1 // SPDX-License-Identifier: GPL-2.0
2 /* XDP sockets
3 *
4 * AF_XDP sockets allows a channel between XDP programs and userspace
5 * applications.
6 * Copyright(c) 2018 Intel Corporation.
7 *
8 * Author(s): Björn Töpel <bjorn.topel@intel.com>
9 * Magnus Karlsson <magnus.karlsson@intel.com>
10 */
11
12 #define pr_fmt(fmt) "AF_XDP: %s: " fmt, __func__
13
14 #include <linux/if_xdp.h>
15 #include <linux/init.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/task.h>
19 #include <linux/socket.h>
20 #include <linux/file.h>
21 #include <linux/uaccess.h>
22 #include <linux/net.h>
23 #include <linux/netdevice.h>
24 #include <linux/rculist.h>
25 #include <linux/vmalloc.h>
26 #include <net/xdp_sock_drv.h>
27 #include <net/busy_poll.h>
28 #include <net/netdev_rx_queue.h>
29 #include <net/xdp.h>
30
31 #include "xsk_queue.h"
32 #include "xdp_umem.h"
33 #include "xsk.h"
34
35 #define TX_BATCH_SIZE 32
36
37 static DEFINE_PER_CPU(struct list_head, xskmap_flush_list);
38
xsk_set_rx_need_wakeup(struct xsk_buff_pool * pool)39 void xsk_set_rx_need_wakeup(struct xsk_buff_pool *pool)
40 {
41 if (pool->cached_need_wakeup & XDP_WAKEUP_RX)
42 return;
43
44 pool->fq->ring->flags |= XDP_RING_NEED_WAKEUP;
45 pool->cached_need_wakeup |= XDP_WAKEUP_RX;
46 }
47 EXPORT_SYMBOL(xsk_set_rx_need_wakeup);
48
xsk_set_tx_need_wakeup(struct xsk_buff_pool * pool)49 void xsk_set_tx_need_wakeup(struct xsk_buff_pool *pool)
50 {
51 struct xdp_sock *xs;
52
53 if (pool->cached_need_wakeup & XDP_WAKEUP_TX)
54 return;
55
56 rcu_read_lock();
57 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
58 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
59 }
60 rcu_read_unlock();
61
62 pool->cached_need_wakeup |= XDP_WAKEUP_TX;
63 }
64 EXPORT_SYMBOL(xsk_set_tx_need_wakeup);
65
xsk_clear_rx_need_wakeup(struct xsk_buff_pool * pool)66 void xsk_clear_rx_need_wakeup(struct xsk_buff_pool *pool)
67 {
68 if (!(pool->cached_need_wakeup & XDP_WAKEUP_RX))
69 return;
70
71 pool->fq->ring->flags &= ~XDP_RING_NEED_WAKEUP;
72 pool->cached_need_wakeup &= ~XDP_WAKEUP_RX;
73 }
74 EXPORT_SYMBOL(xsk_clear_rx_need_wakeup);
75
xsk_clear_tx_need_wakeup(struct xsk_buff_pool * pool)76 void xsk_clear_tx_need_wakeup(struct xsk_buff_pool *pool)
77 {
78 struct xdp_sock *xs;
79
80 if (!(pool->cached_need_wakeup & XDP_WAKEUP_TX))
81 return;
82
83 rcu_read_lock();
84 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
85 xs->tx->ring->flags &= ~XDP_RING_NEED_WAKEUP;
86 }
87 rcu_read_unlock();
88
89 pool->cached_need_wakeup &= ~XDP_WAKEUP_TX;
90 }
91 EXPORT_SYMBOL(xsk_clear_tx_need_wakeup);
92
xsk_uses_need_wakeup(struct xsk_buff_pool * pool)93 bool xsk_uses_need_wakeup(struct xsk_buff_pool *pool)
94 {
95 return pool->uses_need_wakeup;
96 }
97 EXPORT_SYMBOL(xsk_uses_need_wakeup);
98
xsk_get_pool_from_qid(struct net_device * dev,u16 queue_id)99 struct xsk_buff_pool *xsk_get_pool_from_qid(struct net_device *dev,
100 u16 queue_id)
101 {
102 if (queue_id < dev->real_num_rx_queues)
103 return dev->_rx[queue_id].pool;
104 if (queue_id < dev->real_num_tx_queues)
105 return dev->_tx[queue_id].pool;
106
107 return NULL;
108 }
109 EXPORT_SYMBOL(xsk_get_pool_from_qid);
110
xsk_clear_pool_at_qid(struct net_device * dev,u16 queue_id)111 void xsk_clear_pool_at_qid(struct net_device *dev, u16 queue_id)
112 {
113 if (queue_id < dev->num_rx_queues)
114 dev->_rx[queue_id].pool = NULL;
115 if (queue_id < dev->num_tx_queues)
116 dev->_tx[queue_id].pool = NULL;
117 }
118
119 /* The buffer pool is stored both in the _rx struct and the _tx struct as we do
120 * not know if the device has more tx queues than rx, or the opposite.
121 * This might also change during run time.
122 */
xsk_reg_pool_at_qid(struct net_device * dev,struct xsk_buff_pool * pool,u16 queue_id)123 int xsk_reg_pool_at_qid(struct net_device *dev, struct xsk_buff_pool *pool,
124 u16 queue_id)
125 {
126 if (queue_id >= max_t(unsigned int,
127 dev->real_num_rx_queues,
128 dev->real_num_tx_queues))
129 return -EINVAL;
130
131 if (queue_id < dev->real_num_rx_queues)
132 dev->_rx[queue_id].pool = pool;
133 if (queue_id < dev->real_num_tx_queues)
134 dev->_tx[queue_id].pool = pool;
135
136 return 0;
137 }
138
__xsk_rcv_zc(struct xdp_sock * xs,struct xdp_buff_xsk * xskb,u32 len,u32 flags)139 static int __xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff_xsk *xskb, u32 len,
140 u32 flags)
141 {
142 u64 addr;
143 int err;
144
145 addr = xp_get_handle(xskb);
146 err = xskq_prod_reserve_desc(xs->rx, addr, len, flags);
147 if (err) {
148 xs->rx_queue_full++;
149 return err;
150 }
151
152 xp_release(xskb);
153 return 0;
154 }
155
xsk_rcv_zc(struct xdp_sock * xs,struct xdp_buff * xdp,u32 len)156 static int xsk_rcv_zc(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
157 {
158 struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
159 u32 frags = xdp_buff_has_frags(xdp);
160 struct xdp_buff_xsk *pos, *tmp;
161 struct list_head *xskb_list;
162 u32 contd = 0;
163 int err;
164
165 if (frags)
166 contd = XDP_PKT_CONTD;
167
168 err = __xsk_rcv_zc(xs, xskb, len, contd);
169 if (err)
170 goto err;
171 if (likely(!frags))
172 return 0;
173
174 xskb_list = &xskb->pool->xskb_list;
175 list_for_each_entry_safe(pos, tmp, xskb_list, xskb_list_node) {
176 if (list_is_singular(xskb_list))
177 contd = 0;
178 len = pos->xdp.data_end - pos->xdp.data;
179 err = __xsk_rcv_zc(xs, pos, len, contd);
180 if (err)
181 goto err;
182 list_del(&pos->xskb_list_node);
183 }
184
185 return 0;
186 err:
187 xsk_buff_free(xdp);
188 return err;
189 }
190
xsk_copy_xdp_start(struct xdp_buff * from)191 static void *xsk_copy_xdp_start(struct xdp_buff *from)
192 {
193 if (unlikely(xdp_data_meta_unsupported(from)))
194 return from->data;
195 else
196 return from->data_meta;
197 }
198
xsk_copy_xdp(void * to,void ** from,u32 to_len,u32 * from_len,skb_frag_t ** frag,u32 rem)199 static u32 xsk_copy_xdp(void *to, void **from, u32 to_len,
200 u32 *from_len, skb_frag_t **frag, u32 rem)
201 {
202 u32 copied = 0;
203
204 while (1) {
205 u32 copy_len = min_t(u32, *from_len, to_len);
206
207 memcpy(to, *from, copy_len);
208 copied += copy_len;
209 if (rem == copied)
210 return copied;
211
212 if (*from_len == copy_len) {
213 *from = skb_frag_address(*frag);
214 *from_len = skb_frag_size((*frag)++);
215 } else {
216 *from += copy_len;
217 *from_len -= copy_len;
218 }
219 if (to_len == copy_len)
220 return copied;
221
222 to_len -= copy_len;
223 to += copy_len;
224 }
225 }
226
__xsk_rcv(struct xdp_sock * xs,struct xdp_buff * xdp,u32 len)227 static int __xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
228 {
229 u32 frame_size = xsk_pool_get_rx_frame_size(xs->pool);
230 void *copy_from = xsk_copy_xdp_start(xdp), *copy_to;
231 u32 from_len, meta_len, rem, num_desc;
232 struct xdp_buff_xsk *xskb;
233 struct xdp_buff *xsk_xdp;
234 skb_frag_t *frag;
235
236 from_len = xdp->data_end - copy_from;
237 meta_len = xdp->data - copy_from;
238 rem = len + meta_len;
239
240 if (len <= frame_size && !xdp_buff_has_frags(xdp)) {
241 int err;
242
243 xsk_xdp = xsk_buff_alloc(xs->pool);
244 if (!xsk_xdp) {
245 xs->rx_dropped++;
246 return -ENOMEM;
247 }
248 memcpy(xsk_xdp->data - meta_len, copy_from, rem);
249 xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
250 err = __xsk_rcv_zc(xs, xskb, len, 0);
251 if (err) {
252 xsk_buff_free(xsk_xdp);
253 return err;
254 }
255
256 return 0;
257 }
258
259 num_desc = (len - 1) / frame_size + 1;
260
261 if (!xsk_buff_can_alloc(xs->pool, num_desc)) {
262 xs->rx_dropped++;
263 return -ENOMEM;
264 }
265 if (xskq_prod_nb_free(xs->rx, num_desc) < num_desc) {
266 xs->rx_queue_full++;
267 return -ENOBUFS;
268 }
269
270 if (xdp_buff_has_frags(xdp)) {
271 struct skb_shared_info *sinfo;
272
273 sinfo = xdp_get_shared_info_from_buff(xdp);
274 frag = &sinfo->frags[0];
275 }
276
277 do {
278 u32 to_len = frame_size + meta_len;
279 u32 copied;
280
281 xsk_xdp = xsk_buff_alloc(xs->pool);
282 copy_to = xsk_xdp->data - meta_len;
283
284 copied = xsk_copy_xdp(copy_to, ©_from, to_len, &from_len, &frag, rem);
285 rem -= copied;
286
287 xskb = container_of(xsk_xdp, struct xdp_buff_xsk, xdp);
288 __xsk_rcv_zc(xs, xskb, copied - meta_len, rem ? XDP_PKT_CONTD : 0);
289 meta_len = 0;
290 } while (rem);
291
292 return 0;
293 }
294
xsk_tx_writeable(struct xdp_sock * xs)295 static bool xsk_tx_writeable(struct xdp_sock *xs)
296 {
297 if (xskq_cons_present_entries(xs->tx) > xs->tx->nentries / 2)
298 return false;
299
300 return true;
301 }
302
xsk_is_bound(struct xdp_sock * xs)303 static bool xsk_is_bound(struct xdp_sock *xs)
304 {
305 if (READ_ONCE(xs->state) == XSK_BOUND) {
306 /* Matches smp_wmb() in bind(). */
307 smp_rmb();
308 return true;
309 }
310 return false;
311 }
312
xsk_rcv_check(struct xdp_sock * xs,struct xdp_buff * xdp,u32 len)313 static int xsk_rcv_check(struct xdp_sock *xs, struct xdp_buff *xdp, u32 len)
314 {
315 if (!xsk_is_bound(xs))
316 return -ENXIO;
317
318 if (xs->dev != xdp->rxq->dev || xs->queue_id != xdp->rxq->queue_index)
319 return -EINVAL;
320
321 if (len > xsk_pool_get_rx_frame_size(xs->pool) && !xs->sg) {
322 xs->rx_dropped++;
323 return -ENOSPC;
324 }
325
326 sk_mark_napi_id_once_xdp(&xs->sk, xdp);
327 return 0;
328 }
329
xsk_flush(struct xdp_sock * xs)330 static void xsk_flush(struct xdp_sock *xs)
331 {
332 xskq_prod_submit(xs->rx);
333 __xskq_cons_release(xs->pool->fq);
334 sock_def_readable(&xs->sk);
335 }
336
xsk_generic_rcv(struct xdp_sock * xs,struct xdp_buff * xdp)337 int xsk_generic_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
338 {
339 u32 len = xdp_get_buff_len(xdp);
340 int err;
341
342 spin_lock_bh(&xs->rx_lock);
343 err = xsk_rcv_check(xs, xdp, len);
344 if (!err) {
345 err = __xsk_rcv(xs, xdp, len);
346 xsk_flush(xs);
347 }
348 spin_unlock_bh(&xs->rx_lock);
349 return err;
350 }
351
xsk_rcv(struct xdp_sock * xs,struct xdp_buff * xdp)352 static int xsk_rcv(struct xdp_sock *xs, struct xdp_buff *xdp)
353 {
354 u32 len = xdp_get_buff_len(xdp);
355 int err;
356
357 err = xsk_rcv_check(xs, xdp, len);
358 if (err)
359 return err;
360
361 if (xdp->rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL) {
362 len = xdp->data_end - xdp->data;
363 return xsk_rcv_zc(xs, xdp, len);
364 }
365
366 err = __xsk_rcv(xs, xdp, len);
367 if (!err)
368 xdp_return_buff(xdp);
369 return err;
370 }
371
__xsk_map_redirect(struct xdp_sock * xs,struct xdp_buff * xdp)372 int __xsk_map_redirect(struct xdp_sock *xs, struct xdp_buff *xdp)
373 {
374 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
375 int err;
376
377 err = xsk_rcv(xs, xdp);
378 if (err)
379 return err;
380
381 if (!xs->flush_node.prev)
382 list_add(&xs->flush_node, flush_list);
383
384 return 0;
385 }
386
__xsk_map_flush(void)387 void __xsk_map_flush(void)
388 {
389 struct list_head *flush_list = this_cpu_ptr(&xskmap_flush_list);
390 struct xdp_sock *xs, *tmp;
391
392 list_for_each_entry_safe(xs, tmp, flush_list, flush_node) {
393 xsk_flush(xs);
394 __list_del_clearprev(&xs->flush_node);
395 }
396 }
397
xsk_tx_completed(struct xsk_buff_pool * pool,u32 nb_entries)398 void xsk_tx_completed(struct xsk_buff_pool *pool, u32 nb_entries)
399 {
400 xskq_prod_submit_n(pool->cq, nb_entries);
401 }
402 EXPORT_SYMBOL(xsk_tx_completed);
403
xsk_tx_release(struct xsk_buff_pool * pool)404 void xsk_tx_release(struct xsk_buff_pool *pool)
405 {
406 struct xdp_sock *xs;
407
408 rcu_read_lock();
409 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
410 __xskq_cons_release(xs->tx);
411 if (xsk_tx_writeable(xs))
412 xs->sk.sk_write_space(&xs->sk);
413 }
414 rcu_read_unlock();
415 }
416 EXPORT_SYMBOL(xsk_tx_release);
417
xsk_tx_peek_desc(struct xsk_buff_pool * pool,struct xdp_desc * desc)418 bool xsk_tx_peek_desc(struct xsk_buff_pool *pool, struct xdp_desc *desc)
419 {
420 struct xdp_sock *xs;
421
422 rcu_read_lock();
423 list_for_each_entry_rcu(xs, &pool->xsk_tx_list, tx_list) {
424 if (!xskq_cons_peek_desc(xs->tx, desc, pool)) {
425 if (xskq_has_descs(xs->tx))
426 xskq_cons_release(xs->tx);
427 continue;
428 }
429
430 /* This is the backpressure mechanism for the Tx path.
431 * Reserve space in the completion queue and only proceed
432 * if there is space in it. This avoids having to implement
433 * any buffering in the Tx path.
434 */
435 if (xskq_prod_reserve_addr(pool->cq, desc->addr))
436 goto out;
437
438 xskq_cons_release(xs->tx);
439 rcu_read_unlock();
440 return true;
441 }
442
443 out:
444 rcu_read_unlock();
445 return false;
446 }
447 EXPORT_SYMBOL(xsk_tx_peek_desc);
448
xsk_tx_peek_release_fallback(struct xsk_buff_pool * pool,u32 max_entries)449 static u32 xsk_tx_peek_release_fallback(struct xsk_buff_pool *pool, u32 max_entries)
450 {
451 struct xdp_desc *descs = pool->tx_descs;
452 u32 nb_pkts = 0;
453
454 while (nb_pkts < max_entries && xsk_tx_peek_desc(pool, &descs[nb_pkts]))
455 nb_pkts++;
456
457 xsk_tx_release(pool);
458 return nb_pkts;
459 }
460
xsk_tx_peek_release_desc_batch(struct xsk_buff_pool * pool,u32 nb_pkts)461 u32 xsk_tx_peek_release_desc_batch(struct xsk_buff_pool *pool, u32 nb_pkts)
462 {
463 struct xdp_sock *xs;
464
465 rcu_read_lock();
466 if (!list_is_singular(&pool->xsk_tx_list)) {
467 /* Fallback to the non-batched version */
468 rcu_read_unlock();
469 return xsk_tx_peek_release_fallback(pool, nb_pkts);
470 }
471
472 xs = list_first_or_null_rcu(&pool->xsk_tx_list, struct xdp_sock, tx_list);
473 if (!xs) {
474 nb_pkts = 0;
475 goto out;
476 }
477
478 nb_pkts = xskq_cons_nb_entries(xs->tx, nb_pkts);
479
480 /* This is the backpressure mechanism for the Tx path. Try to
481 * reserve space in the completion queue for all packets, but
482 * if there are fewer slots available, just process that many
483 * packets. This avoids having to implement any buffering in
484 * the Tx path.
485 */
486 nb_pkts = xskq_prod_nb_free(pool->cq, nb_pkts);
487 if (!nb_pkts)
488 goto out;
489
490 nb_pkts = xskq_cons_read_desc_batch(xs->tx, pool, nb_pkts);
491 if (!nb_pkts) {
492 xs->tx->queue_empty_descs++;
493 goto out;
494 }
495
496 __xskq_cons_release(xs->tx);
497 xskq_prod_write_addr_batch(pool->cq, pool->tx_descs, nb_pkts);
498 xs->sk.sk_write_space(&xs->sk);
499
500 out:
501 rcu_read_unlock();
502 return nb_pkts;
503 }
504 EXPORT_SYMBOL(xsk_tx_peek_release_desc_batch);
505
xsk_wakeup(struct xdp_sock * xs,u8 flags)506 static int xsk_wakeup(struct xdp_sock *xs, u8 flags)
507 {
508 struct net_device *dev = xs->dev;
509
510 return dev->netdev_ops->ndo_xsk_wakeup(dev, xs->queue_id, flags);
511 }
512
xsk_cq_reserve_addr_locked(struct xdp_sock * xs,u64 addr)513 static int xsk_cq_reserve_addr_locked(struct xdp_sock *xs, u64 addr)
514 {
515 unsigned long flags;
516 int ret;
517
518 spin_lock_irqsave(&xs->pool->cq_lock, flags);
519 ret = xskq_prod_reserve_addr(xs->pool->cq, addr);
520 spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
521
522 return ret;
523 }
524
xsk_cq_submit_locked(struct xdp_sock * xs,u32 n)525 static void xsk_cq_submit_locked(struct xdp_sock *xs, u32 n)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&xs->pool->cq_lock, flags);
530 xskq_prod_submit_n(xs->pool->cq, n);
531 spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
532 }
533
xsk_cq_cancel_locked(struct xdp_sock * xs,u32 n)534 static void xsk_cq_cancel_locked(struct xdp_sock *xs, u32 n)
535 {
536 unsigned long flags;
537
538 spin_lock_irqsave(&xs->pool->cq_lock, flags);
539 xskq_prod_cancel_n(xs->pool->cq, n);
540 spin_unlock_irqrestore(&xs->pool->cq_lock, flags);
541 }
542
xsk_get_num_desc(struct sk_buff * skb)543 static u32 xsk_get_num_desc(struct sk_buff *skb)
544 {
545 return skb ? (long)skb_shinfo(skb)->destructor_arg : 0;
546 }
547
xsk_destruct_skb(struct sk_buff * skb)548 static void xsk_destruct_skb(struct sk_buff *skb)
549 {
550 xsk_cq_submit_locked(xdp_sk(skb->sk), xsk_get_num_desc(skb));
551 sock_wfree(skb);
552 }
553
xsk_set_destructor_arg(struct sk_buff * skb)554 static void xsk_set_destructor_arg(struct sk_buff *skb)
555 {
556 long num = xsk_get_num_desc(xdp_sk(skb->sk)->skb) + 1;
557
558 skb_shinfo(skb)->destructor_arg = (void *)num;
559 }
560
xsk_consume_skb(struct sk_buff * skb)561 static void xsk_consume_skb(struct sk_buff *skb)
562 {
563 struct xdp_sock *xs = xdp_sk(skb->sk);
564
565 skb->destructor = sock_wfree;
566 xsk_cq_cancel_locked(xs, xsk_get_num_desc(skb));
567 /* Free skb without triggering the perf drop trace */
568 consume_skb(skb);
569 xs->skb = NULL;
570 }
571
xsk_drop_skb(struct sk_buff * skb)572 static void xsk_drop_skb(struct sk_buff *skb)
573 {
574 xdp_sk(skb->sk)->tx->invalid_descs += xsk_get_num_desc(skb);
575 xsk_consume_skb(skb);
576 }
577
xsk_build_skb_zerocopy(struct xdp_sock * xs,struct xdp_desc * desc)578 static struct sk_buff *xsk_build_skb_zerocopy(struct xdp_sock *xs,
579 struct xdp_desc *desc)
580 {
581 struct xsk_buff_pool *pool = xs->pool;
582 u32 hr, len, ts, offset, copy, copied;
583 struct sk_buff *skb = xs->skb;
584 struct page *page;
585 void *buffer;
586 int err, i;
587 u64 addr;
588
589 if (!skb) {
590 hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(xs->dev->needed_headroom));
591
592 skb = sock_alloc_send_skb(&xs->sk, hr, 1, &err);
593 if (unlikely(!skb))
594 return ERR_PTR(err);
595
596 skb_reserve(skb, hr);
597 }
598
599 addr = desc->addr;
600 len = desc->len;
601 ts = pool->unaligned ? len : pool->chunk_size;
602
603 buffer = xsk_buff_raw_get_data(pool, addr);
604 offset = offset_in_page(buffer);
605 addr = buffer - pool->addrs;
606
607 for (copied = 0, i = skb_shinfo(skb)->nr_frags; copied < len; i++) {
608 if (unlikely(i >= MAX_SKB_FRAGS))
609 return ERR_PTR(-EOVERFLOW);
610
611 page = pool->umem->pgs[addr >> PAGE_SHIFT];
612 get_page(page);
613
614 copy = min_t(u32, PAGE_SIZE - offset, len - copied);
615 skb_fill_page_desc(skb, i, page, offset, copy);
616
617 copied += copy;
618 addr += copy;
619 offset = 0;
620 }
621
622 skb->len += len;
623 skb->data_len += len;
624 skb->truesize += ts;
625
626 refcount_add(ts, &xs->sk.sk_wmem_alloc);
627
628 return skb;
629 }
630
xsk_build_skb(struct xdp_sock * xs,struct xdp_desc * desc)631 static struct sk_buff *xsk_build_skb(struct xdp_sock *xs,
632 struct xdp_desc *desc)
633 {
634 struct net_device *dev = xs->dev;
635 struct sk_buff *skb = xs->skb;
636 int err;
637
638 if (dev->priv_flags & IFF_TX_SKB_NO_LINEAR) {
639 skb = xsk_build_skb_zerocopy(xs, desc);
640 if (IS_ERR(skb)) {
641 err = PTR_ERR(skb);
642 goto free_err;
643 }
644 } else {
645 u32 hr, tr, len;
646 void *buffer;
647
648 buffer = xsk_buff_raw_get_data(xs->pool, desc->addr);
649 len = desc->len;
650
651 if (!skb) {
652 hr = max(NET_SKB_PAD, L1_CACHE_ALIGN(dev->needed_headroom));
653 tr = dev->needed_tailroom;
654 skb = sock_alloc_send_skb(&xs->sk, hr + len + tr, 1, &err);
655 if (unlikely(!skb))
656 goto free_err;
657
658 skb_reserve(skb, hr);
659 skb_put(skb, len);
660
661 err = skb_store_bits(skb, 0, buffer, len);
662 if (unlikely(err)) {
663 kfree_skb(skb);
664 goto free_err;
665 }
666 } else {
667 int nr_frags = skb_shinfo(skb)->nr_frags;
668 struct page *page;
669 u8 *vaddr;
670
671 if (unlikely(nr_frags == (MAX_SKB_FRAGS - 1) && xp_mb_desc(desc))) {
672 err = -EOVERFLOW;
673 goto free_err;
674 }
675
676 page = alloc_page(xs->sk.sk_allocation);
677 if (unlikely(!page)) {
678 err = -EAGAIN;
679 goto free_err;
680 }
681
682 vaddr = kmap_local_page(page);
683 memcpy(vaddr, buffer, len);
684 kunmap_local(vaddr);
685
686 skb_add_rx_frag(skb, nr_frags, page, 0, len, PAGE_SIZE);
687 refcount_add(PAGE_SIZE, &xs->sk.sk_wmem_alloc);
688 }
689 }
690
691 skb->dev = dev;
692 skb->priority = xs->sk.sk_priority;
693 skb->mark = READ_ONCE(xs->sk.sk_mark);
694 skb->destructor = xsk_destruct_skb;
695 xsk_set_destructor_arg(skb);
696
697 return skb;
698
699 free_err:
700 if (err == -EOVERFLOW) {
701 /* Drop the packet */
702 xsk_set_destructor_arg(xs->skb);
703 xsk_drop_skb(xs->skb);
704 xskq_cons_release(xs->tx);
705 } else {
706 /* Let application retry */
707 xsk_cq_cancel_locked(xs, 1);
708 }
709
710 return ERR_PTR(err);
711 }
712
__xsk_generic_xmit(struct sock * sk)713 static int __xsk_generic_xmit(struct sock *sk)
714 {
715 struct xdp_sock *xs = xdp_sk(sk);
716 u32 max_batch = TX_BATCH_SIZE;
717 bool sent_frame = false;
718 struct xdp_desc desc;
719 struct sk_buff *skb;
720 int err = 0;
721
722 mutex_lock(&xs->mutex);
723
724 /* Since we dropped the RCU read lock, the socket state might have changed. */
725 if (unlikely(!xsk_is_bound(xs))) {
726 err = -ENXIO;
727 goto out;
728 }
729
730 if (xs->queue_id >= xs->dev->real_num_tx_queues)
731 goto out;
732
733 while (xskq_cons_peek_desc(xs->tx, &desc, xs->pool)) {
734 if (max_batch-- == 0) {
735 err = -EAGAIN;
736 goto out;
737 }
738
739 /* This is the backpressure mechanism for the Tx path.
740 * Reserve space in the completion queue and only proceed
741 * if there is space in it. This avoids having to implement
742 * any buffering in the Tx path.
743 */
744 if (xsk_cq_reserve_addr_locked(xs, desc.addr))
745 goto out;
746
747 skb = xsk_build_skb(xs, &desc);
748 if (IS_ERR(skb)) {
749 err = PTR_ERR(skb);
750 if (err != -EOVERFLOW)
751 goto out;
752 err = 0;
753 continue;
754 }
755
756 xskq_cons_release(xs->tx);
757
758 if (xp_mb_desc(&desc)) {
759 xs->skb = skb;
760 continue;
761 }
762
763 err = __dev_direct_xmit(skb, xs->queue_id);
764 if (err == NETDEV_TX_BUSY) {
765 /* Tell user-space to retry the send */
766 xskq_cons_cancel_n(xs->tx, xsk_get_num_desc(skb));
767 xsk_consume_skb(skb);
768 err = -EAGAIN;
769 goto out;
770 }
771
772 /* Ignore NET_XMIT_CN as packet might have been sent */
773 if (err == NET_XMIT_DROP) {
774 /* SKB completed but not sent */
775 err = -EBUSY;
776 xs->skb = NULL;
777 goto out;
778 }
779
780 sent_frame = true;
781 xs->skb = NULL;
782 }
783
784 if (xskq_has_descs(xs->tx)) {
785 if (xs->skb)
786 xsk_drop_skb(xs->skb);
787 xskq_cons_release(xs->tx);
788 }
789
790 out:
791 if (sent_frame)
792 if (xsk_tx_writeable(xs))
793 sk->sk_write_space(sk);
794
795 mutex_unlock(&xs->mutex);
796 return err;
797 }
798
xsk_generic_xmit(struct sock * sk)799 static int xsk_generic_xmit(struct sock *sk)
800 {
801 int ret;
802
803 /* Drop the RCU lock since the SKB path might sleep. */
804 rcu_read_unlock();
805 ret = __xsk_generic_xmit(sk);
806 /* Reaquire RCU lock before going into common code. */
807 rcu_read_lock();
808
809 return ret;
810 }
811
xsk_no_wakeup(struct sock * sk)812 static bool xsk_no_wakeup(struct sock *sk)
813 {
814 #ifdef CONFIG_NET_RX_BUSY_POLL
815 /* Prefer busy-polling, skip the wakeup. */
816 return READ_ONCE(sk->sk_prefer_busy_poll) && READ_ONCE(sk->sk_ll_usec) &&
817 READ_ONCE(sk->sk_napi_id) >= MIN_NAPI_ID;
818 #else
819 return false;
820 #endif
821 }
822
xsk_check_common(struct xdp_sock * xs)823 static int xsk_check_common(struct xdp_sock *xs)
824 {
825 if (unlikely(!xsk_is_bound(xs)))
826 return -ENXIO;
827 if (unlikely(!(xs->dev->flags & IFF_UP)))
828 return -ENETDOWN;
829
830 return 0;
831 }
832
__xsk_sendmsg(struct socket * sock,struct msghdr * m,size_t total_len)833 static int __xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
834 {
835 bool need_wait = !(m->msg_flags & MSG_DONTWAIT);
836 struct sock *sk = sock->sk;
837 struct xdp_sock *xs = xdp_sk(sk);
838 struct xsk_buff_pool *pool;
839 int err;
840
841 err = xsk_check_common(xs);
842 if (err)
843 return err;
844 if (unlikely(need_wait))
845 return -EOPNOTSUPP;
846 if (unlikely(!xs->tx))
847 return -ENOBUFS;
848
849 if (sk_can_busy_loop(sk)) {
850 if (xs->zc)
851 __sk_mark_napi_id_once(sk, xsk_pool_get_napi_id(xs->pool));
852 sk_busy_loop(sk, 1); /* only support non-blocking sockets */
853 }
854
855 if (xs->zc && xsk_no_wakeup(sk))
856 return 0;
857
858 pool = xs->pool;
859 if (pool->cached_need_wakeup & XDP_WAKEUP_TX) {
860 if (xs->zc)
861 return xsk_wakeup(xs, XDP_WAKEUP_TX);
862 return xsk_generic_xmit(sk);
863 }
864 return 0;
865 }
866
xsk_sendmsg(struct socket * sock,struct msghdr * m,size_t total_len)867 static int xsk_sendmsg(struct socket *sock, struct msghdr *m, size_t total_len)
868 {
869 int ret;
870
871 rcu_read_lock();
872 ret = __xsk_sendmsg(sock, m, total_len);
873 rcu_read_unlock();
874
875 return ret;
876 }
877
__xsk_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)878 static int __xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
879 {
880 bool need_wait = !(flags & MSG_DONTWAIT);
881 struct sock *sk = sock->sk;
882 struct xdp_sock *xs = xdp_sk(sk);
883 int err;
884
885 err = xsk_check_common(xs);
886 if (err)
887 return err;
888 if (unlikely(!xs->rx))
889 return -ENOBUFS;
890 if (unlikely(need_wait))
891 return -EOPNOTSUPP;
892
893 if (sk_can_busy_loop(sk))
894 sk_busy_loop(sk, 1); /* only support non-blocking sockets */
895
896 if (xsk_no_wakeup(sk))
897 return 0;
898
899 if (xs->pool->cached_need_wakeup & XDP_WAKEUP_RX && xs->zc)
900 return xsk_wakeup(xs, XDP_WAKEUP_RX);
901 return 0;
902 }
903
xsk_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)904 static int xsk_recvmsg(struct socket *sock, struct msghdr *m, size_t len, int flags)
905 {
906 int ret;
907
908 rcu_read_lock();
909 ret = __xsk_recvmsg(sock, m, len, flags);
910 rcu_read_unlock();
911
912 return ret;
913 }
914
xsk_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)915 static __poll_t xsk_poll(struct file *file, struct socket *sock,
916 struct poll_table_struct *wait)
917 {
918 __poll_t mask = 0;
919 struct sock *sk = sock->sk;
920 struct xdp_sock *xs = xdp_sk(sk);
921 struct xsk_buff_pool *pool;
922
923 sock_poll_wait(file, sock, wait);
924
925 rcu_read_lock();
926 if (xsk_check_common(xs))
927 goto out;
928
929 pool = xs->pool;
930
931 if (pool->cached_need_wakeup) {
932 if (xs->zc)
933 xsk_wakeup(xs, pool->cached_need_wakeup);
934 else if (xs->tx)
935 /* Poll needs to drive Tx also in copy mode */
936 xsk_generic_xmit(sk);
937 }
938
939 if (xs->rx && !xskq_prod_is_empty(xs->rx))
940 mask |= EPOLLIN | EPOLLRDNORM;
941 if (xs->tx && xsk_tx_writeable(xs))
942 mask |= EPOLLOUT | EPOLLWRNORM;
943 out:
944 rcu_read_unlock();
945 return mask;
946 }
947
xsk_init_queue(u32 entries,struct xsk_queue ** queue,bool umem_queue)948 static int xsk_init_queue(u32 entries, struct xsk_queue **queue,
949 bool umem_queue)
950 {
951 struct xsk_queue *q;
952
953 if (entries == 0 || *queue || !is_power_of_2(entries))
954 return -EINVAL;
955
956 q = xskq_create(entries, umem_queue);
957 if (!q)
958 return -ENOMEM;
959
960 /* Make sure queue is ready before it can be seen by others */
961 smp_wmb();
962 WRITE_ONCE(*queue, q);
963 return 0;
964 }
965
xsk_unbind_dev(struct xdp_sock * xs)966 static void xsk_unbind_dev(struct xdp_sock *xs)
967 {
968 struct net_device *dev = xs->dev;
969
970 if (xs->state != XSK_BOUND)
971 return;
972 WRITE_ONCE(xs->state, XSK_UNBOUND);
973
974 /* Wait for driver to stop using the xdp socket. */
975 xp_del_xsk(xs->pool, xs);
976 synchronize_net();
977 dev_put(dev);
978 }
979
xsk_get_map_list_entry(struct xdp_sock * xs,struct xdp_sock __rcu *** map_entry)980 static struct xsk_map *xsk_get_map_list_entry(struct xdp_sock *xs,
981 struct xdp_sock __rcu ***map_entry)
982 {
983 struct xsk_map *map = NULL;
984 struct xsk_map_node *node;
985
986 *map_entry = NULL;
987
988 spin_lock_bh(&xs->map_list_lock);
989 node = list_first_entry_or_null(&xs->map_list, struct xsk_map_node,
990 node);
991 if (node) {
992 bpf_map_inc(&node->map->map);
993 map = node->map;
994 *map_entry = node->map_entry;
995 }
996 spin_unlock_bh(&xs->map_list_lock);
997 return map;
998 }
999
xsk_delete_from_maps(struct xdp_sock * xs)1000 static void xsk_delete_from_maps(struct xdp_sock *xs)
1001 {
1002 /* This function removes the current XDP socket from all the
1003 * maps it resides in. We need to take extra care here, due to
1004 * the two locks involved. Each map has a lock synchronizing
1005 * updates to the entries, and each socket has a lock that
1006 * synchronizes access to the list of maps (map_list). For
1007 * deadlock avoidance the locks need to be taken in the order
1008 * "map lock"->"socket map list lock". We start off by
1009 * accessing the socket map list, and take a reference to the
1010 * map to guarantee existence between the
1011 * xsk_get_map_list_entry() and xsk_map_try_sock_delete()
1012 * calls. Then we ask the map to remove the socket, which
1013 * tries to remove the socket from the map. Note that there
1014 * might be updates to the map between
1015 * xsk_get_map_list_entry() and xsk_map_try_sock_delete().
1016 */
1017 struct xdp_sock __rcu **map_entry = NULL;
1018 struct xsk_map *map;
1019
1020 while ((map = xsk_get_map_list_entry(xs, &map_entry))) {
1021 xsk_map_try_sock_delete(map, xs, map_entry);
1022 bpf_map_put(&map->map);
1023 }
1024 }
1025
xsk_release(struct socket * sock)1026 static int xsk_release(struct socket *sock)
1027 {
1028 struct sock *sk = sock->sk;
1029 struct xdp_sock *xs = xdp_sk(sk);
1030 struct net *net;
1031
1032 if (!sk)
1033 return 0;
1034
1035 net = sock_net(sk);
1036
1037 if (xs->skb)
1038 xsk_drop_skb(xs->skb);
1039
1040 mutex_lock(&net->xdp.lock);
1041 sk_del_node_init_rcu(sk);
1042 mutex_unlock(&net->xdp.lock);
1043
1044 sock_prot_inuse_add(net, sk->sk_prot, -1);
1045
1046 xsk_delete_from_maps(xs);
1047 mutex_lock(&xs->mutex);
1048 xsk_unbind_dev(xs);
1049 mutex_unlock(&xs->mutex);
1050
1051 xskq_destroy(xs->rx);
1052 xskq_destroy(xs->tx);
1053 xskq_destroy(xs->fq_tmp);
1054 xskq_destroy(xs->cq_tmp);
1055
1056 sock_orphan(sk);
1057 sock->sk = NULL;
1058
1059 sock_put(sk);
1060
1061 return 0;
1062 }
1063
xsk_lookup_xsk_from_fd(int fd)1064 static struct socket *xsk_lookup_xsk_from_fd(int fd)
1065 {
1066 struct socket *sock;
1067 int err;
1068
1069 sock = sockfd_lookup(fd, &err);
1070 if (!sock)
1071 return ERR_PTR(-ENOTSOCK);
1072
1073 if (sock->sk->sk_family != PF_XDP) {
1074 sockfd_put(sock);
1075 return ERR_PTR(-ENOPROTOOPT);
1076 }
1077
1078 return sock;
1079 }
1080
xsk_validate_queues(struct xdp_sock * xs)1081 static bool xsk_validate_queues(struct xdp_sock *xs)
1082 {
1083 return xs->fq_tmp && xs->cq_tmp;
1084 }
1085
xsk_bind(struct socket * sock,struct sockaddr * addr,int addr_len)1086 static int xsk_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
1087 {
1088 struct sockaddr_xdp *sxdp = (struct sockaddr_xdp *)addr;
1089 struct sock *sk = sock->sk;
1090 struct xdp_sock *xs = xdp_sk(sk);
1091 struct net_device *dev;
1092 int bound_dev_if;
1093 u32 flags, qid;
1094 int err = 0;
1095
1096 if (addr_len < sizeof(struct sockaddr_xdp))
1097 return -EINVAL;
1098 if (sxdp->sxdp_family != AF_XDP)
1099 return -EINVAL;
1100
1101 flags = sxdp->sxdp_flags;
1102 if (flags & ~(XDP_SHARED_UMEM | XDP_COPY | XDP_ZEROCOPY |
1103 XDP_USE_NEED_WAKEUP | XDP_USE_SG))
1104 return -EINVAL;
1105
1106 bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
1107 if (bound_dev_if && bound_dev_if != sxdp->sxdp_ifindex)
1108 return -EINVAL;
1109
1110 rtnl_lock();
1111 mutex_lock(&xs->mutex);
1112 if (xs->state != XSK_READY) {
1113 err = -EBUSY;
1114 goto out_release;
1115 }
1116
1117 dev = dev_get_by_index(sock_net(sk), sxdp->sxdp_ifindex);
1118 if (!dev) {
1119 err = -ENODEV;
1120 goto out_release;
1121 }
1122
1123 if (!xs->rx && !xs->tx) {
1124 err = -EINVAL;
1125 goto out_unlock;
1126 }
1127
1128 qid = sxdp->sxdp_queue_id;
1129
1130 if (flags & XDP_SHARED_UMEM) {
1131 struct xdp_sock *umem_xs;
1132 struct socket *sock;
1133
1134 if ((flags & XDP_COPY) || (flags & XDP_ZEROCOPY) ||
1135 (flags & XDP_USE_NEED_WAKEUP) || (flags & XDP_USE_SG)) {
1136 /* Cannot specify flags for shared sockets. */
1137 err = -EINVAL;
1138 goto out_unlock;
1139 }
1140
1141 if (xs->umem) {
1142 /* We have already our own. */
1143 err = -EINVAL;
1144 goto out_unlock;
1145 }
1146
1147 sock = xsk_lookup_xsk_from_fd(sxdp->sxdp_shared_umem_fd);
1148 if (IS_ERR(sock)) {
1149 err = PTR_ERR(sock);
1150 goto out_unlock;
1151 }
1152
1153 umem_xs = xdp_sk(sock->sk);
1154 if (!xsk_is_bound(umem_xs)) {
1155 err = -EBADF;
1156 sockfd_put(sock);
1157 goto out_unlock;
1158 }
1159
1160 if (umem_xs->queue_id != qid || umem_xs->dev != dev) {
1161 /* Share the umem with another socket on another qid
1162 * and/or device.
1163 */
1164 xs->pool = xp_create_and_assign_umem(xs,
1165 umem_xs->umem);
1166 if (!xs->pool) {
1167 err = -ENOMEM;
1168 sockfd_put(sock);
1169 goto out_unlock;
1170 }
1171
1172 err = xp_assign_dev_shared(xs->pool, umem_xs, dev,
1173 qid);
1174 if (err) {
1175 xp_destroy(xs->pool);
1176 xs->pool = NULL;
1177 sockfd_put(sock);
1178 goto out_unlock;
1179 }
1180 } else {
1181 /* Share the buffer pool with the other socket. */
1182 if (xs->fq_tmp || xs->cq_tmp) {
1183 /* Do not allow setting your own fq or cq. */
1184 err = -EINVAL;
1185 sockfd_put(sock);
1186 goto out_unlock;
1187 }
1188
1189 xp_get_pool(umem_xs->pool);
1190 xs->pool = umem_xs->pool;
1191
1192 /* If underlying shared umem was created without Tx
1193 * ring, allocate Tx descs array that Tx batching API
1194 * utilizes
1195 */
1196 if (xs->tx && !xs->pool->tx_descs) {
1197 err = xp_alloc_tx_descs(xs->pool, xs);
1198 if (err) {
1199 xp_put_pool(xs->pool);
1200 xs->pool = NULL;
1201 sockfd_put(sock);
1202 goto out_unlock;
1203 }
1204 }
1205 }
1206
1207 xdp_get_umem(umem_xs->umem);
1208 WRITE_ONCE(xs->umem, umem_xs->umem);
1209 sockfd_put(sock);
1210 } else if (!xs->umem || !xsk_validate_queues(xs)) {
1211 err = -EINVAL;
1212 goto out_unlock;
1213 } else {
1214 /* This xsk has its own umem. */
1215 xs->pool = xp_create_and_assign_umem(xs, xs->umem);
1216 if (!xs->pool) {
1217 err = -ENOMEM;
1218 goto out_unlock;
1219 }
1220
1221 err = xp_assign_dev(xs->pool, dev, qid, flags);
1222 if (err) {
1223 xp_destroy(xs->pool);
1224 xs->pool = NULL;
1225 goto out_unlock;
1226 }
1227 }
1228
1229 /* FQ and CQ are now owned by the buffer pool and cleaned up with it. */
1230 xs->fq_tmp = NULL;
1231 xs->cq_tmp = NULL;
1232
1233 xs->dev = dev;
1234 xs->zc = xs->umem->zc;
1235 xs->sg = !!(xs->umem->flags & XDP_UMEM_SG_FLAG);
1236 xs->queue_id = qid;
1237 xp_add_xsk(xs->pool, xs);
1238
1239 out_unlock:
1240 if (err) {
1241 dev_put(dev);
1242 } else {
1243 /* Matches smp_rmb() in bind() for shared umem
1244 * sockets, and xsk_is_bound().
1245 */
1246 smp_wmb();
1247 WRITE_ONCE(xs->state, XSK_BOUND);
1248 }
1249 out_release:
1250 mutex_unlock(&xs->mutex);
1251 rtnl_unlock();
1252 return err;
1253 }
1254
1255 struct xdp_umem_reg_v1 {
1256 __u64 addr; /* Start of packet data area */
1257 __u64 len; /* Length of packet data area */
1258 __u32 chunk_size;
1259 __u32 headroom;
1260 };
1261
xsk_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1262 static int xsk_setsockopt(struct socket *sock, int level, int optname,
1263 sockptr_t optval, unsigned int optlen)
1264 {
1265 struct sock *sk = sock->sk;
1266 struct xdp_sock *xs = xdp_sk(sk);
1267 int err;
1268
1269 if (level != SOL_XDP)
1270 return -ENOPROTOOPT;
1271
1272 switch (optname) {
1273 case XDP_RX_RING:
1274 case XDP_TX_RING:
1275 {
1276 struct xsk_queue **q;
1277 int entries;
1278
1279 if (optlen < sizeof(entries))
1280 return -EINVAL;
1281 if (copy_from_sockptr(&entries, optval, sizeof(entries)))
1282 return -EFAULT;
1283
1284 mutex_lock(&xs->mutex);
1285 if (xs->state != XSK_READY) {
1286 mutex_unlock(&xs->mutex);
1287 return -EBUSY;
1288 }
1289 q = (optname == XDP_TX_RING) ? &xs->tx : &xs->rx;
1290 err = xsk_init_queue(entries, q, false);
1291 if (!err && optname == XDP_TX_RING)
1292 /* Tx needs to be explicitly woken up the first time */
1293 xs->tx->ring->flags |= XDP_RING_NEED_WAKEUP;
1294 mutex_unlock(&xs->mutex);
1295 return err;
1296 }
1297 case XDP_UMEM_REG:
1298 {
1299 size_t mr_size = sizeof(struct xdp_umem_reg);
1300 struct xdp_umem_reg mr = {};
1301 struct xdp_umem *umem;
1302
1303 if (optlen < sizeof(struct xdp_umem_reg_v1))
1304 return -EINVAL;
1305 else if (optlen < sizeof(mr))
1306 mr_size = sizeof(struct xdp_umem_reg_v1);
1307
1308 if (copy_from_sockptr(&mr, optval, mr_size))
1309 return -EFAULT;
1310
1311 mutex_lock(&xs->mutex);
1312 if (xs->state != XSK_READY || xs->umem) {
1313 mutex_unlock(&xs->mutex);
1314 return -EBUSY;
1315 }
1316
1317 umem = xdp_umem_create(&mr);
1318 if (IS_ERR(umem)) {
1319 mutex_unlock(&xs->mutex);
1320 return PTR_ERR(umem);
1321 }
1322
1323 /* Make sure umem is ready before it can be seen by others */
1324 smp_wmb();
1325 WRITE_ONCE(xs->umem, umem);
1326 mutex_unlock(&xs->mutex);
1327 return 0;
1328 }
1329 case XDP_UMEM_FILL_RING:
1330 case XDP_UMEM_COMPLETION_RING:
1331 {
1332 struct xsk_queue **q;
1333 int entries;
1334
1335 if (optlen < sizeof(entries))
1336 return -EINVAL;
1337 if (copy_from_sockptr(&entries, optval, sizeof(entries)))
1338 return -EFAULT;
1339
1340 mutex_lock(&xs->mutex);
1341 if (xs->state != XSK_READY) {
1342 mutex_unlock(&xs->mutex);
1343 return -EBUSY;
1344 }
1345
1346 q = (optname == XDP_UMEM_FILL_RING) ? &xs->fq_tmp :
1347 &xs->cq_tmp;
1348 err = xsk_init_queue(entries, q, true);
1349 mutex_unlock(&xs->mutex);
1350 return err;
1351 }
1352 default:
1353 break;
1354 }
1355
1356 return -ENOPROTOOPT;
1357 }
1358
xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 * ring)1359 static void xsk_enter_rxtx_offsets(struct xdp_ring_offset_v1 *ring)
1360 {
1361 ring->producer = offsetof(struct xdp_rxtx_ring, ptrs.producer);
1362 ring->consumer = offsetof(struct xdp_rxtx_ring, ptrs.consumer);
1363 ring->desc = offsetof(struct xdp_rxtx_ring, desc);
1364 }
1365
xsk_enter_umem_offsets(struct xdp_ring_offset_v1 * ring)1366 static void xsk_enter_umem_offsets(struct xdp_ring_offset_v1 *ring)
1367 {
1368 ring->producer = offsetof(struct xdp_umem_ring, ptrs.producer);
1369 ring->consumer = offsetof(struct xdp_umem_ring, ptrs.consumer);
1370 ring->desc = offsetof(struct xdp_umem_ring, desc);
1371 }
1372
1373 struct xdp_statistics_v1 {
1374 __u64 rx_dropped;
1375 __u64 rx_invalid_descs;
1376 __u64 tx_invalid_descs;
1377 };
1378
xsk_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1379 static int xsk_getsockopt(struct socket *sock, int level, int optname,
1380 char __user *optval, int __user *optlen)
1381 {
1382 struct sock *sk = sock->sk;
1383 struct xdp_sock *xs = xdp_sk(sk);
1384 int len;
1385
1386 if (level != SOL_XDP)
1387 return -ENOPROTOOPT;
1388
1389 if (get_user(len, optlen))
1390 return -EFAULT;
1391 if (len < 0)
1392 return -EINVAL;
1393
1394 switch (optname) {
1395 case XDP_STATISTICS:
1396 {
1397 struct xdp_statistics stats = {};
1398 bool extra_stats = true;
1399 size_t stats_size;
1400
1401 if (len < sizeof(struct xdp_statistics_v1)) {
1402 return -EINVAL;
1403 } else if (len < sizeof(stats)) {
1404 extra_stats = false;
1405 stats_size = sizeof(struct xdp_statistics_v1);
1406 } else {
1407 stats_size = sizeof(stats);
1408 }
1409
1410 mutex_lock(&xs->mutex);
1411 stats.rx_dropped = xs->rx_dropped;
1412 if (extra_stats) {
1413 stats.rx_ring_full = xs->rx_queue_full;
1414 stats.rx_fill_ring_empty_descs =
1415 xs->pool ? xskq_nb_queue_empty_descs(xs->pool->fq) : 0;
1416 stats.tx_ring_empty_descs = xskq_nb_queue_empty_descs(xs->tx);
1417 } else {
1418 stats.rx_dropped += xs->rx_queue_full;
1419 }
1420 stats.rx_invalid_descs = xskq_nb_invalid_descs(xs->rx);
1421 stats.tx_invalid_descs = xskq_nb_invalid_descs(xs->tx);
1422 mutex_unlock(&xs->mutex);
1423
1424 if (copy_to_user(optval, &stats, stats_size))
1425 return -EFAULT;
1426 if (put_user(stats_size, optlen))
1427 return -EFAULT;
1428
1429 return 0;
1430 }
1431 case XDP_MMAP_OFFSETS:
1432 {
1433 struct xdp_mmap_offsets off;
1434 struct xdp_mmap_offsets_v1 off_v1;
1435 bool flags_supported = true;
1436 void *to_copy;
1437
1438 if (len < sizeof(off_v1))
1439 return -EINVAL;
1440 else if (len < sizeof(off))
1441 flags_supported = false;
1442
1443 if (flags_supported) {
1444 /* xdp_ring_offset is identical to xdp_ring_offset_v1
1445 * except for the flags field added to the end.
1446 */
1447 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
1448 &off.rx);
1449 xsk_enter_rxtx_offsets((struct xdp_ring_offset_v1 *)
1450 &off.tx);
1451 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
1452 &off.fr);
1453 xsk_enter_umem_offsets((struct xdp_ring_offset_v1 *)
1454 &off.cr);
1455 off.rx.flags = offsetof(struct xdp_rxtx_ring,
1456 ptrs.flags);
1457 off.tx.flags = offsetof(struct xdp_rxtx_ring,
1458 ptrs.flags);
1459 off.fr.flags = offsetof(struct xdp_umem_ring,
1460 ptrs.flags);
1461 off.cr.flags = offsetof(struct xdp_umem_ring,
1462 ptrs.flags);
1463
1464 len = sizeof(off);
1465 to_copy = &off;
1466 } else {
1467 xsk_enter_rxtx_offsets(&off_v1.rx);
1468 xsk_enter_rxtx_offsets(&off_v1.tx);
1469 xsk_enter_umem_offsets(&off_v1.fr);
1470 xsk_enter_umem_offsets(&off_v1.cr);
1471
1472 len = sizeof(off_v1);
1473 to_copy = &off_v1;
1474 }
1475
1476 if (copy_to_user(optval, to_copy, len))
1477 return -EFAULT;
1478 if (put_user(len, optlen))
1479 return -EFAULT;
1480
1481 return 0;
1482 }
1483 case XDP_OPTIONS:
1484 {
1485 struct xdp_options opts = {};
1486
1487 if (len < sizeof(opts))
1488 return -EINVAL;
1489
1490 mutex_lock(&xs->mutex);
1491 if (xs->zc)
1492 opts.flags |= XDP_OPTIONS_ZEROCOPY;
1493 mutex_unlock(&xs->mutex);
1494
1495 len = sizeof(opts);
1496 if (copy_to_user(optval, &opts, len))
1497 return -EFAULT;
1498 if (put_user(len, optlen))
1499 return -EFAULT;
1500
1501 return 0;
1502 }
1503 default:
1504 break;
1505 }
1506
1507 return -EOPNOTSUPP;
1508 }
1509
xsk_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1510 static int xsk_mmap(struct file *file, struct socket *sock,
1511 struct vm_area_struct *vma)
1512 {
1513 loff_t offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1514 unsigned long size = vma->vm_end - vma->vm_start;
1515 struct xdp_sock *xs = xdp_sk(sock->sk);
1516 int state = READ_ONCE(xs->state);
1517 struct xsk_queue *q = NULL;
1518
1519 if (state != XSK_READY && state != XSK_BOUND)
1520 return -EBUSY;
1521
1522 if (offset == XDP_PGOFF_RX_RING) {
1523 q = READ_ONCE(xs->rx);
1524 } else if (offset == XDP_PGOFF_TX_RING) {
1525 q = READ_ONCE(xs->tx);
1526 } else {
1527 /* Matches the smp_wmb() in XDP_UMEM_REG */
1528 smp_rmb();
1529 if (offset == XDP_UMEM_PGOFF_FILL_RING)
1530 q = state == XSK_READY ? READ_ONCE(xs->fq_tmp) :
1531 READ_ONCE(xs->pool->fq);
1532 else if (offset == XDP_UMEM_PGOFF_COMPLETION_RING)
1533 q = state == XSK_READY ? READ_ONCE(xs->cq_tmp) :
1534 READ_ONCE(xs->pool->cq);
1535 }
1536
1537 if (!q)
1538 return -EINVAL;
1539
1540 /* Matches the smp_wmb() in xsk_init_queue */
1541 smp_rmb();
1542 if (size > q->ring_vmalloc_size)
1543 return -EINVAL;
1544
1545 return remap_vmalloc_range(vma, q->ring, 0);
1546 }
1547
xsk_notifier(struct notifier_block * this,unsigned long msg,void * ptr)1548 static int xsk_notifier(struct notifier_block *this,
1549 unsigned long msg, void *ptr)
1550 {
1551 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1552 struct net *net = dev_net(dev);
1553 struct sock *sk;
1554
1555 switch (msg) {
1556 case NETDEV_UNREGISTER:
1557 mutex_lock(&net->xdp.lock);
1558 sk_for_each(sk, &net->xdp.list) {
1559 struct xdp_sock *xs = xdp_sk(sk);
1560
1561 mutex_lock(&xs->mutex);
1562 if (xs->dev == dev) {
1563 sk->sk_err = ENETDOWN;
1564 if (!sock_flag(sk, SOCK_DEAD))
1565 sk_error_report(sk);
1566
1567 xsk_unbind_dev(xs);
1568
1569 /* Clear device references. */
1570 xp_clear_dev(xs->pool);
1571 }
1572 mutex_unlock(&xs->mutex);
1573 }
1574 mutex_unlock(&net->xdp.lock);
1575 break;
1576 }
1577 return NOTIFY_DONE;
1578 }
1579
1580 static struct proto xsk_proto = {
1581 .name = "XDP",
1582 .owner = THIS_MODULE,
1583 .obj_size = sizeof(struct xdp_sock),
1584 };
1585
1586 static const struct proto_ops xsk_proto_ops = {
1587 .family = PF_XDP,
1588 .owner = THIS_MODULE,
1589 .release = xsk_release,
1590 .bind = xsk_bind,
1591 .connect = sock_no_connect,
1592 .socketpair = sock_no_socketpair,
1593 .accept = sock_no_accept,
1594 .getname = sock_no_getname,
1595 .poll = xsk_poll,
1596 .ioctl = sock_no_ioctl,
1597 .listen = sock_no_listen,
1598 .shutdown = sock_no_shutdown,
1599 .setsockopt = xsk_setsockopt,
1600 .getsockopt = xsk_getsockopt,
1601 .sendmsg = xsk_sendmsg,
1602 .recvmsg = xsk_recvmsg,
1603 .mmap = xsk_mmap,
1604 };
1605
xsk_destruct(struct sock * sk)1606 static void xsk_destruct(struct sock *sk)
1607 {
1608 struct xdp_sock *xs = xdp_sk(sk);
1609
1610 if (!sock_flag(sk, SOCK_DEAD))
1611 return;
1612
1613 if (!xp_put_pool(xs->pool))
1614 xdp_put_umem(xs->umem, !xs->pool);
1615 }
1616
xsk_create(struct net * net,struct socket * sock,int protocol,int kern)1617 static int xsk_create(struct net *net, struct socket *sock, int protocol,
1618 int kern)
1619 {
1620 struct xdp_sock *xs;
1621 struct sock *sk;
1622
1623 if (!ns_capable(net->user_ns, CAP_NET_RAW))
1624 return -EPERM;
1625 if (sock->type != SOCK_RAW)
1626 return -ESOCKTNOSUPPORT;
1627
1628 if (protocol)
1629 return -EPROTONOSUPPORT;
1630
1631 sock->state = SS_UNCONNECTED;
1632
1633 sk = sk_alloc(net, PF_XDP, GFP_KERNEL, &xsk_proto, kern);
1634 if (!sk)
1635 return -ENOBUFS;
1636
1637 sock->ops = &xsk_proto_ops;
1638
1639 sock_init_data(sock, sk);
1640
1641 sk->sk_family = PF_XDP;
1642
1643 sk->sk_destruct = xsk_destruct;
1644
1645 sock_set_flag(sk, SOCK_RCU_FREE);
1646
1647 xs = xdp_sk(sk);
1648 xs->state = XSK_READY;
1649 mutex_init(&xs->mutex);
1650 spin_lock_init(&xs->rx_lock);
1651
1652 INIT_LIST_HEAD(&xs->map_list);
1653 spin_lock_init(&xs->map_list_lock);
1654
1655 mutex_lock(&net->xdp.lock);
1656 sk_add_node_rcu(sk, &net->xdp.list);
1657 mutex_unlock(&net->xdp.lock);
1658
1659 sock_prot_inuse_add(net, &xsk_proto, 1);
1660
1661 return 0;
1662 }
1663
1664 static const struct net_proto_family xsk_family_ops = {
1665 .family = PF_XDP,
1666 .create = xsk_create,
1667 .owner = THIS_MODULE,
1668 };
1669
1670 static struct notifier_block xsk_netdev_notifier = {
1671 .notifier_call = xsk_notifier,
1672 };
1673
xsk_net_init(struct net * net)1674 static int __net_init xsk_net_init(struct net *net)
1675 {
1676 mutex_init(&net->xdp.lock);
1677 INIT_HLIST_HEAD(&net->xdp.list);
1678 return 0;
1679 }
1680
xsk_net_exit(struct net * net)1681 static void __net_exit xsk_net_exit(struct net *net)
1682 {
1683 WARN_ON_ONCE(!hlist_empty(&net->xdp.list));
1684 }
1685
1686 static struct pernet_operations xsk_net_ops = {
1687 .init = xsk_net_init,
1688 .exit = xsk_net_exit,
1689 };
1690
xsk_init(void)1691 static int __init xsk_init(void)
1692 {
1693 int err, cpu;
1694
1695 err = proto_register(&xsk_proto, 0 /* no slab */);
1696 if (err)
1697 goto out;
1698
1699 err = sock_register(&xsk_family_ops);
1700 if (err)
1701 goto out_proto;
1702
1703 err = register_pernet_subsys(&xsk_net_ops);
1704 if (err)
1705 goto out_sk;
1706
1707 err = register_netdevice_notifier(&xsk_netdev_notifier);
1708 if (err)
1709 goto out_pernet;
1710
1711 for_each_possible_cpu(cpu)
1712 INIT_LIST_HEAD(&per_cpu(xskmap_flush_list, cpu));
1713 return 0;
1714
1715 out_pernet:
1716 unregister_pernet_subsys(&xsk_net_ops);
1717 out_sk:
1718 sock_unregister(PF_XDP);
1719 out_proto:
1720 proto_unregister(&xsk_proto);
1721 out:
1722 return err;
1723 }
1724
1725 fs_initcall(xsk_init);
1726