1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_trans_priv.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_quota.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_bmap_util.h"
21 #include "xfs_dquot_item.h"
22 #include "xfs_dquot.h"
23 #include "xfs_reflink.h"
24 #include "xfs_ialloc.h"
25 #include "xfs_ag.h"
26 #include "xfs_log_priv.h"
27
28 #include <linux/iversion.h>
29
30 /* Radix tree tags for incore inode tree. */
31
32 /* inode is to be reclaimed */
33 #define XFS_ICI_RECLAIM_TAG 0
34 /* Inode has speculative preallocations (posteof or cow) to clean. */
35 #define XFS_ICI_BLOCKGC_TAG 1
36
37 /*
38 * The goal for walking incore inodes. These can correspond with incore inode
39 * radix tree tags when convenient. Avoid existing XFS_IWALK namespace.
40 */
41 enum xfs_icwalk_goal {
42 /* Goals directly associated with tagged inodes. */
43 XFS_ICWALK_BLOCKGC = XFS_ICI_BLOCKGC_TAG,
44 XFS_ICWALK_RECLAIM = XFS_ICI_RECLAIM_TAG,
45 };
46
47 static int xfs_icwalk(struct xfs_mount *mp,
48 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49 static int xfs_icwalk_ag(struct xfs_perag *pag,
50 enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51
52 /*
53 * Private inode cache walk flags for struct xfs_icwalk. Must not
54 * coincide with XFS_ICWALK_FLAGS_VALID.
55 */
56
57 /* Stop scanning after icw_scan_limit inodes. */
58 #define XFS_ICWALK_FLAG_SCAN_LIMIT (1U << 28)
59
60 #define XFS_ICWALK_FLAG_RECLAIM_SICK (1U << 27)
61 #define XFS_ICWALK_FLAG_UNION (1U << 26) /* union filter algorithm */
62
63 #define XFS_ICWALK_PRIVATE_FLAGS (XFS_ICWALK_FLAG_SCAN_LIMIT | \
64 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65 XFS_ICWALK_FLAG_UNION)
66
67 /*
68 * Allocate and initialise an xfs_inode.
69 */
70 struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)71 xfs_inode_alloc(
72 struct xfs_mount *mp,
73 xfs_ino_t ino)
74 {
75 struct xfs_inode *ip;
76
77 /*
78 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79 * and return NULL here on ENOMEM.
80 */
81 ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82
83 if (inode_init_always(mp->m_super, VFS_I(ip))) {
84 kmem_cache_free(xfs_inode_cache, ip);
85 return NULL;
86 }
87
88 /* VFS doesn't initialise i_mode or i_state! */
89 VFS_I(ip)->i_mode = 0;
90 VFS_I(ip)->i_state = 0;
91 mapping_set_large_folios(VFS_I(ip)->i_mapping);
92
93 XFS_STATS_INC(mp, vn_active);
94 ASSERT(atomic_read(&ip->i_pincount) == 0);
95 ASSERT(ip->i_ino == 0);
96
97 /* initialise the xfs inode */
98 ip->i_ino = ino;
99 ip->i_mount = mp;
100 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101 ip->i_cowfp = NULL;
102 memset(&ip->i_af, 0, sizeof(ip->i_af));
103 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104 memset(&ip->i_df, 0, sizeof(ip->i_df));
105 ip->i_flags = 0;
106 ip->i_delayed_blks = 0;
107 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108 ip->i_nblocks = 0;
109 ip->i_forkoff = 0;
110 ip->i_sick = 0;
111 ip->i_checked = 0;
112 INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113 INIT_LIST_HEAD(&ip->i_ioend_list);
114 spin_lock_init(&ip->i_ioend_lock);
115 ip->i_next_unlinked = NULLAGINO;
116 ip->i_prev_unlinked = 0;
117
118 return ip;
119 }
120
121 STATIC void
xfs_inode_free_callback(struct rcu_head * head)122 xfs_inode_free_callback(
123 struct rcu_head *head)
124 {
125 struct inode *inode = container_of(head, struct inode, i_rcu);
126 struct xfs_inode *ip = XFS_I(inode);
127
128 switch (VFS_I(ip)->i_mode & S_IFMT) {
129 case S_IFREG:
130 case S_IFDIR:
131 case S_IFLNK:
132 xfs_idestroy_fork(&ip->i_df);
133 break;
134 }
135
136 xfs_ifork_zap_attr(ip);
137
138 if (ip->i_cowfp) {
139 xfs_idestroy_fork(ip->i_cowfp);
140 kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141 }
142 if (ip->i_itemp) {
143 ASSERT(!test_bit(XFS_LI_IN_AIL,
144 &ip->i_itemp->ili_item.li_flags));
145 xfs_inode_item_destroy(ip);
146 ip->i_itemp = NULL;
147 }
148
149 kmem_cache_free(xfs_inode_cache, ip);
150 }
151
152 static void
__xfs_inode_free(struct xfs_inode * ip)153 __xfs_inode_free(
154 struct xfs_inode *ip)
155 {
156 /* asserts to verify all state is correct here */
157 ASSERT(atomic_read(&ip->i_pincount) == 0);
158 ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159 XFS_STATS_DEC(ip->i_mount, vn_active);
160
161 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162 }
163
164 void
xfs_inode_free(struct xfs_inode * ip)165 xfs_inode_free(
166 struct xfs_inode *ip)
167 {
168 ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169
170 /*
171 * Because we use RCU freeing we need to ensure the inode always
172 * appears to be reclaimed with an invalid inode number when in the
173 * free state. The ip->i_flags_lock provides the barrier against lookup
174 * races.
175 */
176 spin_lock(&ip->i_flags_lock);
177 ip->i_flags = XFS_IRECLAIM;
178 ip->i_ino = 0;
179 spin_unlock(&ip->i_flags_lock);
180
181 __xfs_inode_free(ip);
182 }
183
184 /*
185 * Queue background inode reclaim work if there are reclaimable inodes and there
186 * isn't reclaim work already scheduled or in progress.
187 */
188 static void
xfs_reclaim_work_queue(struct xfs_mount * mp)189 xfs_reclaim_work_queue(
190 struct xfs_mount *mp)
191 {
192
193 rcu_read_lock();
194 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197 }
198 rcu_read_unlock();
199 }
200
201 /*
202 * Background scanning to trim preallocated space. This is queued based on the
203 * 'speculative_prealloc_lifetime' tunable (5m by default).
204 */
205 static inline void
xfs_blockgc_queue(struct xfs_perag * pag)206 xfs_blockgc_queue(
207 struct xfs_perag *pag)
208 {
209 struct xfs_mount *mp = pag->pag_mount;
210
211 if (!xfs_is_blockgc_enabled(mp))
212 return;
213
214 rcu_read_lock();
215 if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216 queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217 &pag->pag_blockgc_work,
218 msecs_to_jiffies(xfs_blockgc_secs * 1000));
219 rcu_read_unlock();
220 }
221
222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
223 static void
xfs_perag_set_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)224 xfs_perag_set_inode_tag(
225 struct xfs_perag *pag,
226 xfs_agino_t agino,
227 unsigned int tag)
228 {
229 struct xfs_mount *mp = pag->pag_mount;
230 bool was_tagged;
231
232 lockdep_assert_held(&pag->pag_ici_lock);
233
234 was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235 radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236
237 if (tag == XFS_ICI_RECLAIM_TAG)
238 pag->pag_ici_reclaimable++;
239
240 if (was_tagged)
241 return;
242
243 /* propagate the tag up into the perag radix tree */
244 spin_lock(&mp->m_perag_lock);
245 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246 spin_unlock(&mp->m_perag_lock);
247
248 /* start background work */
249 switch (tag) {
250 case XFS_ICI_RECLAIM_TAG:
251 xfs_reclaim_work_queue(mp);
252 break;
253 case XFS_ICI_BLOCKGC_TAG:
254 xfs_blockgc_queue(pag);
255 break;
256 }
257
258 trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259 }
260
261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262 static void
xfs_perag_clear_inode_tag(struct xfs_perag * pag,xfs_agino_t agino,unsigned int tag)263 xfs_perag_clear_inode_tag(
264 struct xfs_perag *pag,
265 xfs_agino_t agino,
266 unsigned int tag)
267 {
268 struct xfs_mount *mp = pag->pag_mount;
269
270 lockdep_assert_held(&pag->pag_ici_lock);
271
272 /*
273 * Reclaim can signal (with a null agino) that it cleared its own tag
274 * by removing the inode from the radix tree.
275 */
276 if (agino != NULLAGINO)
277 radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278 else
279 ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280
281 if (tag == XFS_ICI_RECLAIM_TAG)
282 pag->pag_ici_reclaimable--;
283
284 if (radix_tree_tagged(&pag->pag_ici_root, tag))
285 return;
286
287 /* clear the tag from the perag radix tree */
288 spin_lock(&mp->m_perag_lock);
289 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290 spin_unlock(&mp->m_perag_lock);
291
292 trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293 }
294
295 /*
296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297 * part of the structure. This is made more complex by the fact we store
298 * information about the on-disk values in the VFS inode and so we can't just
299 * overwrite the values unconditionally. Hence we save the parameters we
300 * need to retain across reinitialisation, and rewrite them into the VFS inode
301 * after reinitialisation even if it fails.
302 */
303 static int
xfs_reinit_inode(struct xfs_mount * mp,struct inode * inode)304 xfs_reinit_inode(
305 struct xfs_mount *mp,
306 struct inode *inode)
307 {
308 int error;
309 uint32_t nlink = inode->i_nlink;
310 uint32_t generation = inode->i_generation;
311 uint64_t version = inode_peek_iversion(inode);
312 umode_t mode = inode->i_mode;
313 dev_t dev = inode->i_rdev;
314 kuid_t uid = inode->i_uid;
315 kgid_t gid = inode->i_gid;
316
317 error = inode_init_always(mp->m_super, inode);
318
319 set_nlink(inode, nlink);
320 inode->i_generation = generation;
321 inode_set_iversion_queried(inode, version);
322 inode->i_mode = mode;
323 inode->i_rdev = dev;
324 inode->i_uid = uid;
325 inode->i_gid = gid;
326 mapping_set_large_folios(inode->i_mapping);
327 return error;
328 }
329
330 /*
331 * Carefully nudge an inode whose VFS state has been torn down back into a
332 * usable state. Drops the i_flags_lock and the rcu read lock.
333 */
334 static int
xfs_iget_recycle(struct xfs_perag * pag,struct xfs_inode * ip)335 xfs_iget_recycle(
336 struct xfs_perag *pag,
337 struct xfs_inode *ip) __releases(&ip->i_flags_lock)
338 {
339 struct xfs_mount *mp = ip->i_mount;
340 struct inode *inode = VFS_I(ip);
341 int error;
342
343 trace_xfs_iget_recycle(ip);
344
345 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
346 return -EAGAIN;
347
348 /*
349 * We need to make it look like the inode is being reclaimed to prevent
350 * the actual reclaim workers from stomping over us while we recycle
351 * the inode. We can't clear the radix tree tag yet as it requires
352 * pag_ici_lock to be held exclusive.
353 */
354 ip->i_flags |= XFS_IRECLAIM;
355
356 spin_unlock(&ip->i_flags_lock);
357 rcu_read_unlock();
358
359 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
360 error = xfs_reinit_inode(mp, inode);
361 xfs_iunlock(ip, XFS_ILOCK_EXCL);
362 if (error) {
363 /*
364 * Re-initializing the inode failed, and we are in deep
365 * trouble. Try to re-add it to the reclaim list.
366 */
367 rcu_read_lock();
368 spin_lock(&ip->i_flags_lock);
369 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
370 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
371 spin_unlock(&ip->i_flags_lock);
372 rcu_read_unlock();
373
374 trace_xfs_iget_recycle_fail(ip);
375 return error;
376 }
377
378 spin_lock(&pag->pag_ici_lock);
379 spin_lock(&ip->i_flags_lock);
380
381 /*
382 * Clear the per-lifetime state in the inode as we are now effectively
383 * a new inode and need to return to the initial state before reuse
384 * occurs.
385 */
386 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
387 ip->i_flags |= XFS_INEW;
388 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
389 XFS_ICI_RECLAIM_TAG);
390 inode->i_state = I_NEW;
391 spin_unlock(&ip->i_flags_lock);
392 spin_unlock(&pag->pag_ici_lock);
393
394 return 0;
395 }
396
397 /*
398 * If we are allocating a new inode, then check what was returned is
399 * actually a free, empty inode. If we are not allocating an inode,
400 * then check we didn't find a free inode.
401 *
402 * Returns:
403 * 0 if the inode free state matches the lookup context
404 * -ENOENT if the inode is free and we are not allocating
405 * -EFSCORRUPTED if there is any state mismatch at all
406 */
407 static int
xfs_iget_check_free_state(struct xfs_inode * ip,int flags)408 xfs_iget_check_free_state(
409 struct xfs_inode *ip,
410 int flags)
411 {
412 if (flags & XFS_IGET_CREATE) {
413 /* should be a free inode */
414 if (VFS_I(ip)->i_mode != 0) {
415 xfs_warn(ip->i_mount,
416 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
417 ip->i_ino, VFS_I(ip)->i_mode);
418 return -EFSCORRUPTED;
419 }
420
421 if (ip->i_nblocks != 0) {
422 xfs_warn(ip->i_mount,
423 "Corruption detected! Free inode 0x%llx has blocks allocated!",
424 ip->i_ino);
425 return -EFSCORRUPTED;
426 }
427 return 0;
428 }
429
430 /* should be an allocated inode */
431 if (VFS_I(ip)->i_mode == 0)
432 return -ENOENT;
433
434 return 0;
435 }
436
437 /* Make all pending inactivation work start immediately. */
438 static bool
xfs_inodegc_queue_all(struct xfs_mount * mp)439 xfs_inodegc_queue_all(
440 struct xfs_mount *mp)
441 {
442 struct xfs_inodegc *gc;
443 int cpu;
444 bool ret = false;
445
446 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
447 gc = per_cpu_ptr(mp->m_inodegc, cpu);
448 if (!llist_empty(&gc->list)) {
449 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
450 ret = true;
451 }
452 }
453
454 return ret;
455 }
456
457 /* Wait for all queued work and collect errors */
458 static int
xfs_inodegc_wait_all(struct xfs_mount * mp)459 xfs_inodegc_wait_all(
460 struct xfs_mount *mp)
461 {
462 int cpu;
463 int error = 0;
464
465 flush_workqueue(mp->m_inodegc_wq);
466 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
467 struct xfs_inodegc *gc;
468
469 gc = per_cpu_ptr(mp->m_inodegc, cpu);
470 if (gc->error && !error)
471 error = gc->error;
472 gc->error = 0;
473 }
474
475 return error;
476 }
477
478 /*
479 * Check the validity of the inode we just found it the cache
480 */
481 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,xfs_ino_t ino,int flags,int lock_flags)482 xfs_iget_cache_hit(
483 struct xfs_perag *pag,
484 struct xfs_inode *ip,
485 xfs_ino_t ino,
486 int flags,
487 int lock_flags) __releases(RCU)
488 {
489 struct inode *inode = VFS_I(ip);
490 struct xfs_mount *mp = ip->i_mount;
491 int error;
492
493 /*
494 * check for re-use of an inode within an RCU grace period due to the
495 * radix tree nodes not being updated yet. We monitor for this by
496 * setting the inode number to zero before freeing the inode structure.
497 * If the inode has been reallocated and set up, then the inode number
498 * will not match, so check for that, too.
499 */
500 spin_lock(&ip->i_flags_lock);
501 if (ip->i_ino != ino)
502 goto out_skip;
503
504 /*
505 * If we are racing with another cache hit that is currently
506 * instantiating this inode or currently recycling it out of
507 * reclaimable state, wait for the initialisation to complete
508 * before continuing.
509 *
510 * If we're racing with the inactivation worker we also want to wait.
511 * If we're creating a new file, it's possible that the worker
512 * previously marked the inode as free on disk but hasn't finished
513 * updating the incore state yet. The AGI buffer will be dirty and
514 * locked to the icreate transaction, so a synchronous push of the
515 * inodegc workers would result in deadlock. For a regular iget, the
516 * worker is running already, so we might as well wait.
517 *
518 * XXX(hch): eventually we should do something equivalent to
519 * wait_on_inode to wait for these flags to be cleared
520 * instead of polling for it.
521 */
522 if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
523 goto out_skip;
524
525 if (ip->i_flags & XFS_NEED_INACTIVE) {
526 /* Unlinked inodes cannot be re-grabbed. */
527 if (VFS_I(ip)->i_nlink == 0) {
528 error = -ENOENT;
529 goto out_error;
530 }
531 goto out_inodegc_flush;
532 }
533
534 /*
535 * Check the inode free state is valid. This also detects lookup
536 * racing with unlinks.
537 */
538 error = xfs_iget_check_free_state(ip, flags);
539 if (error)
540 goto out_error;
541
542 /* Skip inodes that have no vfs state. */
543 if ((flags & XFS_IGET_INCORE) &&
544 (ip->i_flags & XFS_IRECLAIMABLE))
545 goto out_skip;
546
547 /* The inode fits the selection criteria; process it. */
548 if (ip->i_flags & XFS_IRECLAIMABLE) {
549 /* Drops i_flags_lock and RCU read lock. */
550 error = xfs_iget_recycle(pag, ip);
551 if (error == -EAGAIN)
552 goto out_skip;
553 if (error)
554 return error;
555 } else {
556 /* If the VFS inode is being torn down, pause and try again. */
557 if (!igrab(inode))
558 goto out_skip;
559
560 /* We've got a live one. */
561 spin_unlock(&ip->i_flags_lock);
562 rcu_read_unlock();
563 trace_xfs_iget_hit(ip);
564 }
565
566 if (lock_flags != 0)
567 xfs_ilock(ip, lock_flags);
568
569 if (!(flags & XFS_IGET_INCORE))
570 xfs_iflags_clear(ip, XFS_ISTALE);
571 XFS_STATS_INC(mp, xs_ig_found);
572
573 return 0;
574
575 out_skip:
576 trace_xfs_iget_skip(ip);
577 XFS_STATS_INC(mp, xs_ig_frecycle);
578 error = -EAGAIN;
579 out_error:
580 spin_unlock(&ip->i_flags_lock);
581 rcu_read_unlock();
582 return error;
583
584 out_inodegc_flush:
585 spin_unlock(&ip->i_flags_lock);
586 rcu_read_unlock();
587 /*
588 * Do not wait for the workers, because the caller could hold an AGI
589 * buffer lock. We're just going to sleep in a loop anyway.
590 */
591 if (xfs_is_inodegc_enabled(mp))
592 xfs_inodegc_queue_all(mp);
593 return -EAGAIN;
594 }
595
596 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,int flags,int lock_flags)597 xfs_iget_cache_miss(
598 struct xfs_mount *mp,
599 struct xfs_perag *pag,
600 xfs_trans_t *tp,
601 xfs_ino_t ino,
602 struct xfs_inode **ipp,
603 int flags,
604 int lock_flags)
605 {
606 struct xfs_inode *ip;
607 int error;
608 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
609 int iflags;
610
611 ip = xfs_inode_alloc(mp, ino);
612 if (!ip)
613 return -ENOMEM;
614
615 error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
616 if (error)
617 goto out_destroy;
618
619 /*
620 * For version 5 superblocks, if we are initialising a new inode and we
621 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
622 * simply build the new inode core with a random generation number.
623 *
624 * For version 4 (and older) superblocks, log recovery is dependent on
625 * the i_flushiter field being initialised from the current on-disk
626 * value and hence we must also read the inode off disk even when
627 * initializing new inodes.
628 */
629 if (xfs_has_v3inodes(mp) &&
630 (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
631 VFS_I(ip)->i_generation = get_random_u32();
632 } else {
633 struct xfs_buf *bp;
634
635 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
636 if (error)
637 goto out_destroy;
638
639 error = xfs_inode_from_disk(ip,
640 xfs_buf_offset(bp, ip->i_imap.im_boffset));
641 if (!error)
642 xfs_buf_set_ref(bp, XFS_INO_REF);
643 xfs_trans_brelse(tp, bp);
644
645 if (error)
646 goto out_destroy;
647 }
648
649 trace_xfs_iget_miss(ip);
650
651 /*
652 * Check the inode free state is valid. This also detects lookup
653 * racing with unlinks.
654 */
655 error = xfs_iget_check_free_state(ip, flags);
656 if (error)
657 goto out_destroy;
658
659 /*
660 * Preload the radix tree so we can insert safely under the
661 * write spinlock. Note that we cannot sleep inside the preload
662 * region. Since we can be called from transaction context, don't
663 * recurse into the file system.
664 */
665 if (radix_tree_preload(GFP_NOFS)) {
666 error = -EAGAIN;
667 goto out_destroy;
668 }
669
670 /*
671 * Because the inode hasn't been added to the radix-tree yet it can't
672 * be found by another thread, so we can do the non-sleeping lock here.
673 */
674 if (lock_flags) {
675 if (!xfs_ilock_nowait(ip, lock_flags))
676 BUG();
677 }
678
679 /*
680 * These values must be set before inserting the inode into the radix
681 * tree as the moment it is inserted a concurrent lookup (allowed by the
682 * RCU locking mechanism) can find it and that lookup must see that this
683 * is an inode currently under construction (i.e. that XFS_INEW is set).
684 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
685 * memory barrier that ensures this detection works correctly at lookup
686 * time.
687 */
688 iflags = XFS_INEW;
689 if (flags & XFS_IGET_DONTCACHE)
690 d_mark_dontcache(VFS_I(ip));
691 ip->i_udquot = NULL;
692 ip->i_gdquot = NULL;
693 ip->i_pdquot = NULL;
694 xfs_iflags_set(ip, iflags);
695
696 /* insert the new inode */
697 spin_lock(&pag->pag_ici_lock);
698 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
699 if (unlikely(error)) {
700 WARN_ON(error != -EEXIST);
701 XFS_STATS_INC(mp, xs_ig_dup);
702 error = -EAGAIN;
703 goto out_preload_end;
704 }
705 spin_unlock(&pag->pag_ici_lock);
706 radix_tree_preload_end();
707
708 *ipp = ip;
709 return 0;
710
711 out_preload_end:
712 spin_unlock(&pag->pag_ici_lock);
713 radix_tree_preload_end();
714 if (lock_flags)
715 xfs_iunlock(ip, lock_flags);
716 out_destroy:
717 __destroy_inode(VFS_I(ip));
718 xfs_inode_free(ip);
719 return error;
720 }
721
722 /*
723 * Look up an inode by number in the given file system. The inode is looked up
724 * in the cache held in each AG. If the inode is found in the cache, initialise
725 * the vfs inode if necessary.
726 *
727 * If it is not in core, read it in from the file system's device, add it to the
728 * cache and initialise the vfs inode.
729 *
730 * The inode is locked according to the value of the lock_flags parameter.
731 * Inode lookup is only done during metadata operations and not as part of the
732 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
733 */
734 int
xfs_iget(struct xfs_mount * mp,struct xfs_trans * tp,xfs_ino_t ino,uint flags,uint lock_flags,struct xfs_inode ** ipp)735 xfs_iget(
736 struct xfs_mount *mp,
737 struct xfs_trans *tp,
738 xfs_ino_t ino,
739 uint flags,
740 uint lock_flags,
741 struct xfs_inode **ipp)
742 {
743 struct xfs_inode *ip;
744 struct xfs_perag *pag;
745 xfs_agino_t agino;
746 int error;
747
748 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
749
750 /* reject inode numbers outside existing AGs */
751 if (!xfs_verify_ino(mp, ino))
752 return -EINVAL;
753
754 XFS_STATS_INC(mp, xs_ig_attempts);
755
756 /* get the perag structure and ensure that it's inode capable */
757 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
758 agino = XFS_INO_TO_AGINO(mp, ino);
759
760 again:
761 error = 0;
762 rcu_read_lock();
763 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
764
765 if (ip) {
766 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
767 if (error)
768 goto out_error_or_again;
769 } else {
770 rcu_read_unlock();
771 if (flags & XFS_IGET_INCORE) {
772 error = -ENODATA;
773 goto out_error_or_again;
774 }
775 XFS_STATS_INC(mp, xs_ig_missed);
776
777 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
778 flags, lock_flags);
779 if (error)
780 goto out_error_or_again;
781 }
782 xfs_perag_put(pag);
783
784 *ipp = ip;
785
786 /*
787 * If we have a real type for an on-disk inode, we can setup the inode
788 * now. If it's a new inode being created, xfs_init_new_inode will
789 * handle it.
790 */
791 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
792 xfs_setup_existing_inode(ip);
793 return 0;
794
795 out_error_or_again:
796 if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
797 error == -EAGAIN) {
798 delay(1);
799 goto again;
800 }
801 xfs_perag_put(pag);
802 return error;
803 }
804
805 /*
806 * Grab the inode for reclaim exclusively.
807 *
808 * We have found this inode via a lookup under RCU, so the inode may have
809 * already been freed, or it may be in the process of being recycled by
810 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
811 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
812 * will not be set. Hence we need to check for both these flag conditions to
813 * avoid inodes that are no longer reclaim candidates.
814 *
815 * Note: checking for other state flags here, under the i_flags_lock or not, is
816 * racy and should be avoided. Those races should be resolved only after we have
817 * ensured that we are able to reclaim this inode and the world can see that we
818 * are going to reclaim it.
819 *
820 * Return true if we grabbed it, false otherwise.
821 */
822 static bool
xfs_reclaim_igrab(struct xfs_inode * ip,struct xfs_icwalk * icw)823 xfs_reclaim_igrab(
824 struct xfs_inode *ip,
825 struct xfs_icwalk *icw)
826 {
827 ASSERT(rcu_read_lock_held());
828
829 spin_lock(&ip->i_flags_lock);
830 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
831 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
832 /* not a reclaim candidate. */
833 spin_unlock(&ip->i_flags_lock);
834 return false;
835 }
836
837 /* Don't reclaim a sick inode unless the caller asked for it. */
838 if (ip->i_sick &&
839 (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
840 spin_unlock(&ip->i_flags_lock);
841 return false;
842 }
843
844 __xfs_iflags_set(ip, XFS_IRECLAIM);
845 spin_unlock(&ip->i_flags_lock);
846 return true;
847 }
848
849 /*
850 * Inode reclaim is non-blocking, so the default action if progress cannot be
851 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
852 * XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
853 * blocking anymore and hence we can wait for the inode to be able to reclaim
854 * it.
855 *
856 * We do no IO here - if callers require inodes to be cleaned they must push the
857 * AIL first to trigger writeback of dirty inodes. This enables writeback to be
858 * done in the background in a non-blocking manner, and enables memory reclaim
859 * to make progress without blocking.
860 */
861 static void
xfs_reclaim_inode(struct xfs_inode * ip,struct xfs_perag * pag)862 xfs_reclaim_inode(
863 struct xfs_inode *ip,
864 struct xfs_perag *pag)
865 {
866 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
867
868 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
869 goto out;
870 if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
871 goto out_iunlock;
872
873 /*
874 * Check for log shutdown because aborting the inode can move the log
875 * tail and corrupt in memory state. This is fine if the log is shut
876 * down, but if the log is still active and only the mount is shut down
877 * then the in-memory log tail movement caused by the abort can be
878 * incorrectly propagated to disk.
879 */
880 if (xlog_is_shutdown(ip->i_mount->m_log)) {
881 xfs_iunpin_wait(ip);
882 xfs_iflush_shutdown_abort(ip);
883 goto reclaim;
884 }
885 if (xfs_ipincount(ip))
886 goto out_clear_flush;
887 if (!xfs_inode_clean(ip))
888 goto out_clear_flush;
889
890 xfs_iflags_clear(ip, XFS_IFLUSHING);
891 reclaim:
892 trace_xfs_inode_reclaiming(ip);
893
894 /*
895 * Because we use RCU freeing we need to ensure the inode always appears
896 * to be reclaimed with an invalid inode number when in the free state.
897 * We do this as early as possible under the ILOCK so that
898 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
899 * detect races with us here. By doing this, we guarantee that once
900 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
901 * it will see either a valid inode that will serialise correctly, or it
902 * will see an invalid inode that it can skip.
903 */
904 spin_lock(&ip->i_flags_lock);
905 ip->i_flags = XFS_IRECLAIM;
906 ip->i_ino = 0;
907 ip->i_sick = 0;
908 ip->i_checked = 0;
909 spin_unlock(&ip->i_flags_lock);
910
911 ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
912 xfs_iunlock(ip, XFS_ILOCK_EXCL);
913
914 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
915 /*
916 * Remove the inode from the per-AG radix tree.
917 *
918 * Because radix_tree_delete won't complain even if the item was never
919 * added to the tree assert that it's been there before to catch
920 * problems with the inode life time early on.
921 */
922 spin_lock(&pag->pag_ici_lock);
923 if (!radix_tree_delete(&pag->pag_ici_root,
924 XFS_INO_TO_AGINO(ip->i_mount, ino)))
925 ASSERT(0);
926 xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
927 spin_unlock(&pag->pag_ici_lock);
928
929 /*
930 * Here we do an (almost) spurious inode lock in order to coordinate
931 * with inode cache radix tree lookups. This is because the lookup
932 * can reference the inodes in the cache without taking references.
933 *
934 * We make that OK here by ensuring that we wait until the inode is
935 * unlocked after the lookup before we go ahead and free it.
936 */
937 xfs_ilock(ip, XFS_ILOCK_EXCL);
938 ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
939 xfs_iunlock(ip, XFS_ILOCK_EXCL);
940 ASSERT(xfs_inode_clean(ip));
941
942 __xfs_inode_free(ip);
943 return;
944
945 out_clear_flush:
946 xfs_iflags_clear(ip, XFS_IFLUSHING);
947 out_iunlock:
948 xfs_iunlock(ip, XFS_ILOCK_EXCL);
949 out:
950 xfs_iflags_clear(ip, XFS_IRECLAIM);
951 }
952
953 /* Reclaim sick inodes if we're unmounting or the fs went down. */
954 static inline bool
xfs_want_reclaim_sick(struct xfs_mount * mp)955 xfs_want_reclaim_sick(
956 struct xfs_mount *mp)
957 {
958 return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
959 xfs_is_shutdown(mp);
960 }
961
962 void
xfs_reclaim_inodes(struct xfs_mount * mp)963 xfs_reclaim_inodes(
964 struct xfs_mount *mp)
965 {
966 struct xfs_icwalk icw = {
967 .icw_flags = 0,
968 };
969
970 if (xfs_want_reclaim_sick(mp))
971 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
972
973 while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
974 xfs_ail_push_all_sync(mp->m_ail);
975 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
976 }
977 }
978
979 /*
980 * The shrinker infrastructure determines how many inodes we should scan for
981 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
982 * push the AIL here. We also want to proactively free up memory if we can to
983 * minimise the amount of work memory reclaim has to do so we kick the
984 * background reclaim if it isn't already scheduled.
985 */
986 long
xfs_reclaim_inodes_nr(struct xfs_mount * mp,unsigned long nr_to_scan)987 xfs_reclaim_inodes_nr(
988 struct xfs_mount *mp,
989 unsigned long nr_to_scan)
990 {
991 struct xfs_icwalk icw = {
992 .icw_flags = XFS_ICWALK_FLAG_SCAN_LIMIT,
993 .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
994 };
995
996 if (xfs_want_reclaim_sick(mp))
997 icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
998
999 /* kick background reclaimer and push the AIL */
1000 xfs_reclaim_work_queue(mp);
1001 xfs_ail_push_all(mp->m_ail);
1002
1003 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1004 return 0;
1005 }
1006
1007 /*
1008 * Return the number of reclaimable inodes in the filesystem for
1009 * the shrinker to determine how much to reclaim.
1010 */
1011 long
xfs_reclaim_inodes_count(struct xfs_mount * mp)1012 xfs_reclaim_inodes_count(
1013 struct xfs_mount *mp)
1014 {
1015 struct xfs_perag *pag;
1016 xfs_agnumber_t ag = 0;
1017 long reclaimable = 0;
1018
1019 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1020 ag = pag->pag_agno + 1;
1021 reclaimable += pag->pag_ici_reclaimable;
1022 xfs_perag_put(pag);
1023 }
1024 return reclaimable;
1025 }
1026
1027 STATIC bool
xfs_icwalk_match_id(struct xfs_inode * ip,struct xfs_icwalk * icw)1028 xfs_icwalk_match_id(
1029 struct xfs_inode *ip,
1030 struct xfs_icwalk *icw)
1031 {
1032 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1033 !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1034 return false;
1035
1036 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1037 !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1038 return false;
1039
1040 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1041 ip->i_projid != icw->icw_prid)
1042 return false;
1043
1044 return true;
1045 }
1046
1047 /*
1048 * A union-based inode filtering algorithm. Process the inode if any of the
1049 * criteria match. This is for global/internal scans only.
1050 */
1051 STATIC bool
xfs_icwalk_match_id_union(struct xfs_inode * ip,struct xfs_icwalk * icw)1052 xfs_icwalk_match_id_union(
1053 struct xfs_inode *ip,
1054 struct xfs_icwalk *icw)
1055 {
1056 if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1057 uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1058 return true;
1059
1060 if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1061 gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1062 return true;
1063
1064 if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1065 ip->i_projid == icw->icw_prid)
1066 return true;
1067
1068 return false;
1069 }
1070
1071 /*
1072 * Is this inode @ip eligible for eof/cow block reclamation, given some
1073 * filtering parameters @icw? The inode is eligible if @icw is null or
1074 * if the predicate functions match.
1075 */
1076 static bool
xfs_icwalk_match(struct xfs_inode * ip,struct xfs_icwalk * icw)1077 xfs_icwalk_match(
1078 struct xfs_inode *ip,
1079 struct xfs_icwalk *icw)
1080 {
1081 bool match;
1082
1083 if (!icw)
1084 return true;
1085
1086 if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1087 match = xfs_icwalk_match_id_union(ip, icw);
1088 else
1089 match = xfs_icwalk_match_id(ip, icw);
1090 if (!match)
1091 return false;
1092
1093 /* skip the inode if the file size is too small */
1094 if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1095 XFS_ISIZE(ip) < icw->icw_min_file_size)
1096 return false;
1097
1098 return true;
1099 }
1100
1101 /*
1102 * This is a fast pass over the inode cache to try to get reclaim moving on as
1103 * many inodes as possible in a short period of time. It kicks itself every few
1104 * seconds, as well as being kicked by the inode cache shrinker when memory
1105 * goes low.
1106 */
1107 void
xfs_reclaim_worker(struct work_struct * work)1108 xfs_reclaim_worker(
1109 struct work_struct *work)
1110 {
1111 struct xfs_mount *mp = container_of(to_delayed_work(work),
1112 struct xfs_mount, m_reclaim_work);
1113
1114 xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1115 xfs_reclaim_work_queue(mp);
1116 }
1117
1118 STATIC int
xfs_inode_free_eofblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1119 xfs_inode_free_eofblocks(
1120 struct xfs_inode *ip,
1121 struct xfs_icwalk *icw,
1122 unsigned int *lockflags)
1123 {
1124 bool wait;
1125
1126 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1127
1128 if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1129 return 0;
1130
1131 /*
1132 * If the mapping is dirty the operation can block and wait for some
1133 * time. Unless we are waiting, skip it.
1134 */
1135 if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1136 return 0;
1137
1138 if (!xfs_icwalk_match(ip, icw))
1139 return 0;
1140
1141 /*
1142 * If the caller is waiting, return -EAGAIN to keep the background
1143 * scanner moving and revisit the inode in a subsequent pass.
1144 */
1145 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1146 if (wait)
1147 return -EAGAIN;
1148 return 0;
1149 }
1150 *lockflags |= XFS_IOLOCK_EXCL;
1151
1152 if (xfs_can_free_eofblocks(ip))
1153 return xfs_free_eofblocks(ip);
1154
1155 /* inode could be preallocated or append-only */
1156 trace_xfs_inode_free_eofblocks_invalid(ip);
1157 xfs_inode_clear_eofblocks_tag(ip);
1158 return 0;
1159 }
1160
1161 static void
xfs_blockgc_set_iflag(struct xfs_inode * ip,unsigned long iflag)1162 xfs_blockgc_set_iflag(
1163 struct xfs_inode *ip,
1164 unsigned long iflag)
1165 {
1166 struct xfs_mount *mp = ip->i_mount;
1167 struct xfs_perag *pag;
1168
1169 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1170
1171 /*
1172 * Don't bother locking the AG and looking up in the radix trees
1173 * if we already know that we have the tag set.
1174 */
1175 if (ip->i_flags & iflag)
1176 return;
1177 spin_lock(&ip->i_flags_lock);
1178 ip->i_flags |= iflag;
1179 spin_unlock(&ip->i_flags_lock);
1180
1181 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1182 spin_lock(&pag->pag_ici_lock);
1183
1184 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1185 XFS_ICI_BLOCKGC_TAG);
1186
1187 spin_unlock(&pag->pag_ici_lock);
1188 xfs_perag_put(pag);
1189 }
1190
1191 void
xfs_inode_set_eofblocks_tag(xfs_inode_t * ip)1192 xfs_inode_set_eofblocks_tag(
1193 xfs_inode_t *ip)
1194 {
1195 trace_xfs_inode_set_eofblocks_tag(ip);
1196 return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1197 }
1198
1199 static void
xfs_blockgc_clear_iflag(struct xfs_inode * ip,unsigned long iflag)1200 xfs_blockgc_clear_iflag(
1201 struct xfs_inode *ip,
1202 unsigned long iflag)
1203 {
1204 struct xfs_mount *mp = ip->i_mount;
1205 struct xfs_perag *pag;
1206 bool clear_tag;
1207
1208 ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1209
1210 spin_lock(&ip->i_flags_lock);
1211 ip->i_flags &= ~iflag;
1212 clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1213 spin_unlock(&ip->i_flags_lock);
1214
1215 if (!clear_tag)
1216 return;
1217
1218 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1219 spin_lock(&pag->pag_ici_lock);
1220
1221 xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1222 XFS_ICI_BLOCKGC_TAG);
1223
1224 spin_unlock(&pag->pag_ici_lock);
1225 xfs_perag_put(pag);
1226 }
1227
1228 void
xfs_inode_clear_eofblocks_tag(xfs_inode_t * ip)1229 xfs_inode_clear_eofblocks_tag(
1230 xfs_inode_t *ip)
1231 {
1232 trace_xfs_inode_clear_eofblocks_tag(ip);
1233 return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1234 }
1235
1236 /*
1237 * Prepare to free COW fork blocks from an inode.
1238 */
1239 static bool
xfs_prep_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw)1240 xfs_prep_free_cowblocks(
1241 struct xfs_inode *ip,
1242 struct xfs_icwalk *icw)
1243 {
1244 bool sync;
1245
1246 sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1247
1248 /*
1249 * Just clear the tag if we have an empty cow fork or none at all. It's
1250 * possible the inode was fully unshared since it was originally tagged.
1251 */
1252 if (!xfs_inode_has_cow_data(ip)) {
1253 trace_xfs_inode_free_cowblocks_invalid(ip);
1254 xfs_inode_clear_cowblocks_tag(ip);
1255 return false;
1256 }
1257
1258 /*
1259 * A cowblocks trim of an inode can have a significant effect on
1260 * fragmentation even when a reasonable COW extent size hint is set.
1261 * Therefore, we prefer to not process cowblocks unless they are clean
1262 * and idle. We can never process a cowblocks inode that is dirty or has
1263 * in-flight I/O under any circumstances, because outstanding writeback
1264 * or dio expects targeted COW fork blocks exist through write
1265 * completion where they can be remapped into the data fork.
1266 *
1267 * Therefore, the heuristic used here is to never process inodes
1268 * currently opened for write from background (i.e. non-sync) scans. For
1269 * sync scans, use the pagecache/dio state of the inode to ensure we
1270 * never free COW fork blocks out from under pending I/O.
1271 */
1272 if (!sync && inode_is_open_for_write(VFS_I(ip)))
1273 return false;
1274 return xfs_can_free_cowblocks(ip);
1275 }
1276
1277 /*
1278 * Automatic CoW Reservation Freeing
1279 *
1280 * These functions automatically garbage collect leftover CoW reservations
1281 * that were made on behalf of a cowextsize hint when we start to run out
1282 * of quota or when the reservations sit around for too long. If the file
1283 * has dirty pages or is undergoing writeback, its CoW reservations will
1284 * be retained.
1285 *
1286 * The actual garbage collection piggybacks off the same code that runs
1287 * the speculative EOF preallocation garbage collector.
1288 */
1289 STATIC int
xfs_inode_free_cowblocks(struct xfs_inode * ip,struct xfs_icwalk * icw,unsigned int * lockflags)1290 xfs_inode_free_cowblocks(
1291 struct xfs_inode *ip,
1292 struct xfs_icwalk *icw,
1293 unsigned int *lockflags)
1294 {
1295 bool wait;
1296 int ret = 0;
1297
1298 wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1299
1300 if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1301 return 0;
1302
1303 if (!xfs_prep_free_cowblocks(ip, icw))
1304 return 0;
1305
1306 if (!xfs_icwalk_match(ip, icw))
1307 return 0;
1308
1309 /*
1310 * If the caller is waiting, return -EAGAIN to keep the background
1311 * scanner moving and revisit the inode in a subsequent pass.
1312 */
1313 if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1314 !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1315 if (wait)
1316 return -EAGAIN;
1317 return 0;
1318 }
1319 *lockflags |= XFS_IOLOCK_EXCL;
1320
1321 if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1322 if (wait)
1323 return -EAGAIN;
1324 return 0;
1325 }
1326 *lockflags |= XFS_MMAPLOCK_EXCL;
1327
1328 /*
1329 * Check again, nobody else should be able to dirty blocks or change
1330 * the reflink iflag now that we have the first two locks held.
1331 */
1332 if (xfs_prep_free_cowblocks(ip, icw))
1333 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1334 return ret;
1335 }
1336
1337 void
xfs_inode_set_cowblocks_tag(xfs_inode_t * ip)1338 xfs_inode_set_cowblocks_tag(
1339 xfs_inode_t *ip)
1340 {
1341 trace_xfs_inode_set_cowblocks_tag(ip);
1342 return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1343 }
1344
1345 void
xfs_inode_clear_cowblocks_tag(xfs_inode_t * ip)1346 xfs_inode_clear_cowblocks_tag(
1347 xfs_inode_t *ip)
1348 {
1349 trace_xfs_inode_clear_cowblocks_tag(ip);
1350 return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1351 }
1352
1353 /* Disable post-EOF and CoW block auto-reclamation. */
1354 void
xfs_blockgc_stop(struct xfs_mount * mp)1355 xfs_blockgc_stop(
1356 struct xfs_mount *mp)
1357 {
1358 struct xfs_perag *pag;
1359 xfs_agnumber_t agno;
1360
1361 if (!xfs_clear_blockgc_enabled(mp))
1362 return;
1363
1364 for_each_perag(mp, agno, pag)
1365 cancel_delayed_work_sync(&pag->pag_blockgc_work);
1366 trace_xfs_blockgc_stop(mp, __return_address);
1367 }
1368
1369 /* Enable post-EOF and CoW block auto-reclamation. */
1370 void
xfs_blockgc_start(struct xfs_mount * mp)1371 xfs_blockgc_start(
1372 struct xfs_mount *mp)
1373 {
1374 struct xfs_perag *pag;
1375 xfs_agnumber_t agno;
1376
1377 if (xfs_set_blockgc_enabled(mp))
1378 return;
1379
1380 trace_xfs_blockgc_start(mp, __return_address);
1381 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1382 xfs_blockgc_queue(pag);
1383 }
1384
1385 /* Don't try to run block gc on an inode that's in any of these states. */
1386 #define XFS_BLOCKGC_NOGRAB_IFLAGS (XFS_INEW | \
1387 XFS_NEED_INACTIVE | \
1388 XFS_INACTIVATING | \
1389 XFS_IRECLAIMABLE | \
1390 XFS_IRECLAIM)
1391 /*
1392 * Decide if the given @ip is eligible for garbage collection of speculative
1393 * preallocations, and grab it if so. Returns true if it's ready to go or
1394 * false if we should just ignore it.
1395 */
1396 static bool
xfs_blockgc_igrab(struct xfs_inode * ip)1397 xfs_blockgc_igrab(
1398 struct xfs_inode *ip)
1399 {
1400 struct inode *inode = VFS_I(ip);
1401
1402 ASSERT(rcu_read_lock_held());
1403
1404 /* Check for stale RCU freed inode */
1405 spin_lock(&ip->i_flags_lock);
1406 if (!ip->i_ino)
1407 goto out_unlock_noent;
1408
1409 if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1410 goto out_unlock_noent;
1411 spin_unlock(&ip->i_flags_lock);
1412
1413 /* nothing to sync during shutdown */
1414 if (xfs_is_shutdown(ip->i_mount))
1415 return false;
1416
1417 /* If we can't grab the inode, it must on it's way to reclaim. */
1418 if (!igrab(inode))
1419 return false;
1420
1421 /* inode is valid */
1422 return true;
1423
1424 out_unlock_noent:
1425 spin_unlock(&ip->i_flags_lock);
1426 return false;
1427 }
1428
1429 /* Scan one incore inode for block preallocations that we can remove. */
1430 static int
xfs_blockgc_scan_inode(struct xfs_inode * ip,struct xfs_icwalk * icw)1431 xfs_blockgc_scan_inode(
1432 struct xfs_inode *ip,
1433 struct xfs_icwalk *icw)
1434 {
1435 unsigned int lockflags = 0;
1436 int error;
1437
1438 error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1439 if (error)
1440 goto unlock;
1441
1442 error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1443 unlock:
1444 if (lockflags)
1445 xfs_iunlock(ip, lockflags);
1446 xfs_irele(ip);
1447 return error;
1448 }
1449
1450 /* Background worker that trims preallocated space. */
1451 void
xfs_blockgc_worker(struct work_struct * work)1452 xfs_blockgc_worker(
1453 struct work_struct *work)
1454 {
1455 struct xfs_perag *pag = container_of(to_delayed_work(work),
1456 struct xfs_perag, pag_blockgc_work);
1457 struct xfs_mount *mp = pag->pag_mount;
1458 int error;
1459
1460 trace_xfs_blockgc_worker(mp, __return_address);
1461
1462 error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1463 if (error)
1464 xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1465 pag->pag_agno, error);
1466 xfs_blockgc_queue(pag);
1467 }
1468
1469 /*
1470 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1471 * and cowblocks.
1472 */
1473 int
xfs_blockgc_free_space(struct xfs_mount * mp,struct xfs_icwalk * icw)1474 xfs_blockgc_free_space(
1475 struct xfs_mount *mp,
1476 struct xfs_icwalk *icw)
1477 {
1478 int error;
1479
1480 trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1481
1482 error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1483 if (error)
1484 return error;
1485
1486 return xfs_inodegc_flush(mp);
1487 }
1488
1489 /*
1490 * Reclaim all the free space that we can by scheduling the background blockgc
1491 * and inodegc workers immediately and waiting for them all to clear.
1492 */
1493 int
xfs_blockgc_flush_all(struct xfs_mount * mp)1494 xfs_blockgc_flush_all(
1495 struct xfs_mount *mp)
1496 {
1497 struct xfs_perag *pag;
1498 xfs_agnumber_t agno;
1499
1500 trace_xfs_blockgc_flush_all(mp, __return_address);
1501
1502 /*
1503 * For each blockgc worker, move its queue time up to now. If it
1504 * wasn't queued, it will not be requeued. Then flush whatever's
1505 * left.
1506 */
1507 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1508 mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1509 &pag->pag_blockgc_work, 0);
1510
1511 for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1512 flush_delayed_work(&pag->pag_blockgc_work);
1513
1514 return xfs_inodegc_flush(mp);
1515 }
1516
1517 /*
1518 * Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
1519 * quota caused an allocation failure, so we make a best effort by including
1520 * each quota under low free space conditions (less than 1% free space) in the
1521 * scan.
1522 *
1523 * Callers must not hold any inode's ILOCK. If requesting a synchronous scan
1524 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1525 * MMAPLOCK.
1526 */
1527 int
xfs_blockgc_free_dquots(struct xfs_mount * mp,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int iwalk_flags)1528 xfs_blockgc_free_dquots(
1529 struct xfs_mount *mp,
1530 struct xfs_dquot *udqp,
1531 struct xfs_dquot *gdqp,
1532 struct xfs_dquot *pdqp,
1533 unsigned int iwalk_flags)
1534 {
1535 struct xfs_icwalk icw = {0};
1536 bool do_work = false;
1537
1538 if (!udqp && !gdqp && !pdqp)
1539 return 0;
1540
1541 /*
1542 * Run a scan to free blocks using the union filter to cover all
1543 * applicable quotas in a single scan.
1544 */
1545 icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1546
1547 if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1548 icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1549 icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1550 do_work = true;
1551 }
1552
1553 if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1554 icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1555 icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1556 do_work = true;
1557 }
1558
1559 if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1560 icw.icw_prid = pdqp->q_id;
1561 icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1562 do_work = true;
1563 }
1564
1565 if (!do_work)
1566 return 0;
1567
1568 return xfs_blockgc_free_space(mp, &icw);
1569 }
1570
1571 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1572 int
xfs_blockgc_free_quota(struct xfs_inode * ip,unsigned int iwalk_flags)1573 xfs_blockgc_free_quota(
1574 struct xfs_inode *ip,
1575 unsigned int iwalk_flags)
1576 {
1577 return xfs_blockgc_free_dquots(ip->i_mount,
1578 xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1579 xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1580 xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1581 }
1582
1583 /* XFS Inode Cache Walking Code */
1584
1585 /*
1586 * The inode lookup is done in batches to keep the amount of lock traffic and
1587 * radix tree lookups to a minimum. The batch size is a trade off between
1588 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1589 * be too greedy.
1590 */
1591 #define XFS_LOOKUP_BATCH 32
1592
1593
1594 /*
1595 * Decide if we want to grab this inode in anticipation of doing work towards
1596 * the goal.
1597 */
1598 static inline bool
xfs_icwalk_igrab(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_icwalk * icw)1599 xfs_icwalk_igrab(
1600 enum xfs_icwalk_goal goal,
1601 struct xfs_inode *ip,
1602 struct xfs_icwalk *icw)
1603 {
1604 switch (goal) {
1605 case XFS_ICWALK_BLOCKGC:
1606 return xfs_blockgc_igrab(ip);
1607 case XFS_ICWALK_RECLAIM:
1608 return xfs_reclaim_igrab(ip, icw);
1609 default:
1610 return false;
1611 }
1612 }
1613
1614 /*
1615 * Process an inode. Each processing function must handle any state changes
1616 * made by the icwalk igrab function. Return -EAGAIN to skip an inode.
1617 */
1618 static inline int
xfs_icwalk_process_inode(enum xfs_icwalk_goal goal,struct xfs_inode * ip,struct xfs_perag * pag,struct xfs_icwalk * icw)1619 xfs_icwalk_process_inode(
1620 enum xfs_icwalk_goal goal,
1621 struct xfs_inode *ip,
1622 struct xfs_perag *pag,
1623 struct xfs_icwalk *icw)
1624 {
1625 int error = 0;
1626
1627 switch (goal) {
1628 case XFS_ICWALK_BLOCKGC:
1629 error = xfs_blockgc_scan_inode(ip, icw);
1630 break;
1631 case XFS_ICWALK_RECLAIM:
1632 xfs_reclaim_inode(ip, pag);
1633 break;
1634 }
1635 return error;
1636 }
1637
1638 /*
1639 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1640 * process them in some manner.
1641 */
1642 static int
xfs_icwalk_ag(struct xfs_perag * pag,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1643 xfs_icwalk_ag(
1644 struct xfs_perag *pag,
1645 enum xfs_icwalk_goal goal,
1646 struct xfs_icwalk *icw)
1647 {
1648 struct xfs_mount *mp = pag->pag_mount;
1649 uint32_t first_index;
1650 int last_error = 0;
1651 int skipped;
1652 bool done;
1653 int nr_found;
1654
1655 restart:
1656 done = false;
1657 skipped = 0;
1658 if (goal == XFS_ICWALK_RECLAIM)
1659 first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1660 else
1661 first_index = 0;
1662 nr_found = 0;
1663 do {
1664 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1665 int error = 0;
1666 int i;
1667
1668 rcu_read_lock();
1669
1670 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1671 (void **) batch, first_index,
1672 XFS_LOOKUP_BATCH, goal);
1673 if (!nr_found) {
1674 done = true;
1675 rcu_read_unlock();
1676 break;
1677 }
1678
1679 /*
1680 * Grab the inodes before we drop the lock. if we found
1681 * nothing, nr == 0 and the loop will be skipped.
1682 */
1683 for (i = 0; i < nr_found; i++) {
1684 struct xfs_inode *ip = batch[i];
1685
1686 if (done || !xfs_icwalk_igrab(goal, ip, icw))
1687 batch[i] = NULL;
1688
1689 /*
1690 * Update the index for the next lookup. Catch
1691 * overflows into the next AG range which can occur if
1692 * we have inodes in the last block of the AG and we
1693 * are currently pointing to the last inode.
1694 *
1695 * Because we may see inodes that are from the wrong AG
1696 * due to RCU freeing and reallocation, only update the
1697 * index if it lies in this AG. It was a race that lead
1698 * us to see this inode, so another lookup from the
1699 * same index will not find it again.
1700 */
1701 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1702 continue;
1703 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1704 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1705 done = true;
1706 }
1707
1708 /* unlock now we've grabbed the inodes. */
1709 rcu_read_unlock();
1710
1711 for (i = 0; i < nr_found; i++) {
1712 if (!batch[i])
1713 continue;
1714 error = xfs_icwalk_process_inode(goal, batch[i], pag,
1715 icw);
1716 if (error == -EAGAIN) {
1717 skipped++;
1718 continue;
1719 }
1720 if (error && last_error != -EFSCORRUPTED)
1721 last_error = error;
1722 }
1723
1724 /* bail out if the filesystem is corrupted. */
1725 if (error == -EFSCORRUPTED)
1726 break;
1727
1728 cond_resched();
1729
1730 if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1731 icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1732 if (icw->icw_scan_limit <= 0)
1733 break;
1734 }
1735 } while (nr_found && !done);
1736
1737 if (goal == XFS_ICWALK_RECLAIM) {
1738 if (done)
1739 first_index = 0;
1740 WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1741 }
1742
1743 if (skipped) {
1744 delay(1);
1745 goto restart;
1746 }
1747 return last_error;
1748 }
1749
1750 /* Walk all incore inodes to achieve a given goal. */
1751 static int
xfs_icwalk(struct xfs_mount * mp,enum xfs_icwalk_goal goal,struct xfs_icwalk * icw)1752 xfs_icwalk(
1753 struct xfs_mount *mp,
1754 enum xfs_icwalk_goal goal,
1755 struct xfs_icwalk *icw)
1756 {
1757 struct xfs_perag *pag;
1758 int error = 0;
1759 int last_error = 0;
1760 xfs_agnumber_t agno;
1761
1762 for_each_perag_tag(mp, agno, pag, goal) {
1763 error = xfs_icwalk_ag(pag, goal, icw);
1764 if (error) {
1765 last_error = error;
1766 if (error == -EFSCORRUPTED) {
1767 xfs_perag_rele(pag);
1768 break;
1769 }
1770 }
1771 }
1772 return last_error;
1773 BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1774 }
1775
1776 #ifdef DEBUG
1777 static void
xfs_check_delalloc(struct xfs_inode * ip,int whichfork)1778 xfs_check_delalloc(
1779 struct xfs_inode *ip,
1780 int whichfork)
1781 {
1782 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
1783 struct xfs_bmbt_irec got;
1784 struct xfs_iext_cursor icur;
1785
1786 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1787 return;
1788 do {
1789 if (isnullstartblock(got.br_startblock)) {
1790 xfs_warn(ip->i_mount,
1791 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1792 ip->i_ino,
1793 whichfork == XFS_DATA_FORK ? "data" : "cow",
1794 got.br_startoff, got.br_blockcount);
1795 }
1796 } while (xfs_iext_next_extent(ifp, &icur, &got));
1797 }
1798 #else
1799 #define xfs_check_delalloc(ip, whichfork) do { } while (0)
1800 #endif
1801
1802 /* Schedule the inode for reclaim. */
1803 static void
xfs_inodegc_set_reclaimable(struct xfs_inode * ip)1804 xfs_inodegc_set_reclaimable(
1805 struct xfs_inode *ip)
1806 {
1807 struct xfs_mount *mp = ip->i_mount;
1808 struct xfs_perag *pag;
1809
1810 if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1811 xfs_check_delalloc(ip, XFS_DATA_FORK);
1812 xfs_check_delalloc(ip, XFS_COW_FORK);
1813 ASSERT(0);
1814 }
1815
1816 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1817 spin_lock(&pag->pag_ici_lock);
1818 spin_lock(&ip->i_flags_lock);
1819
1820 trace_xfs_inode_set_reclaimable(ip);
1821 ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1822 ip->i_flags |= XFS_IRECLAIMABLE;
1823 xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1824 XFS_ICI_RECLAIM_TAG);
1825
1826 spin_unlock(&ip->i_flags_lock);
1827 spin_unlock(&pag->pag_ici_lock);
1828 xfs_perag_put(pag);
1829 }
1830
1831 /*
1832 * Free all speculative preallocations and possibly even the inode itself.
1833 * This is the last chance to make changes to an otherwise unreferenced file
1834 * before incore reclamation happens.
1835 */
1836 static int
xfs_inodegc_inactivate(struct xfs_inode * ip)1837 xfs_inodegc_inactivate(
1838 struct xfs_inode *ip)
1839 {
1840 int error;
1841
1842 trace_xfs_inode_inactivating(ip);
1843 error = xfs_inactive(ip);
1844 xfs_inodegc_set_reclaimable(ip);
1845 return error;
1846
1847 }
1848
1849 void
xfs_inodegc_worker(struct work_struct * work)1850 xfs_inodegc_worker(
1851 struct work_struct *work)
1852 {
1853 struct xfs_inodegc *gc = container_of(to_delayed_work(work),
1854 struct xfs_inodegc, work);
1855 struct llist_node *node = llist_del_all(&gc->list);
1856 struct xfs_inode *ip, *n;
1857 struct xfs_mount *mp = gc->mp;
1858 unsigned int nofs_flag;
1859
1860 /*
1861 * Clear the cpu mask bit and ensure that we have seen the latest
1862 * update of the gc structure associated with this CPU. This matches
1863 * with the release semantics used when setting the cpumask bit in
1864 * xfs_inodegc_queue.
1865 */
1866 cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1867 smp_mb__after_atomic();
1868
1869 WRITE_ONCE(gc->items, 0);
1870
1871 if (!node)
1872 return;
1873
1874 /*
1875 * We can allocate memory here while doing writeback on behalf of
1876 * memory reclaim. To avoid memory allocation deadlocks set the
1877 * task-wide nofs context for the following operations.
1878 */
1879 nofs_flag = memalloc_nofs_save();
1880
1881 ip = llist_entry(node, struct xfs_inode, i_gclist);
1882 trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1883
1884 WRITE_ONCE(gc->shrinker_hits, 0);
1885 llist_for_each_entry_safe(ip, n, node, i_gclist) {
1886 int error;
1887
1888 xfs_iflags_set(ip, XFS_INACTIVATING);
1889 error = xfs_inodegc_inactivate(ip);
1890 if (error && !gc->error)
1891 gc->error = error;
1892 }
1893
1894 memalloc_nofs_restore(nofs_flag);
1895 }
1896
1897 /*
1898 * Expedite all pending inodegc work to run immediately. This does not wait for
1899 * completion of the work.
1900 */
1901 void
xfs_inodegc_push(struct xfs_mount * mp)1902 xfs_inodegc_push(
1903 struct xfs_mount *mp)
1904 {
1905 if (!xfs_is_inodegc_enabled(mp))
1906 return;
1907 trace_xfs_inodegc_push(mp, __return_address);
1908 xfs_inodegc_queue_all(mp);
1909 }
1910
1911 /*
1912 * Force all currently queued inode inactivation work to run immediately and
1913 * wait for the work to finish.
1914 */
1915 int
xfs_inodegc_flush(struct xfs_mount * mp)1916 xfs_inodegc_flush(
1917 struct xfs_mount *mp)
1918 {
1919 xfs_inodegc_push(mp);
1920 trace_xfs_inodegc_flush(mp, __return_address);
1921 return xfs_inodegc_wait_all(mp);
1922 }
1923
1924 /*
1925 * Flush all the pending work and then disable the inode inactivation background
1926 * workers and wait for them to stop. Caller must hold sb->s_umount to
1927 * coordinate changes in the inodegc_enabled state.
1928 */
1929 void
xfs_inodegc_stop(struct xfs_mount * mp)1930 xfs_inodegc_stop(
1931 struct xfs_mount *mp)
1932 {
1933 bool rerun;
1934
1935 if (!xfs_clear_inodegc_enabled(mp))
1936 return;
1937
1938 /*
1939 * Drain all pending inodegc work, including inodes that could be
1940 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1941 * threads that sample the inodegc state just prior to us clearing it.
1942 * The inodegc flag state prevents new threads from queuing more
1943 * inodes, so we queue pending work items and flush the workqueue until
1944 * all inodegc lists are empty. IOWs, we cannot use drain_workqueue
1945 * here because it does not allow other unserialized mechanisms to
1946 * reschedule inodegc work while this draining is in progress.
1947 */
1948 xfs_inodegc_queue_all(mp);
1949 do {
1950 flush_workqueue(mp->m_inodegc_wq);
1951 rerun = xfs_inodegc_queue_all(mp);
1952 } while (rerun);
1953
1954 trace_xfs_inodegc_stop(mp, __return_address);
1955 }
1956
1957 /*
1958 * Enable the inode inactivation background workers and schedule deferred inode
1959 * inactivation work if there is any. Caller must hold sb->s_umount to
1960 * coordinate changes in the inodegc_enabled state.
1961 */
1962 void
xfs_inodegc_start(struct xfs_mount * mp)1963 xfs_inodegc_start(
1964 struct xfs_mount *mp)
1965 {
1966 if (xfs_set_inodegc_enabled(mp))
1967 return;
1968
1969 trace_xfs_inodegc_start(mp, __return_address);
1970 xfs_inodegc_queue_all(mp);
1971 }
1972
1973 #ifdef CONFIG_XFS_RT
1974 static inline bool
xfs_inodegc_want_queue_rt_file(struct xfs_inode * ip)1975 xfs_inodegc_want_queue_rt_file(
1976 struct xfs_inode *ip)
1977 {
1978 struct xfs_mount *mp = ip->i_mount;
1979
1980 if (!XFS_IS_REALTIME_INODE(ip))
1981 return false;
1982
1983 if (__percpu_counter_compare(&mp->m_frextents,
1984 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1985 XFS_FDBLOCKS_BATCH) < 0)
1986 return true;
1987
1988 return false;
1989 }
1990 #else
1991 # define xfs_inodegc_want_queue_rt_file(ip) (false)
1992 #endif /* CONFIG_XFS_RT */
1993
1994 /*
1995 * Schedule the inactivation worker when:
1996 *
1997 * - We've accumulated more than one inode cluster buffer's worth of inodes.
1998 * - There is less than 5% free space left.
1999 * - Any of the quotas for this inode are near an enforcement limit.
2000 */
2001 static inline bool
xfs_inodegc_want_queue_work(struct xfs_inode * ip,unsigned int items)2002 xfs_inodegc_want_queue_work(
2003 struct xfs_inode *ip,
2004 unsigned int items)
2005 {
2006 struct xfs_mount *mp = ip->i_mount;
2007
2008 if (items > mp->m_ino_geo.inodes_per_cluster)
2009 return true;
2010
2011 if (__percpu_counter_compare(&mp->m_fdblocks,
2012 mp->m_low_space[XFS_LOWSP_5_PCNT],
2013 XFS_FDBLOCKS_BATCH) < 0)
2014 return true;
2015
2016 if (xfs_inodegc_want_queue_rt_file(ip))
2017 return true;
2018
2019 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2020 return true;
2021
2022 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2023 return true;
2024
2025 if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2026 return true;
2027
2028 return false;
2029 }
2030
2031 /*
2032 * Upper bound on the number of inodes in each AG that can be queued for
2033 * inactivation at any given time, to avoid monopolizing the workqueue.
2034 */
2035 #define XFS_INODEGC_MAX_BACKLOG (4 * XFS_INODES_PER_CHUNK)
2036
2037 /*
2038 * Make the frontend wait for inactivations when:
2039 *
2040 * - Memory shrinkers queued the inactivation worker and it hasn't finished.
2041 * - The queue depth exceeds the maximum allowable percpu backlog.
2042 *
2043 * Note: If we are in a NOFS context here (e.g. current thread is running a
2044 * transaction) the we don't want to block here as inodegc progress may require
2045 * filesystem resources we hold to make progress and that could result in a
2046 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2047 */
2048 static inline bool
xfs_inodegc_want_flush_work(struct xfs_inode * ip,unsigned int items,unsigned int shrinker_hits)2049 xfs_inodegc_want_flush_work(
2050 struct xfs_inode *ip,
2051 unsigned int items,
2052 unsigned int shrinker_hits)
2053 {
2054 if (current->flags & PF_MEMALLOC_NOFS)
2055 return false;
2056
2057 if (shrinker_hits > 0)
2058 return true;
2059
2060 if (items > XFS_INODEGC_MAX_BACKLOG)
2061 return true;
2062
2063 return false;
2064 }
2065
2066 /*
2067 * Queue a background inactivation worker if there are inodes that need to be
2068 * inactivated and higher level xfs code hasn't disabled the background
2069 * workers.
2070 */
2071 static void
xfs_inodegc_queue(struct xfs_inode * ip)2072 xfs_inodegc_queue(
2073 struct xfs_inode *ip)
2074 {
2075 struct xfs_mount *mp = ip->i_mount;
2076 struct xfs_inodegc *gc;
2077 int items;
2078 unsigned int shrinker_hits;
2079 unsigned int cpu_nr;
2080 unsigned long queue_delay = 1;
2081
2082 trace_xfs_inode_set_need_inactive(ip);
2083 spin_lock(&ip->i_flags_lock);
2084 ip->i_flags |= XFS_NEED_INACTIVE;
2085 spin_unlock(&ip->i_flags_lock);
2086
2087 cpu_nr = get_cpu();
2088 gc = this_cpu_ptr(mp->m_inodegc);
2089 llist_add(&ip->i_gclist, &gc->list);
2090 items = READ_ONCE(gc->items);
2091 WRITE_ONCE(gc->items, items + 1);
2092 shrinker_hits = READ_ONCE(gc->shrinker_hits);
2093
2094 /*
2095 * Ensure the list add is always seen by anyone who finds the cpumask
2096 * bit set. This effectively gives the cpumask bit set operation
2097 * release ordering semantics.
2098 */
2099 smp_mb__before_atomic();
2100 if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2101 cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2102
2103 /*
2104 * We queue the work while holding the current CPU so that the work
2105 * is scheduled to run on this CPU.
2106 */
2107 if (!xfs_is_inodegc_enabled(mp)) {
2108 put_cpu();
2109 return;
2110 }
2111
2112 if (xfs_inodegc_want_queue_work(ip, items))
2113 queue_delay = 0;
2114
2115 trace_xfs_inodegc_queue(mp, __return_address);
2116 mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2117 queue_delay);
2118 put_cpu();
2119
2120 if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2121 trace_xfs_inodegc_throttle(mp, __return_address);
2122 flush_delayed_work(&gc->work);
2123 }
2124 }
2125
2126 /*
2127 * We set the inode flag atomically with the radix tree tag. Once we get tag
2128 * lookups on the radix tree, this inode flag can go away.
2129 *
2130 * We always use background reclaim here because even if the inode is clean, it
2131 * still may be under IO and hence we have wait for IO completion to occur
2132 * before we can reclaim the inode. The background reclaim path handles this
2133 * more efficiently than we can here, so simply let background reclaim tear down
2134 * all inodes.
2135 */
2136 void
xfs_inode_mark_reclaimable(struct xfs_inode * ip)2137 xfs_inode_mark_reclaimable(
2138 struct xfs_inode *ip)
2139 {
2140 struct xfs_mount *mp = ip->i_mount;
2141 bool need_inactive;
2142
2143 XFS_STATS_INC(mp, vn_reclaim);
2144
2145 /*
2146 * We should never get here with any of the reclaim flags already set.
2147 */
2148 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2149
2150 need_inactive = xfs_inode_needs_inactive(ip);
2151 if (need_inactive) {
2152 xfs_inodegc_queue(ip);
2153 return;
2154 }
2155
2156 /* Going straight to reclaim, so drop the dquots. */
2157 xfs_qm_dqdetach(ip);
2158 xfs_inodegc_set_reclaimable(ip);
2159 }
2160
2161 /*
2162 * Register a phony shrinker so that we can run background inodegc sooner when
2163 * there's memory pressure. Inactivation does not itself free any memory but
2164 * it does make inodes reclaimable, which eventually frees memory.
2165 *
2166 * The count function, seek value, and batch value are crafted to trigger the
2167 * scan function during the second round of scanning. Hopefully this means
2168 * that we reclaimed enough memory that initiating metadata transactions won't
2169 * make things worse.
2170 */
2171 #define XFS_INODEGC_SHRINKER_COUNT (1UL << DEF_PRIORITY)
2172 #define XFS_INODEGC_SHRINKER_BATCH ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2173
2174 static unsigned long
xfs_inodegc_shrinker_count(struct shrinker * shrink,struct shrink_control * sc)2175 xfs_inodegc_shrinker_count(
2176 struct shrinker *shrink,
2177 struct shrink_control *sc)
2178 {
2179 struct xfs_mount *mp = container_of(shrink, struct xfs_mount,
2180 m_inodegc_shrinker);
2181 struct xfs_inodegc *gc;
2182 int cpu;
2183
2184 if (!xfs_is_inodegc_enabled(mp))
2185 return 0;
2186
2187 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2188 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2189 if (!llist_empty(&gc->list))
2190 return XFS_INODEGC_SHRINKER_COUNT;
2191 }
2192
2193 return 0;
2194 }
2195
2196 static unsigned long
xfs_inodegc_shrinker_scan(struct shrinker * shrink,struct shrink_control * sc)2197 xfs_inodegc_shrinker_scan(
2198 struct shrinker *shrink,
2199 struct shrink_control *sc)
2200 {
2201 struct xfs_mount *mp = container_of(shrink, struct xfs_mount,
2202 m_inodegc_shrinker);
2203 struct xfs_inodegc *gc;
2204 int cpu;
2205 bool no_items = true;
2206
2207 if (!xfs_is_inodegc_enabled(mp))
2208 return SHRINK_STOP;
2209
2210 trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2211
2212 for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2213 gc = per_cpu_ptr(mp->m_inodegc, cpu);
2214 if (!llist_empty(&gc->list)) {
2215 unsigned int h = READ_ONCE(gc->shrinker_hits);
2216
2217 WRITE_ONCE(gc->shrinker_hits, h + 1);
2218 mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2219 no_items = false;
2220 }
2221 }
2222
2223 /*
2224 * If there are no inodes to inactivate, we don't want the shrinker
2225 * to think there's deferred work to call us back about.
2226 */
2227 if (no_items)
2228 return LONG_MAX;
2229
2230 return SHRINK_STOP;
2231 }
2232
2233 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2234 int
xfs_inodegc_register_shrinker(struct xfs_mount * mp)2235 xfs_inodegc_register_shrinker(
2236 struct xfs_mount *mp)
2237 {
2238 struct shrinker *shrink = &mp->m_inodegc_shrinker;
2239
2240 shrink->count_objects = xfs_inodegc_shrinker_count;
2241 shrink->scan_objects = xfs_inodegc_shrinker_scan;
2242 shrink->seeks = 0;
2243 shrink->flags = SHRINKER_NONSLAB;
2244 shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2245
2246 return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2247 }
2248