1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22
23 #include <linux/iversion.h>
24
25 struct kmem_cache *xfs_ili_cache; /* inode log item */
26
INODE_ITEM(struct xfs_log_item * lip)27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28 {
29 return container_of(lip, struct xfs_inode_log_item, ili_item);
30 }
31
32 static uint64_t
xfs_inode_item_sort(struct xfs_log_item * lip)33 xfs_inode_item_sort(
34 struct xfs_log_item *lip)
35 {
36 return INODE_ITEM(lip)->ili_inode->i_ino;
37 }
38
39 /*
40 * Prior to finally logging the inode, we have to ensure that all the
41 * per-modification inode state changes are applied. This includes VFS inode
42 * state updates, format conversions, verifier state synchronisation and
43 * ensuring the inode buffer remains in memory whilst the inode is dirty.
44 *
45 * We have to be careful when we grab the inode cluster buffer due to lock
46 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
47 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
48 * not locked until ->precommit, so it happens after everything else has been
49 * modified.
50 *
51 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
52 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
53 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
54 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
55 * AGF lock modifying directory blocks.
56 *
57 * Rather than force a complete rework of all the transactions to call
58 * xfs_trans_log_inode() once and once only at the end of every transaction, we
59 * move the pinning of the inode cluster buffer to a ->precommit operation. This
60 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
61 * ensures that the inode cluster buffer locking is always done last in a
62 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
63 * cluster buffer.
64 *
65 * If we return the inode number as the precommit sort key then we'll also
66 * guarantee that the order all inode cluster buffer locking is the same all the
67 * inodes and unlink items in the transaction.
68 */
69 static int
xfs_inode_item_precommit(struct xfs_trans * tp,struct xfs_log_item * lip)70 xfs_inode_item_precommit(
71 struct xfs_trans *tp,
72 struct xfs_log_item *lip)
73 {
74 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
75 struct xfs_inode *ip = iip->ili_inode;
76 struct inode *inode = VFS_I(ip);
77 unsigned int flags = iip->ili_dirty_flags;
78
79 /*
80 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
81 * don't matter - we either will need an extra transaction in 24 hours
82 * to log the timestamps, or will clear already cleared fields in the
83 * worst case.
84 */
85 if (inode->i_state & I_DIRTY_TIME) {
86 spin_lock(&inode->i_lock);
87 inode->i_state &= ~I_DIRTY_TIME;
88 spin_unlock(&inode->i_lock);
89 }
90
91 /*
92 * If we're updating the inode core or the timestamps and it's possible
93 * to upgrade this inode to bigtime format, do so now.
94 */
95 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
96 xfs_has_bigtime(ip->i_mount) &&
97 !xfs_inode_has_bigtime(ip)) {
98 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
99 flags |= XFS_ILOG_CORE;
100 }
101
102 /*
103 * Inode verifiers do not check that the extent size hint is an integer
104 * multiple of the rt extent size on a directory with both rtinherit
105 * and extszinherit flags set. If we're logging a directory that is
106 * misconfigured in this way, clear the hint.
107 */
108 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
109 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
110 (ip->i_extsize % ip->i_mount->m_sb.sb_rextsize) > 0) {
111 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
112 XFS_DIFLAG_EXTSZINHERIT);
113 ip->i_extsize = 0;
114 flags |= XFS_ILOG_CORE;
115 }
116
117 /*
118 * Record the specific change for fdatasync optimisation. This allows
119 * fdatasync to skip log forces for inodes that are only timestamp
120 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
121 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
122 * (ili_fields) correctly tracks that the version has changed.
123 */
124 spin_lock(&iip->ili_lock);
125 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
126 if (flags & XFS_ILOG_IVERSION)
127 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
128
129 if (!iip->ili_item.li_buf) {
130 struct xfs_buf *bp;
131 int error;
132
133 /*
134 * We hold the ILOCK here, so this inode is not going to be
135 * flushed while we are here. Further, because there is no
136 * buffer attached to the item, we know that there is no IO in
137 * progress, so nothing will clear the ili_fields while we read
138 * in the buffer. Hence we can safely drop the spin lock and
139 * read the buffer knowing that the state will not change from
140 * here.
141 */
142 spin_unlock(&iip->ili_lock);
143 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
144 if (error)
145 return error;
146
147 /*
148 * We need an explicit buffer reference for the log item but
149 * don't want the buffer to remain attached to the transaction.
150 * Hold the buffer but release the transaction reference once
151 * we've attached the inode log item to the buffer log item
152 * list.
153 */
154 xfs_buf_hold(bp);
155 spin_lock(&iip->ili_lock);
156 iip->ili_item.li_buf = bp;
157 bp->b_flags |= _XBF_INODES;
158 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
159 xfs_trans_brelse(tp, bp);
160 }
161
162 /*
163 * Always OR in the bits from the ili_last_fields field. This is to
164 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
165 * in the eventual clearing of the ili_fields bits. See the big comment
166 * in xfs_iflush() for an explanation of this coordination mechanism.
167 */
168 iip->ili_fields |= (flags | iip->ili_last_fields);
169 spin_unlock(&iip->ili_lock);
170
171 /*
172 * We are done with the log item transaction dirty state, so clear it so
173 * that it doesn't pollute future transactions.
174 */
175 iip->ili_dirty_flags = 0;
176 return 0;
177 }
178
179 /*
180 * The logged size of an inode fork is always the current size of the inode
181 * fork. This means that when an inode fork is relogged, the size of the logged
182 * region is determined by the current state, not the combination of the
183 * previously logged state + the current state. This is different relogging
184 * behaviour to most other log items which will retain the size of the
185 * previously logged changes when smaller regions are relogged.
186 *
187 * Hence operations that remove data from the inode fork (e.g. shortform
188 * dir/attr remove, extent form extent removal, etc), the size of the relogged
189 * inode gets -smaller- rather than stays the same size as the previously logged
190 * size and this can result in the committing transaction reducing the amount of
191 * space being consumed by the CIL.
192 */
193 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)194 xfs_inode_item_data_fork_size(
195 struct xfs_inode_log_item *iip,
196 int *nvecs,
197 int *nbytes)
198 {
199 struct xfs_inode *ip = iip->ili_inode;
200
201 switch (ip->i_df.if_format) {
202 case XFS_DINODE_FMT_EXTENTS:
203 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
204 ip->i_df.if_nextents > 0 &&
205 ip->i_df.if_bytes > 0) {
206 /* worst case, doesn't subtract delalloc extents */
207 *nbytes += xfs_inode_data_fork_size(ip);
208 *nvecs += 1;
209 }
210 break;
211 case XFS_DINODE_FMT_BTREE:
212 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
213 ip->i_df.if_broot_bytes > 0) {
214 *nbytes += ip->i_df.if_broot_bytes;
215 *nvecs += 1;
216 }
217 break;
218 case XFS_DINODE_FMT_LOCAL:
219 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
220 ip->i_df.if_bytes > 0) {
221 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
222 *nvecs += 1;
223 }
224 break;
225
226 case XFS_DINODE_FMT_DEV:
227 break;
228 default:
229 ASSERT(0);
230 break;
231 }
232 }
233
234 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)235 xfs_inode_item_attr_fork_size(
236 struct xfs_inode_log_item *iip,
237 int *nvecs,
238 int *nbytes)
239 {
240 struct xfs_inode *ip = iip->ili_inode;
241
242 switch (ip->i_af.if_format) {
243 case XFS_DINODE_FMT_EXTENTS:
244 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
245 ip->i_af.if_nextents > 0 &&
246 ip->i_af.if_bytes > 0) {
247 /* worst case, doesn't subtract unused space */
248 *nbytes += xfs_inode_attr_fork_size(ip);
249 *nvecs += 1;
250 }
251 break;
252 case XFS_DINODE_FMT_BTREE:
253 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
254 ip->i_af.if_broot_bytes > 0) {
255 *nbytes += ip->i_af.if_broot_bytes;
256 *nvecs += 1;
257 }
258 break;
259 case XFS_DINODE_FMT_LOCAL:
260 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
261 ip->i_af.if_bytes > 0) {
262 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
263 *nvecs += 1;
264 }
265 break;
266 default:
267 ASSERT(0);
268 break;
269 }
270 }
271
272 /*
273 * This returns the number of iovecs needed to log the given inode item.
274 *
275 * We need one iovec for the inode log format structure, one for the
276 * inode core, and possibly one for the inode data/extents/b-tree root
277 * and one for the inode attribute data/extents/b-tree root.
278 */
279 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)280 xfs_inode_item_size(
281 struct xfs_log_item *lip,
282 int *nvecs,
283 int *nbytes)
284 {
285 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
286 struct xfs_inode *ip = iip->ili_inode;
287
288 *nvecs += 2;
289 *nbytes += sizeof(struct xfs_inode_log_format) +
290 xfs_log_dinode_size(ip->i_mount);
291
292 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
293 if (xfs_inode_has_attr_fork(ip))
294 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
295 }
296
297 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)298 xfs_inode_item_format_data_fork(
299 struct xfs_inode_log_item *iip,
300 struct xfs_inode_log_format *ilf,
301 struct xfs_log_vec *lv,
302 struct xfs_log_iovec **vecp)
303 {
304 struct xfs_inode *ip = iip->ili_inode;
305 size_t data_bytes;
306
307 switch (ip->i_df.if_format) {
308 case XFS_DINODE_FMT_EXTENTS:
309 iip->ili_fields &=
310 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
311
312 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
313 ip->i_df.if_nextents > 0 &&
314 ip->i_df.if_bytes > 0) {
315 struct xfs_bmbt_rec *p;
316
317 ASSERT(xfs_iext_count(&ip->i_df) > 0);
318
319 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
320 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
321 xlog_finish_iovec(lv, *vecp, data_bytes);
322
323 ASSERT(data_bytes <= ip->i_df.if_bytes);
324
325 ilf->ilf_dsize = data_bytes;
326 ilf->ilf_size++;
327 } else {
328 iip->ili_fields &= ~XFS_ILOG_DEXT;
329 }
330 break;
331 case XFS_DINODE_FMT_BTREE:
332 iip->ili_fields &=
333 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
334
335 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
336 ip->i_df.if_broot_bytes > 0) {
337 ASSERT(ip->i_df.if_broot != NULL);
338 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
339 ip->i_df.if_broot,
340 ip->i_df.if_broot_bytes);
341 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
342 ilf->ilf_size++;
343 } else {
344 ASSERT(!(iip->ili_fields &
345 XFS_ILOG_DBROOT));
346 iip->ili_fields &= ~XFS_ILOG_DBROOT;
347 }
348 break;
349 case XFS_DINODE_FMT_LOCAL:
350 iip->ili_fields &=
351 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
352 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
353 ip->i_df.if_bytes > 0) {
354 ASSERT(ip->i_df.if_u1.if_data != NULL);
355 ASSERT(ip->i_disk_size > 0);
356 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
357 ip->i_df.if_u1.if_data,
358 ip->i_df.if_bytes);
359 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
360 ilf->ilf_size++;
361 } else {
362 iip->ili_fields &= ~XFS_ILOG_DDATA;
363 }
364 break;
365 case XFS_DINODE_FMT_DEV:
366 iip->ili_fields &=
367 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
368 if (iip->ili_fields & XFS_ILOG_DEV)
369 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
370 break;
371 default:
372 ASSERT(0);
373 break;
374 }
375 }
376
377 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)378 xfs_inode_item_format_attr_fork(
379 struct xfs_inode_log_item *iip,
380 struct xfs_inode_log_format *ilf,
381 struct xfs_log_vec *lv,
382 struct xfs_log_iovec **vecp)
383 {
384 struct xfs_inode *ip = iip->ili_inode;
385 size_t data_bytes;
386
387 switch (ip->i_af.if_format) {
388 case XFS_DINODE_FMT_EXTENTS:
389 iip->ili_fields &=
390 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
391
392 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
393 ip->i_af.if_nextents > 0 &&
394 ip->i_af.if_bytes > 0) {
395 struct xfs_bmbt_rec *p;
396
397 ASSERT(xfs_iext_count(&ip->i_af) ==
398 ip->i_af.if_nextents);
399
400 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
401 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
402 xlog_finish_iovec(lv, *vecp, data_bytes);
403
404 ilf->ilf_asize = data_bytes;
405 ilf->ilf_size++;
406 } else {
407 iip->ili_fields &= ~XFS_ILOG_AEXT;
408 }
409 break;
410 case XFS_DINODE_FMT_BTREE:
411 iip->ili_fields &=
412 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
413
414 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
415 ip->i_af.if_broot_bytes > 0) {
416 ASSERT(ip->i_af.if_broot != NULL);
417
418 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
419 ip->i_af.if_broot,
420 ip->i_af.if_broot_bytes);
421 ilf->ilf_asize = ip->i_af.if_broot_bytes;
422 ilf->ilf_size++;
423 } else {
424 iip->ili_fields &= ~XFS_ILOG_ABROOT;
425 }
426 break;
427 case XFS_DINODE_FMT_LOCAL:
428 iip->ili_fields &=
429 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
430
431 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
432 ip->i_af.if_bytes > 0) {
433 ASSERT(ip->i_af.if_u1.if_data != NULL);
434 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
435 ip->i_af.if_u1.if_data,
436 ip->i_af.if_bytes);
437 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
438 ilf->ilf_size++;
439 } else {
440 iip->ili_fields &= ~XFS_ILOG_ADATA;
441 }
442 break;
443 default:
444 ASSERT(0);
445 break;
446 }
447 }
448
449 /*
450 * Convert an incore timestamp to a log timestamp. Note that the log format
451 * specifies host endian format!
452 */
453 static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)454 xfs_inode_to_log_dinode_ts(
455 struct xfs_inode *ip,
456 const struct timespec64 tv)
457 {
458 struct xfs_log_legacy_timestamp *lits;
459 xfs_log_timestamp_t its;
460
461 if (xfs_inode_has_bigtime(ip))
462 return xfs_inode_encode_bigtime(tv);
463
464 lits = (struct xfs_log_legacy_timestamp *)&its;
465 lits->t_sec = tv.tv_sec;
466 lits->t_nsec = tv.tv_nsec;
467
468 return its;
469 }
470
471 /*
472 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
473 * but not in the in-memory one. But we are guaranteed to have an inode buffer
474 * in memory when logging an inode, so we can just copy it from the on-disk
475 * inode to the in-log inode here so that recovery of file system with these
476 * fields set to non-zero values doesn't lose them. For all other cases we zero
477 * the fields.
478 */
479 static void
xfs_copy_dm_fields_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to)480 xfs_copy_dm_fields_to_log_dinode(
481 struct xfs_inode *ip,
482 struct xfs_log_dinode *to)
483 {
484 struct xfs_dinode *dip;
485
486 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
487 ip->i_imap.im_boffset);
488
489 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
490 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
491 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
492 } else {
493 to->di_dmevmask = 0;
494 to->di_dmstate = 0;
495 }
496 }
497
498 static inline void
xfs_inode_to_log_dinode_iext_counters(struct xfs_inode * ip,struct xfs_log_dinode * to)499 xfs_inode_to_log_dinode_iext_counters(
500 struct xfs_inode *ip,
501 struct xfs_log_dinode *to)
502 {
503 if (xfs_inode_has_large_extent_counts(ip)) {
504 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
505 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
506 to->di_nrext64_pad = 0;
507 } else {
508 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
509 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
510 }
511 }
512
513 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)514 xfs_inode_to_log_dinode(
515 struct xfs_inode *ip,
516 struct xfs_log_dinode *to,
517 xfs_lsn_t lsn)
518 {
519 struct inode *inode = VFS_I(ip);
520
521 to->di_magic = XFS_DINODE_MAGIC;
522 to->di_format = xfs_ifork_format(&ip->i_df);
523 to->di_uid = i_uid_read(inode);
524 to->di_gid = i_gid_read(inode);
525 to->di_projid_lo = ip->i_projid & 0xffff;
526 to->di_projid_hi = ip->i_projid >> 16;
527
528 memset(to->di_pad3, 0, sizeof(to->di_pad3));
529 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
530 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
531 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
532 to->di_nlink = inode->i_nlink;
533 to->di_gen = inode->i_generation;
534 to->di_mode = inode->i_mode;
535
536 to->di_size = ip->i_disk_size;
537 to->di_nblocks = ip->i_nblocks;
538 to->di_extsize = ip->i_extsize;
539 to->di_forkoff = ip->i_forkoff;
540 to->di_aformat = xfs_ifork_format(&ip->i_af);
541 to->di_flags = ip->i_diflags;
542
543 xfs_copy_dm_fields_to_log_dinode(ip, to);
544
545 /* log a dummy value to ensure log structure is fully initialised */
546 to->di_next_unlinked = NULLAGINO;
547
548 if (xfs_has_v3inodes(ip->i_mount)) {
549 to->di_version = 3;
550 to->di_changecount = inode_peek_iversion(inode);
551 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
552 to->di_flags2 = ip->i_diflags2;
553 to->di_cowextsize = ip->i_cowextsize;
554 to->di_ino = ip->i_ino;
555 to->di_lsn = lsn;
556 memset(to->di_pad2, 0, sizeof(to->di_pad2));
557 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
558 to->di_v3_pad = 0;
559
560 /* dummy value for initialisation */
561 to->di_crc = 0;
562 } else {
563 to->di_version = 2;
564 to->di_flushiter = ip->i_flushiter;
565 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
566 }
567
568 xfs_inode_to_log_dinode_iext_counters(ip, to);
569 }
570
571 /*
572 * Format the inode core. Current timestamp data is only in the VFS inode
573 * fields, so we need to grab them from there. Hence rather than just copying
574 * the XFS inode core structure, format the fields directly into the iovec.
575 */
576 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)577 xfs_inode_item_format_core(
578 struct xfs_inode *ip,
579 struct xfs_log_vec *lv,
580 struct xfs_log_iovec **vecp)
581 {
582 struct xfs_log_dinode *dic;
583
584 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
585 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
586 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
587 }
588
589 /*
590 * This is called to fill in the vector of log iovecs for the given inode
591 * log item. It fills the first item with an inode log format structure,
592 * the second with the on-disk inode structure, and a possible third and/or
593 * fourth with the inode data/extents/b-tree root and inode attributes
594 * data/extents/b-tree root.
595 *
596 * Note: Always use the 64 bit inode log format structure so we don't
597 * leave an uninitialised hole in the format item on 64 bit systems. Log
598 * recovery on 32 bit systems handles this just fine, so there's no reason
599 * for not using an initialising the properly padded structure all the time.
600 */
601 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)602 xfs_inode_item_format(
603 struct xfs_log_item *lip,
604 struct xfs_log_vec *lv)
605 {
606 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
607 struct xfs_inode *ip = iip->ili_inode;
608 struct xfs_log_iovec *vecp = NULL;
609 struct xfs_inode_log_format *ilf;
610
611 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
612 ilf->ilf_type = XFS_LI_INODE;
613 ilf->ilf_ino = ip->i_ino;
614 ilf->ilf_blkno = ip->i_imap.im_blkno;
615 ilf->ilf_len = ip->i_imap.im_len;
616 ilf->ilf_boffset = ip->i_imap.im_boffset;
617 ilf->ilf_fields = XFS_ILOG_CORE;
618 ilf->ilf_size = 2; /* format + core */
619
620 /*
621 * make sure we don't leak uninitialised data into the log in the case
622 * when we don't log every field in the inode.
623 */
624 ilf->ilf_dsize = 0;
625 ilf->ilf_asize = 0;
626 ilf->ilf_pad = 0;
627 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
628
629 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
630
631 xfs_inode_item_format_core(ip, lv, &vecp);
632 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
633 if (xfs_inode_has_attr_fork(ip)) {
634 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
635 } else {
636 iip->ili_fields &=
637 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
638 }
639
640 /* update the format with the exact fields we actually logged */
641 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
642 }
643
644 /*
645 * This is called to pin the inode associated with the inode log
646 * item in memory so it cannot be written out.
647 */
648 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)649 xfs_inode_item_pin(
650 struct xfs_log_item *lip)
651 {
652 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
653
654 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
655 ASSERT(lip->li_buf);
656
657 trace_xfs_inode_pin(ip, _RET_IP_);
658 atomic_inc(&ip->i_pincount);
659 }
660
661
662 /*
663 * This is called to unpin the inode associated with the inode log
664 * item which was previously pinned with a call to xfs_inode_item_pin().
665 *
666 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
667 *
668 * Note that unpin can race with inode cluster buffer freeing marking the buffer
669 * stale. In that case, flush completions are run from the buffer unpin call,
670 * which may happen before the inode is unpinned. If we lose the race, there
671 * will be no buffer attached to the log item, but the inode will be marked
672 * XFS_ISTALE.
673 */
674 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)675 xfs_inode_item_unpin(
676 struct xfs_log_item *lip,
677 int remove)
678 {
679 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
680
681 trace_xfs_inode_unpin(ip, _RET_IP_);
682 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
683 ASSERT(atomic_read(&ip->i_pincount) > 0);
684 if (atomic_dec_and_test(&ip->i_pincount))
685 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
686 }
687
688 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)689 xfs_inode_item_push(
690 struct xfs_log_item *lip,
691 struct list_head *buffer_list)
692 __releases(&lip->li_ailp->ail_lock)
693 __acquires(&lip->li_ailp->ail_lock)
694 {
695 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
696 struct xfs_inode *ip = iip->ili_inode;
697 struct xfs_buf *bp = lip->li_buf;
698 uint rval = XFS_ITEM_SUCCESS;
699 int error;
700
701 if (!bp || (ip->i_flags & XFS_ISTALE)) {
702 /*
703 * Inode item/buffer is being aborted due to cluster
704 * buffer deletion. Trigger a log force to have that operation
705 * completed and items removed from the AIL before the next push
706 * attempt.
707 */
708 return XFS_ITEM_PINNED;
709 }
710
711 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
712 return XFS_ITEM_PINNED;
713
714 if (xfs_iflags_test(ip, XFS_IFLUSHING))
715 return XFS_ITEM_FLUSHING;
716
717 if (!xfs_buf_trylock(bp))
718 return XFS_ITEM_LOCKED;
719
720 spin_unlock(&lip->li_ailp->ail_lock);
721
722 /*
723 * We need to hold a reference for flushing the cluster buffer as it may
724 * fail the buffer without IO submission. In which case, we better get a
725 * reference for that completion because otherwise we don't get a
726 * reference for IO until we queue the buffer for delwri submission.
727 */
728 xfs_buf_hold(bp);
729 error = xfs_iflush_cluster(bp);
730 if (!error) {
731 if (!xfs_buf_delwri_queue(bp, buffer_list))
732 rval = XFS_ITEM_FLUSHING;
733 xfs_buf_relse(bp);
734 } else {
735 /*
736 * Release the buffer if we were unable to flush anything. On
737 * any other error, the buffer has already been released.
738 */
739 if (error == -EAGAIN)
740 xfs_buf_relse(bp);
741 rval = XFS_ITEM_LOCKED;
742 }
743
744 spin_lock(&lip->li_ailp->ail_lock);
745 return rval;
746 }
747
748 /*
749 * Unlock the inode associated with the inode log item.
750 */
751 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)752 xfs_inode_item_release(
753 struct xfs_log_item *lip)
754 {
755 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
756 struct xfs_inode *ip = iip->ili_inode;
757 unsigned short lock_flags;
758
759 ASSERT(ip->i_itemp != NULL);
760 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
761
762 lock_flags = iip->ili_lock_flags;
763 iip->ili_lock_flags = 0;
764 if (lock_flags)
765 xfs_iunlock(ip, lock_flags);
766 }
767
768 /*
769 * This is called to find out where the oldest active copy of the inode log
770 * item in the on disk log resides now that the last log write of it completed
771 * at the given lsn. Since we always re-log all dirty data in an inode, the
772 * latest copy in the on disk log is the only one that matters. Therefore,
773 * simply return the given lsn.
774 *
775 * If the inode has been marked stale because the cluster is being freed, we
776 * don't want to (re-)insert this inode into the AIL. There is a race condition
777 * where the cluster buffer may be unpinned before the inode is inserted into
778 * the AIL during transaction committed processing. If the buffer is unpinned
779 * before the inode item has been committed and inserted, then it is possible
780 * for the buffer to be written and IO completes before the inode is inserted
781 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
782 * AIL which will never get removed. It will, however, get reclaimed which
783 * triggers an assert in xfs_inode_free() complaining about freein an inode
784 * still in the AIL.
785 *
786 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
787 * transaction committed code knows that it does not need to do any further
788 * processing on the item.
789 */
790 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)791 xfs_inode_item_committed(
792 struct xfs_log_item *lip,
793 xfs_lsn_t lsn)
794 {
795 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
796 struct xfs_inode *ip = iip->ili_inode;
797
798 if (xfs_iflags_test(ip, XFS_ISTALE)) {
799 xfs_inode_item_unpin(lip, 0);
800 return -1;
801 }
802 return lsn;
803 }
804
805 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)806 xfs_inode_item_committing(
807 struct xfs_log_item *lip,
808 xfs_csn_t seq)
809 {
810 INODE_ITEM(lip)->ili_commit_seq = seq;
811 return xfs_inode_item_release(lip);
812 }
813
814 static const struct xfs_item_ops xfs_inode_item_ops = {
815 .iop_sort = xfs_inode_item_sort,
816 .iop_precommit = xfs_inode_item_precommit,
817 .iop_size = xfs_inode_item_size,
818 .iop_format = xfs_inode_item_format,
819 .iop_pin = xfs_inode_item_pin,
820 .iop_unpin = xfs_inode_item_unpin,
821 .iop_release = xfs_inode_item_release,
822 .iop_committed = xfs_inode_item_committed,
823 .iop_push = xfs_inode_item_push,
824 .iop_committing = xfs_inode_item_committing,
825 };
826
827
828 /*
829 * Initialize the inode log item for a newly allocated (in-core) inode.
830 */
831 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)832 xfs_inode_item_init(
833 struct xfs_inode *ip,
834 struct xfs_mount *mp)
835 {
836 struct xfs_inode_log_item *iip;
837
838 ASSERT(ip->i_itemp == NULL);
839 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
840 GFP_KERNEL | __GFP_NOFAIL);
841
842 iip->ili_inode = ip;
843 spin_lock_init(&iip->ili_lock);
844 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
845 &xfs_inode_item_ops);
846 }
847
848 /*
849 * Free the inode log item and any memory hanging off of it.
850 */
851 void
xfs_inode_item_destroy(struct xfs_inode * ip)852 xfs_inode_item_destroy(
853 struct xfs_inode *ip)
854 {
855 struct xfs_inode_log_item *iip = ip->i_itemp;
856
857 ASSERT(iip->ili_item.li_buf == NULL);
858
859 ip->i_itemp = NULL;
860 kmem_free(iip->ili_item.li_lv_shadow);
861 kmem_cache_free(xfs_ili_cache, iip);
862 }
863
864
865 /*
866 * We only want to pull the item from the AIL if it is actually there
867 * and its location in the log has not changed since we started the
868 * flush. Thus, we only bother if the inode's lsn has not changed.
869 */
870 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)871 xfs_iflush_ail_updates(
872 struct xfs_ail *ailp,
873 struct list_head *list)
874 {
875 struct xfs_log_item *lip;
876 xfs_lsn_t tail_lsn = 0;
877
878 /* this is an opencoded batch version of xfs_trans_ail_delete */
879 spin_lock(&ailp->ail_lock);
880 list_for_each_entry(lip, list, li_bio_list) {
881 xfs_lsn_t lsn;
882
883 clear_bit(XFS_LI_FAILED, &lip->li_flags);
884 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
885 continue;
886
887 /*
888 * dgc: Not sure how this happens, but it happens very
889 * occassionaly via generic/388. xfs_iflush_abort() also
890 * silently handles this same "under writeback but not in AIL at
891 * shutdown" condition via xfs_trans_ail_delete().
892 */
893 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
894 ASSERT(xlog_is_shutdown(lip->li_log));
895 continue;
896 }
897
898 lsn = xfs_ail_delete_one(ailp, lip);
899 if (!tail_lsn && lsn)
900 tail_lsn = lsn;
901 }
902 xfs_ail_update_finish(ailp, tail_lsn);
903 }
904
905 /*
906 * Walk the list of inodes that have completed their IOs. If they are clean
907 * remove them from the list and dissociate them from the buffer. Buffers that
908 * are still dirty remain linked to the buffer and on the list. Caller must
909 * handle them appropriately.
910 */
911 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)912 xfs_iflush_finish(
913 struct xfs_buf *bp,
914 struct list_head *list)
915 {
916 struct xfs_log_item *lip, *n;
917
918 list_for_each_entry_safe(lip, n, list, li_bio_list) {
919 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
920 bool drop_buffer = false;
921
922 spin_lock(&iip->ili_lock);
923
924 /*
925 * Remove the reference to the cluster buffer if the inode is
926 * clean in memory and drop the buffer reference once we've
927 * dropped the locks we hold.
928 */
929 ASSERT(iip->ili_item.li_buf == bp);
930 if (!iip->ili_fields) {
931 iip->ili_item.li_buf = NULL;
932 list_del_init(&lip->li_bio_list);
933 drop_buffer = true;
934 }
935 iip->ili_last_fields = 0;
936 iip->ili_flush_lsn = 0;
937 spin_unlock(&iip->ili_lock);
938 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
939 if (drop_buffer)
940 xfs_buf_rele(bp);
941 }
942 }
943
944 /*
945 * Inode buffer IO completion routine. It is responsible for removing inodes
946 * attached to the buffer from the AIL if they have not been re-logged and
947 * completing the inode flush.
948 */
949 void
xfs_buf_inode_iodone(struct xfs_buf * bp)950 xfs_buf_inode_iodone(
951 struct xfs_buf *bp)
952 {
953 struct xfs_log_item *lip, *n;
954 LIST_HEAD(flushed_inodes);
955 LIST_HEAD(ail_updates);
956
957 /*
958 * Pull the attached inodes from the buffer one at a time and take the
959 * appropriate action on them.
960 */
961 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
962 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
963
964 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
965 xfs_iflush_abort(iip->ili_inode);
966 continue;
967 }
968 if (!iip->ili_last_fields)
969 continue;
970
971 /* Do an unlocked check for needing the AIL lock. */
972 if (iip->ili_flush_lsn == lip->li_lsn ||
973 test_bit(XFS_LI_FAILED, &lip->li_flags))
974 list_move_tail(&lip->li_bio_list, &ail_updates);
975 else
976 list_move_tail(&lip->li_bio_list, &flushed_inodes);
977 }
978
979 if (!list_empty(&ail_updates)) {
980 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
981 list_splice_tail(&ail_updates, &flushed_inodes);
982 }
983
984 xfs_iflush_finish(bp, &flushed_inodes);
985 if (!list_empty(&flushed_inodes))
986 list_splice_tail(&flushed_inodes, &bp->b_li_list);
987 }
988
989 void
xfs_buf_inode_io_fail(struct xfs_buf * bp)990 xfs_buf_inode_io_fail(
991 struct xfs_buf *bp)
992 {
993 struct xfs_log_item *lip;
994
995 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
996 set_bit(XFS_LI_FAILED, &lip->li_flags);
997 }
998
999 /*
1000 * Clear the inode logging fields so no more flushes are attempted. If we are
1001 * on a buffer list, it is now safe to remove it because the buffer is
1002 * guaranteed to be locked. The caller will drop the reference to the buffer
1003 * the log item held.
1004 */
1005 static void
xfs_iflush_abort_clean(struct xfs_inode_log_item * iip)1006 xfs_iflush_abort_clean(
1007 struct xfs_inode_log_item *iip)
1008 {
1009 iip->ili_last_fields = 0;
1010 iip->ili_fields = 0;
1011 iip->ili_fsync_fields = 0;
1012 iip->ili_flush_lsn = 0;
1013 iip->ili_item.li_buf = NULL;
1014 list_del_init(&iip->ili_item.li_bio_list);
1015 }
1016
1017 /*
1018 * Abort flushing the inode from a context holding the cluster buffer locked.
1019 *
1020 * This is the normal runtime method of aborting writeback of an inode that is
1021 * attached to a cluster buffer. It occurs when the inode and the backing
1022 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1023 * flushing or buffer IO completion encounters a log shutdown situation.
1024 *
1025 * If we need to abort inode writeback and we don't already hold the buffer
1026 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1027 * necessary in a shutdown situation.
1028 */
1029 void
xfs_iflush_abort(struct xfs_inode * ip)1030 xfs_iflush_abort(
1031 struct xfs_inode *ip)
1032 {
1033 struct xfs_inode_log_item *iip = ip->i_itemp;
1034 struct xfs_buf *bp;
1035
1036 if (!iip) {
1037 /* clean inode, nothing to do */
1038 xfs_iflags_clear(ip, XFS_IFLUSHING);
1039 return;
1040 }
1041
1042 /*
1043 * Remove the inode item from the AIL before we clear its internal
1044 * state. Whilst the inode is in the AIL, it should have a valid buffer
1045 * pointer for push operations to access - it is only safe to remove the
1046 * inode from the buffer once it has been removed from the AIL.
1047 *
1048 * We also clear the failed bit before removing the item from the AIL
1049 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1050 * references the inode item owns and needs to hold until we've fully
1051 * aborted the inode log item and detached it from the buffer.
1052 */
1053 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1054 xfs_trans_ail_delete(&iip->ili_item, 0);
1055
1056 /*
1057 * Grab the inode buffer so can we release the reference the inode log
1058 * item holds on it.
1059 */
1060 spin_lock(&iip->ili_lock);
1061 bp = iip->ili_item.li_buf;
1062 xfs_iflush_abort_clean(iip);
1063 spin_unlock(&iip->ili_lock);
1064
1065 xfs_iflags_clear(ip, XFS_IFLUSHING);
1066 if (bp)
1067 xfs_buf_rele(bp);
1068 }
1069
1070 /*
1071 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1072 * from anywhere with just an inode reference and does not require holding the
1073 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1074 * it will grab and lock it safely, then abort the inode flush.
1075 */
1076 void
xfs_iflush_shutdown_abort(struct xfs_inode * ip)1077 xfs_iflush_shutdown_abort(
1078 struct xfs_inode *ip)
1079 {
1080 struct xfs_inode_log_item *iip = ip->i_itemp;
1081 struct xfs_buf *bp;
1082
1083 if (!iip) {
1084 /* clean inode, nothing to do */
1085 xfs_iflags_clear(ip, XFS_IFLUSHING);
1086 return;
1087 }
1088
1089 spin_lock(&iip->ili_lock);
1090 bp = iip->ili_item.li_buf;
1091 if (!bp) {
1092 spin_unlock(&iip->ili_lock);
1093 xfs_iflush_abort(ip);
1094 return;
1095 }
1096
1097 /*
1098 * We have to take a reference to the buffer so that it doesn't get
1099 * freed when we drop the ili_lock and then wait to lock the buffer.
1100 * We'll clean up the extra reference after we pick up the ili_lock
1101 * again.
1102 */
1103 xfs_buf_hold(bp);
1104 spin_unlock(&iip->ili_lock);
1105 xfs_buf_lock(bp);
1106
1107 spin_lock(&iip->ili_lock);
1108 if (!iip->ili_item.li_buf) {
1109 /*
1110 * Raced with another removal, hold the only reference
1111 * to bp now. Inode should not be in the AIL now, so just clean
1112 * up and return;
1113 */
1114 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1115 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1116 xfs_iflush_abort_clean(iip);
1117 spin_unlock(&iip->ili_lock);
1118 xfs_iflags_clear(ip, XFS_IFLUSHING);
1119 xfs_buf_relse(bp);
1120 return;
1121 }
1122
1123 /*
1124 * Got two references to bp. The first will get dropped by
1125 * xfs_iflush_abort() when the item is removed from the buffer list, but
1126 * we can't drop our reference until _abort() returns because we have to
1127 * unlock the buffer as well. Hence we abort and then unlock and release
1128 * our reference to the buffer.
1129 */
1130 ASSERT(iip->ili_item.li_buf == bp);
1131 spin_unlock(&iip->ili_lock);
1132 xfs_iflush_abort(ip);
1133 xfs_buf_relse(bp);
1134 }
1135
1136
1137 /*
1138 * convert an xfs_inode_log_format struct from the old 32 bit version
1139 * (which can have different field alignments) to the native 64 bit version
1140 */
1141 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)1142 xfs_inode_item_format_convert(
1143 struct xfs_log_iovec *buf,
1144 struct xfs_inode_log_format *in_f)
1145 {
1146 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1147
1148 if (buf->i_len != sizeof(*in_f32)) {
1149 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1150 return -EFSCORRUPTED;
1151 }
1152
1153 in_f->ilf_type = in_f32->ilf_type;
1154 in_f->ilf_size = in_f32->ilf_size;
1155 in_f->ilf_fields = in_f32->ilf_fields;
1156 in_f->ilf_asize = in_f32->ilf_asize;
1157 in_f->ilf_dsize = in_f32->ilf_dsize;
1158 in_f->ilf_ino = in_f32->ilf_ino;
1159 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1160 in_f->ilf_blkno = in_f32->ilf_blkno;
1161 in_f->ilf_len = in_f32->ilf_len;
1162 in_f->ilf_boffset = in_f32->ilf_boffset;
1163 return 0;
1164 }
1165