 	msize += off;
768 	m->u.user.match_size = msize;
769 	strscpy(name, match->name, sizeof(name));
770 	module_put(match->me);
771 	strscpy_pad(m->u.user.name, name, sizeof(m->u.user.name));
772 
773 	*size += off;
774 	*dstptr += msize;
775 }
776 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
777 
778 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE)			\
779 	xt_data_to_user(U->data, K->data,				\
780 			K->u.kernel.TYPE->usersize,			\
781 			C_SIZE,						\
782 			COMPAT_XT_ALIGN(C_SIZE))
783 
xt_compat_match_to_user(const struct xt_entry_match * m,void __user ** dstptr,unsigned int * size)784 int xt_compat_match_to_user(const struct xt_entry_match *m,
785 			    void __user **dstptr, unsigned int *size)
786 {
787 	const struct xt_match *match = m->u.kernel.match;
788 	struct compat_xt_entry_match __user *cm = *dstptr;
789 	int off = xt_compat_match_offset(match);
790 	u_int16_t msize = m->u.user.match_size - off;
791 
792 	if (XT_OBJ_TO_USER(cm, m, match, msize))
793 		return -EFAULT;
794 
795 	if (match->compat_to_user) {
796 		if (match->compat_to_user((void __user *)cm->data, m->data))
797 			return -EFAULT;
798 	} else {
799 		if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
800 			return -EFAULT;
801 	}
802 
803 	*size -= off;
804 	*dstptr += msize;
805 	return 0;
806 }
807 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
808 
809 /* non-compat version may have padding after verdict */
810 struct compat_xt_standard_target {
811 	struct compat_xt_entry_target t;
812 	compat_uint_t verdict;
813 };
814 
815 struct compat_xt_error_target {
816 	struct compat_xt_entry_target t;
817 	char errorname[XT_FUNCTION_MAXNAMELEN];
818 };
819 
xt_compat_check_entry_offsets(const void * base,const char * elems,unsigned int target_offset,unsigned int next_offset)820 int xt_compat_check_entry_offsets(const void *base, const char *elems,
821 				  unsigned int target_offset,
822 				  unsigned int next_offset)
823 {
824 	long size_of_base_struct = elems - (const char *)base;
825 	const struct compat_xt_entry_target *t;
826 	const char *e = base;
827 
828 	if (target_offset < size_of_base_struct)
829 		return -EINVAL;
830 
831 	if (target_offset + sizeof(*t) > next_offset)
832 		return -EINVAL;
833 
834 	t = (void *)(e + target_offset);
835 	if (t->u.target_size < sizeof(*t))
836 		return -EINVAL;
837 
838 	if (target_offset + t->u.target_size > next_offset)
839 		return -EINVAL;
840 
841 	if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
842 		const struct compat_xt_standard_target *st = (const void *)t;
843 
844 		if (COMPAT_XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
845 			return -EINVAL;
846 
847 		if (!verdict_ok(st->verdict))
848 			return -EINVAL;
849 	} else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
850 		const struct compat_xt_error_target *et = (const void *)t;
851 
852 		if (!error_tg_ok(t->u.target_size, sizeof(*et),
853 				 et->errorname, sizeof(et->errorname)))
854 			return -EINVAL;
855 	}
856 
857 	/* compat_xt_entry match has less strict alignment requirements,
858 	 * otherwise they are identical.  In case of padding differences
859 	 * we need to add compat version of xt_check_entry_match.
860 	 */
861 	BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
862 
863 	return xt_check_entry_match(elems, base + target_offset,
864 				    __alignof__(struct compat_xt_entry_match));
865 }
866 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
867 #endif /* CONFIG_NETFILTER_XTABLES_COMPAT */
868 
869 /**
870  * xt_check_entry_offsets - validate arp/ip/ip6t_entry
871  *
872  * @base: pointer to arp/ip/ip6t_entry
873  * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
874  * @target_offset: the arp/ip/ip6_t->target_offset
875  * @next_offset: the arp/ip/ip6_t->next_offset
876  *
877  * validates that target_offset and next_offset are sane and that all
878  * match sizes (if any) align with the target offset.
879  *
880  * This function does not validate the targets or matches themselves, it
881  * only tests that all the offsets and sizes are correct, that all
882  * match structures are aligned, and that the last structure ends where
883  * the target structure begins.
884  *
885  * Also see xt_compat_check_entry_offsets for CONFIG_NETFILTER_XTABLES_COMPAT version.
886  *
887  * The arp/ip/ip6t_entry structure @base must have passed following tests:
888  * - it must point to a valid memory location
889  * - base to base + next_offset must be accessible, i.e. not exceed allocated
890  *   length.
891  *
892  * A well-formed entry looks like this:
893  *
894  * ip(6)t_entry   match [mtdata]  match [mtdata] target [tgdata] ip(6)t_entry
895  * e->elems[]-----'                              |               |
896  *                matchsize                      |               |
897  *                                matchsize      |               |
898  *                                               |               |
899  * target_offset---------------------------------'               |
900  * next_offset---------------------------------------------------'
901  *
902  * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
903  *          This is where matches (if any) and the target reside.
904  * target_offset: beginning of target.
905  * next_offset: start of the next rule; also: size of this rule.
906  * Since targets have a minimum size, target_offset + minlen <= next_offset.
907  *
908  * Every match stores its size, sum of sizes must not exceed target_offset.
909  *
910  * Return: 0 on success, negative errno on failure.
911  */
xt_check_entry_offsets(const void * base,const char * elems,unsigned int target_offset,unsigned int next_offset)912 int xt_check_entry_offsets(const void *base,
913 			   const char *elems,
914 			   unsigned int target_offset,
915 			   unsigned int next_offset)
916 {
917 	long size_of_base_struct = elems - (const char *)base;
918 	const struct xt_entry_target *t;
919 	const char *e = base;
920 
921 	/* target start is within the ip/ip6/arpt_entry struct */
922 	if (target_offset < size_of_base_struct)
923 		return -EINVAL;
924 
925 	if (target_offset + sizeof(*t) > next_offset)
926 		return -EINVAL;
927 
928 	t = (void *)(e + target_offset);
929 	if (t->u.target_size < sizeof(*t))
930 		return -EINVAL;
931 
932 	if (target_offset + t->u.target_size > next_offset)
933 		return -EINVAL;
934 
935 	if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) {
936 		const struct xt_standard_target *st = (const void *)t;
937 
938 		if (XT_ALIGN(target_offset + sizeof(*st)) != next_offset)
939 			return -EINVAL;
940 
941 		if (!verdict_ok(st->verdict))
942 			return -EINVAL;
943 	} else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) {
944 		const struct xt_error_target *et = (const void *)t;
945 
946 		if (!error_tg_ok(t->u.target_size, sizeof(*et),
947 				 et->errorname, sizeof(et->errorname)))
948 			return -EINVAL;
949 	}
950 
951 	return xt_check_entry_match(elems, base + target_offset,
952 				    __alignof__(struct xt_entry_match));
953 }
954 EXPORT_SYMBOL(xt_check_entry_offsets);
955 
956 /**
957  * xt_alloc_entry_offsets - allocate array to store rule head offsets
958  *
959  * @size: number of entries
960  *
961  * Return: NULL or zeroed kmalloc'd or vmalloc'd array
962  */
xt_alloc_entry_offsets(unsigned int size)963 unsigned int *xt_alloc_entry_offsets(unsigned int size)
964 {
965 	if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int))
966 		return NULL;
967 
968 	return kvcalloc(size, sizeof(unsigned int), GFP_KERNEL);
969 
970 }
971 EXPORT_SYMBOL(xt_alloc_entry_offsets);
972 
973 /**
974  * xt_find_jump_offset - check if target is a valid jump offset
975  *
976  * @offsets: array containing all valid rule start offsets of a rule blob
977  * @target: the jump target to search for
978  * @size: entries in @offset
979  */
xt_find_jump_offset(const unsigned int * offsets,unsigned int target,unsigned int size)980 bool xt_find_jump_offset(const unsigned int *offsets,
981 			 unsigned int target, unsigned int size)
982 {
983 	int m, low = 0, hi = size;
984 
985 	while (hi > low) {
986 		m = (low + hi) / 2u;
987 
988 		if (offsets[m] > target)
989 			hi = m;
990 		else if (offsets[m] < target)
991 			low = m + 1;
992 		else
993 			return true;
994 	}
995 
996 	return false;
997 }
998 EXPORT_SYMBOL(xt_find_jump_offset);
999 
xt_check_target(struct xt_tgchk_param * par,unsigned int size,u16 proto,bool inv_proto)1000 int xt_check_target(struct xt_tgchk_param *par,
1001 		    unsigned int size, u16 proto, bool inv_proto)
1002 {
1003 	int ret;
1004 
1005 	if (XT_ALIGN(par->target->targetsize) != size) {
1006 		pr_err_ratelimited("%s_tables: %s.%u target: invalid size %u (kernel) != (user) %u\n",
1007 				   xt_prefix[par->family], par->target->name,
1008 				   par->target->revision,
1009 				   XT_ALIGN(par->target->targetsize), size);
1010 		return -EINVAL;
1011 	}
1012 	if (par->target->table != NULL &&
1013 	    strcmp(par->target->table, par->table) != 0) {
1014 		pr_info_ratelimited("%s_tables: %s target: only valid in %s table, not %s\n",
1015 				    xt_prefix[par->family], par->target->name,
1016 				    par->target->table, par->table);
1017 		return -EINVAL;
1018 	}
1019 	if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
1020 		char used[64], allow[64];
1021 
1022 		pr_info_ratelimited("%s_tables: %s target: used from hooks %s, but only usable from %s\n",
1023 				    xt_prefix[par->family], par->target->name,
1024 				    textify_hooks(used, sizeof(used),
1025 						  par->hook_mask, par->family),
1026 				    textify_hooks(allow, sizeof(allow),
1027 						  par->target->hooks,
1028 						  par->family));
1029 		return -EINVAL;
1030 	}
1031 	if (par->target->proto && (par->target->proto != proto || inv_proto)) {
1032 		pr_info_ratelimited("%s_tables: %s target: only valid for protocol %u\n",
1033 				    xt_prefix[par->family], par->target->name,
1034 				    par->target->proto);
1035 		return -EINVAL;
1036 	}
1037 	if (par->target->checkentry != NULL) {
1038 		ret = par->target->checkentry(par);
1039 		if (ret < 0)
1040 			return ret;
1041 		else if (ret > 0)
1042 			/* Flag up potential errors. */
1043 			return -EIO;
1044 	}
1045 	return 0;
1046 }
1047 EXPORT_SYMBOL_GPL(xt_check_target);
1048 
1049 /**
1050  * xt_copy_counters - copy counters and metadata from a sockptr_t
1051  *
1052  * @arg: src sockptr
1053  * @len: alleged size of userspace memory
1054  * @info: where to store the xt_counters_info metadata
1055  *
1056  * Copies counter meta data from @user and stores it in @info.
1057  *
1058  * vmallocs memory to hold the counters, then copies the counter data
1059  * from @user to the new memory and returns a pointer to it.
1060  *
1061  * If called from a compat syscall, @info gets converted automatically to the
1062  * 64bit representation.
1063  *
1064  * The metadata associated with the counters is stored in @info.
1065  *
1066  * Return: returns pointer that caller has to test via IS_ERR().
1067  * If IS_ERR is false, caller has to vfree the pointer.
1068  */
xt_copy_counters(sockptr_t arg,unsigned int len,struct xt_counters_info * info)1069 void *xt_copy_counters(sockptr_t arg, unsigned int len,
1070 		       struct xt_counters_info *info)
1071 {
1072 	size_t offset;
1073 	void *mem;
1074 	u64 size;
1075 
1076 #ifdef CONFIG_NETFILTER_XTABLES_COMPAT
1077 	if (in_compat_syscall()) {
1078 		/* structures only differ in size due to alignment */
1079 		struct compat_xt_counters_info compat_tmp;
1080 
1081 		if (len <= sizeof(compat_tmp))
1082 			return ERR_PTR(-EINVAL);
1083 
1084 		len -= sizeof(compat_tmp);
1085 		if (copy_from_sockptr(&compat_tmp, arg, sizeof(compat_tmp)) != 0)
1086 			return ERR_PTR(-EFAULT);
1087 
1088 		memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
1089 		info->num_counters = compat_tmp.num_counters;
1090 		offset = sizeof(compat_tmp);
1091 	} else
1092 #endif
1093 	{
1094 		if (len <= sizeof(*info))
1095 			return ERR_PTR(-EINVAL);
1096 
1097 		len -= sizeof(*info);
1098 		if (copy_from_sockptr(info, arg, sizeof(*info)) != 0)
1099 			return ERR_PTR(-EFAULT);
1100 
1101 		offset = sizeof(*info);
1102 	}
1103 	info->name[sizeof(info->name) - 1] = '\0';
1104 
1105 	size = sizeof(struct xt_counters);
1106 	size *= info->num_counters;
1107 
1108 	if (size != (u64)len)
1109 		return ERR_PTR(-EINVAL);
1110 
1111 	mem = vmalloc(len);
1112 	if (!mem)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	if (copy_from_sockptr_offset(mem, arg, offset, len) == 0)
1116 		return mem;
1117 
1118 	vfree(mem);
1119 	return ERR_PTR(-EFAULT);
1120 }
1121 EXPORT_SYMBOL_GPL(xt_copy_counters);
1122 
1123 #ifdef CONFIG_NETFILTER_XTABLES_COMPAT
xt_compat_target_offset(const struct xt_target * target)1124 int xt_compat_target_offset(const struct xt_target *target)
1125 {
1126 	u_int16_t csize = target->compatsize ? : target->targetsize;
1127 	return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
1128 }
1129 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
1130 
xt_compat_target_from_user(struct xt_entry_target * t,void ** dstptr,unsigned int * size)1131 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
1132 				unsigned int *size)
1133 {
1134 	const struct xt_target *target = t->u.kernel.target;
1135 	struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
1136 	int off = xt_compat_target_offset(target);
1137 	u_int16_t tsize = ct->u.user.target_size;
1138 	char name[sizeof(t->u.user.name)];
1139 
1140 	t = *dstptr;
1141 	memcpy(t, ct, sizeof(*ct));
1142 	if (target->compat_from_user)
1143 		target->compat_from_user(t->data, ct->data);
1144 	else
1145 		memcpy(t->data, ct->data, tsize - sizeof(*ct));
1146 
1147 	tsize += off;
1148 	t->u.user.target_size = tsize;
1149 	strscpy(name, target->name, sizeof(name));
1150 	module_put(target->me);
1151 	strscpy_pad(t->u.user.name, name, sizeof(t->u.user.name));
1152 
1153 	*size += off;
1154 	*dstptr += tsize;
1155 }
1156 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1157 
xt_compat_target_to_user(const struct xt_entry_target * t,void __user ** dstptr,unsigned int * size)1158 int xt_compat_target_to_user(const struct xt_entry_target *t,
1159 			     void __user **dstptr, unsigned int *size)
1160 {
1161 	const struct xt_target *target = t->u.kernel.target;
1162 	struct compat_xt_entry_target __user *ct = *dstptr;
1163 	int off = xt_compat_target_offset(target);
1164 	u_int16_t tsize = t->u.user.target_size - off;
1165 
1166 	if (XT_OBJ_TO_USER(ct, t, target, tsize))
1167 		return -EFAULT;
1168 
1169 	if (target->compat_to_user) {
1170 		if (target->compat_to_user((void __user *)ct->data, t->data))
1171 			return -EFAULT;
1172 	} else {
1173 		if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1174 			return -EFAULT;
1175 	}
1176 
1177 	*size -= off;
1178 	*dstptr += tsize;
1179 	return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1182 #endif
1183 
xt_alloc_table_info(unsigned int size)1184 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1185 {
1186 	struct xt_table_info *info = NULL;
1187 	size_t sz = sizeof(*info) + size;
1188 
1189 	if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1190 		return NULL;
1191 
1192 	info = kvmalloc(sz, GFP_KERNEL_ACCOUNT);
1193 	if (!info)
1194 		return NULL;
1195 
1196 	memset(info, 0, sizeof(*info));
1197 	info->size = size;
1198 	return info;
1199 }
1200 EXPORT_SYMBOL(xt_alloc_table_info);
1201 
xt_free_table_info(struct xt_table_info * info)1202 void xt_free_table_info(struct xt_table_info *info)
1203 {
1204 	int cpu;
1205 
1206 	if (info->jumpstack != NULL) {
1207 		for_each_possible_cpu(cpu)
1208 			kvfree(info->jumpstack[cpu]);
1209 		kvfree(info->jumpstack);
1210 	}
1211 
1212 	kvfree(info);
1213 }
1214 EXPORT_SYMBOL(xt_free_table_info);
1215 
xt_find_table(struct net * net,u8 af,const char * name)1216 struct xt_table *xt_find_table(struct net *net, u8 af, const char *name)
1217 {
1218 	struct xt_pernet *xt_net = net_generic(net, xt_pernet_id);
1219 	struct xt_table *t;
1220 
1221 	mutex_lock(&xt[af].mutex);
1222 	list_for_each_entry(t, &xt_net->tables[af], list) {
1223 		if (strcmp(t->name, name) == 0) {
1224 			mutex_unlock(&xt[af].mutex);
1225 			return t;
1226 		}
1227 	}
1228 	mutex_unlock(&xt[af].mutex);
1229 	return NULL;
1230 }
1231 EXPORT_SYMBOL(xt_find_table);
1232 
1233 /* Find table by name, grabs mutex & ref.  Returns ERR_PTR on error. */
xt_find_table_lock(struct net * net,u_int8_t af,const char * name)1234 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1235 				    const char *name)
1236 {
1237 	struct xt_pernet *xt_net = net_generic(net, xt_pernet_id);
1238 	struct module *owner = NULL;
1239 	struct xt_template *tmpl;
1240 	struct xt_table *t;
1241 
1242 	mutex_lock(&xt[af].mutex);
1243 	list_for_each_entry(t, &xt_net->tables[af], list)
1244 		if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1245 			return t;
1246 
1247 	/* Table doesn't exist in this netns, check larval list */
1248 	list_for_each_entry(tmpl, &xt_templates[af], list) {
1249 		int err;
1250 
1251 		if (strcmp(tmpl->name, name))
1252 			continue;
1253 		if (!try_module_get(tmpl->me))
1254 			goto out;
1255 
1256 		owner = tmpl->me;
1257 
1258 		mutex_unlock(&xt[af].mutex);
1259 		err = tmpl->table_init(net);
1260 		if (err < 0) {
1261 			module_put(owner);
1262 			return ERR_PTR(err);
1263 		}
1264 
1265 		mutex_lock(&xt[af].mutex);
1266 		break;
1267 	}
1268 
1269 	/* and once again: */
1270 	list_for_each_entry(t, &xt_net->tables[af], list)
1271 		if (strcmp(t->name, name) == 0 && owner == t->me)
1272 			return t;
1273 
1274 	module_put(owner);
1275  out:
1276 	mutex_unlock(&xt[af].mutex);
1277 	return ERR_PTR(-ENOENT);
1278 }
1279 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1280 
xt_request_find_table_lock(struct net * net,u_int8_t af,const char * name)1281 struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af,
1282 					    const char *name)
1283 {
1284 	struct xt_table *t = xt_find_table_lock(net, af, name);
1285 
1286 #ifdef CONFIG_MODULES
1287 	if (IS_ERR(t)) {
1288 		int err = request_module("%stable_%s", xt_prefix[af], name);
1289 		if (err < 0)
1290 			return ERR_PTR(err);
1291 		t = xt_find_table_lock(net, af, name);
1292 	}
1293 #endif
1294 
1295 	return t;
1296 }
1297 EXPORT_SYMBOL_GPL(xt_request_find_table_lock);
1298 
xt_table_unlock(struct xt_table * table)1299 void xt_table_unlock(struct xt_table *table)
1300 {
1301 	mutex_unlock(&xt[table->af].mutex);
1302 }
1303 EXPORT_SYMBOL_GPL(xt_table_unlock);
1304 
1305 #ifdef CONFIG_NETFILTER_XTABLES_COMPAT
xt_compat_lock(u_int8_t af)1306 void xt_compat_lock(u_int8_t af)
1307 {
1308 	mutex_lock(&xt[af].compat_mutex);
1309 }
1310 EXPORT_SYMBOL_GPL(xt_compat_lock);
1311 
xt_compat_unlock(u_int8_t af)1312 void xt_compat_unlock(u_int8_t af)
1313 {
1314 	mutex_unlock(&xt[af].compat_mutex);
1315 }
1316 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1317 #endif
1318 
1319 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1320 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1321 
1322 struct static_key xt_tee_enabled __read_mostly;
1323 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1324 
xt_jumpstack_alloc(struct xt_table_info * i)1325 static int xt_jumpstack_alloc(struct xt_table_info *i)
1326 {
1327 	unsigned int size;
1328 	int cpu;
1329 
1330 	size = sizeof(void **) * nr_cpu_ids;
1331 	if (size > PAGE_SIZE)
1332 		i->jumpstack = kvzalloc(size, GFP_KERNEL);
1333 	else
1334 		i->jumpstack = kzalloc(size, GFP_KERNEL);
1335 	if (i->jumpstack == NULL)
1336 		return -ENOMEM;
1337 
1338 	/* ruleset without jumps -- no stack needed */
1339 	if (i->stacksize == 0)
1340 		return 0;
1341 
1342 	/* Jumpstack needs to be able to record two full callchains, one
1343 	 * from the first rule set traversal, plus one table reentrancy
1344 	 * via -j TEE without clobbering the callchain that brought us to
1345 	 * TEE target.
1346 	 *
1347 	 * This is done by allocating two jumpstacks per cpu, on reentry
1348 	 * the upper half of the stack is used.
1349 	 *
1350 	 * see the jumpstack setup in ipt_do_table() for more details.
1351 	 */
1352 	size = sizeof(void *) * i->stacksize * 2u;
1353 	for_each_possible_cpu(cpu) {
1354 		i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1355 			cpu_to_node(cpu));
1356 		if (i->jumpstack[cpu] == NULL)
1357 			/*
1358 			 * Freeing will be done later on by the callers. The
1359 			 * chain is: xt_replace_table -> __do_replace ->
1360 			 * do_replace -> xt_free_table_info.
1361 			 */
1362 			return -ENOMEM;
1363 	}
1364 
1365 	return 0;
1366 }
1367 
xt_counters_alloc(unsigned int counters)1368 struct xt_counters *xt_counters_alloc(unsigned int counters)
1369 {
1370 	struct xt_counters *mem;
1371 
1372 	if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1373 		return NULL;
1374 
1375 	counters *= sizeof(*mem);
1376 	if (counters > XT_MAX_TABLE_SIZE)
1377 		return NULL;
1378 
1379 	return vzalloc(counters);
1380 }
1381 EXPORT_SYMBOL(xt_counters_alloc);
1382 
1383 struct xt_table_info *
xt_replace_table(struct xt_table * table,unsigned int num_counters,struct xt_table_info * newinfo,int * error)1384 xt_replace_table(struct xt_table *table,
1385 	      unsigned int num_counters,
1386 	      struct xt_table_info *newinfo,
1387 	      int *error)
1388 {
1389 	struct xt_table_info *private;
1390 	unsigned int cpu;
1391 	int ret;
1392 
1393 	ret = xt_jumpstack_alloc(newinfo);
1394 	if (ret < 0) {
1395 		*error = ret;
1396 		return NULL;
1397 	}
1398 
1399 	/* Do the substitution. */
1400 	local_bh_disable();
1401 	private = table->private;
1402 
1403 	/* Check inside lock: is the old number correct? */
1404 	if (num_counters != private->number) {
1405 		pr_debug("num_counters != table->private->number (%u/%u)\n",
1406 			 num_counters, private->number);
1407 		local_bh_enable();
1408 		*error = -EAGAIN;
1409 		return NULL;
1410 	}
1411 
1412 	newinfo->initial_entries = private->initial_entries;
1413 	/*
1414 	 * Ensure contents of newinfo are visible before assigning to
1415 	 * private.
1416 	 */
1417 	smp_wmb();
1418 	table->private = newinfo;
1419 
1420 	/* make sure all cpus see new ->private value */
1421 	smp_mb();
1422 
1423 	/*
1424 	 * Even though table entries have now been swapped, other CPU's
1425 	 * may still be using the old entries...
1426 	 */
1427 	local_bh_enable();
1428 
1429 	/* ... so wait for even xt_recseq on all cpus */
1430 	for_each_possible_cpu(cpu) {
1431 		seqcount_t *s = &per_cpu(xt_recseq, cpu);
1432 		u32 seq = raw_read_seqcount(s);
1433 
1434 		if (seq & 1) {
1435 			do {
1436 				cond_resched();
1437 				cpu_relax();
1438 			} while (seq == raw_read_seqcount(s));
1439 		}
1440 	}
1441 
1442 	audit_log_nfcfg(table->name, table->af, private->number,
1443 			!private->number ? AUDIT_XT_OP_REGISTER :
1444 					   AUDIT_XT_OP_REPLACE,
1445 			GFP_KERNEL);
1446 	return private;
1447 }
1448 EXPORT_SYMBOL_GPL(xt_replace_table);
1449 
xt_register_table(struct net * net,const struct xt_table * input_table,struct xt_table_info * bootstrap,struct xt_table_info * newinfo)1450 struct xt_table *xt_register_table(struct net *net,
1451 				   const struct xt_table *input_table,
1452 				   struct xt_table_info *bootstrap,
1453 				   struct xt_table_info *newinfo)
1454 {
1455 	struct xt_pernet *xt_net = net_generic(net, xt_pernet_id);
1456 	struct xt_table_info *private;
1457 	struct xt_table *t, *table;
1458 	int ret;
1459 
1460 	/* Don't add one object to multiple lists. */
1461 	table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1462 	if (!table) {
1463 		ret = -ENOMEM;
1464 		goto out;
1465 	}
1466 
1467 	mutex_lock(&xt[table->af].mutex);
1468 	/* Don't autoload: we'd eat our tail... */
1469 	list_for_each_entry(t, &xt_net->tables[table->af], list) {
1470 		if (strcmp(t->name, table->name) == 0) {
1471 			ret = -EEXIST;
1472 			goto unlock;
1473 		}
1474 	}
1475 
1476 	/* Simplifies replace_table code. */
1477 	table->private = bootstrap;
1478 
1479 	if (!xt_replace_table(table, 0, newinfo, &ret))
1480 		goto unlock;
1481 
1482 	private = table->private;
1483 	pr_debug("table->private->number = %u\n", private->number);
1484 
1485 	/* save number of initial entries */
1486 	private->initial_entries = private->number;
1487 
1488 	list_add(&table->list, &xt_net->tables[table->af]);
1489 	mutex_unlock(&xt[table->af].mutex);
1490 	return table;
1491 
1492 unlock:
1493 	mutex_unlock(&xt[table->af].mutex);
1494 	kfree(table);
1495 out:
1496 	return ERR_PTR(ret);
1497 }
1498 EXPORT_SYMBOL_GPL(xt_register_table);
1499 
xt_unregister_table(struct xt_table * table)1500 void *xt_unregister_table(struct xt_table *table)
1501 {
1502 	struct xt_table_info *private;
1503 
1504 	mutex_lock(&xt[table->af].mutex);
1505 	private = table->private;
1506 	list_del(&table->list);
1507 	mutex_unlock(&xt[table->af].mutex);
1508 	audit_log_nfcfg(table->name, table->af, private->number,
1509 			AUDIT_XT_OP_UNREGISTER, GFP_KERNEL);
1510 	kfree(table->ops);
1511 	kfree(table);
1512 
1513 	return private;
1514 }
1515 EXPORT_SYMBOL_GPL(xt_unregister_table);
1516 
1517 #ifdef CONFIG_PROC_FS
xt_table_seq_start(struct seq_file * seq,loff_t * pos)1518 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1519 {
1520 	u8 af = (unsigned long)pde_data(file_inode(seq->file));
1521 	struct net *net = seq_file_net(seq);
1522 	struct xt_pernet *xt_net;
1523 
1524 	xt_net = net_generic(net, xt_pernet_id);
1525 
1526 	mutex_lock(&xt[af].mutex);
1527 	return seq_list_start(&xt_net->tables[af], *pos);
1528 }
1529 
xt_table_seq_next(struct seq_file * seq,void * v,loff_t * pos)1530 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1531 {
1532 	u8 af = (unsigned long)pde_data(file_inode(seq->file));
1533 	struct net *net = seq_file_net(seq);
1534 	struct xt_pernet *xt_net;
1535 
1536 	xt_net = net_generic(net, xt_pernet_id);
1537 
1538 	return seq_list_next(v, &xt_net->tables[af], pos);
1539 }
1540 
xt_table_seq_stop(struct seq_file * seq,void * v)1541 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1542 {
1543 	u_int8_t af = (unsigned long)pde_data(file_inode(seq->file));
1544 
1545 	mutex_unlock(&xt[af].mutex);
1546 }
1547 
xt_table_seq_show(struct seq_file * seq,void * v)1548 static int xt_table_seq_show(struct seq_file *seq, void *v)
1549 {
1550 	struct xt_table *table = list_entry(v, struct xt_table, list);
1551 
1552 	if (*table->name)
1553 		seq_printf(seq, "%s\n", table->name);
1554 	return 0;
1555 }
1556 
1557 static const struct seq_operations xt_table_seq_ops = {
1558 	.start	= xt_table_seq_start,
1559 	.next	= xt_table_seq_next,
1560 	.stop	= xt_table_seq_stop,
1561 	.show	= xt_table_seq_show,
1562 };
1563 
1564 /*
1565  * Traverse state for ip{,6}_{tables,matches} for helping crossing
1566  * the multi-AF mutexes.
1567  */
1568 struct nf_mttg_trav {
1569 	struct list_head *head, *curr;
1570 	uint8_t class;
1571 };
1572 
1573 enum {
1574 	MTTG_TRAV_INIT,
1575 	MTTG_TRAV_NFP_UNSPEC,
1576 	MTTG_TRAV_NFP_SPEC,
1577 	MTTG_TRAV_DONE,
1578 };
1579 
xt_mttg_seq_next(struct seq_file * seq,void * v,loff_t * ppos,bool is_target)1580 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1581     bool is_target)
1582 {
1583 	static const uint8_t next_class[] = {
1584 		[MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1585 		[MTTG_TRAV_NFP_SPEC]   = MTTG_TRAV_DONE,
1586 	};
1587 	uint8_t nfproto = (unsigned long)pde_data(file_inode(seq->file));
1588 	struct nf_mttg_trav *trav = seq->private;
1589 
1590 	if (ppos != NULL)
1591 		++(*ppos);
1592 
1593 	switch (trav->class) {
1594 	case MTTG_TRAV_INIT:
1595 		trav->class = MTTG_TRAV_NFP_UNSPEC;
1596 		mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1597 		trav->head = trav->curr = is_target ?
1598 			&xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1599  		break;
1600 	case MTTG_TRAV_NFP_UNSPEC:
1601 		trav->curr = trav->curr->next;
1602 		if (trav->curr != trav->head)
1603 			break;
1604 		mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1605 		mutex_lock(&xt[nfproto].mutex);
1606 		trav->head = trav->curr = is_target ?
1607 			&xt[nfproto].target : &xt[nfproto].match;
1608 		trav->class = next_class[trav->class];
1609 		break;
1610 	case MTTG_TRAV_NFP_SPEC:
1611 		trav->curr = trav->curr->next;
1612 		if (trav->curr != trav->head)
1613 			break;
1614 		fallthrough;
1615 	default:
1616 		return NULL;
1617 	}
1618 	return trav;
1619 }
1620 
xt_mttg_seq_start(struct seq_file * seq,loff_t * pos,bool is_target)1621 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1622     bool is_target)
1623 {
1624 	struct nf_mttg_trav *trav = seq->private;
1625 	unsigned int j;
1626 
1627 	trav->class = MTTG_TRAV_INIT;
1628 	for (j = 0; j < *pos; ++j)
1629 		if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1630 			return NULL;
1631 	return trav;
1632 }
1633 
xt_mttg_seq_stop(struct seq_file * seq,void * v)1634 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1635 {
1636 	uint8_t nfproto = (unsigned long)pde_data(file_inode(seq->file));
1637 	struct nf_mttg_trav *trav = seq->private;
1638 
1639 	switch (trav->class) {
1640 	case MTTG_TRAV_NFP_UNSPEC:
1641 		mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1642 		break;
1643 	case MTTG_TRAV_NFP_SPEC:
1644 		mutex_unlock(&xt[nfproto].mutex);
1645 		break;
1646 	}
1647 }
1648 
xt_match_seq_start(struct seq_file * seq,loff_t * pos)1649 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1650 {
1651 	return xt_mttg_seq_start(seq, pos, false);
1652 }
1653 
xt_match_seq_next(struct seq_file * seq,void * v,loff_t * ppos)1654 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1655 {
1656 	return xt_mttg_seq_next(seq, v, ppos, false);
1657 }
1658 
xt_match_seq_show(struct seq_file * seq,void * v)1659 static int xt_match_seq_show(struct seq_file *seq, void *v)
1660 {
1661 	const struct nf_mttg_trav *trav = seq->private;
1662 	const struct xt_match *match;
1663 
1664 	switch (trav->class) {
1665 	case MTTG_TRAV_NFP_UNSPEC:
1666 	case MTTG_TRAV_NFP_SPEC:
1667 		if (trav->curr == trav->head)
1668 			return 0;
1669 		match = list_entry(trav->curr, struct xt_match, list);
1670 		if (*match->name)
1671 			seq_printf(seq, "%s\n", match->name);
1672 	}
1673 	return 0;
1674 }
1675 
1676 static const struct seq_operations xt_match_seq_ops = {
1677 	.start	= xt_match_seq_start,
1678 	.next	= xt_match_seq_next,
1679 	.stop	= xt_mttg_seq_stop,
1680 	.show	= xt_match_seq_show,
1681 };
1682 
xt_target_seq_start(struct seq_file * seq,loff_t * pos)1683 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1684 {
1685 	return xt_mttg_seq_start(seq, pos, true);
1686 }
1687 
xt_target_seq_next(struct seq_file * seq,void * v,loff_t * ppos)1688 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1689 {
1690 	return xt_mttg_seq_next(seq, v, ppos, true);
1691 }
1692 
xt_target_seq_show(struct seq_file * seq,void * v)1693 static int xt_target_seq_show(struct seq_file *seq, void *v)
1694 {
1695 	const struct nf_mttg_trav *trav = seq->private;
1696 	const struct xt_target *target;
1697 
1698 	switch (trav->class) {
1699 	case MTTG_TRAV_NFP_UNSPEC:
1700 	case MTTG_TRAV_NFP_SPEC:
1701 		if (trav->curr == trav->head)
1702 			return 0;
1703 		target = list_entry(trav->curr, struct xt_target, list);
1704 		if (*target->name)
1705 			seq_printf(seq, "%s\n", target->name);
1706 	}
1707 	return 0;
1708 }
1709 
1710 static const struct seq_operations xt_target_seq_ops = {
1711 	.start	= xt_target_seq_start,
1712 	.next	= xt_target_seq_next,
1713 	.stop	= xt_mttg_seq_stop,
1714 	.show	= xt_target_seq_show,
1715 };
1716 
1717 #define FORMAT_TABLES	"_tables_names"
1718 #define	FORMAT_MATCHES	"_tables_matches"
1719 #define FORMAT_TARGETS 	"_tables_targets"
1720 
1721 #endif /* CONFIG_PROC_FS */
1722 
1723 /**
1724  * xt_hook_ops_alloc - set up hooks for a new table
1725  * @table:	table with metadata needed to set up hooks
1726  * @fn:		Hook function
1727  *
1728  * This function will create the nf_hook_ops that the x_table needs
1729  * to hand to xt_hook_link_net().
1730  */
1731 struct nf_hook_ops *
xt_hook_ops_alloc(const struct xt_table * table,nf_hookfn * fn)1732 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1733 {
1734 	unsigned int hook_mask = table->valid_hooks;
1735 	uint8_t i, num_hooks = hweight32(hook_mask);
1736 	uint8_t hooknum;
1737 	struct nf_hook_ops *ops;
1738 
1739 	if (!num_hooks)
1740 		return ERR_PTR(-EINVAL);
1741 
1742 	ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1743 	if (ops == NULL)
1744 		return ERR_PTR(-ENOMEM);
1745 
1746 	for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1747 	     hook_mask >>= 1, ++hooknum) {
1748 		if (!(hook_mask & 1))
1749 			continue;
1750 		ops[i].hook     = fn;
1751 		ops[i].pf       = table->af;
1752 		ops[i].hooknum  = hooknum;
1753 		ops[i].priority = table->priority;
1754 		++i;
1755 	}
1756 
1757 	return ops;
1758 }
1759 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1760 
xt_register_template(const struct xt_table * table,int (* table_init)(struct net * net))1761 int xt_register_template(const struct xt_table *table,
1762 			 int (*table_init)(struct net *net))
1763 {
1764 	int ret = -EEXIST, af = table->af;
1765 	struct xt_template *t;
1766 
1767 	mutex_lock(&xt[af].mutex);
1768 
1769 	list_for_each_entry(t, &xt_templates[af], list) {
1770 		if (WARN_ON_ONCE(strcmp(table->name, t->name) == 0))
1771 			goto out_unlock;
1772 	}
1773 
1774 	ret = -ENOMEM;
1775 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1776 	if (!t)
1777 		goto out_unlock;
1778 
1779 	BUILD_BUG_ON(sizeof(t->name) != sizeof(table->name));
1780 
1781 	strscpy(t->name, table->name, sizeof(t->name));
1782 	t->table_init = table_init;
1783 	t->me = table->me;
1784 	list_add(&t->list, &xt_templates[af]);
1785 	ret = 0;
1786 out_unlock:
1787 	mutex_unlock(&xt[af].mutex);
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL_GPL(xt_register_template);
1791 
xt_unregister_template(const struct xt_table * table)1792 void xt_unregister_template(const struct xt_table *table)
1793 {
1794 	struct xt_template *t;
1795 	int af = table->af;
1796 
1797 	mutex_lock(&xt[af].mutex);
1798 	list_for_each_entry(t, &xt_templates[af], list) {
1799 		if (strcmp(table->name, t->name))
1800 			continue;
1801 
1802 		list_del(&t->list);
1803 		mutex_unlock(&xt[af].mutex);
1804 		kfree(t);
1805 		return;
1806 	}
1807 
1808 	mutex_unlock(&xt[af].mutex);
1809 	WARN_ON_ONCE(1);
1810 }
1811 EXPORT_SYMBOL_GPL(xt_unregister_template);
1812 
xt_proto_init(struct net * net,u_int8_t af)1813 int xt_proto_init(struct net *net, u_int8_t af)
1814 {
1815 #ifdef CONFIG_PROC_FS
1816 	char buf[XT_FUNCTION_MAXNAMELEN];
1817 	struct proc_dir_entry *proc;
1818 	kuid_t root_uid;
1819 	kgid_t root_gid;
1820 #endif
1821 
1822 	if (af >= ARRAY_SIZE(xt_prefix))
1823 		return -EINVAL;
1824 
1825 
1826 #ifdef CONFIG_PROC_FS
1827 	root_uid = make_kuid(net->user_ns, 0);
1828 	root_gid = make_kgid(net->user_ns, 0);
1829 
1830 	strscpy(buf, xt_prefix[af], sizeof(buf));
1831 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1832 	proc = proc_create_net_data(buf, 0440, net->proc_net, &xt_table_seq_ops,
1833 			sizeof(struct seq_net_private),
1834 			(void *)(unsigned long)af);
1835 	if (!proc)
1836 		goto out;
1837 	if (uid_valid(root_uid) && gid_valid(root_gid))
1838 		proc_set_user(proc, root_uid, root_gid);
1839 
1840 	strscpy(buf, xt_prefix[af], sizeof(buf));
1841 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1842 	proc = proc_create_seq_private(buf, 0440, net->proc_net,
1843 			&xt_match_seq_ops, sizeof(struct nf_mttg_trav),
1844 			(void *)(unsigned long)af);
1845 	if (!proc)
1846 		goto out_remove_tables;
1847 	if (uid_valid(root_uid) && gid_valid(root_gid))
1848 		proc_set_user(proc, root_uid, root_gid);
1849 
1850 	strscpy(buf, xt_prefix[af], sizeof(buf));
1851 	strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1852 	proc = proc_create_seq_private(buf, 0440, net->proc_net,
1853 			 &xt_target_seq_ops, sizeof(struct nf_mttg_trav),
1854 			 (void *)(unsigned long)af);
1855 	if (!proc)
1856 		goto out_remove_matches;
1857 	if (uid_valid(root_uid) && gid_valid(root_gid))
1858 		proc_set_user(proc, root_uid, root_gid);
1859 #endif
1860 
1861 	return 0;
1862 
1863 #ifdef CONFIG_PROC_FS
1864 out_remove_matches:
1865 	strscpy(buf, xt_prefix[af], sizeof(buf));
1866 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1867 	remove_proc_entry(buf, net->proc_net);
1868 
1869 out_remove_tables:
1870 	strscpy(buf, xt_prefix[af], sizeof(buf));
1871 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1872 	remove_proc_entry(buf, net->proc_net);
1873 out:
1874 	return -1;
1875 #endif
1876 }
1877 EXPORT_SYMBOL_GPL(xt_proto_init);
1878 
xt_proto_fini(struct net * net,u_int8_t af)1879 void xt_proto_fini(struct net *net, u_int8_t af)
1880 {
1881 #ifdef CONFIG_PROC_FS
1882 	char buf[XT_FUNCTION_MAXNAMELEN];
1883 
1884 	strscpy(buf, xt_prefix[af], sizeof(buf));
1885 	strlcat(buf, FORMAT_TABLES, sizeof(buf));
1886 	remove_proc_entry(buf, net->proc_net);
1887 
1888 	strscpy(buf, xt_prefix[af], sizeof(buf));
1889 	strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1890 	remove_proc_entry(buf, net->proc_net);
1891 
1892 	strscpy(buf, xt_prefix[af], sizeof(buf));
1893 	strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1894 	remove_proc_entry(buf, net->proc_net);
1895 #endif /*CONFIG_PROC_FS*/
1896 }
1897 EXPORT_SYMBOL_GPL(xt_proto_fini);
1898 
1899 /**
1900  * xt_percpu_counter_alloc - allocate x_tables rule counter
1901  *
1902  * @state: pointer to xt_percpu allocation state
1903  * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1904  *
1905  * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1906  * contain the address of the real (percpu) counter.
1907  *
1908  * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1909  * to fetch the real percpu counter.
1910  *
1911  * To speed up allocation and improve data locality, a 4kb block is
1912  * allocated.  Freeing any counter may free an entire block, so all
1913  * counters allocated using the same state must be freed at the same
1914  * time.
1915  *
1916  * xt_percpu_counter_alloc_state contains the base address of the
1917  * allocated page and the current sub-offset.
1918  *
1919  * returns false on error.
1920  */
xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state * state,struct xt_counters * counter)1921 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1922 			     struct xt_counters *counter)
1923 {
1924 	BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1925 
1926 	if (nr_cpu_ids <= 1)
1927 		return true;
1928 
1929 	if (!state->mem) {
1930 		state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1931 					    XT_PCPU_BLOCK_SIZE);
1932 		if (!state->mem)
1933 			return false;
1934 	}
1935 	counter->pcnt = (__force unsigned long)(state->mem + state->off);
1936 	state->off += sizeof(*counter);
1937 	if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1938 		state->mem = NULL;
1939 		state->off = 0;
1940 	}
1941 	return true;
1942 }
1943 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1944 
xt_percpu_counter_free(struct xt_counters * counters)1945 void xt_percpu_counter_free(struct xt_counters *counters)
1946 {
1947 	unsigned long pcnt = counters->pcnt;
1948 
1949 	if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1950 		free_percpu((void __percpu *)pcnt);
1951 }
1952 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1953 
xt_net_init(struct net * net)1954 static int __net_init xt_net_init(struct net *net)
1955 {
1956 	struct xt_pernet *xt_net = net_generic(net, xt_pernet_id);
1957 	int i;
1958 
1959 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
1960 		INIT_LIST_HEAD(&xt_net->tables[i]);
1961 	return 0;
1962 }
1963 
xt_net_exit(struct net * net)1964 static void __net_exit xt_net_exit(struct net *net)
1965 {
1966 	struct xt_pernet *xt_net = net_generic(net, xt_pernet_id);
1967 	int i;
1968 
1969 	for (i = 0; i < NFPROTO_NUMPROTO; i++)
1970 		WARN_ON_ONCE(!list_empty(&xt_net->tables[i]));
1971 }
1972 
1973 static struct pernet_operations xt_net_ops = {
1974 	.init = xt_net_init,
1975 	.exit = xt_net_exit,
1976 	.id   = &xt_pernet_id,
1977 	.size = sizeof(struct xt_pernet),
1978 };
1979 
xt_init(void)1980 static int __init xt_init(void)
1981 {
1982 	unsigned int i;
1983 	int rv;
1984 
1985 	for_each_possible_cpu(i) {
1986 		seqcount_init(&per_cpu(xt_recseq, i));
1987 	}
1988 
1989 	xt = kcalloc(NFPROTO_NUMPROTO, sizeof(struct xt_af), GFP_KERNEL);
1990 	if (!xt)
1991 		return -ENOMEM;
1992 
1993 	for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1994 		mutex_init(&xt[i].mutex);
1995 #ifdef CONFIG_NETFILTER_XTABLES_COMPAT
1996 		mutex_init(&xt[i].compat_mutex);
1997 		xt[i].compat_tab = NULL;
1998 #endif
1999 		INIT_LIST_HEAD(&xt[i].target);
2000 		INIT_LIST_HEAD(&xt[i].match);
2001 		INIT_LIST_HEAD(&xt_templates[i]);
2002 	}
2003 	rv = register_pernet_subsys(&xt_net_ops);
2004 	if (rv < 0)
2005 		kfree(xt);
2006 	return rv;
2007 }
2008 
xt_fini(void)2009 static void __exit xt_fini(void)
2010 {
2011 	unregister_pernet_subsys(&xt_net_ops);
2012 	kfree(xt);
2013 }
2014 
2015 module_init(xt_init);
2016 module_exit(xt_fini);
2017