1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_ag.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_extfree_item.h"
19 #include "xfs_log.h"
20 #include "xfs_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_alloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trace.h"
25 #include "xfs_error.h"
26 #include "xfs_log_priv.h"
27 #include "xfs_log_recover.h"
28
29 struct kmem_cache *xfs_efi_cache;
30 struct kmem_cache *xfs_efd_cache;
31
32 static const struct xfs_item_ops xfs_efi_item_ops;
33
EFI_ITEM(struct xfs_log_item * lip)34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38
39 STATIC void
xfs_efi_item_free(struct xfs_efi_log_item * efip)40 xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42 {
43 kmem_free(efip->efi_item.li_lv_shadow);
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kmem_free(efip);
46 else
47 kmem_cache_free(xfs_efi_cache, efip);
48 }
49
50 /*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
57 STATIC void
xfs_efi_release(struct xfs_efi_log_item * efip)58 xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60 {
61 ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 if (!atomic_dec_and_test(&efip->efi_refcount))
63 return;
64
65 xfs_trans_ail_delete(&efip->efi_item, 0);
66 xfs_efi_item_free(efip);
67 }
68
69 STATIC void
xfs_efi_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)70 xfs_efi_item_size(
71 struct xfs_log_item *lip,
72 int *nvecs,
73 int *nbytes)
74 {
75 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
76
77 *nvecs += 1;
78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79 }
80
81 /*
82 * This is called to fill in the vector of log iovecs for the
83 * given efi log item. We use only 1 iovec, and we point that
84 * at the efi_log_format structure embedded in the efi item.
85 * It is at this point that we assert that all of the extent
86 * slots in the efi item have been filled.
87 */
88 STATIC void
xfs_efi_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)89 xfs_efi_item_format(
90 struct xfs_log_item *lip,
91 struct xfs_log_vec *lv)
92 {
93 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
94 struct xfs_log_iovec *vecp = NULL;
95
96 ASSERT(atomic_read(&efip->efi_next_extent) ==
97 efip->efi_format.efi_nextents);
98
99 efip->efi_format.efi_type = XFS_LI_EFI;
100 efip->efi_format.efi_size = 1;
101
102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 &efip->efi_format,
104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106
107
108 /*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116 STATIC void
xfs_efi_item_unpin(struct xfs_log_item * lip,int remove)117 xfs_efi_item_unpin(
118 struct xfs_log_item *lip,
119 int remove)
120 {
121 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
122 xfs_efi_release(efip);
123 }
124
125 /*
126 * The EFI has been either committed or aborted if the transaction has been
127 * cancelled. If the transaction was cancelled, an EFD isn't going to be
128 * constructed and thus we free the EFI here directly.
129 */
130 STATIC void
xfs_efi_item_release(struct xfs_log_item * lip)131 xfs_efi_item_release(
132 struct xfs_log_item *lip)
133 {
134 xfs_efi_release(EFI_ITEM(lip));
135 }
136
137 /*
138 * Allocate and initialize an efi item with the given number of extents.
139 */
140 STATIC struct xfs_efi_log_item *
xfs_efi_init(struct xfs_mount * mp,uint nextents)141 xfs_efi_init(
142 struct xfs_mount *mp,
143 uint nextents)
144
145 {
146 struct xfs_efi_log_item *efip;
147
148 ASSERT(nextents > 0);
149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 GFP_KERNEL | __GFP_NOFAIL);
152 } else {
153 efip = kmem_cache_zalloc(xfs_efi_cache,
154 GFP_KERNEL | __GFP_NOFAIL);
155 }
156
157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 efip->efi_format.efi_nextents = nextents;
159 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 atomic_set(&efip->efi_next_extent, 0);
161 atomic_set(&efip->efi_refcount, 2);
162
163 return efip;
164 }
165
166 /*
167 * Copy an EFI format buffer from the given buf, and into the destination
168 * EFI format structure.
169 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170 * one of which will be the native format for this kernel.
171 * It will handle the conversion of formats if necessary.
172 */
173 STATIC int
xfs_efi_copy_format(xfs_log_iovec_t * buf,xfs_efi_log_format_t * dst_efi_fmt)174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 uint i;
178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181
182 if (buf->i_len == len) {
183 memcpy(dst_efi_fmt, src_efi_fmt,
184 offsetof(struct xfs_efi_log_format, efi_extents));
185 for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 memcpy(&dst_efi_fmt->efi_extents[i],
187 &src_efi_fmt->efi_extents[i],
188 sizeof(struct xfs_extent));
189 return 0;
190 } else if (buf->i_len == len32) {
191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192
193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 dst_efi_fmt->efi_extents[i].ext_start =
199 src_efi_fmt_32->efi_extents[i].ext_start;
200 dst_efi_fmt->efi_extents[i].ext_len =
201 src_efi_fmt_32->efi_extents[i].ext_len;
202 }
203 return 0;
204 } else if (buf->i_len == len64) {
205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206
207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 dst_efi_fmt->efi_extents[i].ext_start =
213 src_efi_fmt_64->efi_extents[i].ext_start;
214 dst_efi_fmt->efi_extents[i].ext_len =
215 src_efi_fmt_64->efi_extents[i].ext_len;
216 }
217 return 0;
218 }
219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 buf->i_len);
221 return -EFSCORRUPTED;
222 }
223
EFD_ITEM(struct xfs_log_item * lip)224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226 return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228
229 STATIC void
xfs_efd_item_free(struct xfs_efd_log_item * efdp)230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232 kmem_free(efdp->efd_item.li_lv_shadow);
233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 kmem_free(efdp);
235 else
236 kmem_cache_free(xfs_efd_cache, efdp);
237 }
238
239 STATIC void
xfs_efd_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)240 xfs_efd_item_size(
241 struct xfs_log_item *lip,
242 int *nvecs,
243 int *nbytes)
244 {
245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
246
247 *nvecs += 1;
248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250
251 /*
252 * This is called to fill in the vector of log iovecs for the
253 * given efd log item. We use only 1 iovec, and we point that
254 * at the efd_log_format structure embedded in the efd item.
255 * It is at this point that we assert that all of the extent
256 * slots in the efd item have been filled.
257 */
258 STATIC void
xfs_efd_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)259 xfs_efd_item_format(
260 struct xfs_log_item *lip,
261 struct xfs_log_vec *lv)
262 {
263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
264 struct xfs_log_iovec *vecp = NULL;
265
266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267
268 efdp->efd_format.efd_type = XFS_LI_EFD;
269 efdp->efd_format.efd_size = 1;
270
271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 &efdp->efd_format,
273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275
276 /*
277 * The EFD is either committed or aborted if the transaction is cancelled. If
278 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279 */
280 STATIC void
xfs_efd_item_release(struct xfs_log_item * lip)281 xfs_efd_item_release(
282 struct xfs_log_item *lip)
283 {
284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
285
286 xfs_efi_release(efdp->efd_efip);
287 xfs_efd_item_free(efdp);
288 }
289
290 static struct xfs_log_item *
xfs_efd_item_intent(struct xfs_log_item * lip)291 xfs_efd_item_intent(
292 struct xfs_log_item *lip)
293 {
294 return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 XFS_ITEM_INTENT_DONE,
300 .iop_size = xfs_efd_item_size,
301 .iop_format = xfs_efd_item_format,
302 .iop_release = xfs_efd_item_release,
303 .iop_intent = xfs_efd_item_intent,
304 };
305
306 /*
307 * Allocate an "extent free done" log item that will hold nextents worth of
308 * extents. The caller must use all nextents extents, because we are not
309 * flexible about this at all.
310 */
311 static struct xfs_efd_log_item *
xfs_trans_get_efd(struct xfs_trans * tp,struct xfs_efi_log_item * efip,unsigned int nextents)312 xfs_trans_get_efd(
313 struct xfs_trans *tp,
314 struct xfs_efi_log_item *efip,
315 unsigned int nextents)
316 {
317 struct xfs_efd_log_item *efdp;
318
319 ASSERT(nextents > 0);
320
321 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
322 efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
323 GFP_KERNEL | __GFP_NOFAIL);
324 } else {
325 efdp = kmem_cache_zalloc(xfs_efd_cache,
326 GFP_KERNEL | __GFP_NOFAIL);
327 }
328
329 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
330 &xfs_efd_item_ops);
331 efdp->efd_efip = efip;
332 efdp->efd_format.efd_nextents = nextents;
333 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
334
335 xfs_trans_add_item(tp, &efdp->efd_item);
336 return efdp;
337 }
338
339 /*
340 * Fill the EFD with all extents from the EFI when we need to roll the
341 * transaction and continue with a new EFI.
342 *
343 * This simply copies all the extents in the EFI to the EFD rather than make
344 * assumptions about which extents in the EFI have already been processed. We
345 * currently keep the xefi list in the same order as the EFI extent list, but
346 * that may not always be the case. Copying everything avoids leaving a landmine
347 * were we fail to cancel all the extents in an EFI if the xefi list is
348 * processed in a different order to the extents in the EFI.
349 */
350 static void
xfs_efd_from_efi(struct xfs_efd_log_item * efdp)351 xfs_efd_from_efi(
352 struct xfs_efd_log_item *efdp)
353 {
354 struct xfs_efi_log_item *efip = efdp->efd_efip;
355 uint i;
356
357 ASSERT(efip->efi_format.efi_nextents > 0);
358 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
359
360 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
361 efdp->efd_format.efd_extents[i] =
362 efip->efi_format.efi_extents[i];
363 }
364 efdp->efd_next_extent = efip->efi_format.efi_nextents;
365 }
366
367 /*
368 * Free an extent and log it to the EFD. Note that the transaction is marked
369 * dirty regardless of whether the extent free succeeds or fails to support the
370 * EFI/EFD lifecycle rules.
371 */
372 static int
xfs_trans_free_extent(struct xfs_trans * tp,struct xfs_efd_log_item * efdp,struct xfs_extent_free_item * xefi)373 xfs_trans_free_extent(
374 struct xfs_trans *tp,
375 struct xfs_efd_log_item *efdp,
376 struct xfs_extent_free_item *xefi)
377 {
378 struct xfs_owner_info oinfo = { };
379 struct xfs_mount *mp = tp->t_mountp;
380 struct xfs_extent *extp;
381 uint next_extent;
382 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
383 xefi->xefi_startblock);
384 int error;
385
386 oinfo.oi_owner = xefi->xefi_owner;
387 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
388 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
389 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
390 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
391
392 trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
393 agbno, xefi->xefi_blockcount);
394
395 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
396 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
397 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
398
399 /*
400 * Mark the transaction dirty, even on error. This ensures the
401 * transaction is aborted, which:
402 *
403 * 1.) releases the EFI and frees the EFD
404 * 2.) shuts down the filesystem
405 */
406 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
407 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
408
409 /*
410 * If we need a new transaction to make progress, the caller will log a
411 * new EFI with the current contents. It will also log an EFD to cancel
412 * the existing EFI, and so we need to copy all the unprocessed extents
413 * in this EFI to the EFD so this works correctly.
414 */
415 if (error == -EAGAIN) {
416 xfs_efd_from_efi(efdp);
417 return error;
418 }
419
420 next_extent = efdp->efd_next_extent;
421 ASSERT(next_extent < efdp->efd_format.efd_nextents);
422 extp = &(efdp->efd_format.efd_extents[next_extent]);
423 extp->ext_start = xefi->xefi_startblock;
424 extp->ext_len = xefi->xefi_blockcount;
425 efdp->efd_next_extent++;
426
427 return error;
428 }
429
430 /* Sort bmap items by AG. */
431 static int
xfs_extent_free_diff_items(void * priv,const struct list_head * a,const struct list_head * b)432 xfs_extent_free_diff_items(
433 void *priv,
434 const struct list_head *a,
435 const struct list_head *b)
436 {
437 struct xfs_extent_free_item *ra;
438 struct xfs_extent_free_item *rb;
439
440 ra = container_of(a, struct xfs_extent_free_item, xefi_list);
441 rb = container_of(b, struct xfs_extent_free_item, xefi_list);
442
443 return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
444 }
445
446 /* Log a free extent to the intent item. */
447 STATIC void
xfs_extent_free_log_item(struct xfs_trans * tp,struct xfs_efi_log_item * efip,struct xfs_extent_free_item * xefi)448 xfs_extent_free_log_item(
449 struct xfs_trans *tp,
450 struct xfs_efi_log_item *efip,
451 struct xfs_extent_free_item *xefi)
452 {
453 uint next_extent;
454 struct xfs_extent *extp;
455
456 tp->t_flags |= XFS_TRANS_DIRTY;
457 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
458
459 /*
460 * atomic_inc_return gives us the value after the increment;
461 * we want to use it as an array index so we need to subtract 1 from
462 * it.
463 */
464 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
465 ASSERT(next_extent < efip->efi_format.efi_nextents);
466 extp = &efip->efi_format.efi_extents[next_extent];
467 extp->ext_start = xefi->xefi_startblock;
468 extp->ext_len = xefi->xefi_blockcount;
469 }
470
471 static struct xfs_log_item *
xfs_extent_free_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)472 xfs_extent_free_create_intent(
473 struct xfs_trans *tp,
474 struct list_head *items,
475 unsigned int count,
476 bool sort)
477 {
478 struct xfs_mount *mp = tp->t_mountp;
479 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
480 struct xfs_extent_free_item *xefi;
481
482 ASSERT(count > 0);
483
484 xfs_trans_add_item(tp, &efip->efi_item);
485 if (sort)
486 list_sort(mp, items, xfs_extent_free_diff_items);
487 list_for_each_entry(xefi, items, xefi_list)
488 xfs_extent_free_log_item(tp, efip, xefi);
489 return &efip->efi_item;
490 }
491
492 /* Get an EFD so we can process all the free extents. */
493 static struct xfs_log_item *
xfs_extent_free_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)494 xfs_extent_free_create_done(
495 struct xfs_trans *tp,
496 struct xfs_log_item *intent,
497 unsigned int count)
498 {
499 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
500 }
501
502 /* Take a passive ref to the AG containing the space we're freeing. */
503 void
xfs_extent_free_get_group(struct xfs_mount * mp,struct xfs_extent_free_item * xefi)504 xfs_extent_free_get_group(
505 struct xfs_mount *mp,
506 struct xfs_extent_free_item *xefi)
507 {
508 xfs_agnumber_t agno;
509
510 agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
511 xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
512 }
513
514 /* Release a passive AG ref after some freeing work. */
515 static inline void
xfs_extent_free_put_group(struct xfs_extent_free_item * xefi)516 xfs_extent_free_put_group(
517 struct xfs_extent_free_item *xefi)
518 {
519 xfs_perag_intent_put(xefi->xefi_pag);
520 }
521
522 /* Process a free extent. */
523 STATIC int
xfs_extent_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)524 xfs_extent_free_finish_item(
525 struct xfs_trans *tp,
526 struct xfs_log_item *done,
527 struct list_head *item,
528 struct xfs_btree_cur **state)
529 {
530 struct xfs_extent_free_item *xefi;
531 int error;
532
533 xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
534
535 error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi);
536
537 /*
538 * Don't free the XEFI if we need a new transaction to complete
539 * processing of it.
540 */
541 if (error == -EAGAIN)
542 return error;
543
544 xfs_extent_free_put_group(xefi);
545 kmem_cache_free(xfs_extfree_item_cache, xefi);
546 return error;
547 }
548
549 /* Abort all pending EFIs. */
550 STATIC void
xfs_extent_free_abort_intent(struct xfs_log_item * intent)551 xfs_extent_free_abort_intent(
552 struct xfs_log_item *intent)
553 {
554 xfs_efi_release(EFI_ITEM(intent));
555 }
556
557 /* Cancel a free extent. */
558 STATIC void
xfs_extent_free_cancel_item(struct list_head * item)559 xfs_extent_free_cancel_item(
560 struct list_head *item)
561 {
562 struct xfs_extent_free_item *xefi;
563
564 xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
565
566 xfs_extent_free_put_group(xefi);
567 kmem_cache_free(xfs_extfree_item_cache, xefi);
568 }
569
570 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
571 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
572 .create_intent = xfs_extent_free_create_intent,
573 .abort_intent = xfs_extent_free_abort_intent,
574 .create_done = xfs_extent_free_create_done,
575 .finish_item = xfs_extent_free_finish_item,
576 .cancel_item = xfs_extent_free_cancel_item,
577 };
578
579 /*
580 * AGFL blocks are accounted differently in the reserve pools and are not
581 * inserted into the busy extent list.
582 */
583 STATIC int
xfs_agfl_free_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)584 xfs_agfl_free_finish_item(
585 struct xfs_trans *tp,
586 struct xfs_log_item *done,
587 struct list_head *item,
588 struct xfs_btree_cur **state)
589 {
590 struct xfs_owner_info oinfo = { };
591 struct xfs_mount *mp = tp->t_mountp;
592 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
593 struct xfs_extent_free_item *xefi;
594 struct xfs_extent *extp;
595 struct xfs_buf *agbp;
596 int error;
597 xfs_agblock_t agbno;
598 uint next_extent;
599
600 xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
601 ASSERT(xefi->xefi_blockcount == 1);
602 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
603 oinfo.oi_owner = xefi->xefi_owner;
604
605 trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
606 xefi->xefi_blockcount);
607
608 error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
609 if (!error)
610 error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
611 agbno, agbp, &oinfo);
612
613 /*
614 * Mark the transaction dirty, even on error. This ensures the
615 * transaction is aborted, which:
616 *
617 * 1.) releases the EFI and frees the EFD
618 * 2.) shuts down the filesystem
619 */
620 tp->t_flags |= XFS_TRANS_DIRTY;
621 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
622
623 next_extent = efdp->efd_next_extent;
624 ASSERT(next_extent < efdp->efd_format.efd_nextents);
625 extp = &(efdp->efd_format.efd_extents[next_extent]);
626 extp->ext_start = xefi->xefi_startblock;
627 extp->ext_len = xefi->xefi_blockcount;
628 efdp->efd_next_extent++;
629
630 xfs_extent_free_put_group(xefi);
631 kmem_cache_free(xfs_extfree_item_cache, xefi);
632 return error;
633 }
634
635 /* sub-type with special handling for AGFL deferred frees */
636 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
637 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
638 .create_intent = xfs_extent_free_create_intent,
639 .abort_intent = xfs_extent_free_abort_intent,
640 .create_done = xfs_extent_free_create_done,
641 .finish_item = xfs_agfl_free_finish_item,
642 .cancel_item = xfs_extent_free_cancel_item,
643 };
644
645 /* Is this recovered EFI ok? */
646 static inline bool
xfs_efi_validate_ext(struct xfs_mount * mp,struct xfs_extent * extp)647 xfs_efi_validate_ext(
648 struct xfs_mount *mp,
649 struct xfs_extent *extp)
650 {
651 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
652 }
653
654 /*
655 * Process an extent free intent item that was recovered from
656 * the log. We need to free the extents that it describes.
657 */
658 STATIC int
xfs_efi_item_recover(struct xfs_defer_pending * dfp,struct list_head * capture_list)659 xfs_efi_item_recover(
660 struct xfs_defer_pending *dfp,
661 struct list_head *capture_list)
662 {
663 struct xfs_trans_res resv;
664 struct xfs_log_item *lip = dfp->dfp_intent;
665 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
666 struct xfs_mount *mp = lip->li_log->l_mp;
667 struct xfs_efd_log_item *efdp;
668 struct xfs_trans *tp;
669 int i;
670 int error = 0;
671 bool requeue_only = false;
672
673 /*
674 * First check the validity of the extents described by the
675 * EFI. If any are bad, then assume that all are bad and
676 * just toss the EFI.
677 */
678 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
679 if (!xfs_efi_validate_ext(mp,
680 &efip->efi_format.efi_extents[i])) {
681 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
682 &efip->efi_format,
683 sizeof(efip->efi_format));
684 return -EFSCORRUPTED;
685 }
686 }
687
688 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
689 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
690 if (error)
691 return error;
692
693 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
694 xlog_recover_transfer_intent(tp, dfp);
695
696 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
697 struct xfs_extent_free_item fake = {
698 .xefi_owner = XFS_RMAP_OWN_UNKNOWN,
699 .xefi_agresv = XFS_AG_RESV_NONE,
700 };
701 struct xfs_extent *extp;
702
703 extp = &efip->efi_format.efi_extents[i];
704
705 fake.xefi_startblock = extp->ext_start;
706 fake.xefi_blockcount = extp->ext_len;
707
708 if (!requeue_only) {
709 xfs_extent_free_get_group(mp, &fake);
710 error = xfs_trans_free_extent(tp, efdp, &fake);
711 xfs_extent_free_put_group(&fake);
712 }
713
714 /*
715 * If we can't free the extent without potentially deadlocking,
716 * requeue the rest of the extents to a new so that they get
717 * run again later with a new transaction context.
718 */
719 if (error == -EAGAIN || requeue_only) {
720 error = xfs_free_extent_later(tp, fake.xefi_startblock,
721 fake.xefi_blockcount,
722 &XFS_RMAP_OINFO_ANY_OWNER,
723 fake.xefi_agresv);
724 if (!error) {
725 requeue_only = true;
726 continue;
727 }
728 }
729
730 if (error == -EFSCORRUPTED)
731 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
732 extp, sizeof(*extp));
733 if (error)
734 goto abort_error;
735
736 }
737
738 return xfs_defer_ops_capture_and_commit(tp, capture_list);
739
740 abort_error:
741 xfs_trans_cancel(tp);
742 return error;
743 }
744
745 STATIC bool
xfs_efi_item_match(struct xfs_log_item * lip,uint64_t intent_id)746 xfs_efi_item_match(
747 struct xfs_log_item *lip,
748 uint64_t intent_id)
749 {
750 return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
751 }
752
753 /* Relog an intent item to push the log tail forward. */
754 static struct xfs_log_item *
xfs_efi_item_relog(struct xfs_log_item * intent,struct xfs_trans * tp)755 xfs_efi_item_relog(
756 struct xfs_log_item *intent,
757 struct xfs_trans *tp)
758 {
759 struct xfs_efd_log_item *efdp;
760 struct xfs_efi_log_item *efip;
761 struct xfs_extent *extp;
762 unsigned int count;
763
764 count = EFI_ITEM(intent)->efi_format.efi_nextents;
765 extp = EFI_ITEM(intent)->efi_format.efi_extents;
766
767 tp->t_flags |= XFS_TRANS_DIRTY;
768 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
769 efdp->efd_next_extent = count;
770 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
771 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
772
773 efip = xfs_efi_init(tp->t_mountp, count);
774 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
775 atomic_set(&efip->efi_next_extent, count);
776 xfs_trans_add_item(tp, &efip->efi_item);
777 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
778 return &efip->efi_item;
779 }
780
781 static const struct xfs_item_ops xfs_efi_item_ops = {
782 .flags = XFS_ITEM_INTENT,
783 .iop_size = xfs_efi_item_size,
784 .iop_format = xfs_efi_item_format,
785 .iop_unpin = xfs_efi_item_unpin,
786 .iop_release = xfs_efi_item_release,
787 .iop_recover = xfs_efi_item_recover,
788 .iop_match = xfs_efi_item_match,
789 .iop_relog = xfs_efi_item_relog,
790 };
791
792 /*
793 * This routine is called to create an in-core extent free intent
794 * item from the efi format structure which was logged on disk.
795 * It allocates an in-core efi, copies the extents from the format
796 * structure into it, and adds the efi to the AIL with the given
797 * LSN.
798 */
799 STATIC int
xlog_recover_efi_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)800 xlog_recover_efi_commit_pass2(
801 struct xlog *log,
802 struct list_head *buffer_list,
803 struct xlog_recover_item *item,
804 xfs_lsn_t lsn)
805 {
806 struct xfs_mount *mp = log->l_mp;
807 struct xfs_efi_log_item *efip;
808 struct xfs_efi_log_format *efi_formatp;
809 int error;
810
811 efi_formatp = item->ri_buf[0].i_addr;
812
813 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
814 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
815 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
816 return -EFSCORRUPTED;
817 }
818
819 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
820 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
821 if (error) {
822 xfs_efi_item_free(efip);
823 return error;
824 }
825 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
826
827 xlog_recover_intent_item(log, &efip->efi_item, lsn,
828 XFS_DEFER_OPS_TYPE_FREE);
829 return 0;
830 }
831
832 const struct xlog_recover_item_ops xlog_efi_item_ops = {
833 .item_type = XFS_LI_EFI,
834 .commit_pass2 = xlog_recover_efi_commit_pass2,
835 };
836
837 /*
838 * This routine is called when an EFD format structure is found in a committed
839 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
840 * was still in the log. To do this it searches the AIL for the EFI with an id
841 * equal to that in the EFD format structure. If we find it we drop the EFD
842 * reference, which removes the EFI from the AIL and frees it.
843 */
844 STATIC int
xlog_recover_efd_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)845 xlog_recover_efd_commit_pass2(
846 struct xlog *log,
847 struct list_head *buffer_list,
848 struct xlog_recover_item *item,
849 xfs_lsn_t lsn)
850 {
851 struct xfs_efd_log_format *efd_formatp;
852 int buflen = item->ri_buf[0].i_len;
853
854 efd_formatp = item->ri_buf[0].i_addr;
855
856 if (buflen < sizeof(struct xfs_efd_log_format)) {
857 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
858 efd_formatp, buflen);
859 return -EFSCORRUPTED;
860 }
861
862 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
863 efd_formatp->efd_nextents) &&
864 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
865 efd_formatp->efd_nextents)) {
866 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
867 efd_formatp, buflen);
868 return -EFSCORRUPTED;
869 }
870
871 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
872 return 0;
873 }
874
875 const struct xlog_recover_item_ops xlog_efd_item_ops = {
876 .item_type = XFS_LI_EFD,
877 .commit_pass2 = xlog_recover_efd_commit_pass2,
878 };
879