1 /*
2 * AMD 10Gb Ethernet driver
3 *
4 * This file is available to you under your choice of the following two
5 * licenses:
6 *
7 * License 1: GPLv2
8 *
9 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
10 *
11 * This file is free software; you may copy, redistribute and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This file is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 *
24 * This file incorporates work covered by the following copyright and
25 * permission notice:
26 * The Synopsys DWC ETHER XGMAC Software Driver and documentation
27 * (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28 * Inc. unless otherwise expressly agreed to in writing between Synopsys
29 * and you.
30 *
31 * The Software IS NOT an item of Licensed Software or Licensed Product
32 * under any End User Software License Agreement or Agreement for Licensed
33 * Product with Synopsys or any supplement thereto. Permission is hereby
34 * granted, free of charge, to any person obtaining a copy of this software
35 * annotated with this license and the Software, to deal in the Software
36 * without restriction, including without limitation the rights to use,
37 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38 * of the Software, and to permit persons to whom the Software is furnished
39 * to do so, subject to the following conditions:
40 *
41 * The above copyright notice and this permission notice shall be included
42 * in all copies or substantial portions of the Software.
43 *
44 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54 * THE POSSIBILITY OF SUCH DAMAGE.
55 *
56 *
57 * License 2: Modified BSD
58 *
59 * Copyright (c) 2014-2016 Advanced Micro Devices, Inc.
60 * All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions are met:
64 * * Redistributions of source code must retain the above copyright
65 * notice, this list of conditions and the following disclaimer.
66 * * Redistributions in binary form must reproduce the above copyright
67 * notice, this list of conditions and the following disclaimer in the
68 * documentation and/or other materials provided with the distribution.
69 * * Neither the name of Advanced Micro Devices, Inc. nor the
70 * names of its contributors may be used to endorse or promote products
71 * derived from this software without specific prior written permission.
72 *
73 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
74 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76 * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
77 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
78 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
79 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
80 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
81 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
82 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
83 *
84 * This file incorporates work covered by the following copyright and
85 * permission notice:
86 * The Synopsys DWC ETHER XGMAC Software Driver and documentation
87 * (hereinafter "Software") is an unsupported proprietary work of Synopsys,
88 * Inc. unless otherwise expressly agreed to in writing between Synopsys
89 * and you.
90 *
91 * The Software IS NOT an item of Licensed Software or Licensed Product
92 * under any End User Software License Agreement or Agreement for Licensed
93 * Product with Synopsys or any supplement thereto. Permission is hereby
94 * granted, free of charge, to any person obtaining a copy of this software
95 * annotated with this license and the Software, to deal in the Software
96 * without restriction, including without limitation the rights to use,
97 * copy, modify, merge, publish, distribute, sublicense, and/or sell copies
98 * of the Software, and to permit persons to whom the Software is furnished
99 * to do so, subject to the following conditions:
100 *
101 * The above copyright notice and this permission notice shall be included
102 * in all copies or substantial portions of the Software.
103 *
104 * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
105 * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
106 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
107 * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
108 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
109 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
110 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
111 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
112 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
113 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
114 * THE POSSIBILITY OF SUCH DAMAGE.
115 */
116
117 #include <linux/phy.h>
118 #include <linux/mdio.h>
119 #include <linux/clk.h>
120 #include <linux/bitrev.h>
121 #include <linux/crc32.h>
122 #include <linux/crc32poly.h>
123
124 #include "xgbe.h"
125 #include "xgbe-common.h"
126
xgbe_get_max_frame(struct xgbe_prv_data * pdata)127 static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
128 {
129 return pdata->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
130 }
131
xgbe_usec_to_riwt(struct xgbe_prv_data * pdata,unsigned int usec)132 static unsigned int xgbe_usec_to_riwt(struct xgbe_prv_data *pdata,
133 unsigned int usec)
134 {
135 unsigned long rate;
136 unsigned int ret;
137
138 DBGPR("-->xgbe_usec_to_riwt\n");
139
140 rate = pdata->sysclk_rate;
141
142 /*
143 * Convert the input usec value to the watchdog timer value. Each
144 * watchdog timer value is equivalent to 256 clock cycles.
145 * Calculate the required value as:
146 * ( usec * ( system_clock_mhz / 10^6 ) / 256
147 */
148 ret = (usec * (rate / 1000000)) / 256;
149
150 DBGPR("<--xgbe_usec_to_riwt\n");
151
152 return ret;
153 }
154
xgbe_riwt_to_usec(struct xgbe_prv_data * pdata,unsigned int riwt)155 static unsigned int xgbe_riwt_to_usec(struct xgbe_prv_data *pdata,
156 unsigned int riwt)
157 {
158 unsigned long rate;
159 unsigned int ret;
160
161 DBGPR("-->xgbe_riwt_to_usec\n");
162
163 rate = pdata->sysclk_rate;
164
165 /*
166 * Convert the input watchdog timer value to the usec value. Each
167 * watchdog timer value is equivalent to 256 clock cycles.
168 * Calculate the required value as:
169 * ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
170 */
171 ret = (riwt * 256) / (rate / 1000000);
172
173 DBGPR("<--xgbe_riwt_to_usec\n");
174
175 return ret;
176 }
177
xgbe_config_pbl_val(struct xgbe_prv_data * pdata)178 static int xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
179 {
180 unsigned int pblx8, pbl;
181 unsigned int i;
182
183 pblx8 = DMA_PBL_X8_DISABLE;
184 pbl = pdata->pbl;
185
186 if (pdata->pbl > 32) {
187 pblx8 = DMA_PBL_X8_ENABLE;
188 pbl >>= 3;
189 }
190
191 for (i = 0; i < pdata->channel_count; i++) {
192 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
193 pblx8);
194
195 if (pdata->channel[i]->tx_ring)
196 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
197 PBL, pbl);
198
199 if (pdata->channel[i]->rx_ring)
200 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
201 PBL, pbl);
202 }
203
204 return 0;
205 }
206
xgbe_config_osp_mode(struct xgbe_prv_data * pdata)207 static int xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
208 {
209 unsigned int i;
210
211 for (i = 0; i < pdata->channel_count; i++) {
212 if (!pdata->channel[i]->tx_ring)
213 break;
214
215 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
216 pdata->tx_osp_mode);
217 }
218
219 return 0;
220 }
221
xgbe_config_rsf_mode(struct xgbe_prv_data * pdata,unsigned int val)222 static int xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
223 {
224 unsigned int i;
225
226 for (i = 0; i < pdata->rx_q_count; i++)
227 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
228
229 return 0;
230 }
231
xgbe_config_tsf_mode(struct xgbe_prv_data * pdata,unsigned int val)232 static int xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
233 {
234 unsigned int i;
235
236 for (i = 0; i < pdata->tx_q_count; i++)
237 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
238
239 return 0;
240 }
241
xgbe_config_rx_threshold(struct xgbe_prv_data * pdata,unsigned int val)242 static int xgbe_config_rx_threshold(struct xgbe_prv_data *pdata,
243 unsigned int val)
244 {
245 unsigned int i;
246
247 for (i = 0; i < pdata->rx_q_count; i++)
248 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
249
250 return 0;
251 }
252
xgbe_config_tx_threshold(struct xgbe_prv_data * pdata,unsigned int val)253 static int xgbe_config_tx_threshold(struct xgbe_prv_data *pdata,
254 unsigned int val)
255 {
256 unsigned int i;
257
258 for (i = 0; i < pdata->tx_q_count; i++)
259 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
260
261 return 0;
262 }
263
xgbe_config_rx_coalesce(struct xgbe_prv_data * pdata)264 static int xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
265 {
266 unsigned int i;
267
268 for (i = 0; i < pdata->channel_count; i++) {
269 if (!pdata->channel[i]->rx_ring)
270 break;
271
272 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
273 pdata->rx_riwt);
274 }
275
276 return 0;
277 }
278
xgbe_config_tx_coalesce(struct xgbe_prv_data * pdata)279 static int xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
280 {
281 return 0;
282 }
283
xgbe_config_rx_buffer_size(struct xgbe_prv_data * pdata)284 static void xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
285 {
286 unsigned int i;
287
288 for (i = 0; i < pdata->channel_count; i++) {
289 if (!pdata->channel[i]->rx_ring)
290 break;
291
292 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
293 pdata->rx_buf_size);
294 }
295 }
296
xgbe_config_tso_mode(struct xgbe_prv_data * pdata)297 static void xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
298 {
299 unsigned int i;
300
301 for (i = 0; i < pdata->channel_count; i++) {
302 if (!pdata->channel[i]->tx_ring)
303 break;
304
305 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, 1);
306 }
307 }
308
xgbe_config_sph_mode(struct xgbe_prv_data * pdata)309 static void xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
310 {
311 unsigned int i;
312
313 for (i = 0; i < pdata->channel_count; i++) {
314 if (!pdata->channel[i]->rx_ring)
315 break;
316
317 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
318 }
319
320 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
321 }
322
xgbe_write_rss_reg(struct xgbe_prv_data * pdata,unsigned int type,unsigned int index,unsigned int val)323 static int xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
324 unsigned int index, unsigned int val)
325 {
326 unsigned int wait;
327 int ret = 0;
328
329 mutex_lock(&pdata->rss_mutex);
330
331 if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
332 ret = -EBUSY;
333 goto unlock;
334 }
335
336 XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
337
338 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
339 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
340 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
341 XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
342
343 wait = 1000;
344 while (wait--) {
345 if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
346 goto unlock;
347
348 usleep_range(1000, 1500);
349 }
350
351 ret = -EBUSY;
352
353 unlock:
354 mutex_unlock(&pdata->rss_mutex);
355
356 return ret;
357 }
358
xgbe_write_rss_hash_key(struct xgbe_prv_data * pdata)359 static int xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
360 {
361 unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(u32);
362 unsigned int *key = (unsigned int *)&pdata->rss_key;
363 int ret;
364
365 while (key_regs--) {
366 ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
367 key_regs, *key++);
368 if (ret)
369 return ret;
370 }
371
372 return 0;
373 }
374
xgbe_write_rss_lookup_table(struct xgbe_prv_data * pdata)375 static int xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
376 {
377 unsigned int i;
378 int ret;
379
380 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
381 ret = xgbe_write_rss_reg(pdata,
382 XGBE_RSS_LOOKUP_TABLE_TYPE, i,
383 pdata->rss_table[i]);
384 if (ret)
385 return ret;
386 }
387
388 return 0;
389 }
390
xgbe_set_rss_hash_key(struct xgbe_prv_data * pdata,const u8 * key)391 static int xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const u8 *key)
392 {
393 memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
394
395 return xgbe_write_rss_hash_key(pdata);
396 }
397
xgbe_set_rss_lookup_table(struct xgbe_prv_data * pdata,const u32 * table)398 static int xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata,
399 const u32 *table)
400 {
401 unsigned int i;
402
403 for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
404 XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
405
406 return xgbe_write_rss_lookup_table(pdata);
407 }
408
xgbe_enable_rss(struct xgbe_prv_data * pdata)409 static int xgbe_enable_rss(struct xgbe_prv_data *pdata)
410 {
411 int ret;
412
413 if (!pdata->hw_feat.rss)
414 return -EOPNOTSUPP;
415
416 /* Program the hash key */
417 ret = xgbe_write_rss_hash_key(pdata);
418 if (ret)
419 return ret;
420
421 /* Program the lookup table */
422 ret = xgbe_write_rss_lookup_table(pdata);
423 if (ret)
424 return ret;
425
426 /* Set the RSS options */
427 XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
428
429 /* Enable RSS */
430 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
431
432 return 0;
433 }
434
xgbe_disable_rss(struct xgbe_prv_data * pdata)435 static int xgbe_disable_rss(struct xgbe_prv_data *pdata)
436 {
437 if (!pdata->hw_feat.rss)
438 return -EOPNOTSUPP;
439
440 XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
441
442 return 0;
443 }
444
xgbe_config_rss(struct xgbe_prv_data * pdata)445 static void xgbe_config_rss(struct xgbe_prv_data *pdata)
446 {
447 int ret;
448
449 if (!pdata->hw_feat.rss)
450 return;
451
452 if (pdata->netdev->features & NETIF_F_RXHASH)
453 ret = xgbe_enable_rss(pdata);
454 else
455 ret = xgbe_disable_rss(pdata);
456
457 if (ret)
458 netdev_err(pdata->netdev,
459 "error configuring RSS, RSS disabled\n");
460 }
461
xgbe_is_pfc_queue(struct xgbe_prv_data * pdata,unsigned int queue)462 static bool xgbe_is_pfc_queue(struct xgbe_prv_data *pdata,
463 unsigned int queue)
464 {
465 unsigned int prio, tc;
466
467 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
468 /* Does this queue handle the priority? */
469 if (pdata->prio2q_map[prio] != queue)
470 continue;
471
472 /* Get the Traffic Class for this priority */
473 tc = pdata->ets->prio_tc[prio];
474
475 /* Check if PFC is enabled for this traffic class */
476 if (pdata->pfc->pfc_en & (1 << tc))
477 return true;
478 }
479
480 return false;
481 }
482
xgbe_set_vxlan_id(struct xgbe_prv_data * pdata)483 static void xgbe_set_vxlan_id(struct xgbe_prv_data *pdata)
484 {
485 /* Program the VXLAN port */
486 XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, pdata->vxlan_port);
487
488 netif_dbg(pdata, drv, pdata->netdev, "VXLAN tunnel id set to %hx\n",
489 pdata->vxlan_port);
490 }
491
xgbe_enable_vxlan(struct xgbe_prv_data * pdata)492 static void xgbe_enable_vxlan(struct xgbe_prv_data *pdata)
493 {
494 if (!pdata->hw_feat.vxn)
495 return;
496
497 /* Program the VXLAN port */
498 xgbe_set_vxlan_id(pdata);
499
500 /* Allow for IPv6/UDP zero-checksum VXLAN packets */
501 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 1);
502
503 /* Enable VXLAN tunneling mode */
504 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNM, 0);
505 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 1);
506
507 netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration enabled\n");
508 }
509
xgbe_disable_vxlan(struct xgbe_prv_data * pdata)510 static void xgbe_disable_vxlan(struct xgbe_prv_data *pdata)
511 {
512 if (!pdata->hw_feat.vxn)
513 return;
514
515 /* Disable tunneling mode */
516 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, VNE, 0);
517
518 /* Clear IPv6/UDP zero-checksum VXLAN packets setting */
519 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VUCC, 0);
520
521 /* Clear the VXLAN port */
522 XGMAC_IOWRITE_BITS(pdata, MAC_TIR, TNID, 0);
523
524 netif_dbg(pdata, drv, pdata->netdev, "VXLAN acceleration disabled\n");
525 }
526
xgbe_get_fc_queue_count(struct xgbe_prv_data * pdata)527 static unsigned int xgbe_get_fc_queue_count(struct xgbe_prv_data *pdata)
528 {
529 unsigned int max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
530
531 /* From MAC ver 30H the TFCR is per priority, instead of per queue */
532 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) >= 0x30)
533 return max_q_count;
534 else
535 return min_t(unsigned int, pdata->tx_q_count, max_q_count);
536 }
537
xgbe_disable_tx_flow_control(struct xgbe_prv_data * pdata)538 static int xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
539 {
540 unsigned int reg, reg_val;
541 unsigned int i, q_count;
542
543 /* Clear MTL flow control */
544 for (i = 0; i < pdata->rx_q_count; i++)
545 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
546
547 /* Clear MAC flow control */
548 q_count = xgbe_get_fc_queue_count(pdata);
549 reg = MAC_Q0TFCR;
550 for (i = 0; i < q_count; i++) {
551 reg_val = XGMAC_IOREAD(pdata, reg);
552 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
553 XGMAC_IOWRITE(pdata, reg, reg_val);
554
555 reg += MAC_QTFCR_INC;
556 }
557
558 return 0;
559 }
560
xgbe_enable_tx_flow_control(struct xgbe_prv_data * pdata)561 static int xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
562 {
563 struct ieee_pfc *pfc = pdata->pfc;
564 struct ieee_ets *ets = pdata->ets;
565 unsigned int reg, reg_val;
566 unsigned int i, q_count;
567
568 /* Set MTL flow control */
569 for (i = 0; i < pdata->rx_q_count; i++) {
570 unsigned int ehfc = 0;
571
572 if (pdata->rx_rfd[i]) {
573 /* Flow control thresholds are established */
574 if (pfc && ets) {
575 if (xgbe_is_pfc_queue(pdata, i))
576 ehfc = 1;
577 } else {
578 ehfc = 1;
579 }
580 }
581
582 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
583
584 netif_dbg(pdata, drv, pdata->netdev,
585 "flow control %s for RXq%u\n",
586 ehfc ? "enabled" : "disabled", i);
587 }
588
589 /* Set MAC flow control */
590 q_count = xgbe_get_fc_queue_count(pdata);
591 reg = MAC_Q0TFCR;
592 for (i = 0; i < q_count; i++) {
593 reg_val = XGMAC_IOREAD(pdata, reg);
594
595 /* Enable transmit flow control */
596 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
597 /* Set pause time */
598 XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
599
600 XGMAC_IOWRITE(pdata, reg, reg_val);
601
602 reg += MAC_QTFCR_INC;
603 }
604
605 return 0;
606 }
607
xgbe_disable_rx_flow_control(struct xgbe_prv_data * pdata)608 static int xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
609 {
610 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
611
612 return 0;
613 }
614
xgbe_enable_rx_flow_control(struct xgbe_prv_data * pdata)615 static int xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
616 {
617 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
618
619 return 0;
620 }
621
xgbe_config_tx_flow_control(struct xgbe_prv_data * pdata)622 static int xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
623 {
624 struct ieee_pfc *pfc = pdata->pfc;
625
626 if (pdata->tx_pause || (pfc && pfc->pfc_en))
627 xgbe_enable_tx_flow_control(pdata);
628 else
629 xgbe_disable_tx_flow_control(pdata);
630
631 return 0;
632 }
633
xgbe_config_rx_flow_control(struct xgbe_prv_data * pdata)634 static int xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
635 {
636 struct ieee_pfc *pfc = pdata->pfc;
637
638 if (pdata->rx_pause || (pfc && pfc->pfc_en))
639 xgbe_enable_rx_flow_control(pdata);
640 else
641 xgbe_disable_rx_flow_control(pdata);
642
643 return 0;
644 }
645
xgbe_config_flow_control(struct xgbe_prv_data * pdata)646 static void xgbe_config_flow_control(struct xgbe_prv_data *pdata)
647 {
648 struct ieee_pfc *pfc = pdata->pfc;
649
650 xgbe_config_tx_flow_control(pdata);
651 xgbe_config_rx_flow_control(pdata);
652
653 XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE,
654 (pfc && pfc->pfc_en) ? 1 : 0);
655 }
656
xgbe_enable_dma_interrupts(struct xgbe_prv_data * pdata)657 static void xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
658 {
659 struct xgbe_channel *channel;
660 unsigned int i, ver;
661
662 /* Set the interrupt mode if supported */
663 if (pdata->channel_irq_mode)
664 XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
665 pdata->channel_irq_mode);
666
667 ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
668
669 for (i = 0; i < pdata->channel_count; i++) {
670 channel = pdata->channel[i];
671
672 /* Clear all the interrupts which are set */
673 XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
674 XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
675
676 /* Clear all interrupt enable bits */
677 channel->curr_ier = 0;
678
679 /* Enable following interrupts
680 * NIE - Normal Interrupt Summary Enable
681 * AIE - Abnormal Interrupt Summary Enable
682 * FBEE - Fatal Bus Error Enable
683 */
684 if (ver < 0x21) {
685 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
686 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
687 } else {
688 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
689 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
690 }
691 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
692
693 if (channel->tx_ring) {
694 /* Enable the following Tx interrupts
695 * TIE - Transmit Interrupt Enable (unless using
696 * per channel interrupts in edge triggered
697 * mode)
698 */
699 if (!pdata->per_channel_irq || pdata->channel_irq_mode)
700 XGMAC_SET_BITS(channel->curr_ier,
701 DMA_CH_IER, TIE, 1);
702 }
703 if (channel->rx_ring) {
704 /* Enable following Rx interrupts
705 * RBUE - Receive Buffer Unavailable Enable
706 * RIE - Receive Interrupt Enable (unless using
707 * per channel interrupts in edge triggered
708 * mode)
709 */
710 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
711 if (!pdata->per_channel_irq || pdata->channel_irq_mode)
712 XGMAC_SET_BITS(channel->curr_ier,
713 DMA_CH_IER, RIE, 1);
714 }
715
716 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
717 }
718 }
719
xgbe_enable_mtl_interrupts(struct xgbe_prv_data * pdata)720 static void xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
721 {
722 unsigned int mtl_q_isr;
723 unsigned int q_count, i;
724
725 q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
726 for (i = 0; i < q_count; i++) {
727 /* Clear all the interrupts which are set */
728 mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
729 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
730
731 /* No MTL interrupts to be enabled */
732 XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
733 }
734 }
735
xgbe_enable_mac_interrupts(struct xgbe_prv_data * pdata)736 static void xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
737 {
738 unsigned int mac_ier = 0;
739
740 /* Enable Timestamp interrupt */
741 XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
742
743 XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
744
745 /* Enable all counter interrupts */
746 XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
747 XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
748
749 /* Enable MDIO single command completion interrupt */
750 XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
751 }
752
xgbe_enable_ecc_interrupts(struct xgbe_prv_data * pdata)753 static void xgbe_enable_ecc_interrupts(struct xgbe_prv_data *pdata)
754 {
755 unsigned int ecc_isr, ecc_ier = 0;
756
757 if (!pdata->vdata->ecc_support)
758 return;
759
760 /* Clear all the interrupts which are set */
761 ecc_isr = XP_IOREAD(pdata, XP_ECC_ISR);
762 XP_IOWRITE(pdata, XP_ECC_ISR, ecc_isr);
763
764 /* Enable ECC interrupts */
765 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 1);
766 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 1);
767 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 1);
768 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 1);
769 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 1);
770 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 1);
771
772 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
773 }
774
xgbe_disable_ecc_ded(struct xgbe_prv_data * pdata)775 static void xgbe_disable_ecc_ded(struct xgbe_prv_data *pdata)
776 {
777 unsigned int ecc_ier;
778
779 ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
780
781 /* Disable ECC DED interrupts */
782 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_DED, 0);
783 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_DED, 0);
784 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_DED, 0);
785
786 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
787 }
788
xgbe_disable_ecc_sec(struct xgbe_prv_data * pdata,enum xgbe_ecc_sec sec)789 static void xgbe_disable_ecc_sec(struct xgbe_prv_data *pdata,
790 enum xgbe_ecc_sec sec)
791 {
792 unsigned int ecc_ier;
793
794 ecc_ier = XP_IOREAD(pdata, XP_ECC_IER);
795
796 /* Disable ECC SEC interrupt */
797 switch (sec) {
798 case XGBE_ECC_SEC_TX:
799 XP_SET_BITS(ecc_ier, XP_ECC_IER, TX_SEC, 0);
800 break;
801 case XGBE_ECC_SEC_RX:
802 XP_SET_BITS(ecc_ier, XP_ECC_IER, RX_SEC, 0);
803 break;
804 case XGBE_ECC_SEC_DESC:
805 XP_SET_BITS(ecc_ier, XP_ECC_IER, DESC_SEC, 0);
806 break;
807 }
808
809 XP_IOWRITE(pdata, XP_ECC_IER, ecc_ier);
810 }
811
xgbe_set_speed(struct xgbe_prv_data * pdata,int speed)812 static int xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
813 {
814 unsigned int ss;
815
816 switch (speed) {
817 case SPEED_10:
818 ss = 0x07;
819 break;
820 case SPEED_1000:
821 ss = 0x03;
822 break;
823 case SPEED_2500:
824 ss = 0x02;
825 break;
826 case SPEED_10000:
827 ss = 0x00;
828 break;
829 default:
830 return -EINVAL;
831 }
832
833 if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
834 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
835
836 return 0;
837 }
838
xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data * pdata)839 static int xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
840 {
841 /* Put the VLAN tag in the Rx descriptor */
842 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
843
844 /* Don't check the VLAN type */
845 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
846
847 /* Check only C-TAG (0x8100) packets */
848 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
849
850 /* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
851 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
852
853 /* Enable VLAN tag stripping */
854 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
855
856 return 0;
857 }
858
xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data * pdata)859 static int xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
860 {
861 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
862
863 return 0;
864 }
865
xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data * pdata)866 static int xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
867 {
868 /* Enable VLAN filtering */
869 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
870
871 /* Enable VLAN Hash Table filtering */
872 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
873
874 /* Disable VLAN tag inverse matching */
875 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
876
877 /* Only filter on the lower 12-bits of the VLAN tag */
878 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
879
880 /* In order for the VLAN Hash Table filtering to be effective,
881 * the VLAN tag identifier in the VLAN Tag Register must not
882 * be zero. Set the VLAN tag identifier to "1" to enable the
883 * VLAN Hash Table filtering. This implies that a VLAN tag of
884 * 1 will always pass filtering.
885 */
886 XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
887
888 return 0;
889 }
890
xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data * pdata)891 static int xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
892 {
893 /* Disable VLAN filtering */
894 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
895
896 return 0;
897 }
898
xgbe_vid_crc32_le(__le16 vid_le)899 static u32 xgbe_vid_crc32_le(__le16 vid_le)
900 {
901 u32 crc = ~0;
902 u32 temp = 0;
903 unsigned char *data = (unsigned char *)&vid_le;
904 unsigned char data_byte = 0;
905 int i, bits;
906
907 bits = get_bitmask_order(VLAN_VID_MASK);
908 for (i = 0; i < bits; i++) {
909 if ((i % 8) == 0)
910 data_byte = data[i / 8];
911
912 temp = ((crc & 1) ^ data_byte) & 1;
913 crc >>= 1;
914 data_byte >>= 1;
915
916 if (temp)
917 crc ^= CRC32_POLY_LE;
918 }
919
920 return crc;
921 }
922
xgbe_update_vlan_hash_table(struct xgbe_prv_data * pdata)923 static int xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
924 {
925 u32 crc;
926 u16 vid;
927 __le16 vid_le;
928 u16 vlan_hash_table = 0;
929
930 /* Generate the VLAN Hash Table value */
931 for_each_set_bit(vid, pdata->active_vlans, VLAN_N_VID) {
932 /* Get the CRC32 value of the VLAN ID */
933 vid_le = cpu_to_le16(vid);
934 crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
935
936 vlan_hash_table |= (1 << crc);
937 }
938
939 /* Set the VLAN Hash Table filtering register */
940 XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
941
942 return 0;
943 }
944
xgbe_set_promiscuous_mode(struct xgbe_prv_data * pdata,unsigned int enable)945 static int xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata,
946 unsigned int enable)
947 {
948 unsigned int val = enable ? 1 : 0;
949
950 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
951 return 0;
952
953 netif_dbg(pdata, drv, pdata->netdev, "%s promiscuous mode\n",
954 enable ? "entering" : "leaving");
955 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
956
957 /* Hardware will still perform VLAN filtering in promiscuous mode */
958 if (enable) {
959 xgbe_disable_rx_vlan_filtering(pdata);
960 } else {
961 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
962 xgbe_enable_rx_vlan_filtering(pdata);
963 }
964
965 return 0;
966 }
967
xgbe_set_all_multicast_mode(struct xgbe_prv_data * pdata,unsigned int enable)968 static int xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata,
969 unsigned int enable)
970 {
971 unsigned int val = enable ? 1 : 0;
972
973 if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
974 return 0;
975
976 netif_dbg(pdata, drv, pdata->netdev, "%s allmulti mode\n",
977 enable ? "entering" : "leaving");
978 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
979
980 return 0;
981 }
982
xgbe_set_mac_reg(struct xgbe_prv_data * pdata,struct netdev_hw_addr * ha,unsigned int * mac_reg)983 static void xgbe_set_mac_reg(struct xgbe_prv_data *pdata,
984 struct netdev_hw_addr *ha, unsigned int *mac_reg)
985 {
986 unsigned int mac_addr_hi, mac_addr_lo;
987 u8 *mac_addr;
988
989 mac_addr_lo = 0;
990 mac_addr_hi = 0;
991
992 if (ha) {
993 mac_addr = (u8 *)&mac_addr_lo;
994 mac_addr[0] = ha->addr[0];
995 mac_addr[1] = ha->addr[1];
996 mac_addr[2] = ha->addr[2];
997 mac_addr[3] = ha->addr[3];
998 mac_addr = (u8 *)&mac_addr_hi;
999 mac_addr[0] = ha->addr[4];
1000 mac_addr[1] = ha->addr[5];
1001
1002 netif_dbg(pdata, drv, pdata->netdev,
1003 "adding mac address %pM at %#x\n",
1004 ha->addr, *mac_reg);
1005
1006 XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
1007 }
1008
1009 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
1010 *mac_reg += MAC_MACA_INC;
1011 XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
1012 *mac_reg += MAC_MACA_INC;
1013 }
1014
xgbe_set_mac_addn_addrs(struct xgbe_prv_data * pdata)1015 static void xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
1016 {
1017 struct net_device *netdev = pdata->netdev;
1018 struct netdev_hw_addr *ha;
1019 unsigned int mac_reg;
1020 unsigned int addn_macs;
1021
1022 mac_reg = MAC_MACA1HR;
1023 addn_macs = pdata->hw_feat.addn_mac;
1024
1025 if (netdev_uc_count(netdev) > addn_macs) {
1026 xgbe_set_promiscuous_mode(pdata, 1);
1027 } else {
1028 netdev_for_each_uc_addr(ha, netdev) {
1029 xgbe_set_mac_reg(pdata, ha, &mac_reg);
1030 addn_macs--;
1031 }
1032
1033 if (netdev_mc_count(netdev) > addn_macs) {
1034 xgbe_set_all_multicast_mode(pdata, 1);
1035 } else {
1036 netdev_for_each_mc_addr(ha, netdev) {
1037 xgbe_set_mac_reg(pdata, ha, &mac_reg);
1038 addn_macs--;
1039 }
1040 }
1041 }
1042
1043 /* Clear remaining additional MAC address entries */
1044 while (addn_macs--)
1045 xgbe_set_mac_reg(pdata, NULL, &mac_reg);
1046 }
1047
xgbe_set_mac_hash_table(struct xgbe_prv_data * pdata)1048 static void xgbe_set_mac_hash_table(struct xgbe_prv_data *pdata)
1049 {
1050 struct net_device *netdev = pdata->netdev;
1051 struct netdev_hw_addr *ha;
1052 unsigned int hash_reg;
1053 unsigned int hash_table_shift, hash_table_count;
1054 u32 hash_table[XGBE_MAC_HASH_TABLE_SIZE];
1055 u32 crc;
1056 unsigned int i;
1057
1058 hash_table_shift = 26 - (pdata->hw_feat.hash_table_size >> 7);
1059 hash_table_count = pdata->hw_feat.hash_table_size / 32;
1060 memset(hash_table, 0, sizeof(hash_table));
1061
1062 /* Build the MAC Hash Table register values */
1063 netdev_for_each_uc_addr(ha, netdev) {
1064 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1065 crc >>= hash_table_shift;
1066 hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1067 }
1068
1069 netdev_for_each_mc_addr(ha, netdev) {
1070 crc = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN));
1071 crc >>= hash_table_shift;
1072 hash_table[crc >> 5] |= (1 << (crc & 0x1f));
1073 }
1074
1075 /* Set the MAC Hash Table registers */
1076 hash_reg = MAC_HTR0;
1077 for (i = 0; i < hash_table_count; i++) {
1078 XGMAC_IOWRITE(pdata, hash_reg, hash_table[i]);
1079 hash_reg += MAC_HTR_INC;
1080 }
1081 }
1082
xgbe_add_mac_addresses(struct xgbe_prv_data * pdata)1083 static int xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
1084 {
1085 if (pdata->hw_feat.hash_table_size)
1086 xgbe_set_mac_hash_table(pdata);
1087 else
1088 xgbe_set_mac_addn_addrs(pdata);
1089
1090 return 0;
1091 }
1092
xgbe_set_mac_address(struct xgbe_prv_data * pdata,const u8 * addr)1093 static int xgbe_set_mac_address(struct xgbe_prv_data *pdata, const u8 *addr)
1094 {
1095 unsigned int mac_addr_hi, mac_addr_lo;
1096
1097 mac_addr_hi = (addr[5] << 8) | (addr[4] << 0);
1098 mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
1099 (addr[1] << 8) | (addr[0] << 0);
1100
1101 XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
1102 XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
1103
1104 return 0;
1105 }
1106
xgbe_config_rx_mode(struct xgbe_prv_data * pdata)1107 static int xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
1108 {
1109 struct net_device *netdev = pdata->netdev;
1110 unsigned int pr_mode, am_mode;
1111
1112 pr_mode = ((netdev->flags & IFF_PROMISC) != 0);
1113 am_mode = ((netdev->flags & IFF_ALLMULTI) != 0);
1114
1115 xgbe_set_promiscuous_mode(pdata, pr_mode);
1116 xgbe_set_all_multicast_mode(pdata, am_mode);
1117
1118 xgbe_add_mac_addresses(pdata);
1119
1120 return 0;
1121 }
1122
xgbe_clr_gpio(struct xgbe_prv_data * pdata,unsigned int gpio)1123 static int xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1124 {
1125 unsigned int reg;
1126
1127 if (gpio > 15)
1128 return -EINVAL;
1129
1130 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1131
1132 reg &= ~(1 << (gpio + 16));
1133 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1134
1135 return 0;
1136 }
1137
xgbe_set_gpio(struct xgbe_prv_data * pdata,unsigned int gpio)1138 static int xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1139 {
1140 unsigned int reg;
1141
1142 if (gpio > 15)
1143 return -EINVAL;
1144
1145 reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1146
1147 reg |= (1 << (gpio + 16));
1148 XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1149
1150 return 0;
1151 }
1152
xgbe_read_mmd_regs_v2(struct xgbe_prv_data * pdata,int prtad,int mmd_reg)1153 static int xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1154 int mmd_reg)
1155 {
1156 unsigned long flags;
1157 unsigned int mmd_address, index, offset;
1158 int mmd_data;
1159
1160 if (mmd_reg & XGBE_ADDR_C45)
1161 mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1162 else
1163 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1164
1165 /* The PCS registers are accessed using mmio. The underlying
1166 * management interface uses indirect addressing to access the MMD
1167 * register sets. This requires accessing of the PCS register in two
1168 * phases, an address phase and a data phase.
1169 *
1170 * The mmio interface is based on 16-bit offsets and values. All
1171 * register offsets must therefore be adjusted by left shifting the
1172 * offset 1 bit and reading 16 bits of data.
1173 */
1174 mmd_address <<= 1;
1175 index = mmd_address & ~pdata->xpcs_window_mask;
1176 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1177
1178 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1179 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1180 mmd_data = XPCS16_IOREAD(pdata, offset);
1181 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1182
1183 return mmd_data;
1184 }
1185
xgbe_write_mmd_regs_v2(struct xgbe_prv_data * pdata,int prtad,int mmd_reg,int mmd_data)1186 static void xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad,
1187 int mmd_reg, int mmd_data)
1188 {
1189 unsigned long flags;
1190 unsigned int mmd_address, index, offset;
1191
1192 if (mmd_reg & XGBE_ADDR_C45)
1193 mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1194 else
1195 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1196
1197 /* The PCS registers are accessed using mmio. The underlying
1198 * management interface uses indirect addressing to access the MMD
1199 * register sets. This requires accessing of the PCS register in two
1200 * phases, an address phase and a data phase.
1201 *
1202 * The mmio interface is based on 16-bit offsets and values. All
1203 * register offsets must therefore be adjusted by left shifting the
1204 * offset 1 bit and writing 16 bits of data.
1205 */
1206 mmd_address <<= 1;
1207 index = mmd_address & ~pdata->xpcs_window_mask;
1208 offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1209
1210 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1211 XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1212 XPCS16_IOWRITE(pdata, offset, mmd_data);
1213 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1214 }
1215
xgbe_read_mmd_regs_v1(struct xgbe_prv_data * pdata,int prtad,int mmd_reg)1216 static int xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1217 int mmd_reg)
1218 {
1219 unsigned long flags;
1220 unsigned int mmd_address;
1221 int mmd_data;
1222
1223 if (mmd_reg & XGBE_ADDR_C45)
1224 mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1225 else
1226 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1227
1228 /* The PCS registers are accessed using mmio. The underlying APB3
1229 * management interface uses indirect addressing to access the MMD
1230 * register sets. This requires accessing of the PCS register in two
1231 * phases, an address phase and a data phase.
1232 *
1233 * The mmio interface is based on 32-bit offsets and values. All
1234 * register offsets must therefore be adjusted by left shifting the
1235 * offset 2 bits and reading 32 bits of data.
1236 */
1237 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1238 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1239 mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1240 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1241
1242 return mmd_data;
1243 }
1244
xgbe_write_mmd_regs_v1(struct xgbe_prv_data * pdata,int prtad,int mmd_reg,int mmd_data)1245 static void xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad,
1246 int mmd_reg, int mmd_data)
1247 {
1248 unsigned int mmd_address;
1249 unsigned long flags;
1250
1251 if (mmd_reg & XGBE_ADDR_C45)
1252 mmd_address = mmd_reg & ~XGBE_ADDR_C45;
1253 else
1254 mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1255
1256 /* The PCS registers are accessed using mmio. The underlying APB3
1257 * management interface uses indirect addressing to access the MMD
1258 * register sets. This requires accessing of the PCS register in two
1259 * phases, an address phase and a data phase.
1260 *
1261 * The mmio interface is based on 32-bit offsets and values. All
1262 * register offsets must therefore be adjusted by left shifting the
1263 * offset 2 bits and writing 32 bits of data.
1264 */
1265 spin_lock_irqsave(&pdata->xpcs_lock, flags);
1266 XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1267 XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1268 spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1269 }
1270
xgbe_read_mmd_regs(struct xgbe_prv_data * pdata,int prtad,int mmd_reg)1271 static int xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1272 int mmd_reg)
1273 {
1274 switch (pdata->vdata->xpcs_access) {
1275 case XGBE_XPCS_ACCESS_V1:
1276 return xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg);
1277
1278 case XGBE_XPCS_ACCESS_V2:
1279 default:
1280 return xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg);
1281 }
1282 }
1283
xgbe_write_mmd_regs(struct xgbe_prv_data * pdata,int prtad,int mmd_reg,int mmd_data)1284 static void xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad,
1285 int mmd_reg, int mmd_data)
1286 {
1287 switch (pdata->vdata->xpcs_access) {
1288 case XGBE_XPCS_ACCESS_V1:
1289 return xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data);
1290
1291 case XGBE_XPCS_ACCESS_V2:
1292 default:
1293 return xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data);
1294 }
1295 }
1296
xgbe_create_mdio_sca_c22(int port,int reg)1297 static unsigned int xgbe_create_mdio_sca_c22(int port, int reg)
1298 {
1299 unsigned int mdio_sca;
1300
1301 mdio_sca = 0;
1302 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1303 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1304
1305 return mdio_sca;
1306 }
1307
xgbe_create_mdio_sca_c45(int port,unsigned int da,int reg)1308 static unsigned int xgbe_create_mdio_sca_c45(int port, unsigned int da, int reg)
1309 {
1310 unsigned int mdio_sca;
1311
1312 mdio_sca = 0;
1313 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1314 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1315 XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1316
1317 return mdio_sca;
1318 }
1319
xgbe_write_ext_mii_regs(struct xgbe_prv_data * pdata,unsigned int mdio_sca,u16 val)1320 static int xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata,
1321 unsigned int mdio_sca, u16 val)
1322 {
1323 unsigned int mdio_sccd;
1324
1325 reinit_completion(&pdata->mdio_complete);
1326
1327 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1328
1329 mdio_sccd = 0;
1330 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1331 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1332 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1333 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1334
1335 if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1336 netdev_err(pdata->netdev, "mdio write operation timed out\n");
1337 return -ETIMEDOUT;
1338 }
1339
1340 return 0;
1341 }
1342
xgbe_write_ext_mii_regs_c22(struct xgbe_prv_data * pdata,int addr,int reg,u16 val)1343 static int xgbe_write_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1344 int reg, u16 val)
1345 {
1346 unsigned int mdio_sca;
1347
1348 mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1349
1350 return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1351 }
1352
xgbe_write_ext_mii_regs_c45(struct xgbe_prv_data * pdata,int addr,int devad,int reg,u16 val)1353 static int xgbe_write_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1354 int devad, int reg, u16 val)
1355 {
1356 unsigned int mdio_sca;
1357
1358 mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1359
1360 return xgbe_write_ext_mii_regs(pdata, mdio_sca, val);
1361 }
1362
xgbe_read_ext_mii_regs(struct xgbe_prv_data * pdata,unsigned int mdio_sca)1363 static int xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata,
1364 unsigned int mdio_sca)
1365 {
1366 unsigned int mdio_sccd;
1367
1368 reinit_completion(&pdata->mdio_complete);
1369
1370 XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1371
1372 mdio_sccd = 0;
1373 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1374 XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1375 XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1376
1377 if (!wait_for_completion_timeout(&pdata->mdio_complete, HZ)) {
1378 netdev_err(pdata->netdev, "mdio read operation timed out\n");
1379 return -ETIMEDOUT;
1380 }
1381
1382 return XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA);
1383 }
1384
xgbe_read_ext_mii_regs_c22(struct xgbe_prv_data * pdata,int addr,int reg)1385 static int xgbe_read_ext_mii_regs_c22(struct xgbe_prv_data *pdata, int addr,
1386 int reg)
1387 {
1388 unsigned int mdio_sca;
1389
1390 mdio_sca = xgbe_create_mdio_sca_c22(addr, reg);
1391
1392 return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1393 }
1394
xgbe_read_ext_mii_regs_c45(struct xgbe_prv_data * pdata,int addr,int devad,int reg)1395 static int xgbe_read_ext_mii_regs_c45(struct xgbe_prv_data *pdata, int addr,
1396 int devad, int reg)
1397 {
1398 unsigned int mdio_sca;
1399
1400 mdio_sca = xgbe_create_mdio_sca_c45(addr, devad, reg);
1401
1402 return xgbe_read_ext_mii_regs(pdata, mdio_sca);
1403 }
1404
xgbe_set_ext_mii_mode(struct xgbe_prv_data * pdata,unsigned int port,enum xgbe_mdio_mode mode)1405 static int xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1406 enum xgbe_mdio_mode mode)
1407 {
1408 unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1409
1410 switch (mode) {
1411 case XGBE_MDIO_MODE_CL22:
1412 if (port > XGMAC_MAX_C22_PORT)
1413 return -EINVAL;
1414 reg_val |= (1 << port);
1415 break;
1416 case XGBE_MDIO_MODE_CL45:
1417 break;
1418 default:
1419 return -EINVAL;
1420 }
1421
1422 XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1423
1424 return 0;
1425 }
1426
xgbe_tx_complete(struct xgbe_ring_desc * rdesc)1427 static int xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1428 {
1429 return !XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN);
1430 }
1431
xgbe_disable_rx_csum(struct xgbe_prv_data * pdata)1432 static int xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1433 {
1434 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1435
1436 return 0;
1437 }
1438
xgbe_enable_rx_csum(struct xgbe_prv_data * pdata)1439 static int xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1440 {
1441 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1442
1443 return 0;
1444 }
1445
xgbe_tx_desc_reset(struct xgbe_ring_data * rdata)1446 static void xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1447 {
1448 struct xgbe_ring_desc *rdesc = rdata->rdesc;
1449
1450 /* Reset the Tx descriptor
1451 * Set buffer 1 (lo) address to zero
1452 * Set buffer 1 (hi) address to zero
1453 * Reset all other control bits (IC, TTSE, B2L & B1L)
1454 * Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1455 */
1456 rdesc->desc0 = 0;
1457 rdesc->desc1 = 0;
1458 rdesc->desc2 = 0;
1459 rdesc->desc3 = 0;
1460
1461 /* Make sure ownership is written to the descriptor */
1462 dma_wmb();
1463 }
1464
xgbe_tx_desc_init(struct xgbe_channel * channel)1465 static void xgbe_tx_desc_init(struct xgbe_channel *channel)
1466 {
1467 struct xgbe_ring *ring = channel->tx_ring;
1468 struct xgbe_ring_data *rdata;
1469 int i;
1470 int start_index = ring->cur;
1471
1472 DBGPR("-->tx_desc_init\n");
1473
1474 /* Initialze all descriptors */
1475 for (i = 0; i < ring->rdesc_count; i++) {
1476 rdata = XGBE_GET_DESC_DATA(ring, i);
1477
1478 /* Initialize Tx descriptor */
1479 xgbe_tx_desc_reset(rdata);
1480 }
1481
1482 /* Update the total number of Tx descriptors */
1483 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1484
1485 /* Update the starting address of descriptor ring */
1486 rdata = XGBE_GET_DESC_DATA(ring, start_index);
1487 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1488 upper_32_bits(rdata->rdesc_dma));
1489 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1490 lower_32_bits(rdata->rdesc_dma));
1491
1492 DBGPR("<--tx_desc_init\n");
1493 }
1494
xgbe_rx_desc_reset(struct xgbe_prv_data * pdata,struct xgbe_ring_data * rdata,unsigned int index)1495 static void xgbe_rx_desc_reset(struct xgbe_prv_data *pdata,
1496 struct xgbe_ring_data *rdata, unsigned int index)
1497 {
1498 struct xgbe_ring_desc *rdesc = rdata->rdesc;
1499 unsigned int rx_usecs = pdata->rx_usecs;
1500 unsigned int rx_frames = pdata->rx_frames;
1501 unsigned int inte;
1502 dma_addr_t hdr_dma, buf_dma;
1503
1504 if (!rx_usecs && !rx_frames) {
1505 /* No coalescing, interrupt for every descriptor */
1506 inte = 1;
1507 } else {
1508 /* Set interrupt based on Rx frame coalescing setting */
1509 if (rx_frames && !((index + 1) % rx_frames))
1510 inte = 1;
1511 else
1512 inte = 0;
1513 }
1514
1515 /* Reset the Rx descriptor
1516 * Set buffer 1 (lo) address to header dma address (lo)
1517 * Set buffer 1 (hi) address to header dma address (hi)
1518 * Set buffer 2 (lo) address to buffer dma address (lo)
1519 * Set buffer 2 (hi) address to buffer dma address (hi) and
1520 * set control bits OWN and INTE
1521 */
1522 hdr_dma = rdata->rx.hdr.dma_base + rdata->rx.hdr.dma_off;
1523 buf_dma = rdata->rx.buf.dma_base + rdata->rx.buf.dma_off;
1524 rdesc->desc0 = cpu_to_le32(lower_32_bits(hdr_dma));
1525 rdesc->desc1 = cpu_to_le32(upper_32_bits(hdr_dma));
1526 rdesc->desc2 = cpu_to_le32(lower_32_bits(buf_dma));
1527 rdesc->desc3 = cpu_to_le32(upper_32_bits(buf_dma));
1528
1529 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, INTE, inte);
1530
1531 /* Since the Rx DMA engine is likely running, make sure everything
1532 * is written to the descriptor(s) before setting the OWN bit
1533 * for the descriptor
1534 */
1535 dma_wmb();
1536
1537 XGMAC_SET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN, 1);
1538
1539 /* Make sure ownership is written to the descriptor */
1540 dma_wmb();
1541 }
1542
xgbe_rx_desc_init(struct xgbe_channel * channel)1543 static void xgbe_rx_desc_init(struct xgbe_channel *channel)
1544 {
1545 struct xgbe_prv_data *pdata = channel->pdata;
1546 struct xgbe_ring *ring = channel->rx_ring;
1547 struct xgbe_ring_data *rdata;
1548 unsigned int start_index = ring->cur;
1549 unsigned int i;
1550
1551 DBGPR("-->rx_desc_init\n");
1552
1553 /* Initialize all descriptors */
1554 for (i = 0; i < ring->rdesc_count; i++) {
1555 rdata = XGBE_GET_DESC_DATA(ring, i);
1556
1557 /* Initialize Rx descriptor */
1558 xgbe_rx_desc_reset(pdata, rdata, i);
1559 }
1560
1561 /* Update the total number of Rx descriptors */
1562 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1563
1564 /* Update the starting address of descriptor ring */
1565 rdata = XGBE_GET_DESC_DATA(ring, start_index);
1566 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1567 upper_32_bits(rdata->rdesc_dma));
1568 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1569 lower_32_bits(rdata->rdesc_dma));
1570
1571 /* Update the Rx Descriptor Tail Pointer */
1572 rdata = XGBE_GET_DESC_DATA(ring, start_index + ring->rdesc_count - 1);
1573 XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO,
1574 lower_32_bits(rdata->rdesc_dma));
1575
1576 DBGPR("<--rx_desc_init\n");
1577 }
1578
xgbe_update_tstamp_addend(struct xgbe_prv_data * pdata,unsigned int addend)1579 static void xgbe_update_tstamp_addend(struct xgbe_prv_data *pdata,
1580 unsigned int addend)
1581 {
1582 unsigned int count = 10000;
1583
1584 /* Set the addend register value and tell the device */
1585 XGMAC_IOWRITE(pdata, MAC_TSAR, addend);
1586 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSADDREG, 1);
1587
1588 /* Wait for addend update to complete */
1589 while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSADDREG))
1590 udelay(5);
1591
1592 if (!count)
1593 netdev_err(pdata->netdev,
1594 "timed out updating timestamp addend register\n");
1595 }
1596
xgbe_set_tstamp_time(struct xgbe_prv_data * pdata,unsigned int sec,unsigned int nsec)1597 static void xgbe_set_tstamp_time(struct xgbe_prv_data *pdata, unsigned int sec,
1598 unsigned int nsec)
1599 {
1600 unsigned int count = 10000;
1601
1602 /* Set the time values and tell the device */
1603 XGMAC_IOWRITE(pdata, MAC_STSUR, sec);
1604 XGMAC_IOWRITE(pdata, MAC_STNUR, nsec);
1605 XGMAC_IOWRITE_BITS(pdata, MAC_TSCR, TSINIT, 1);
1606
1607 /* Wait for time update to complete */
1608 while (--count && XGMAC_IOREAD_BITS(pdata, MAC_TSCR, TSINIT))
1609 udelay(5);
1610
1611 if (!count)
1612 netdev_err(pdata->netdev, "timed out initializing timestamp\n");
1613 }
1614
xgbe_get_tstamp_time(struct xgbe_prv_data * pdata)1615 static u64 xgbe_get_tstamp_time(struct xgbe_prv_data *pdata)
1616 {
1617 u64 nsec;
1618
1619 nsec = XGMAC_IOREAD(pdata, MAC_STSR);
1620 nsec *= NSEC_PER_SEC;
1621 nsec += XGMAC_IOREAD(pdata, MAC_STNR);
1622
1623 return nsec;
1624 }
1625
xgbe_get_tx_tstamp(struct xgbe_prv_data * pdata)1626 static u64 xgbe_get_tx_tstamp(struct xgbe_prv_data *pdata)
1627 {
1628 unsigned int tx_snr, tx_ssr;
1629 u64 nsec;
1630
1631 if (pdata->vdata->tx_tstamp_workaround) {
1632 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1633 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1634 } else {
1635 tx_ssr = XGMAC_IOREAD(pdata, MAC_TXSSR);
1636 tx_snr = XGMAC_IOREAD(pdata, MAC_TXSNR);
1637 }
1638
1639 if (XGMAC_GET_BITS(tx_snr, MAC_TXSNR, TXTSSTSMIS))
1640 return 0;
1641
1642 nsec = tx_ssr;
1643 nsec *= NSEC_PER_SEC;
1644 nsec += tx_snr;
1645
1646 return nsec;
1647 }
1648
xgbe_get_rx_tstamp(struct xgbe_packet_data * packet,struct xgbe_ring_desc * rdesc)1649 static void xgbe_get_rx_tstamp(struct xgbe_packet_data *packet,
1650 struct xgbe_ring_desc *rdesc)
1651 {
1652 u64 nsec;
1653
1654 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSA) &&
1655 !XGMAC_GET_BITS_LE(rdesc->desc3, RX_CONTEXT_DESC3, TSD)) {
1656 nsec = le32_to_cpu(rdesc->desc1);
1657 nsec <<= 32;
1658 nsec |= le32_to_cpu(rdesc->desc0);
1659 if (nsec != 0xffffffffffffffffULL) {
1660 packet->rx_tstamp = nsec;
1661 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1662 RX_TSTAMP, 1);
1663 }
1664 }
1665 }
1666
xgbe_config_tstamp(struct xgbe_prv_data * pdata,unsigned int mac_tscr)1667 static int xgbe_config_tstamp(struct xgbe_prv_data *pdata,
1668 unsigned int mac_tscr)
1669 {
1670 /* Set one nano-second accuracy */
1671 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCTRLSSR, 1);
1672
1673 /* Set fine timestamp update */
1674 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSCFUPDT, 1);
1675
1676 /* Overwrite earlier timestamps */
1677 XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TXTSSTSM, 1);
1678
1679 XGMAC_IOWRITE(pdata, MAC_TSCR, mac_tscr);
1680
1681 /* Exit if timestamping is not enabled */
1682 if (!XGMAC_GET_BITS(mac_tscr, MAC_TSCR, TSENA))
1683 return 0;
1684
1685 /* Initialize time registers */
1686 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SSINC, XGBE_TSTAMP_SSINC);
1687 XGMAC_IOWRITE_BITS(pdata, MAC_SSIR, SNSINC, XGBE_TSTAMP_SNSINC);
1688 xgbe_update_tstamp_addend(pdata, pdata->tstamp_addend);
1689 xgbe_set_tstamp_time(pdata, 0, 0);
1690
1691 /* Initialize the timecounter */
1692 timecounter_init(&pdata->tstamp_tc, &pdata->tstamp_cc,
1693 ktime_to_ns(ktime_get_real()));
1694
1695 return 0;
1696 }
1697
xgbe_tx_start_xmit(struct xgbe_channel * channel,struct xgbe_ring * ring)1698 static void xgbe_tx_start_xmit(struct xgbe_channel *channel,
1699 struct xgbe_ring *ring)
1700 {
1701 struct xgbe_prv_data *pdata = channel->pdata;
1702 struct xgbe_ring_data *rdata;
1703
1704 /* Make sure everything is written before the register write */
1705 wmb();
1706
1707 /* Issue a poll command to Tx DMA by writing address
1708 * of next immediate free descriptor */
1709 rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1710 XGMAC_DMA_IOWRITE(channel, DMA_CH_TDTR_LO,
1711 lower_32_bits(rdata->rdesc_dma));
1712
1713 /* Start the Tx timer */
1714 if (pdata->tx_usecs && !channel->tx_timer_active) {
1715 channel->tx_timer_active = 1;
1716 mod_timer(&channel->tx_timer,
1717 jiffies + usecs_to_jiffies(pdata->tx_usecs));
1718 }
1719
1720 ring->tx.xmit_more = 0;
1721 }
1722
xgbe_dev_xmit(struct xgbe_channel * channel)1723 static void xgbe_dev_xmit(struct xgbe_channel *channel)
1724 {
1725 struct xgbe_prv_data *pdata = channel->pdata;
1726 struct xgbe_ring *ring = channel->tx_ring;
1727 struct xgbe_ring_data *rdata;
1728 struct xgbe_ring_desc *rdesc;
1729 struct xgbe_packet_data *packet = &ring->packet_data;
1730 unsigned int tx_packets, tx_bytes;
1731 unsigned int csum, tso, vlan, vxlan;
1732 unsigned int tso_context, vlan_context;
1733 unsigned int tx_set_ic;
1734 int start_index = ring->cur;
1735 int cur_index = ring->cur;
1736 int i;
1737
1738 DBGPR("-->xgbe_dev_xmit\n");
1739
1740 tx_packets = packet->tx_packets;
1741 tx_bytes = packet->tx_bytes;
1742
1743 csum = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1744 CSUM_ENABLE);
1745 tso = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1746 TSO_ENABLE);
1747 vlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1748 VLAN_CTAG);
1749 vxlan = XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES,
1750 VXLAN);
1751
1752 if (tso && (packet->mss != ring->tx.cur_mss))
1753 tso_context = 1;
1754 else
1755 tso_context = 0;
1756
1757 if (vlan && (packet->vlan_ctag != ring->tx.cur_vlan_ctag))
1758 vlan_context = 1;
1759 else
1760 vlan_context = 0;
1761
1762 /* Determine if an interrupt should be generated for this Tx:
1763 * Interrupt:
1764 * - Tx frame count exceeds the frame count setting
1765 * - Addition of Tx frame count to the frame count since the
1766 * last interrupt was set exceeds the frame count setting
1767 * No interrupt:
1768 * - No frame count setting specified (ethtool -C ethX tx-frames 0)
1769 * - Addition of Tx frame count to the frame count since the
1770 * last interrupt was set does not exceed the frame count setting
1771 */
1772 ring->coalesce_count += tx_packets;
1773 if (!pdata->tx_frames)
1774 tx_set_ic = 0;
1775 else if (tx_packets > pdata->tx_frames)
1776 tx_set_ic = 1;
1777 else if ((ring->coalesce_count % pdata->tx_frames) < tx_packets)
1778 tx_set_ic = 1;
1779 else
1780 tx_set_ic = 0;
1781
1782 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1783 rdesc = rdata->rdesc;
1784
1785 /* Create a context descriptor if this is a TSO packet */
1786 if (tso_context || vlan_context) {
1787 if (tso_context) {
1788 netif_dbg(pdata, tx_queued, pdata->netdev,
1789 "TSO context descriptor, mss=%u\n",
1790 packet->mss);
1791
1792 /* Set the MSS size */
1793 XGMAC_SET_BITS_LE(rdesc->desc2, TX_CONTEXT_DESC2,
1794 MSS, packet->mss);
1795
1796 /* Mark it as a CONTEXT descriptor */
1797 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1798 CTXT, 1);
1799
1800 /* Indicate this descriptor contains the MSS */
1801 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1802 TCMSSV, 1);
1803
1804 ring->tx.cur_mss = packet->mss;
1805 }
1806
1807 if (vlan_context) {
1808 netif_dbg(pdata, tx_queued, pdata->netdev,
1809 "VLAN context descriptor, ctag=%u\n",
1810 packet->vlan_ctag);
1811
1812 /* Mark it as a CONTEXT descriptor */
1813 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1814 CTXT, 1);
1815
1816 /* Set the VLAN tag */
1817 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1818 VT, packet->vlan_ctag);
1819
1820 /* Indicate this descriptor contains the VLAN tag */
1821 XGMAC_SET_BITS_LE(rdesc->desc3, TX_CONTEXT_DESC3,
1822 VLTV, 1);
1823
1824 ring->tx.cur_vlan_ctag = packet->vlan_ctag;
1825 }
1826
1827 cur_index++;
1828 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1829 rdesc = rdata->rdesc;
1830 }
1831
1832 /* Update buffer address (for TSO this is the header) */
1833 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1834 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1835
1836 /* Update the buffer length */
1837 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1838 rdata->skb_dma_len);
1839
1840 /* VLAN tag insertion check */
1841 if (vlan)
1842 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, VTIR,
1843 TX_NORMAL_DESC2_VLAN_INSERT);
1844
1845 /* Timestamp enablement check */
1846 if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP))
1847 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, TTSE, 1);
1848
1849 /* Mark it as First Descriptor */
1850 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FD, 1);
1851
1852 /* Mark it as a NORMAL descriptor */
1853 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1854
1855 /* Set OWN bit if not the first descriptor */
1856 if (cur_index != start_index)
1857 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1858
1859 if (tso) {
1860 /* Enable TSO */
1861 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TSE, 1);
1862 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPPL,
1863 packet->tcp_payload_len);
1864 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, TCPHDRLEN,
1865 packet->tcp_header_len / 4);
1866
1867 pdata->ext_stats.tx_tso_packets += tx_packets;
1868 } else {
1869 /* Enable CRC and Pad Insertion */
1870 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CPC, 0);
1871
1872 /* Enable HW CSUM */
1873 if (csum)
1874 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1875 CIC, 0x3);
1876
1877 /* Set the total length to be transmitted */
1878 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, FL,
1879 packet->length);
1880 }
1881
1882 if (vxlan) {
1883 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, VNP,
1884 TX_NORMAL_DESC3_VXLAN_PACKET);
1885
1886 pdata->ext_stats.tx_vxlan_packets += packet->tx_packets;
1887 }
1888
1889 for (i = cur_index - start_index + 1; i < packet->rdesc_count; i++) {
1890 cur_index++;
1891 rdata = XGBE_GET_DESC_DATA(ring, cur_index);
1892 rdesc = rdata->rdesc;
1893
1894 /* Update buffer address */
1895 rdesc->desc0 = cpu_to_le32(lower_32_bits(rdata->skb_dma));
1896 rdesc->desc1 = cpu_to_le32(upper_32_bits(rdata->skb_dma));
1897
1898 /* Update the buffer length */
1899 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, HL_B1L,
1900 rdata->skb_dma_len);
1901
1902 /* Set OWN bit */
1903 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1904
1905 /* Mark it as NORMAL descriptor */
1906 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT, 0);
1907
1908 /* Enable HW CSUM */
1909 if (csum)
1910 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3,
1911 CIC, 0x3);
1912 }
1913
1914 /* Set LAST bit for the last descriptor */
1915 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD, 1);
1916
1917 /* Set IC bit based on Tx coalescing settings */
1918 if (tx_set_ic)
1919 XGMAC_SET_BITS_LE(rdesc->desc2, TX_NORMAL_DESC2, IC, 1);
1920
1921 /* Save the Tx info to report back during cleanup */
1922 rdata->tx.packets = tx_packets;
1923 rdata->tx.bytes = tx_bytes;
1924
1925 pdata->ext_stats.txq_packets[channel->queue_index] += tx_packets;
1926 pdata->ext_stats.txq_bytes[channel->queue_index] += tx_bytes;
1927
1928 /* In case the Tx DMA engine is running, make sure everything
1929 * is written to the descriptor(s) before setting the OWN bit
1930 * for the first descriptor
1931 */
1932 dma_wmb();
1933
1934 /* Set OWN bit for the first descriptor */
1935 rdata = XGBE_GET_DESC_DATA(ring, start_index);
1936 rdesc = rdata->rdesc;
1937 XGMAC_SET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN, 1);
1938
1939 if (netif_msg_tx_queued(pdata))
1940 xgbe_dump_tx_desc(pdata, ring, start_index,
1941 packet->rdesc_count, 1);
1942
1943 /* Make sure ownership is written to the descriptor */
1944 smp_wmb();
1945
1946 ring->cur = cur_index + 1;
1947 if (!netdev_xmit_more() ||
1948 netif_xmit_stopped(netdev_get_tx_queue(pdata->netdev,
1949 channel->queue_index)))
1950 xgbe_tx_start_xmit(channel, ring);
1951 else
1952 ring->tx.xmit_more = 1;
1953
1954 DBGPR(" %s: descriptors %u to %u written\n",
1955 channel->name, start_index & (ring->rdesc_count - 1),
1956 (ring->cur - 1) & (ring->rdesc_count - 1));
1957
1958 DBGPR("<--xgbe_dev_xmit\n");
1959 }
1960
xgbe_dev_read(struct xgbe_channel * channel)1961 static int xgbe_dev_read(struct xgbe_channel *channel)
1962 {
1963 struct xgbe_prv_data *pdata = channel->pdata;
1964 struct xgbe_ring *ring = channel->rx_ring;
1965 struct xgbe_ring_data *rdata;
1966 struct xgbe_ring_desc *rdesc;
1967 struct xgbe_packet_data *packet = &ring->packet_data;
1968 struct net_device *netdev = pdata->netdev;
1969 unsigned int err, etlt, l34t;
1970
1971 DBGPR("-->xgbe_dev_read: cur = %d\n", ring->cur);
1972
1973 rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1974 rdesc = rdata->rdesc;
1975
1976 /* Check for data availability */
1977 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1978 return 1;
1979
1980 /* Make sure descriptor fields are read after reading the OWN bit */
1981 dma_rmb();
1982
1983 if (netif_msg_rx_status(pdata))
1984 xgbe_dump_rx_desc(pdata, ring, ring->cur);
1985
1986 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1987 /* Timestamp Context Descriptor */
1988 xgbe_get_rx_tstamp(packet, rdesc);
1989
1990 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1991 CONTEXT, 1);
1992 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1993 CONTEXT_NEXT, 0);
1994 return 0;
1995 }
1996
1997 /* Normal Descriptor, be sure Context Descriptor bit is off */
1998 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1999
2000 /* Indicate if a Context Descriptor is next */
2001 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
2002 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2003 CONTEXT_NEXT, 1);
2004
2005 /* Get the header length */
2006 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
2007 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2008 FIRST, 1);
2009 rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
2010 RX_NORMAL_DESC2, HL);
2011 if (rdata->rx.hdr_len)
2012 pdata->ext_stats.rx_split_header_packets++;
2013 } else {
2014 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2015 FIRST, 0);
2016 }
2017
2018 /* Get the RSS hash */
2019 if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
2020 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2021 RSS_HASH, 1);
2022
2023 packet->rss_hash = le32_to_cpu(rdesc->desc1);
2024
2025 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2026 switch (l34t) {
2027 case RX_DESC3_L34T_IPV4_TCP:
2028 case RX_DESC3_L34T_IPV4_UDP:
2029 case RX_DESC3_L34T_IPV6_TCP:
2030 case RX_DESC3_L34T_IPV6_UDP:
2031 packet->rss_hash_type = PKT_HASH_TYPE_L4;
2032 break;
2033 default:
2034 packet->rss_hash_type = PKT_HASH_TYPE_L3;
2035 }
2036 }
2037
2038 /* Not all the data has been transferred for this packet */
2039 if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD))
2040 return 0;
2041
2042 /* This is the last of the data for this packet */
2043 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2044 LAST, 1);
2045
2046 /* Get the packet length */
2047 rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
2048
2049 /* Set checksum done indicator as appropriate */
2050 if (netdev->features & NETIF_F_RXCSUM) {
2051 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2052 CSUM_DONE, 1);
2053 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2054 TNPCSUM_DONE, 1);
2055 }
2056
2057 /* Set the tunneled packet indicator */
2058 if (XGMAC_GET_BITS_LE(rdesc->desc2, RX_NORMAL_DESC2, TNP)) {
2059 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2060 TNP, 1);
2061 pdata->ext_stats.rx_vxlan_packets++;
2062
2063 l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
2064 switch (l34t) {
2065 case RX_DESC3_L34T_IPV4_UNKNOWN:
2066 case RX_DESC3_L34T_IPV6_UNKNOWN:
2067 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2068 TNPCSUM_DONE, 0);
2069 break;
2070 }
2071 }
2072
2073 /* Check for errors (only valid in last descriptor) */
2074 err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
2075 etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
2076 netif_dbg(pdata, rx_status, netdev, "err=%u, etlt=%#x\n", err, etlt);
2077
2078 if (!err || !etlt) {
2079 /* No error if err is 0 or etlt is 0 */
2080 if ((etlt == 0x09) &&
2081 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
2082 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2083 VLAN_CTAG, 1);
2084 packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
2085 RX_NORMAL_DESC0,
2086 OVT);
2087 netif_dbg(pdata, rx_status, netdev, "vlan-ctag=%#06x\n",
2088 packet->vlan_ctag);
2089 }
2090 } else {
2091 unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
2092 RX_PACKET_ATTRIBUTES, TNP);
2093
2094 if ((etlt == 0x05) || (etlt == 0x06)) {
2095 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2096 CSUM_DONE, 0);
2097 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2098 TNPCSUM_DONE, 0);
2099 pdata->ext_stats.rx_csum_errors++;
2100 } else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
2101 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2102 CSUM_DONE, 0);
2103 XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
2104 TNPCSUM_DONE, 0);
2105 pdata->ext_stats.rx_vxlan_csum_errors++;
2106 } else {
2107 XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
2108 FRAME, 1);
2109 }
2110 }
2111
2112 pdata->ext_stats.rxq_packets[channel->queue_index]++;
2113 pdata->ext_stats.rxq_bytes[channel->queue_index] += rdata->rx.len;
2114
2115 DBGPR("<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n", channel->name,
2116 ring->cur & (ring->rdesc_count - 1), ring->cur);
2117
2118 return 0;
2119 }
2120
xgbe_is_context_desc(struct xgbe_ring_desc * rdesc)2121 static int xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
2122 {
2123 /* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
2124 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT);
2125 }
2126
xgbe_is_last_desc(struct xgbe_ring_desc * rdesc)2127 static int xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
2128 {
2129 /* Rx and Tx share LD bit, so check TDES3.LD bit */
2130 return XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD);
2131 }
2132
xgbe_enable_int(struct xgbe_channel * channel,enum xgbe_int int_id)2133 static int xgbe_enable_int(struct xgbe_channel *channel,
2134 enum xgbe_int int_id)
2135 {
2136 switch (int_id) {
2137 case XGMAC_INT_DMA_CH_SR_TI:
2138 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2139 break;
2140 case XGMAC_INT_DMA_CH_SR_TPS:
2141 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
2142 break;
2143 case XGMAC_INT_DMA_CH_SR_TBU:
2144 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
2145 break;
2146 case XGMAC_INT_DMA_CH_SR_RI:
2147 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2148 break;
2149 case XGMAC_INT_DMA_CH_SR_RBU:
2150 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
2151 break;
2152 case XGMAC_INT_DMA_CH_SR_RPS:
2153 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
2154 break;
2155 case XGMAC_INT_DMA_CH_SR_TI_RI:
2156 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
2157 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
2158 break;
2159 case XGMAC_INT_DMA_CH_SR_FBE:
2160 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
2161 break;
2162 case XGMAC_INT_DMA_ALL:
2163 channel->curr_ier |= channel->saved_ier;
2164 break;
2165 default:
2166 return -1;
2167 }
2168
2169 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2170
2171 return 0;
2172 }
2173
xgbe_disable_int(struct xgbe_channel * channel,enum xgbe_int int_id)2174 static int xgbe_disable_int(struct xgbe_channel *channel,
2175 enum xgbe_int int_id)
2176 {
2177 switch (int_id) {
2178 case XGMAC_INT_DMA_CH_SR_TI:
2179 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2180 break;
2181 case XGMAC_INT_DMA_CH_SR_TPS:
2182 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
2183 break;
2184 case XGMAC_INT_DMA_CH_SR_TBU:
2185 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
2186 break;
2187 case XGMAC_INT_DMA_CH_SR_RI:
2188 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2189 break;
2190 case XGMAC_INT_DMA_CH_SR_RBU:
2191 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
2192 break;
2193 case XGMAC_INT_DMA_CH_SR_RPS:
2194 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
2195 break;
2196 case XGMAC_INT_DMA_CH_SR_TI_RI:
2197 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
2198 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
2199 break;
2200 case XGMAC_INT_DMA_CH_SR_FBE:
2201 XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
2202 break;
2203 case XGMAC_INT_DMA_ALL:
2204 channel->saved_ier = channel->curr_ier;
2205 channel->curr_ier = 0;
2206 break;
2207 default:
2208 return -1;
2209 }
2210
2211 XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
2212
2213 return 0;
2214 }
2215
__xgbe_exit(struct xgbe_prv_data * pdata)2216 static int __xgbe_exit(struct xgbe_prv_data *pdata)
2217 {
2218 unsigned int count = 2000;
2219
2220 DBGPR("-->xgbe_exit\n");
2221
2222 /* Issue a software reset */
2223 XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
2224 usleep_range(10, 15);
2225
2226 /* Poll Until Poll Condition */
2227 while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
2228 usleep_range(500, 600);
2229
2230 if (!count)
2231 return -EBUSY;
2232
2233 DBGPR("<--xgbe_exit\n");
2234
2235 return 0;
2236 }
2237
xgbe_exit(struct xgbe_prv_data * pdata)2238 static int xgbe_exit(struct xgbe_prv_data *pdata)
2239 {
2240 int ret;
2241
2242 /* To guard against possible incorrectly generated interrupts,
2243 * issue the software reset twice.
2244 */
2245 ret = __xgbe_exit(pdata);
2246 if (ret)
2247 return ret;
2248
2249 return __xgbe_exit(pdata);
2250 }
2251
xgbe_flush_tx_queues(struct xgbe_prv_data * pdata)2252 static int xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
2253 {
2254 unsigned int i, count;
2255
2256 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
2257 return 0;
2258
2259 for (i = 0; i < pdata->tx_q_count; i++)
2260 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
2261
2262 /* Poll Until Poll Condition */
2263 for (i = 0; i < pdata->tx_q_count; i++) {
2264 count = 2000;
2265 while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
2266 MTL_Q_TQOMR, FTQ))
2267 usleep_range(500, 600);
2268
2269 if (!count)
2270 return -EBUSY;
2271 }
2272
2273 return 0;
2274 }
2275
xgbe_config_dma_bus(struct xgbe_prv_data * pdata)2276 static void xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
2277 {
2278 unsigned int sbmr;
2279
2280 sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
2281
2282 /* Set enhanced addressing mode */
2283 XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
2284
2285 /* Set the System Bus mode */
2286 XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
2287 XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
2288 XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
2289 XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
2290 XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
2291
2292 XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
2293
2294 /* Set descriptor fetching threshold */
2295 if (pdata->vdata->tx_desc_prefetch)
2296 XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
2297 pdata->vdata->tx_desc_prefetch);
2298
2299 if (pdata->vdata->rx_desc_prefetch)
2300 XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
2301 pdata->vdata->rx_desc_prefetch);
2302 }
2303
xgbe_config_dma_cache(struct xgbe_prv_data * pdata)2304 static void xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
2305 {
2306 XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
2307 XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
2308 if (pdata->awarcr)
2309 XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
2310 }
2311
xgbe_config_mtl_mode(struct xgbe_prv_data * pdata)2312 static void xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
2313 {
2314 unsigned int i;
2315
2316 /* Set Tx to weighted round robin scheduling algorithm */
2317 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
2318
2319 /* Set Tx traffic classes to use WRR algorithm with equal weights */
2320 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2321 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2322 MTL_TSA_ETS);
2323 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
2324 }
2325
2326 /* Set Rx to strict priority algorithm */
2327 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
2328 }
2329
xgbe_queue_flow_control_threshold(struct xgbe_prv_data * pdata,unsigned int queue,unsigned int q_fifo_size)2330 static void xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
2331 unsigned int queue,
2332 unsigned int q_fifo_size)
2333 {
2334 unsigned int frame_fifo_size;
2335 unsigned int rfa, rfd;
2336
2337 frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
2338
2339 if (pdata->pfcq[queue] && (q_fifo_size > pdata->pfc_rfa)) {
2340 /* PFC is active for this queue */
2341 rfa = pdata->pfc_rfa;
2342 rfd = rfa + frame_fifo_size;
2343 if (rfd > XGMAC_FLOW_CONTROL_MAX)
2344 rfd = XGMAC_FLOW_CONTROL_MAX;
2345 if (rfa >= XGMAC_FLOW_CONTROL_MAX)
2346 rfa = XGMAC_FLOW_CONTROL_MAX - XGMAC_FLOW_CONTROL_UNIT;
2347 } else {
2348 /* This path deals with just maximum frame sizes which are
2349 * limited to a jumbo frame of 9,000 (plus headers, etc.)
2350 * so we can never exceed the maximum allowable RFA/RFD
2351 * values.
2352 */
2353 if (q_fifo_size <= 2048) {
2354 /* rx_rfd to zero to signal no flow control */
2355 pdata->rx_rfa[queue] = 0;
2356 pdata->rx_rfd[queue] = 0;
2357 return;
2358 }
2359
2360 if (q_fifo_size <= 4096) {
2361 /* Between 2048 and 4096 */
2362 pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */
2363 pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */
2364 return;
2365 }
2366
2367 if (q_fifo_size <= frame_fifo_size) {
2368 /* Between 4096 and max-frame */
2369 pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */
2370 pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */
2371 return;
2372 }
2373
2374 if (q_fifo_size <= (frame_fifo_size * 3)) {
2375 /* Between max-frame and 3 max-frames,
2376 * trigger if we get just over a frame of data and
2377 * resume when we have just under half a frame left.
2378 */
2379 rfa = q_fifo_size - frame_fifo_size;
2380 rfd = rfa + (frame_fifo_size / 2);
2381 } else {
2382 /* Above 3 max-frames - trigger when just over
2383 * 2 frames of space available
2384 */
2385 rfa = frame_fifo_size * 2;
2386 rfa += XGMAC_FLOW_CONTROL_UNIT;
2387 rfd = rfa + frame_fifo_size;
2388 }
2389 }
2390
2391 pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
2392 pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
2393 }
2394
xgbe_calculate_flow_control_threshold(struct xgbe_prv_data * pdata,unsigned int * fifo)2395 static void xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
2396 unsigned int *fifo)
2397 {
2398 unsigned int q_fifo_size;
2399 unsigned int i;
2400
2401 for (i = 0; i < pdata->rx_q_count; i++) {
2402 q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
2403
2404 xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
2405 }
2406 }
2407
xgbe_config_flow_control_threshold(struct xgbe_prv_data * pdata)2408 static void xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
2409 {
2410 unsigned int i;
2411
2412 for (i = 0; i < pdata->rx_q_count; i++) {
2413 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
2414 pdata->rx_rfa[i]);
2415 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
2416 pdata->rx_rfd[i]);
2417 }
2418 }
2419
xgbe_get_tx_fifo_size(struct xgbe_prv_data * pdata)2420 static unsigned int xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
2421 {
2422 /* The configured value may not be the actual amount of fifo RAM */
2423 return min_t(unsigned int, pdata->tx_max_fifo_size,
2424 pdata->hw_feat.tx_fifo_size);
2425 }
2426
xgbe_get_rx_fifo_size(struct xgbe_prv_data * pdata)2427 static unsigned int xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
2428 {
2429 /* The configured value may not be the actual amount of fifo RAM */
2430 return min_t(unsigned int, pdata->rx_max_fifo_size,
2431 pdata->hw_feat.rx_fifo_size);
2432 }
2433
xgbe_calculate_equal_fifo(unsigned int fifo_size,unsigned int queue_count,unsigned int * fifo)2434 static void xgbe_calculate_equal_fifo(unsigned int fifo_size,
2435 unsigned int queue_count,
2436 unsigned int *fifo)
2437 {
2438 unsigned int q_fifo_size;
2439 unsigned int p_fifo;
2440 unsigned int i;
2441
2442 q_fifo_size = fifo_size / queue_count;
2443
2444 /* Calculate the fifo setting by dividing the queue's fifo size
2445 * by the fifo allocation increment (with 0 representing the
2446 * base allocation increment so decrement the result by 1).
2447 */
2448 p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
2449 if (p_fifo)
2450 p_fifo--;
2451
2452 /* Distribute the fifo equally amongst the queues */
2453 for (i = 0; i < queue_count; i++)
2454 fifo[i] = p_fifo;
2455 }
2456
xgbe_set_nonprio_fifos(unsigned int fifo_size,unsigned int queue_count,unsigned int * fifo)2457 static unsigned int xgbe_set_nonprio_fifos(unsigned int fifo_size,
2458 unsigned int queue_count,
2459 unsigned int *fifo)
2460 {
2461 unsigned int i;
2462
2463 BUILD_BUG_ON_NOT_POWER_OF_2(XGMAC_FIFO_MIN_ALLOC);
2464
2465 if (queue_count <= IEEE_8021QAZ_MAX_TCS)
2466 return fifo_size;
2467
2468 /* Rx queues 9 and up are for specialized packets,
2469 * such as PTP or DCB control packets, etc. and
2470 * don't require a large fifo
2471 */
2472 for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
2473 fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
2474 fifo_size -= XGMAC_FIFO_MIN_ALLOC;
2475 }
2476
2477 return fifo_size;
2478 }
2479
xgbe_get_pfc_delay(struct xgbe_prv_data * pdata)2480 static unsigned int xgbe_get_pfc_delay(struct xgbe_prv_data *pdata)
2481 {
2482 unsigned int delay;
2483
2484 /* If a delay has been provided, use that */
2485 if (pdata->pfc->delay)
2486 return pdata->pfc->delay / 8;
2487
2488 /* Allow for two maximum size frames */
2489 delay = xgbe_get_max_frame(pdata);
2490 delay += XGMAC_ETH_PREAMBLE;
2491 delay *= 2;
2492
2493 /* Allow for PFC frame */
2494 delay += XGMAC_PFC_DATA_LEN;
2495 delay += ETH_HLEN + ETH_FCS_LEN;
2496 delay += XGMAC_ETH_PREAMBLE;
2497
2498 /* Allow for miscellaneous delays (LPI exit, cable, etc.) */
2499 delay += XGMAC_PFC_DELAYS;
2500
2501 return delay;
2502 }
2503
xgbe_get_pfc_queues(struct xgbe_prv_data * pdata)2504 static unsigned int xgbe_get_pfc_queues(struct xgbe_prv_data *pdata)
2505 {
2506 unsigned int count, prio_queues;
2507 unsigned int i;
2508
2509 if (!pdata->pfc->pfc_en)
2510 return 0;
2511
2512 count = 0;
2513 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2514 for (i = 0; i < prio_queues; i++) {
2515 if (!xgbe_is_pfc_queue(pdata, i))
2516 continue;
2517
2518 pdata->pfcq[i] = 1;
2519 count++;
2520 }
2521
2522 return count;
2523 }
2524
xgbe_calculate_dcb_fifo(struct xgbe_prv_data * pdata,unsigned int fifo_size,unsigned int * fifo)2525 static void xgbe_calculate_dcb_fifo(struct xgbe_prv_data *pdata,
2526 unsigned int fifo_size,
2527 unsigned int *fifo)
2528 {
2529 unsigned int q_fifo_size, rem_fifo, addn_fifo;
2530 unsigned int prio_queues;
2531 unsigned int pfc_count;
2532 unsigned int i;
2533
2534 q_fifo_size = XGMAC_FIFO_ALIGN(xgbe_get_max_frame(pdata));
2535 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2536 pfc_count = xgbe_get_pfc_queues(pdata);
2537
2538 if (!pfc_count || ((q_fifo_size * prio_queues) > fifo_size)) {
2539 /* No traffic classes with PFC enabled or can't do lossless */
2540 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2541 return;
2542 }
2543
2544 /* Calculate how much fifo we have to play with */
2545 rem_fifo = fifo_size - (q_fifo_size * prio_queues);
2546
2547 /* Calculate how much more than base fifo PFC needs, which also
2548 * becomes the threshold activation point (RFA)
2549 */
2550 pdata->pfc_rfa = xgbe_get_pfc_delay(pdata);
2551 pdata->pfc_rfa = XGMAC_FLOW_CONTROL_ALIGN(pdata->pfc_rfa);
2552
2553 if (pdata->pfc_rfa > q_fifo_size) {
2554 addn_fifo = pdata->pfc_rfa - q_fifo_size;
2555 addn_fifo = XGMAC_FIFO_ALIGN(addn_fifo);
2556 } else {
2557 addn_fifo = 0;
2558 }
2559
2560 /* Calculate DCB fifo settings:
2561 * - distribute remaining fifo between the VLAN priority
2562 * queues based on traffic class PFC enablement and overall
2563 * priority (0 is lowest priority, so start at highest)
2564 */
2565 i = prio_queues;
2566 while (i > 0) {
2567 i--;
2568
2569 fifo[i] = (q_fifo_size / XGMAC_FIFO_UNIT) - 1;
2570
2571 if (!pdata->pfcq[i] || !addn_fifo)
2572 continue;
2573
2574 if (addn_fifo > rem_fifo) {
2575 netdev_warn(pdata->netdev,
2576 "RXq%u cannot set needed fifo size\n", i);
2577 if (!rem_fifo)
2578 continue;
2579
2580 addn_fifo = rem_fifo;
2581 }
2582
2583 fifo[i] += (addn_fifo / XGMAC_FIFO_UNIT);
2584 rem_fifo -= addn_fifo;
2585 }
2586
2587 if (rem_fifo) {
2588 unsigned int inc_fifo = rem_fifo / prio_queues;
2589
2590 /* Distribute remaining fifo across queues */
2591 for (i = 0; i < prio_queues; i++)
2592 fifo[i] += (inc_fifo / XGMAC_FIFO_UNIT);
2593 }
2594 }
2595
xgbe_config_tx_fifo_size(struct xgbe_prv_data * pdata)2596 static void xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
2597 {
2598 unsigned int fifo_size;
2599 unsigned int fifo[XGBE_MAX_QUEUES];
2600 unsigned int i;
2601
2602 fifo_size = xgbe_get_tx_fifo_size(pdata);
2603
2604 xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
2605
2606 for (i = 0; i < pdata->tx_q_count; i++)
2607 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
2608
2609 netif_info(pdata, drv, pdata->netdev,
2610 "%d Tx hardware queues, %d byte fifo per queue\n",
2611 pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2612 }
2613
xgbe_config_rx_fifo_size(struct xgbe_prv_data * pdata)2614 static void xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
2615 {
2616 unsigned int fifo_size;
2617 unsigned int fifo[XGBE_MAX_QUEUES];
2618 unsigned int prio_queues;
2619 unsigned int i;
2620
2621 /* Clear any DCB related fifo/queue information */
2622 memset(pdata->pfcq, 0, sizeof(pdata->pfcq));
2623 pdata->pfc_rfa = 0;
2624
2625 fifo_size = xgbe_get_rx_fifo_size(pdata);
2626 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2627
2628 /* Assign a minimum fifo to the non-VLAN priority queues */
2629 fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
2630
2631 if (pdata->pfc && pdata->ets)
2632 xgbe_calculate_dcb_fifo(pdata, fifo_size, fifo);
2633 else
2634 xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
2635
2636 for (i = 0; i < pdata->rx_q_count; i++)
2637 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
2638
2639 xgbe_calculate_flow_control_threshold(pdata, fifo);
2640 xgbe_config_flow_control_threshold(pdata);
2641
2642 if (pdata->pfc && pdata->ets && pdata->pfc->pfc_en) {
2643 netif_info(pdata, drv, pdata->netdev,
2644 "%u Rx hardware queues\n", pdata->rx_q_count);
2645 for (i = 0; i < pdata->rx_q_count; i++)
2646 netif_info(pdata, drv, pdata->netdev,
2647 "RxQ%u, %u byte fifo queue\n", i,
2648 ((fifo[i] + 1) * XGMAC_FIFO_UNIT));
2649 } else {
2650 netif_info(pdata, drv, pdata->netdev,
2651 "%u Rx hardware queues, %u byte fifo per queue\n",
2652 pdata->rx_q_count,
2653 ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
2654 }
2655 }
2656
xgbe_config_queue_mapping(struct xgbe_prv_data * pdata)2657 static void xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
2658 {
2659 unsigned int qptc, qptc_extra, queue;
2660 unsigned int prio_queues;
2661 unsigned int ppq, ppq_extra, prio;
2662 unsigned int mask;
2663 unsigned int i, j, reg, reg_val;
2664
2665 /* Map the MTL Tx Queues to Traffic Classes
2666 * Note: Tx Queues >= Traffic Classes
2667 */
2668 qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
2669 qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
2670
2671 for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
2672 for (j = 0; j < qptc; j++) {
2673 netif_dbg(pdata, drv, pdata->netdev,
2674 "TXq%u mapped to TC%u\n", queue, i);
2675 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2676 Q2TCMAP, i);
2677 pdata->q2tc_map[queue++] = i;
2678 }
2679
2680 if (i < qptc_extra) {
2681 netif_dbg(pdata, drv, pdata->netdev,
2682 "TXq%u mapped to TC%u\n", queue, i);
2683 XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
2684 Q2TCMAP, i);
2685 pdata->q2tc_map[queue++] = i;
2686 }
2687 }
2688
2689 /* Map the 8 VLAN priority values to available MTL Rx queues */
2690 prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
2691 ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
2692 ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
2693
2694 reg = MAC_RQC2R;
2695 reg_val = 0;
2696 for (i = 0, prio = 0; i < prio_queues;) {
2697 mask = 0;
2698 for (j = 0; j < ppq; j++) {
2699 netif_dbg(pdata, drv, pdata->netdev,
2700 "PRIO%u mapped to RXq%u\n", prio, i);
2701 mask |= (1 << prio);
2702 pdata->prio2q_map[prio++] = i;
2703 }
2704
2705 if (i < ppq_extra) {
2706 netif_dbg(pdata, drv, pdata->netdev,
2707 "PRIO%u mapped to RXq%u\n", prio, i);
2708 mask |= (1 << prio);
2709 pdata->prio2q_map[prio++] = i;
2710 }
2711
2712 reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2713
2714 if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2715 continue;
2716
2717 XGMAC_IOWRITE(pdata, reg, reg_val);
2718 reg += MAC_RQC2_INC;
2719 reg_val = 0;
2720 }
2721
2722 /* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2723 reg = MTL_RQDCM0R;
2724 reg_val = 0;
2725 for (i = 0; i < pdata->rx_q_count;) {
2726 reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2727
2728 if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2729 continue;
2730
2731 XGMAC_IOWRITE(pdata, reg, reg_val);
2732
2733 reg += MTL_RQDCM_INC;
2734 reg_val = 0;
2735 }
2736 }
2737
xgbe_config_tc(struct xgbe_prv_data * pdata)2738 static void xgbe_config_tc(struct xgbe_prv_data *pdata)
2739 {
2740 unsigned int offset, queue, prio;
2741 u8 i;
2742
2743 netdev_reset_tc(pdata->netdev);
2744 if (!pdata->num_tcs)
2745 return;
2746
2747 netdev_set_num_tc(pdata->netdev, pdata->num_tcs);
2748
2749 for (i = 0, queue = 0, offset = 0; i < pdata->num_tcs; i++) {
2750 while ((queue < pdata->tx_q_count) &&
2751 (pdata->q2tc_map[queue] == i))
2752 queue++;
2753
2754 netif_dbg(pdata, drv, pdata->netdev, "TC%u using TXq%u-%u\n",
2755 i, offset, queue - 1);
2756 netdev_set_tc_queue(pdata->netdev, i, queue - offset, offset);
2757 offset = queue;
2758 }
2759
2760 if (!pdata->ets)
2761 return;
2762
2763 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++)
2764 netdev_set_prio_tc_map(pdata->netdev, prio,
2765 pdata->ets->prio_tc[prio]);
2766 }
2767
xgbe_config_dcb_tc(struct xgbe_prv_data * pdata)2768 static void xgbe_config_dcb_tc(struct xgbe_prv_data *pdata)
2769 {
2770 struct ieee_ets *ets = pdata->ets;
2771 unsigned int total_weight, min_weight, weight;
2772 unsigned int mask, reg, reg_val;
2773 unsigned int i, prio;
2774
2775 if (!ets)
2776 return;
2777
2778 /* Set Tx to deficit weighted round robin scheduling algorithm (when
2779 * traffic class is using ETS algorithm)
2780 */
2781 XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_DWRR);
2782
2783 /* Set Traffic Class algorithms */
2784 total_weight = pdata->netdev->mtu * pdata->hw_feat.tc_cnt;
2785 min_weight = total_weight / 100;
2786 if (!min_weight)
2787 min_weight = 1;
2788
2789 for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
2790 /* Map the priorities to the traffic class */
2791 mask = 0;
2792 for (prio = 0; prio < IEEE_8021QAZ_MAX_TCS; prio++) {
2793 if (ets->prio_tc[prio] == i)
2794 mask |= (1 << prio);
2795 }
2796 mask &= 0xff;
2797
2798 netif_dbg(pdata, drv, pdata->netdev, "TC%u PRIO mask=%#x\n",
2799 i, mask);
2800 reg = MTL_TCPM0R + (MTL_TCPM_INC * (i / MTL_TCPM_TC_PER_REG));
2801 reg_val = XGMAC_IOREAD(pdata, reg);
2802
2803 reg_val &= ~(0xff << ((i % MTL_TCPM_TC_PER_REG) << 3));
2804 reg_val |= (mask << ((i % MTL_TCPM_TC_PER_REG) << 3));
2805
2806 XGMAC_IOWRITE(pdata, reg, reg_val);
2807
2808 /* Set the traffic class algorithm */
2809 switch (ets->tc_tsa[i]) {
2810 case IEEE_8021QAZ_TSA_STRICT:
2811 netif_dbg(pdata, drv, pdata->netdev,
2812 "TC%u using SP\n", i);
2813 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2814 MTL_TSA_SP);
2815 break;
2816 case IEEE_8021QAZ_TSA_ETS:
2817 weight = total_weight * ets->tc_tx_bw[i] / 100;
2818 weight = clamp(weight, min_weight, total_weight);
2819
2820 netif_dbg(pdata, drv, pdata->netdev,
2821 "TC%u using DWRR (weight %u)\n", i, weight);
2822 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
2823 MTL_TSA_ETS);
2824 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW,
2825 weight);
2826 break;
2827 }
2828 }
2829
2830 xgbe_config_tc(pdata);
2831 }
2832
xgbe_config_dcb_pfc(struct xgbe_prv_data * pdata)2833 static void xgbe_config_dcb_pfc(struct xgbe_prv_data *pdata)
2834 {
2835 if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2836 /* Just stop the Tx queues while Rx fifo is changed */
2837 netif_tx_stop_all_queues(pdata->netdev);
2838
2839 /* Suspend Rx so that fifo's can be adjusted */
2840 pdata->hw_if.disable_rx(pdata);
2841 }
2842
2843 xgbe_config_rx_fifo_size(pdata);
2844 xgbe_config_flow_control(pdata);
2845
2846 if (!test_bit(XGBE_DOWN, &pdata->dev_state)) {
2847 /* Resume Rx */
2848 pdata->hw_if.enable_rx(pdata);
2849
2850 /* Resume Tx queues */
2851 netif_tx_start_all_queues(pdata->netdev);
2852 }
2853 }
2854
xgbe_config_mac_address(struct xgbe_prv_data * pdata)2855 static void xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2856 {
2857 xgbe_set_mac_address(pdata, pdata->netdev->dev_addr);
2858
2859 /* Filtering is done using perfect filtering and hash filtering */
2860 if (pdata->hw_feat.hash_table_size) {
2861 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2862 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2863 XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2864 }
2865 }
2866
xgbe_config_jumbo_enable(struct xgbe_prv_data * pdata)2867 static void xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2868 {
2869 unsigned int val;
2870
2871 val = (pdata->netdev->mtu > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2872
2873 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2874 }
2875
xgbe_config_mac_speed(struct xgbe_prv_data * pdata)2876 static void xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2877 {
2878 xgbe_set_speed(pdata, pdata->phy_speed);
2879 }
2880
xgbe_config_checksum_offload(struct xgbe_prv_data * pdata)2881 static void xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2882 {
2883 if (pdata->netdev->features & NETIF_F_RXCSUM)
2884 xgbe_enable_rx_csum(pdata);
2885 else
2886 xgbe_disable_rx_csum(pdata);
2887 }
2888
xgbe_config_vlan_support(struct xgbe_prv_data * pdata)2889 static void xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2890 {
2891 /* Indicate that VLAN Tx CTAGs come from context descriptors */
2892 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2893 XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2894
2895 /* Set the current VLAN Hash Table register value */
2896 xgbe_update_vlan_hash_table(pdata);
2897
2898 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)
2899 xgbe_enable_rx_vlan_filtering(pdata);
2900 else
2901 xgbe_disable_rx_vlan_filtering(pdata);
2902
2903 if (pdata->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
2904 xgbe_enable_rx_vlan_stripping(pdata);
2905 else
2906 xgbe_disable_rx_vlan_stripping(pdata);
2907 }
2908
xgbe_mmc_read(struct xgbe_prv_data * pdata,unsigned int reg_lo)2909 static u64 xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2910 {
2911 bool read_hi;
2912 u64 val;
2913
2914 if (pdata->vdata->mmc_64bit) {
2915 switch (reg_lo) {
2916 /* These registers are always 32 bit */
2917 case MMC_RXRUNTERROR:
2918 case MMC_RXJABBERERROR:
2919 case MMC_RXUNDERSIZE_G:
2920 case MMC_RXOVERSIZE_G:
2921 case MMC_RXWATCHDOGERROR:
2922 read_hi = false;
2923 break;
2924
2925 default:
2926 read_hi = true;
2927 }
2928 } else {
2929 switch (reg_lo) {
2930 /* These registers are always 64 bit */
2931 case MMC_TXOCTETCOUNT_GB_LO:
2932 case MMC_TXOCTETCOUNT_G_LO:
2933 case MMC_RXOCTETCOUNT_GB_LO:
2934 case MMC_RXOCTETCOUNT_G_LO:
2935 read_hi = true;
2936 break;
2937
2938 default:
2939 read_hi = false;
2940 }
2941 }
2942
2943 val = XGMAC_IOREAD(pdata, reg_lo);
2944
2945 if (read_hi)
2946 val |= ((u64)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2947
2948 return val;
2949 }
2950
xgbe_tx_mmc_int(struct xgbe_prv_data * pdata)2951 static void xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2952 {
2953 struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2954 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2955
2956 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2957 stats->txoctetcount_gb +=
2958 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2959
2960 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2961 stats->txframecount_gb +=
2962 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2963
2964 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2965 stats->txbroadcastframes_g +=
2966 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2967
2968 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2969 stats->txmulticastframes_g +=
2970 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2971
2972 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2973 stats->tx64octets_gb +=
2974 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2975
2976 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2977 stats->tx65to127octets_gb +=
2978 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2979
2980 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2981 stats->tx128to255octets_gb +=
2982 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2983
2984 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2985 stats->tx256to511octets_gb +=
2986 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2987
2988 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2989 stats->tx512to1023octets_gb +=
2990 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2991
2992 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2993 stats->tx1024tomaxoctets_gb +=
2994 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2995
2996 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2997 stats->txunicastframes_gb +=
2998 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2999
3000 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
3001 stats->txmulticastframes_gb +=
3002 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3003
3004 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
3005 stats->txbroadcastframes_g +=
3006 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3007
3008 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
3009 stats->txunderflowerror +=
3010 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3011
3012 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
3013 stats->txoctetcount_g +=
3014 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3015
3016 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
3017 stats->txframecount_g +=
3018 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3019
3020 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
3021 stats->txpauseframes +=
3022 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3023
3024 if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
3025 stats->txvlanframes_g +=
3026 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3027 }
3028
xgbe_rx_mmc_int(struct xgbe_prv_data * pdata)3029 static void xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
3030 {
3031 struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3032 unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
3033
3034 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
3035 stats->rxframecount_gb +=
3036 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3037
3038 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
3039 stats->rxoctetcount_gb +=
3040 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3041
3042 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
3043 stats->rxoctetcount_g +=
3044 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3045
3046 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
3047 stats->rxbroadcastframes_g +=
3048 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3049
3050 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
3051 stats->rxmulticastframes_g +=
3052 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3053
3054 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
3055 stats->rxcrcerror +=
3056 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3057
3058 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
3059 stats->rxrunterror +=
3060 xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3061
3062 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
3063 stats->rxjabbererror +=
3064 xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3065
3066 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
3067 stats->rxundersize_g +=
3068 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3069
3070 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
3071 stats->rxoversize_g +=
3072 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3073
3074 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
3075 stats->rx64octets_gb +=
3076 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3077
3078 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
3079 stats->rx65to127octets_gb +=
3080 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3081
3082 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
3083 stats->rx128to255octets_gb +=
3084 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3085
3086 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
3087 stats->rx256to511octets_gb +=
3088 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3089
3090 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
3091 stats->rx512to1023octets_gb +=
3092 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3093
3094 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
3095 stats->rx1024tomaxoctets_gb +=
3096 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3097
3098 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
3099 stats->rxunicastframes_g +=
3100 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3101
3102 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
3103 stats->rxlengtherror +=
3104 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3105
3106 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
3107 stats->rxoutofrangetype +=
3108 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3109
3110 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
3111 stats->rxpauseframes +=
3112 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3113
3114 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
3115 stats->rxfifooverflow +=
3116 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3117
3118 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
3119 stats->rxvlanframes_gb +=
3120 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3121
3122 if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
3123 stats->rxwatchdogerror +=
3124 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3125 }
3126
xgbe_read_mmc_stats(struct xgbe_prv_data * pdata)3127 static void xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
3128 {
3129 struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
3130
3131 /* Freeze counters */
3132 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
3133
3134 stats->txoctetcount_gb +=
3135 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
3136
3137 stats->txframecount_gb +=
3138 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
3139
3140 stats->txbroadcastframes_g +=
3141 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
3142
3143 stats->txmulticastframes_g +=
3144 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
3145
3146 stats->tx64octets_gb +=
3147 xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
3148
3149 stats->tx65to127octets_gb +=
3150 xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
3151
3152 stats->tx128to255octets_gb +=
3153 xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
3154
3155 stats->tx256to511octets_gb +=
3156 xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
3157
3158 stats->tx512to1023octets_gb +=
3159 xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
3160
3161 stats->tx1024tomaxoctets_gb +=
3162 xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
3163
3164 stats->txunicastframes_gb +=
3165 xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
3166
3167 stats->txmulticastframes_gb +=
3168 xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
3169
3170 stats->txbroadcastframes_g +=
3171 xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
3172
3173 stats->txunderflowerror +=
3174 xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
3175
3176 stats->txoctetcount_g +=
3177 xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
3178
3179 stats->txframecount_g +=
3180 xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
3181
3182 stats->txpauseframes +=
3183 xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
3184
3185 stats->txvlanframes_g +=
3186 xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
3187
3188 stats->rxframecount_gb +=
3189 xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
3190
3191 stats->rxoctetcount_gb +=
3192 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
3193
3194 stats->rxoctetcount_g +=
3195 xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
3196
3197 stats->rxbroadcastframes_g +=
3198 xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
3199
3200 stats->rxmulticastframes_g +=
3201 xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
3202
3203 stats->rxcrcerror +=
3204 xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
3205
3206 stats->rxrunterror +=
3207 xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
3208
3209 stats->rxjabbererror +=
3210 xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
3211
3212 stats->rxundersize_g +=
3213 xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
3214
3215 stats->rxoversize_g +=
3216 xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
3217
3218 stats->rx64octets_gb +=
3219 xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
3220
3221 stats->rx65to127octets_gb +=
3222 xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
3223
3224 stats->rx128to255octets_gb +=
3225 xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
3226
3227 stats->rx256to511octets_gb +=
3228 xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
3229
3230 stats->rx512to1023octets_gb +=
3231 xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
3232
3233 stats->rx1024tomaxoctets_gb +=
3234 xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
3235
3236 stats->rxunicastframes_g +=
3237 xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
3238
3239 stats->rxlengtherror +=
3240 xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
3241
3242 stats->rxoutofrangetype +=
3243 xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
3244
3245 stats->rxpauseframes +=
3246 xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
3247
3248 stats->rxfifooverflow +=
3249 xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
3250
3251 stats->rxvlanframes_gb +=
3252 xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
3253
3254 stats->rxwatchdogerror +=
3255 xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
3256
3257 /* Un-freeze counters */
3258 XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
3259 }
3260
xgbe_config_mmc(struct xgbe_prv_data * pdata)3261 static void xgbe_config_mmc(struct xgbe_prv_data *pdata)
3262 {
3263 /* Set counters to reset on read */
3264 XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
3265
3266 /* Reset the counters */
3267 XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
3268 }
3269
xgbe_txq_prepare_tx_stop(struct xgbe_prv_data * pdata,unsigned int queue)3270 static void xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata,
3271 unsigned int queue)
3272 {
3273 unsigned int tx_status;
3274 unsigned long tx_timeout;
3275
3276 /* The Tx engine cannot be stopped if it is actively processing
3277 * packets. Wait for the Tx queue to empty the Tx fifo. Don't
3278 * wait forever though...
3279 */
3280 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3281 while (time_before(jiffies, tx_timeout)) {
3282 tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
3283 if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
3284 (XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
3285 break;
3286
3287 usleep_range(500, 1000);
3288 }
3289
3290 if (!time_before(jiffies, tx_timeout))
3291 netdev_info(pdata->netdev,
3292 "timed out waiting for Tx queue %u to empty\n",
3293 queue);
3294 }
3295
xgbe_prepare_tx_stop(struct xgbe_prv_data * pdata,unsigned int queue)3296 static void xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata,
3297 unsigned int queue)
3298 {
3299 unsigned int tx_dsr, tx_pos, tx_qidx;
3300 unsigned int tx_status;
3301 unsigned long tx_timeout;
3302
3303 if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
3304 return xgbe_txq_prepare_tx_stop(pdata, queue);
3305
3306 /* Calculate the status register to read and the position within */
3307 if (queue < DMA_DSRX_FIRST_QUEUE) {
3308 tx_dsr = DMA_DSR0;
3309 tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
3310 } else {
3311 tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
3312
3313 tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
3314 tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
3315 DMA_DSRX_TPS_START;
3316 }
3317
3318 /* The Tx engine cannot be stopped if it is actively processing
3319 * descriptors. Wait for the Tx engine to enter the stopped or
3320 * suspended state. Don't wait forever though...
3321 */
3322 tx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3323 while (time_before(jiffies, tx_timeout)) {
3324 tx_status = XGMAC_IOREAD(pdata, tx_dsr);
3325 tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
3326 if ((tx_status == DMA_TPS_STOPPED) ||
3327 (tx_status == DMA_TPS_SUSPENDED))
3328 break;
3329
3330 usleep_range(500, 1000);
3331 }
3332
3333 if (!time_before(jiffies, tx_timeout))
3334 netdev_info(pdata->netdev,
3335 "timed out waiting for Tx DMA channel %u to stop\n",
3336 queue);
3337 }
3338
xgbe_enable_tx(struct xgbe_prv_data * pdata)3339 static void xgbe_enable_tx(struct xgbe_prv_data *pdata)
3340 {
3341 unsigned int i;
3342
3343 /* Enable each Tx DMA channel */
3344 for (i = 0; i < pdata->channel_count; i++) {
3345 if (!pdata->channel[i]->tx_ring)
3346 break;
3347
3348 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3349 }
3350
3351 /* Enable each Tx queue */
3352 for (i = 0; i < pdata->tx_q_count; i++)
3353 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
3354 MTL_Q_ENABLED);
3355
3356 /* Enable MAC Tx */
3357 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3358 }
3359
xgbe_disable_tx(struct xgbe_prv_data * pdata)3360 static void xgbe_disable_tx(struct xgbe_prv_data *pdata)
3361 {
3362 unsigned int i;
3363
3364 /* Prepare for Tx DMA channel stop */
3365 for (i = 0; i < pdata->tx_q_count; i++)
3366 xgbe_prepare_tx_stop(pdata, i);
3367
3368 /* Disable MAC Tx */
3369 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3370
3371 /* Disable each Tx queue */
3372 for (i = 0; i < pdata->tx_q_count; i++)
3373 XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
3374
3375 /* Disable each Tx DMA channel */
3376 for (i = 0; i < pdata->channel_count; i++) {
3377 if (!pdata->channel[i]->tx_ring)
3378 break;
3379
3380 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3381 }
3382 }
3383
xgbe_prepare_rx_stop(struct xgbe_prv_data * pdata,unsigned int queue)3384 static void xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata,
3385 unsigned int queue)
3386 {
3387 unsigned int rx_status;
3388 unsigned long rx_timeout;
3389
3390 /* The Rx engine cannot be stopped if it is actively processing
3391 * packets. Wait for the Rx queue to empty the Rx fifo. Don't
3392 * wait forever though...
3393 */
3394 rx_timeout = jiffies + (XGBE_DMA_STOP_TIMEOUT * HZ);
3395 while (time_before(jiffies, rx_timeout)) {
3396 rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
3397 if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
3398 (XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
3399 break;
3400
3401 usleep_range(500, 1000);
3402 }
3403
3404 if (!time_before(jiffies, rx_timeout))
3405 netdev_info(pdata->netdev,
3406 "timed out waiting for Rx queue %u to empty\n",
3407 queue);
3408 }
3409
xgbe_enable_rx(struct xgbe_prv_data * pdata)3410 static void xgbe_enable_rx(struct xgbe_prv_data *pdata)
3411 {
3412 unsigned int reg_val, i;
3413
3414 /* Enable each Rx DMA channel */
3415 for (i = 0; i < pdata->channel_count; i++) {
3416 if (!pdata->channel[i]->rx_ring)
3417 break;
3418
3419 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3420 }
3421
3422 /* Enable each Rx queue */
3423 reg_val = 0;
3424 for (i = 0; i < pdata->rx_q_count; i++)
3425 reg_val |= (0x02 << (i << 1));
3426 XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
3427
3428 /* Enable MAC Rx */
3429 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
3430 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
3431 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
3432 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
3433 }
3434
xgbe_disable_rx(struct xgbe_prv_data * pdata)3435 static void xgbe_disable_rx(struct xgbe_prv_data *pdata)
3436 {
3437 unsigned int i;
3438
3439 /* Disable MAC Rx */
3440 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
3441 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
3442 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
3443 XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
3444
3445 /* Prepare for Rx DMA channel stop */
3446 for (i = 0; i < pdata->rx_q_count; i++)
3447 xgbe_prepare_rx_stop(pdata, i);
3448
3449 /* Disable each Rx queue */
3450 XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
3451
3452 /* Disable each Rx DMA channel */
3453 for (i = 0; i < pdata->channel_count; i++) {
3454 if (!pdata->channel[i]->rx_ring)
3455 break;
3456
3457 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3458 }
3459 }
3460
xgbe_powerup_tx(struct xgbe_prv_data * pdata)3461 static void xgbe_powerup_tx(struct xgbe_prv_data *pdata)
3462 {
3463 unsigned int i;
3464
3465 /* Enable each Tx DMA channel */
3466 for (i = 0; i < pdata->channel_count; i++) {
3467 if (!pdata->channel[i]->tx_ring)
3468 break;
3469
3470 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
3471 }
3472
3473 /* Enable MAC Tx */
3474 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
3475 }
3476
xgbe_powerdown_tx(struct xgbe_prv_data * pdata)3477 static void xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
3478 {
3479 unsigned int i;
3480
3481 /* Prepare for Tx DMA channel stop */
3482 for (i = 0; i < pdata->tx_q_count; i++)
3483 xgbe_prepare_tx_stop(pdata, i);
3484
3485 /* Disable MAC Tx */
3486 XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
3487
3488 /* Disable each Tx DMA channel */
3489 for (i = 0; i < pdata->channel_count; i++) {
3490 if (!pdata->channel[i]->tx_ring)
3491 break;
3492
3493 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
3494 }
3495 }
3496
xgbe_powerup_rx(struct xgbe_prv_data * pdata)3497 static void xgbe_powerup_rx(struct xgbe_prv_data *pdata)
3498 {
3499 unsigned int i;
3500
3501 /* Enable each Rx DMA channel */
3502 for (i = 0; i < pdata->channel_count; i++) {
3503 if (!pdata->channel[i]->rx_ring)
3504 break;
3505
3506 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
3507 }
3508 }
3509
xgbe_powerdown_rx(struct xgbe_prv_data * pdata)3510 static void xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
3511 {
3512 unsigned int i;
3513
3514 /* Disable each Rx DMA channel */
3515 for (i = 0; i < pdata->channel_count; i++) {
3516 if (!pdata->channel[i]->rx_ring)
3517 break;
3518
3519 XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
3520 }
3521 }
3522
xgbe_init(struct xgbe_prv_data * pdata)3523 static int xgbe_init(struct xgbe_prv_data *pdata)
3524 {
3525 struct xgbe_desc_if *desc_if = &pdata->desc_if;
3526 int ret;
3527
3528 DBGPR("-->xgbe_init\n");
3529
3530 /* Flush Tx queues */
3531 ret = xgbe_flush_tx_queues(pdata);
3532 if (ret) {
3533 netdev_err(pdata->netdev, "error flushing TX queues\n");
3534 return ret;
3535 }
3536
3537 /*
3538 * Initialize DMA related features
3539 */
3540 xgbe_config_dma_bus(pdata);
3541 xgbe_config_dma_cache(pdata);
3542 xgbe_config_osp_mode(pdata);
3543 xgbe_config_pbl_val(pdata);
3544 xgbe_config_rx_coalesce(pdata);
3545 xgbe_config_tx_coalesce(pdata);
3546 xgbe_config_rx_buffer_size(pdata);
3547 xgbe_config_tso_mode(pdata);
3548 xgbe_config_sph_mode(pdata);
3549 xgbe_config_rss(pdata);
3550 desc_if->wrapper_tx_desc_init(pdata);
3551 desc_if->wrapper_rx_desc_init(pdata);
3552 xgbe_enable_dma_interrupts(pdata);
3553
3554 /*
3555 * Initialize MTL related features
3556 */
3557 xgbe_config_mtl_mode(pdata);
3558 xgbe_config_queue_mapping(pdata);
3559 xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
3560 xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
3561 xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
3562 xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
3563 xgbe_config_tx_fifo_size(pdata);
3564 xgbe_config_rx_fifo_size(pdata);
3565 /*TODO: Error Packet and undersized good Packet forwarding enable
3566 (FEP and FUP)
3567 */
3568 xgbe_config_dcb_tc(pdata);
3569 xgbe_enable_mtl_interrupts(pdata);
3570
3571 /*
3572 * Initialize MAC related features
3573 */
3574 xgbe_config_mac_address(pdata);
3575 xgbe_config_rx_mode(pdata);
3576 xgbe_config_jumbo_enable(pdata);
3577 xgbe_config_flow_control(pdata);
3578 xgbe_config_mac_speed(pdata);
3579 xgbe_config_checksum_offload(pdata);
3580 xgbe_config_vlan_support(pdata);
3581 xgbe_config_mmc(pdata);
3582 xgbe_enable_mac_interrupts(pdata);
3583
3584 /*
3585 * Initialize ECC related features
3586 */
3587 xgbe_enable_ecc_interrupts(pdata);
3588
3589 DBGPR("<--xgbe_init\n");
3590
3591 return 0;
3592 }
3593
xgbe_init_function_ptrs_dev(struct xgbe_hw_if * hw_if)3594 void xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
3595 {
3596 DBGPR("-->xgbe_init_function_ptrs\n");
3597
3598 hw_if->tx_complete = xgbe_tx_complete;
3599
3600 hw_if->set_mac_address = xgbe_set_mac_address;
3601 hw_if->config_rx_mode = xgbe_config_rx_mode;
3602
3603 hw_if->enable_rx_csum = xgbe_enable_rx_csum;
3604 hw_if->disable_rx_csum = xgbe_disable_rx_csum;
3605
3606 hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
3607 hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
3608 hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
3609 hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
3610 hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
3611
3612 hw_if->read_mmd_regs = xgbe_read_mmd_regs;
3613 hw_if->write_mmd_regs = xgbe_write_mmd_regs;
3614
3615 hw_if->set_speed = xgbe_set_speed;
3616
3617 hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
3618 hw_if->read_ext_mii_regs_c22 = xgbe_read_ext_mii_regs_c22;
3619 hw_if->write_ext_mii_regs_c22 = xgbe_write_ext_mii_regs_c22;
3620 hw_if->read_ext_mii_regs_c45 = xgbe_read_ext_mii_regs_c45;
3621 hw_if->write_ext_mii_regs_c45 = xgbe_write_ext_mii_regs_c45;
3622
3623 hw_if->set_gpio = xgbe_set_gpio;
3624 hw_if->clr_gpio = xgbe_clr_gpio;
3625
3626 hw_if->enable_tx = xgbe_enable_tx;
3627 hw_if->disable_tx = xgbe_disable_tx;
3628 hw_if->enable_rx = xgbe_enable_rx;
3629 hw_if->disable_rx = xgbe_disable_rx;
3630
3631 hw_if->powerup_tx = xgbe_powerup_tx;
3632 hw_if->powerdown_tx = xgbe_powerdown_tx;
3633 hw_if->powerup_rx = xgbe_powerup_rx;
3634 hw_if->powerdown_rx = xgbe_powerdown_rx;
3635
3636 hw_if->dev_xmit = xgbe_dev_xmit;
3637 hw_if->dev_read = xgbe_dev_read;
3638 hw_if->enable_int = xgbe_enable_int;
3639 hw_if->disable_int = xgbe_disable_int;
3640 hw_if->init = xgbe_init;
3641 hw_if->exit = xgbe_exit;
3642
3643 /* Descriptor related Sequences have to be initialized here */
3644 hw_if->tx_desc_init = xgbe_tx_desc_init;
3645 hw_if->rx_desc_init = xgbe_rx_desc_init;
3646 hw_if->tx_desc_reset = xgbe_tx_desc_reset;
3647 hw_if->rx_desc_reset = xgbe_rx_desc_reset;
3648 hw_if->is_last_desc = xgbe_is_last_desc;
3649 hw_if->is_context_desc = xgbe_is_context_desc;
3650 hw_if->tx_start_xmit = xgbe_tx_start_xmit;
3651
3652 /* For FLOW ctrl */
3653 hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
3654 hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
3655
3656 /* For RX coalescing */
3657 hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
3658 hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
3659 hw_if->usec_to_riwt = xgbe_usec_to_riwt;
3660 hw_if->riwt_to_usec = xgbe_riwt_to_usec;
3661
3662 /* For RX and TX threshold config */
3663 hw_if->config_rx_threshold = xgbe_config_rx_threshold;
3664 hw_if->config_tx_threshold = xgbe_config_tx_threshold;
3665
3666 /* For RX and TX Store and Forward Mode config */
3667 hw_if->config_rsf_mode = xgbe_config_rsf_mode;
3668 hw_if->config_tsf_mode = xgbe_config_tsf_mode;
3669
3670 /* For TX DMA Operating on Second Frame config */
3671 hw_if->config_osp_mode = xgbe_config_osp_mode;
3672
3673 /* For MMC statistics support */
3674 hw_if->tx_mmc_int = xgbe_tx_mmc_int;
3675 hw_if->rx_mmc_int = xgbe_rx_mmc_int;
3676 hw_if->read_mmc_stats = xgbe_read_mmc_stats;
3677
3678 /* For PTP config */
3679 hw_if->config_tstamp = xgbe_config_tstamp;
3680 hw_if->update_tstamp_addend = xgbe_update_tstamp_addend;
3681 hw_if->set_tstamp_time = xgbe_set_tstamp_time;
3682 hw_if->get_tstamp_time = xgbe_get_tstamp_time;
3683 hw_if->get_tx_tstamp = xgbe_get_tx_tstamp;
3684
3685 /* For Data Center Bridging config */
3686 hw_if->config_tc = xgbe_config_tc;
3687 hw_if->config_dcb_tc = xgbe_config_dcb_tc;
3688 hw_if->config_dcb_pfc = xgbe_config_dcb_pfc;
3689
3690 /* For Receive Side Scaling */
3691 hw_if->enable_rss = xgbe_enable_rss;
3692 hw_if->disable_rss = xgbe_disable_rss;
3693 hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
3694 hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
3695
3696 /* For ECC */
3697 hw_if->disable_ecc_ded = xgbe_disable_ecc_ded;
3698 hw_if->disable_ecc_sec = xgbe_disable_ecc_sec;
3699
3700 /* For VXLAN */
3701 hw_if->enable_vxlan = xgbe_enable_vxlan;
3702 hw_if->disable_vxlan = xgbe_disable_vxlan;
3703 hw_if->set_vxlan_id = xgbe_set_vxlan_id;
3704
3705 DBGPR("<--xgbe_init_function_ptrs\n");
3706 }
3707