1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2013 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_da_btree.h"
17 #include "xfs_inode.h"
18 #include "xfs_trans.h"
19 #include "xfs_bmap_btree.h"
20 #include "xfs_bmap.h"
21 #include "xfs_attr_sf.h"
22 #include "xfs_attr.h"
23 #include "xfs_attr_remote.h"
24 #include "xfs_attr_leaf.h"
25 #include "xfs_error.h"
26 #include "xfs_trace.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_dir2.h"
29 #include "xfs_log.h"
30 #include "xfs_ag.h"
31 #include "xfs_errortag.h"
32
33
34 /*
35 * xfs_attr_leaf.c
36 *
37 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
38 */
39
40 /*========================================================================
41 * Function prototypes for the kernel.
42 *========================================================================*/
43
44 /*
45 * Routines used for growing the Btree.
46 */
47 STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
48 xfs_dablk_t which_block, struct xfs_buf **bpp);
49 STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
50 struct xfs_attr3_icleaf_hdr *ichdr,
51 struct xfs_da_args *args, int freemap_index);
52 STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
53 struct xfs_attr3_icleaf_hdr *ichdr,
54 struct xfs_buf *leaf_buffer);
55 STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
56 xfs_da_state_blk_t *blk1,
57 xfs_da_state_blk_t *blk2);
58 STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
59 xfs_da_state_blk_t *leaf_blk_1,
60 struct xfs_attr3_icleaf_hdr *ichdr1,
61 xfs_da_state_blk_t *leaf_blk_2,
62 struct xfs_attr3_icleaf_hdr *ichdr2,
63 int *number_entries_in_blk1,
64 int *number_usedbytes_in_blk1);
65
66 /*
67 * Utility routines.
68 */
69 STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
70 struct xfs_attr_leafblock *src_leaf,
71 struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
72 struct xfs_attr_leafblock *dst_leaf,
73 struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
74 int move_count);
75 STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
76
77 /*
78 * attr3 block 'firstused' conversion helpers.
79 *
80 * firstused refers to the offset of the first used byte of the nameval region
81 * of an attr leaf block. The region starts at the tail of the block and expands
82 * backwards towards the middle. As such, firstused is initialized to the block
83 * size for an empty leaf block and is reduced from there.
84 *
85 * The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
86 * The in-core firstused field is 32-bit and thus supports the maximum fsb size.
87 * The on-disk field is only 16-bit, however, and overflows at 64k. Since this
88 * only occurs at exactly 64k, we use zero as a magic on-disk value to represent
89 * the attr block size. The following helpers manage the conversion between the
90 * in-core and on-disk formats.
91 */
92
93 static void
xfs_attr3_leaf_firstused_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)94 xfs_attr3_leaf_firstused_from_disk(
95 struct xfs_da_geometry *geo,
96 struct xfs_attr3_icleaf_hdr *to,
97 struct xfs_attr_leafblock *from)
98 {
99 struct xfs_attr3_leaf_hdr *hdr3;
100
101 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
102 hdr3 = (struct xfs_attr3_leaf_hdr *) from;
103 to->firstused = be16_to_cpu(hdr3->firstused);
104 } else {
105 to->firstused = be16_to_cpu(from->hdr.firstused);
106 }
107
108 /*
109 * Convert from the magic fsb size value to actual blocksize. This
110 * should only occur for empty blocks when the block size overflows
111 * 16-bits.
112 */
113 if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
114 ASSERT(!to->count && !to->usedbytes);
115 ASSERT(geo->blksize > USHRT_MAX);
116 to->firstused = geo->blksize;
117 }
118 }
119
120 static void
xfs_attr3_leaf_firstused_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)121 xfs_attr3_leaf_firstused_to_disk(
122 struct xfs_da_geometry *geo,
123 struct xfs_attr_leafblock *to,
124 struct xfs_attr3_icleaf_hdr *from)
125 {
126 struct xfs_attr3_leaf_hdr *hdr3;
127 uint32_t firstused;
128
129 /* magic value should only be seen on disk */
130 ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
131
132 /*
133 * Scale down the 32-bit in-core firstused value to the 16-bit on-disk
134 * value. This only overflows at the max supported value of 64k. Use the
135 * magic on-disk value to represent block size in this case.
136 */
137 firstused = from->firstused;
138 if (firstused > USHRT_MAX) {
139 ASSERT(from->firstused == geo->blksize);
140 firstused = XFS_ATTR3_LEAF_NULLOFF;
141 }
142
143 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
144 hdr3 = (struct xfs_attr3_leaf_hdr *) to;
145 hdr3->firstused = cpu_to_be16(firstused);
146 } else {
147 to->hdr.firstused = cpu_to_be16(firstused);
148 }
149 }
150
151 void
xfs_attr3_leaf_hdr_from_disk(struct xfs_da_geometry * geo,struct xfs_attr3_icleaf_hdr * to,struct xfs_attr_leafblock * from)152 xfs_attr3_leaf_hdr_from_disk(
153 struct xfs_da_geometry *geo,
154 struct xfs_attr3_icleaf_hdr *to,
155 struct xfs_attr_leafblock *from)
156 {
157 int i;
158
159 ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
160 from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
161
162 if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
163 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
164
165 to->forw = be32_to_cpu(hdr3->info.hdr.forw);
166 to->back = be32_to_cpu(hdr3->info.hdr.back);
167 to->magic = be16_to_cpu(hdr3->info.hdr.magic);
168 to->count = be16_to_cpu(hdr3->count);
169 to->usedbytes = be16_to_cpu(hdr3->usedbytes);
170 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
171 to->holes = hdr3->holes;
172
173 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
174 to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
175 to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
176 }
177 return;
178 }
179 to->forw = be32_to_cpu(from->hdr.info.forw);
180 to->back = be32_to_cpu(from->hdr.info.back);
181 to->magic = be16_to_cpu(from->hdr.info.magic);
182 to->count = be16_to_cpu(from->hdr.count);
183 to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
184 xfs_attr3_leaf_firstused_from_disk(geo, to, from);
185 to->holes = from->hdr.holes;
186
187 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
188 to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
189 to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
190 }
191 }
192
193 void
xfs_attr3_leaf_hdr_to_disk(struct xfs_da_geometry * geo,struct xfs_attr_leafblock * to,struct xfs_attr3_icleaf_hdr * from)194 xfs_attr3_leaf_hdr_to_disk(
195 struct xfs_da_geometry *geo,
196 struct xfs_attr_leafblock *to,
197 struct xfs_attr3_icleaf_hdr *from)
198 {
199 int i;
200
201 ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
202 from->magic == XFS_ATTR3_LEAF_MAGIC);
203
204 if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
205 struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
206
207 hdr3->info.hdr.forw = cpu_to_be32(from->forw);
208 hdr3->info.hdr.back = cpu_to_be32(from->back);
209 hdr3->info.hdr.magic = cpu_to_be16(from->magic);
210 hdr3->count = cpu_to_be16(from->count);
211 hdr3->usedbytes = cpu_to_be16(from->usedbytes);
212 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
213 hdr3->holes = from->holes;
214 hdr3->pad1 = 0;
215
216 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
217 hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
218 hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
219 }
220 return;
221 }
222 to->hdr.info.forw = cpu_to_be32(from->forw);
223 to->hdr.info.back = cpu_to_be32(from->back);
224 to->hdr.info.magic = cpu_to_be16(from->magic);
225 to->hdr.count = cpu_to_be16(from->count);
226 to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
227 xfs_attr3_leaf_firstused_to_disk(geo, to, from);
228 to->hdr.holes = from->holes;
229 to->hdr.pad1 = 0;
230
231 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
232 to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
233 to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
234 }
235 }
236
237 static xfs_failaddr_t
xfs_attr3_leaf_verify_entry(struct xfs_mount * mp,char * buf_end,struct xfs_attr_leafblock * leaf,struct xfs_attr3_icleaf_hdr * leafhdr,struct xfs_attr_leaf_entry * ent,int idx,__u32 * last_hashval)238 xfs_attr3_leaf_verify_entry(
239 struct xfs_mount *mp,
240 char *buf_end,
241 struct xfs_attr_leafblock *leaf,
242 struct xfs_attr3_icleaf_hdr *leafhdr,
243 struct xfs_attr_leaf_entry *ent,
244 int idx,
245 __u32 *last_hashval)
246 {
247 struct xfs_attr_leaf_name_local *lentry;
248 struct xfs_attr_leaf_name_remote *rentry;
249 char *name_end;
250 unsigned int nameidx;
251 unsigned int namesize;
252 __u32 hashval;
253
254 /* hash order check */
255 hashval = be32_to_cpu(ent->hashval);
256 if (hashval < *last_hashval)
257 return __this_address;
258 *last_hashval = hashval;
259
260 nameidx = be16_to_cpu(ent->nameidx);
261 if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
262 return __this_address;
263
264 /*
265 * Check the name information. The namelen fields are u8 so we can't
266 * possibly exceed the maximum name length of 255 bytes.
267 */
268 if (ent->flags & XFS_ATTR_LOCAL) {
269 lentry = xfs_attr3_leaf_name_local(leaf, idx);
270 namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
271 be16_to_cpu(lentry->valuelen));
272 name_end = (char *)lentry + namesize;
273 if (lentry->namelen == 0)
274 return __this_address;
275 } else {
276 rentry = xfs_attr3_leaf_name_remote(leaf, idx);
277 namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
278 name_end = (char *)rentry + namesize;
279 if (rentry->namelen == 0)
280 return __this_address;
281 if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
282 rentry->valueblk == 0)
283 return __this_address;
284 }
285
286 if (name_end > buf_end)
287 return __this_address;
288
289 return NULL;
290 }
291
292 /*
293 * Validate an attribute leaf block.
294 *
295 * Empty leaf blocks can occur under the following circumstances:
296 *
297 * 1. setxattr adds a new extended attribute to a file;
298 * 2. The file has zero existing attributes;
299 * 3. The attribute is too large to fit in the attribute fork;
300 * 4. The attribute is small enough to fit in a leaf block;
301 * 5. A log flush occurs after committing the transaction that creates
302 * the (empty) leaf block; and
303 * 6. The filesystem goes down after the log flush but before the new
304 * attribute can be committed to the leaf block.
305 *
306 * Hence we need to ensure that we don't fail the validation purely
307 * because the leaf is empty.
308 */
309 static xfs_failaddr_t
xfs_attr3_leaf_verify(struct xfs_buf * bp)310 xfs_attr3_leaf_verify(
311 struct xfs_buf *bp)
312 {
313 struct xfs_attr3_icleaf_hdr ichdr;
314 struct xfs_mount *mp = bp->b_mount;
315 struct xfs_attr_leafblock *leaf = bp->b_addr;
316 struct xfs_attr_leaf_entry *entries;
317 struct xfs_attr_leaf_entry *ent;
318 char *buf_end;
319 uint32_t end; /* must be 32bit - see below */
320 __u32 last_hashval = 0;
321 int i;
322 xfs_failaddr_t fa;
323
324 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
325
326 fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
327 if (fa)
328 return fa;
329
330 /*
331 * firstused is the block offset of the first name info structure.
332 * Make sure it doesn't go off the block or crash into the header.
333 */
334 if (ichdr.firstused > mp->m_attr_geo->blksize)
335 return __this_address;
336 if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
337 return __this_address;
338
339 /* Make sure the entries array doesn't crash into the name info. */
340 entries = xfs_attr3_leaf_entryp(bp->b_addr);
341 if ((char *)&entries[ichdr.count] >
342 (char *)bp->b_addr + ichdr.firstused)
343 return __this_address;
344
345 /*
346 * NOTE: This verifier historically failed empty leaf buffers because
347 * we expect the fork to be in another format. Empty attr fork format
348 * conversions are possible during xattr set, however, and format
349 * conversion is not atomic with the xattr set that triggers it. We
350 * cannot assume leaf blocks are non-empty until that is addressed.
351 */
352 buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
353 for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
354 fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
355 ent, i, &last_hashval);
356 if (fa)
357 return fa;
358 }
359
360 /*
361 * Quickly check the freemap information. Attribute data has to be
362 * aligned to 4-byte boundaries, and likewise for the free space.
363 *
364 * Note that for 64k block size filesystems, the freemap entries cannot
365 * overflow as they are only be16 fields. However, when checking end
366 * pointer of the freemap, we have to be careful to detect overflows and
367 * so use uint32_t for those checks.
368 */
369 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
370 if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
371 return __this_address;
372 if (ichdr.freemap[i].base & 0x3)
373 return __this_address;
374 if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
375 return __this_address;
376 if (ichdr.freemap[i].size & 0x3)
377 return __this_address;
378
379 /* be care of 16 bit overflows here */
380 end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
381 if (end < ichdr.freemap[i].base)
382 return __this_address;
383 if (end > mp->m_attr_geo->blksize)
384 return __this_address;
385 }
386
387 return NULL;
388 }
389
390 static void
xfs_attr3_leaf_write_verify(struct xfs_buf * bp)391 xfs_attr3_leaf_write_verify(
392 struct xfs_buf *bp)
393 {
394 struct xfs_mount *mp = bp->b_mount;
395 struct xfs_buf_log_item *bip = bp->b_log_item;
396 struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
397 xfs_failaddr_t fa;
398
399 fa = xfs_attr3_leaf_verify(bp);
400 if (fa) {
401 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
402 return;
403 }
404
405 if (!xfs_has_crc(mp))
406 return;
407
408 if (bip)
409 hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
410
411 xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
412 }
413
414 /*
415 * leaf/node format detection on trees is sketchy, so a node read can be done on
416 * leaf level blocks when detection identifies the tree as a node format tree
417 * incorrectly. In this case, we need to swap the verifier to match the correct
418 * format of the block being read.
419 */
420 static void
xfs_attr3_leaf_read_verify(struct xfs_buf * bp)421 xfs_attr3_leaf_read_verify(
422 struct xfs_buf *bp)
423 {
424 struct xfs_mount *mp = bp->b_mount;
425 xfs_failaddr_t fa;
426
427 if (xfs_has_crc(mp) &&
428 !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
429 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
430 else {
431 fa = xfs_attr3_leaf_verify(bp);
432 if (fa)
433 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
434 }
435 }
436
437 const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
438 .name = "xfs_attr3_leaf",
439 .magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
440 cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
441 .verify_read = xfs_attr3_leaf_read_verify,
442 .verify_write = xfs_attr3_leaf_write_verify,
443 .verify_struct = xfs_attr3_leaf_verify,
444 };
445
446 int
xfs_attr3_leaf_read(struct xfs_trans * tp,struct xfs_inode * dp,xfs_dablk_t bno,struct xfs_buf ** bpp)447 xfs_attr3_leaf_read(
448 struct xfs_trans *tp,
449 struct xfs_inode *dp,
450 xfs_dablk_t bno,
451 struct xfs_buf **bpp)
452 {
453 int err;
454
455 err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
456 &xfs_attr3_leaf_buf_ops);
457 if (!err && tp && *bpp)
458 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
459 return err;
460 }
461
462 /*========================================================================
463 * Namespace helper routines
464 *========================================================================*/
465
466 /*
467 * If we are in log recovery, then we want the lookup to ignore the INCOMPLETE
468 * flag on disk - if there's an incomplete attr then recovery needs to tear it
469 * down. If there's no incomplete attr, then recovery needs to tear that attr
470 * down to replace it with the attr that has been logged. In this case, the
471 * INCOMPLETE flag will not be set in attr->attr_filter, but rather
472 * XFS_DA_OP_RECOVERY will be set in args->op_flags.
473 */
474 static bool
xfs_attr_match(struct xfs_da_args * args,uint8_t namelen,unsigned char * name,int flags)475 xfs_attr_match(
476 struct xfs_da_args *args,
477 uint8_t namelen,
478 unsigned char *name,
479 int flags)
480 {
481
482 if (args->namelen != namelen)
483 return false;
484 if (memcmp(args->name, name, namelen) != 0)
485 return false;
486
487 /* Recovery ignores the INCOMPLETE flag. */
488 if ((args->op_flags & XFS_DA_OP_RECOVERY) &&
489 args->attr_filter == (flags & XFS_ATTR_NSP_ONDISK_MASK))
490 return true;
491
492 /* All remaining matches need to be filtered by INCOMPLETE state. */
493 if (args->attr_filter !=
494 (flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
495 return false;
496 return true;
497 }
498
499 static int
xfs_attr_copy_value(struct xfs_da_args * args,unsigned char * value,int valuelen)500 xfs_attr_copy_value(
501 struct xfs_da_args *args,
502 unsigned char *value,
503 int valuelen)
504 {
505 /*
506 * No copy if all we have to do is get the length
507 */
508 if (!args->valuelen) {
509 args->valuelen = valuelen;
510 return 0;
511 }
512
513 /*
514 * No copy if the length of the existing buffer is too small
515 */
516 if (args->valuelen < valuelen) {
517 args->valuelen = valuelen;
518 return -ERANGE;
519 }
520
521 if (!args->value) {
522 args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
523 if (!args->value)
524 return -ENOMEM;
525 }
526 args->valuelen = valuelen;
527
528 /* remote block xattr requires IO for copy-in */
529 if (args->rmtblkno)
530 return xfs_attr_rmtval_get(args);
531
532 /*
533 * This is to prevent a GCC warning because the remote xattr case
534 * doesn't have a value to pass in. In that case, we never reach here,
535 * but GCC can't work that out and so throws a "passing NULL to
536 * memcpy" warning.
537 */
538 if (!value)
539 return -EINVAL;
540 memcpy(args->value, value, valuelen);
541 return 0;
542 }
543
544 /*========================================================================
545 * External routines when attribute fork size < XFS_LITINO(mp).
546 *========================================================================*/
547
548 /*
549 * Query whether the total requested number of attr fork bytes of extended
550 * attribute space will be able to fit inline.
551 *
552 * Returns zero if not, else the i_forkoff fork offset to be used in the
553 * literal area for attribute data once the new bytes have been added.
554 *
555 * i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
556 * special case for dev/uuid inodes, they have fixed size data forks.
557 */
558 int
xfs_attr_shortform_bytesfit(struct xfs_inode * dp,int bytes)559 xfs_attr_shortform_bytesfit(
560 struct xfs_inode *dp,
561 int bytes)
562 {
563 struct xfs_mount *mp = dp->i_mount;
564 int64_t dsize;
565 int minforkoff;
566 int maxforkoff;
567 int offset;
568
569 /*
570 * Check if the new size could fit at all first:
571 */
572 if (bytes > XFS_LITINO(mp))
573 return 0;
574
575 /* rounded down */
576 offset = (XFS_LITINO(mp) - bytes) >> 3;
577
578 if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
579 minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
580 return (offset >= minforkoff) ? minforkoff : 0;
581 }
582
583 /*
584 * If the requested numbers of bytes is smaller or equal to the
585 * current attribute fork size we can always proceed.
586 *
587 * Note that if_bytes in the data fork might actually be larger than
588 * the current data fork size is due to delalloc extents. In that
589 * case either the extent count will go down when they are converted
590 * to real extents, or the delalloc conversion will take care of the
591 * literal area rebalancing.
592 */
593 if (bytes <= xfs_inode_attr_fork_size(dp))
594 return dp->i_forkoff;
595
596 /*
597 * For attr2 we can try to move the forkoff if there is space in the
598 * literal area, but for the old format we are done if there is no
599 * space in the fixed attribute fork.
600 */
601 if (!xfs_has_attr2(mp))
602 return 0;
603
604 dsize = dp->i_df.if_bytes;
605
606 switch (dp->i_df.if_format) {
607 case XFS_DINODE_FMT_EXTENTS:
608 /*
609 * If there is no attr fork and the data fork is extents,
610 * determine if creating the default attr fork will result
611 * in the extents form migrating to btree. If so, the
612 * minimum offset only needs to be the space required for
613 * the btree root.
614 */
615 if (!dp->i_forkoff && dp->i_df.if_bytes >
616 xfs_default_attroffset(dp))
617 dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
618 break;
619 case XFS_DINODE_FMT_BTREE:
620 /*
621 * If we have a data btree then keep forkoff if we have one,
622 * otherwise we are adding a new attr, so then we set
623 * minforkoff to where the btree root can finish so we have
624 * plenty of room for attrs
625 */
626 if (dp->i_forkoff) {
627 if (offset < dp->i_forkoff)
628 return 0;
629 return dp->i_forkoff;
630 }
631 dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
632 break;
633 }
634
635 /*
636 * A data fork btree root must have space for at least
637 * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
638 */
639 minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
640 minforkoff = roundup(minforkoff, 8) >> 3;
641
642 /* attr fork btree root can have at least this many key/ptr pairs */
643 maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
644 maxforkoff = maxforkoff >> 3; /* rounded down */
645
646 if (offset >= maxforkoff)
647 return maxforkoff;
648 if (offset >= minforkoff)
649 return offset;
650 return 0;
651 }
652
653 /*
654 * Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
655 * - noattr2 mount option is set,
656 * - on-disk version bit says it is already set, or
657 * - the attr2 mount option is not set to enable automatic upgrade from attr1.
658 */
659 STATIC void
xfs_sbversion_add_attr2(struct xfs_mount * mp,struct xfs_trans * tp)660 xfs_sbversion_add_attr2(
661 struct xfs_mount *mp,
662 struct xfs_trans *tp)
663 {
664 if (xfs_has_noattr2(mp))
665 return;
666 if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
667 return;
668 if (!xfs_has_attr2(mp))
669 return;
670
671 spin_lock(&mp->m_sb_lock);
672 xfs_add_attr2(mp);
673 spin_unlock(&mp->m_sb_lock);
674 xfs_log_sb(tp);
675 }
676
677 /*
678 * Create the initial contents of a shortform attribute list.
679 */
680 void
xfs_attr_shortform_create(struct xfs_da_args * args)681 xfs_attr_shortform_create(
682 struct xfs_da_args *args)
683 {
684 struct xfs_inode *dp = args->dp;
685 struct xfs_ifork *ifp = &dp->i_af;
686 struct xfs_attr_sf_hdr *hdr;
687
688 trace_xfs_attr_sf_create(args);
689
690 ASSERT(ifp->if_bytes == 0);
691 if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
692 ifp->if_format = XFS_DINODE_FMT_LOCAL;
693 xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
694 hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data;
695 memset(hdr, 0, sizeof(*hdr));
696 hdr->totsize = cpu_to_be16(sizeof(*hdr));
697 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
698 }
699
700 /*
701 * Return -EEXIST if attr is found, or -ENOATTR if not
702 * args: args containing attribute name and namelen
703 * sfep: If not null, pointer will be set to the last attr entry found on
704 -EEXIST. On -ENOATTR pointer is left at the last entry in the list
705 * basep: If not null, pointer is set to the byte offset of the entry in the
706 * list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of
707 * the last entry in the list
708 */
709 int
xfs_attr_sf_findname(struct xfs_da_args * args,struct xfs_attr_sf_entry ** sfep,unsigned int * basep)710 xfs_attr_sf_findname(
711 struct xfs_da_args *args,
712 struct xfs_attr_sf_entry **sfep,
713 unsigned int *basep)
714 {
715 struct xfs_attr_shortform *sf;
716 struct xfs_attr_sf_entry *sfe;
717 unsigned int base = sizeof(struct xfs_attr_sf_hdr);
718 int size = 0;
719 int end;
720 int i;
721
722 sf = (struct xfs_attr_shortform *)args->dp->i_af.if_u1.if_data;
723 sfe = &sf->list[0];
724 end = sf->hdr.count;
725 for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe),
726 base += size, i++) {
727 size = xfs_attr_sf_entsize(sfe);
728 if (!xfs_attr_match(args, sfe->namelen, sfe->nameval,
729 sfe->flags))
730 continue;
731 break;
732 }
733
734 if (sfep != NULL)
735 *sfep = sfe;
736
737 if (basep != NULL)
738 *basep = base;
739
740 if (i == end)
741 return -ENOATTR;
742 return -EEXIST;
743 }
744
745 /*
746 * Add a name/value pair to the shortform attribute list.
747 * Overflow from the inode has already been checked for.
748 */
749 void
xfs_attr_shortform_add(struct xfs_da_args * args,int forkoff)750 xfs_attr_shortform_add(
751 struct xfs_da_args *args,
752 int forkoff)
753 {
754 struct xfs_attr_shortform *sf;
755 struct xfs_attr_sf_entry *sfe;
756 int offset, size;
757 struct xfs_mount *mp;
758 struct xfs_inode *dp;
759 struct xfs_ifork *ifp;
760
761 trace_xfs_attr_sf_add(args);
762
763 dp = args->dp;
764 mp = dp->i_mount;
765 dp->i_forkoff = forkoff;
766
767 ifp = &dp->i_af;
768 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
769 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
770 if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST)
771 ASSERT(0);
772
773 offset = (char *)sfe - (char *)sf;
774 size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
775 xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
776 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
777 sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset);
778
779 sfe->namelen = args->namelen;
780 sfe->valuelen = args->valuelen;
781 sfe->flags = args->attr_filter;
782 memcpy(sfe->nameval, args->name, args->namelen);
783 memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
784 sf->hdr.count++;
785 be16_add_cpu(&sf->hdr.totsize, size);
786 xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
787
788 xfs_sbversion_add_attr2(mp, args->trans);
789 }
790
791 /*
792 * After the last attribute is removed revert to original inode format,
793 * making all literal area available to the data fork once more.
794 */
795 void
xfs_attr_fork_remove(struct xfs_inode * ip,struct xfs_trans * tp)796 xfs_attr_fork_remove(
797 struct xfs_inode *ip,
798 struct xfs_trans *tp)
799 {
800 ASSERT(ip->i_af.if_nextents == 0);
801
802 xfs_ifork_zap_attr(ip);
803 ip->i_forkoff = 0;
804 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
805 }
806
807 /*
808 * Remove an attribute from the shortform attribute list structure.
809 */
810 int
xfs_attr_sf_removename(struct xfs_da_args * args)811 xfs_attr_sf_removename(
812 struct xfs_da_args *args)
813 {
814 struct xfs_attr_shortform *sf;
815 struct xfs_attr_sf_entry *sfe;
816 int size = 0, end, totsize;
817 unsigned int base;
818 struct xfs_mount *mp;
819 struct xfs_inode *dp;
820 int error;
821
822 trace_xfs_attr_sf_remove(args);
823
824 dp = args->dp;
825 mp = dp->i_mount;
826 sf = (struct xfs_attr_shortform *)dp->i_af.if_u1.if_data;
827
828 error = xfs_attr_sf_findname(args, &sfe, &base);
829
830 /*
831 * If we are recovering an operation, finding nothing to
832 * remove is not an error - it just means there was nothing
833 * to clean up.
834 */
835 if (error == -ENOATTR && (args->op_flags & XFS_DA_OP_RECOVERY))
836 return 0;
837 if (error != -EEXIST)
838 return error;
839 size = xfs_attr_sf_entsize(sfe);
840
841 /*
842 * Fix up the attribute fork data, covering the hole
843 */
844 end = base + size;
845 totsize = be16_to_cpu(sf->hdr.totsize);
846 if (end != totsize)
847 memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
848 sf->hdr.count--;
849 be16_add_cpu(&sf->hdr.totsize, -size);
850
851 /*
852 * Fix up the start offset of the attribute fork
853 */
854 totsize -= size;
855 if (totsize == sizeof(xfs_attr_sf_hdr_t) && xfs_has_attr2(mp) &&
856 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
857 !(args->op_flags & (XFS_DA_OP_ADDNAME | XFS_DA_OP_REPLACE))) {
858 xfs_attr_fork_remove(dp, args->trans);
859 } else {
860 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
861 dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
862 ASSERT(dp->i_forkoff);
863 ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
864 (args->op_flags & XFS_DA_OP_ADDNAME) ||
865 !xfs_has_attr2(mp) ||
866 dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
867 xfs_trans_log_inode(args->trans, dp,
868 XFS_ILOG_CORE | XFS_ILOG_ADATA);
869 }
870
871 xfs_sbversion_add_attr2(mp, args->trans);
872
873 return 0;
874 }
875
876 /*
877 * Look up a name in a shortform attribute list structure.
878 */
879 /*ARGSUSED*/
880 int
xfs_attr_shortform_lookup(xfs_da_args_t * args)881 xfs_attr_shortform_lookup(xfs_da_args_t *args)
882 {
883 struct xfs_attr_shortform *sf;
884 struct xfs_attr_sf_entry *sfe;
885 int i;
886 struct xfs_ifork *ifp;
887
888 trace_xfs_attr_sf_lookup(args);
889
890 ifp = &args->dp->i_af;
891 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
892 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
893 sfe = &sf->list[0];
894 for (i = 0; i < sf->hdr.count;
895 sfe = xfs_attr_sf_nextentry(sfe), i++) {
896 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
897 sfe->flags))
898 return -EEXIST;
899 }
900 return -ENOATTR;
901 }
902
903 /*
904 * Retrieve the attribute value and length.
905 *
906 * If args->valuelen is zero, only the length needs to be returned. Unlike a
907 * lookup, we only return an error if the attribute does not exist or we can't
908 * retrieve the value.
909 */
910 int
xfs_attr_shortform_getvalue(struct xfs_da_args * args)911 xfs_attr_shortform_getvalue(
912 struct xfs_da_args *args)
913 {
914 struct xfs_attr_shortform *sf;
915 struct xfs_attr_sf_entry *sfe;
916 int i;
917
918 ASSERT(args->dp->i_af.if_format == XFS_DINODE_FMT_LOCAL);
919 sf = (struct xfs_attr_shortform *)args->dp->i_af.if_u1.if_data;
920 sfe = &sf->list[0];
921 for (i = 0; i < sf->hdr.count;
922 sfe = xfs_attr_sf_nextentry(sfe), i++) {
923 if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
924 sfe->flags))
925 return xfs_attr_copy_value(args,
926 &sfe->nameval[args->namelen], sfe->valuelen);
927 }
928 return -ENOATTR;
929 }
930
931 /* Convert from using the shortform to the leaf format. */
932 int
xfs_attr_shortform_to_leaf(struct xfs_da_args * args)933 xfs_attr_shortform_to_leaf(
934 struct xfs_da_args *args)
935 {
936 struct xfs_inode *dp;
937 struct xfs_attr_shortform *sf;
938 struct xfs_attr_sf_entry *sfe;
939 struct xfs_da_args nargs;
940 char *tmpbuffer;
941 int error, i, size;
942 xfs_dablk_t blkno;
943 struct xfs_buf *bp;
944 struct xfs_ifork *ifp;
945
946 trace_xfs_attr_sf_to_leaf(args);
947
948 dp = args->dp;
949 ifp = &dp->i_af;
950 sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
951 size = be16_to_cpu(sf->hdr.totsize);
952 tmpbuffer = kmem_alloc(size, 0);
953 ASSERT(tmpbuffer != NULL);
954 memcpy(tmpbuffer, ifp->if_u1.if_data, size);
955 sf = (struct xfs_attr_shortform *)tmpbuffer;
956
957 xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
958 xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
959
960 bp = NULL;
961 error = xfs_da_grow_inode(args, &blkno);
962 if (error)
963 goto out;
964
965 ASSERT(blkno == 0);
966 error = xfs_attr3_leaf_create(args, blkno, &bp);
967 if (error)
968 goto out;
969
970 memset((char *)&nargs, 0, sizeof(nargs));
971 nargs.dp = dp;
972 nargs.geo = args->geo;
973 nargs.total = args->total;
974 nargs.whichfork = XFS_ATTR_FORK;
975 nargs.trans = args->trans;
976 nargs.op_flags = XFS_DA_OP_OKNOENT;
977
978 sfe = &sf->list[0];
979 for (i = 0; i < sf->hdr.count; i++) {
980 nargs.name = sfe->nameval;
981 nargs.namelen = sfe->namelen;
982 nargs.value = &sfe->nameval[nargs.namelen];
983 nargs.valuelen = sfe->valuelen;
984 nargs.hashval = xfs_da_hashname(sfe->nameval,
985 sfe->namelen);
986 nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
987 if (!xfs_attr_check_namespace(sfe->flags)) {
988 error = -EFSCORRUPTED;
989 goto out;
990 }
991 error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
992 ASSERT(error == -ENOATTR);
993 error = xfs_attr3_leaf_add(bp, &nargs);
994 ASSERT(error != -ENOSPC);
995 if (error)
996 goto out;
997 sfe = xfs_attr_sf_nextentry(sfe);
998 }
999 error = 0;
1000 out:
1001 kmem_free(tmpbuffer);
1002 return error;
1003 }
1004
1005 /*
1006 * Check a leaf attribute block to see if all the entries would fit into
1007 * a shortform attribute list.
1008 */
1009 int
xfs_attr_shortform_allfit(struct xfs_buf * bp,struct xfs_inode * dp)1010 xfs_attr_shortform_allfit(
1011 struct xfs_buf *bp,
1012 struct xfs_inode *dp)
1013 {
1014 struct xfs_attr_leafblock *leaf;
1015 struct xfs_attr_leaf_entry *entry;
1016 xfs_attr_leaf_name_local_t *name_loc;
1017 struct xfs_attr3_icleaf_hdr leafhdr;
1018 int bytes;
1019 int i;
1020 struct xfs_mount *mp = bp->b_mount;
1021
1022 leaf = bp->b_addr;
1023 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
1024 entry = xfs_attr3_leaf_entryp(leaf);
1025
1026 bytes = sizeof(struct xfs_attr_sf_hdr);
1027 for (i = 0; i < leafhdr.count; entry++, i++) {
1028 if (entry->flags & XFS_ATTR_INCOMPLETE)
1029 continue; /* don't copy partial entries */
1030 if (!(entry->flags & XFS_ATTR_LOCAL))
1031 return 0;
1032 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1033 if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
1034 return 0;
1035 if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
1036 return 0;
1037 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
1038 be16_to_cpu(name_loc->valuelen));
1039 }
1040 if (xfs_has_attr2(dp->i_mount) &&
1041 (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
1042 (bytes == sizeof(struct xfs_attr_sf_hdr)))
1043 return -1;
1044 return xfs_attr_shortform_bytesfit(dp, bytes);
1045 }
1046
1047 /* Verify the consistency of an inline attribute fork. */
1048 xfs_failaddr_t
xfs_attr_shortform_verify(struct xfs_inode * ip)1049 xfs_attr_shortform_verify(
1050 struct xfs_inode *ip)
1051 {
1052 struct xfs_attr_shortform *sfp;
1053 struct xfs_attr_sf_entry *sfep;
1054 struct xfs_attr_sf_entry *next_sfep;
1055 char *endp;
1056 struct xfs_ifork *ifp;
1057 int i;
1058 int64_t size;
1059
1060 ASSERT(ip->i_af.if_format == XFS_DINODE_FMT_LOCAL);
1061 ifp = xfs_ifork_ptr(ip, XFS_ATTR_FORK);
1062 sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
1063 size = ifp->if_bytes;
1064
1065 /*
1066 * Give up if the attribute is way too short.
1067 */
1068 if (size < sizeof(struct xfs_attr_sf_hdr))
1069 return __this_address;
1070
1071 endp = (char *)sfp + size;
1072
1073 /* Check all reported entries */
1074 sfep = &sfp->list[0];
1075 for (i = 0; i < sfp->hdr.count; i++) {
1076 /*
1077 * struct xfs_attr_sf_entry has a variable length.
1078 * Check the fixed-offset parts of the structure are
1079 * within the data buffer.
1080 * xfs_attr_sf_entry is defined with a 1-byte variable
1081 * array at the end, so we must subtract that off.
1082 */
1083 if (((char *)sfep + sizeof(*sfep)) >= endp)
1084 return __this_address;
1085
1086 /* Don't allow names with known bad length. */
1087 if (sfep->namelen == 0)
1088 return __this_address;
1089
1090 /*
1091 * Check that the variable-length part of the structure is
1092 * within the data buffer. The next entry starts after the
1093 * name component, so nextentry is an acceptable test.
1094 */
1095 next_sfep = xfs_attr_sf_nextentry(sfep);
1096 if ((char *)next_sfep > endp)
1097 return __this_address;
1098
1099 /*
1100 * Check for unknown flags. Short form doesn't support
1101 * the incomplete or local bits, so we can use the namespace
1102 * mask here.
1103 */
1104 if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
1105 return __this_address;
1106
1107 /*
1108 * Check for invalid namespace combinations. We only allow
1109 * one namespace flag per xattr, so we can just count the
1110 * bits (i.e. hweight) here.
1111 */
1112 if (!xfs_attr_check_namespace(sfep->flags))
1113 return __this_address;
1114
1115 sfep = next_sfep;
1116 }
1117 if ((void *)sfep != (void *)endp)
1118 return __this_address;
1119
1120 return NULL;
1121 }
1122
1123 /*
1124 * Convert a leaf attribute list to shortform attribute list
1125 */
1126 int
xfs_attr3_leaf_to_shortform(struct xfs_buf * bp,struct xfs_da_args * args,int forkoff)1127 xfs_attr3_leaf_to_shortform(
1128 struct xfs_buf *bp,
1129 struct xfs_da_args *args,
1130 int forkoff)
1131 {
1132 struct xfs_attr_leafblock *leaf;
1133 struct xfs_attr3_icleaf_hdr ichdr;
1134 struct xfs_attr_leaf_entry *entry;
1135 struct xfs_attr_leaf_name_local *name_loc;
1136 struct xfs_da_args nargs;
1137 struct xfs_inode *dp = args->dp;
1138 char *tmpbuffer;
1139 int error;
1140 int i;
1141
1142 trace_xfs_attr_leaf_to_sf(args);
1143
1144 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1145 if (!tmpbuffer)
1146 return -ENOMEM;
1147
1148 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1149
1150 leaf = (xfs_attr_leafblock_t *)tmpbuffer;
1151 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1152 entry = xfs_attr3_leaf_entryp(leaf);
1153
1154 /* XXX (dgc): buffer is about to be marked stale - why zero it? */
1155 memset(bp->b_addr, 0, args->geo->blksize);
1156
1157 /*
1158 * Clean out the prior contents of the attribute list.
1159 */
1160 error = xfs_da_shrink_inode(args, 0, bp);
1161 if (error)
1162 goto out;
1163
1164 if (forkoff == -1) {
1165 /*
1166 * Don't remove the attr fork if this operation is the first
1167 * part of a attr replace operations. We're going to add a new
1168 * attr immediately, so we need to keep the attr fork around in
1169 * this case.
1170 */
1171 if (!(args->op_flags & XFS_DA_OP_REPLACE)) {
1172 ASSERT(xfs_has_attr2(dp->i_mount));
1173 ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
1174 xfs_attr_fork_remove(dp, args->trans);
1175 }
1176 goto out;
1177 }
1178
1179 xfs_attr_shortform_create(args);
1180
1181 /*
1182 * Copy the attributes
1183 */
1184 memset((char *)&nargs, 0, sizeof(nargs));
1185 nargs.geo = args->geo;
1186 nargs.dp = dp;
1187 nargs.total = args->total;
1188 nargs.whichfork = XFS_ATTR_FORK;
1189 nargs.trans = args->trans;
1190 nargs.op_flags = XFS_DA_OP_OKNOENT;
1191
1192 for (i = 0; i < ichdr.count; entry++, i++) {
1193 if (entry->flags & XFS_ATTR_INCOMPLETE)
1194 continue; /* don't copy partial entries */
1195 if (!entry->nameidx)
1196 continue;
1197 ASSERT(entry->flags & XFS_ATTR_LOCAL);
1198 name_loc = xfs_attr3_leaf_name_local(leaf, i);
1199 nargs.name = name_loc->nameval;
1200 nargs.namelen = name_loc->namelen;
1201 nargs.value = &name_loc->nameval[nargs.namelen];
1202 nargs.valuelen = be16_to_cpu(name_loc->valuelen);
1203 nargs.hashval = be32_to_cpu(entry->hashval);
1204 nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
1205 xfs_attr_shortform_add(&nargs, forkoff);
1206 }
1207 error = 0;
1208
1209 out:
1210 kmem_free(tmpbuffer);
1211 return error;
1212 }
1213
1214 /*
1215 * Convert from using a single leaf to a root node and a leaf.
1216 */
1217 int
xfs_attr3_leaf_to_node(struct xfs_da_args * args)1218 xfs_attr3_leaf_to_node(
1219 struct xfs_da_args *args)
1220 {
1221 struct xfs_attr_leafblock *leaf;
1222 struct xfs_attr3_icleaf_hdr icleafhdr;
1223 struct xfs_attr_leaf_entry *entries;
1224 struct xfs_da3_icnode_hdr icnodehdr;
1225 struct xfs_da_intnode *node;
1226 struct xfs_inode *dp = args->dp;
1227 struct xfs_mount *mp = dp->i_mount;
1228 struct xfs_buf *bp1 = NULL;
1229 struct xfs_buf *bp2 = NULL;
1230 xfs_dablk_t blkno;
1231 int error;
1232
1233 trace_xfs_attr_leaf_to_node(args);
1234
1235 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_ATTR_LEAF_TO_NODE)) {
1236 error = -EIO;
1237 goto out;
1238 }
1239
1240 error = xfs_da_grow_inode(args, &blkno);
1241 if (error)
1242 goto out;
1243 error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
1244 if (error)
1245 goto out;
1246
1247 error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
1248 if (error)
1249 goto out;
1250
1251 /* copy leaf to new buffer, update identifiers */
1252 xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
1253 bp2->b_ops = bp1->b_ops;
1254 memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
1255 if (xfs_has_crc(mp)) {
1256 struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
1257 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp2));
1258 }
1259 xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
1260
1261 /*
1262 * Set up the new root node.
1263 */
1264 error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
1265 if (error)
1266 goto out;
1267 node = bp1->b_addr;
1268 xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
1269
1270 leaf = bp2->b_addr;
1271 xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
1272 entries = xfs_attr3_leaf_entryp(leaf);
1273
1274 /* both on-disk, don't endian-flip twice */
1275 icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
1276 icnodehdr.btree[0].before = cpu_to_be32(blkno);
1277 icnodehdr.count = 1;
1278 xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
1279 xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
1280 error = 0;
1281 out:
1282 return error;
1283 }
1284
1285 /*========================================================================
1286 * Routines used for growing the Btree.
1287 *========================================================================*/
1288
1289 /*
1290 * Create the initial contents of a leaf attribute list
1291 * or a leaf in a node attribute list.
1292 */
1293 STATIC int
xfs_attr3_leaf_create(struct xfs_da_args * args,xfs_dablk_t blkno,struct xfs_buf ** bpp)1294 xfs_attr3_leaf_create(
1295 struct xfs_da_args *args,
1296 xfs_dablk_t blkno,
1297 struct xfs_buf **bpp)
1298 {
1299 struct xfs_attr_leafblock *leaf;
1300 struct xfs_attr3_icleaf_hdr ichdr;
1301 struct xfs_inode *dp = args->dp;
1302 struct xfs_mount *mp = dp->i_mount;
1303 struct xfs_buf *bp;
1304 int error;
1305
1306 trace_xfs_attr_leaf_create(args);
1307
1308 error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
1309 XFS_ATTR_FORK);
1310 if (error)
1311 return error;
1312 bp->b_ops = &xfs_attr3_leaf_buf_ops;
1313 xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
1314 leaf = bp->b_addr;
1315 memset(leaf, 0, args->geo->blksize);
1316
1317 memset(&ichdr, 0, sizeof(ichdr));
1318 ichdr.firstused = args->geo->blksize;
1319
1320 if (xfs_has_crc(mp)) {
1321 struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
1322
1323 ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
1324
1325 hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
1326 hdr3->owner = cpu_to_be64(dp->i_ino);
1327 uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
1328
1329 ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
1330 } else {
1331 ichdr.magic = XFS_ATTR_LEAF_MAGIC;
1332 ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
1333 }
1334 ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
1335
1336 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1337 xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
1338
1339 *bpp = bp;
1340 return 0;
1341 }
1342
1343 /*
1344 * Split the leaf node, rebalance, then add the new entry.
1345 */
1346 int
xfs_attr3_leaf_split(struct xfs_da_state * state,struct xfs_da_state_blk * oldblk,struct xfs_da_state_blk * newblk)1347 xfs_attr3_leaf_split(
1348 struct xfs_da_state *state,
1349 struct xfs_da_state_blk *oldblk,
1350 struct xfs_da_state_blk *newblk)
1351 {
1352 xfs_dablk_t blkno;
1353 int error;
1354
1355 trace_xfs_attr_leaf_split(state->args);
1356
1357 /*
1358 * Allocate space for a new leaf node.
1359 */
1360 ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
1361 error = xfs_da_grow_inode(state->args, &blkno);
1362 if (error)
1363 return error;
1364 error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
1365 if (error)
1366 return error;
1367 newblk->blkno = blkno;
1368 newblk->magic = XFS_ATTR_LEAF_MAGIC;
1369
1370 /*
1371 * Rebalance the entries across the two leaves.
1372 * NOTE: rebalance() currently depends on the 2nd block being empty.
1373 */
1374 xfs_attr3_leaf_rebalance(state, oldblk, newblk);
1375 error = xfs_da3_blk_link(state, oldblk, newblk);
1376 if (error)
1377 return error;
1378
1379 /*
1380 * Save info on "old" attribute for "atomic rename" ops, leaf_add()
1381 * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
1382 * "new" attrs info. Will need the "old" info to remove it later.
1383 *
1384 * Insert the "new" entry in the correct block.
1385 */
1386 if (state->inleaf) {
1387 trace_xfs_attr_leaf_add_old(state->args);
1388 error = xfs_attr3_leaf_add(oldblk->bp, state->args);
1389 } else {
1390 trace_xfs_attr_leaf_add_new(state->args);
1391 error = xfs_attr3_leaf_add(newblk->bp, state->args);
1392 }
1393
1394 /*
1395 * Update last hashval in each block since we added the name.
1396 */
1397 oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
1398 newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
1399 return error;
1400 }
1401
1402 /*
1403 * Add a name to the leaf attribute list structure.
1404 */
1405 int
xfs_attr3_leaf_add(struct xfs_buf * bp,struct xfs_da_args * args)1406 xfs_attr3_leaf_add(
1407 struct xfs_buf *bp,
1408 struct xfs_da_args *args)
1409 {
1410 struct xfs_attr_leafblock *leaf;
1411 struct xfs_attr3_icleaf_hdr ichdr;
1412 int tablesize;
1413 int entsize;
1414 int sum;
1415 int tmp;
1416 int i;
1417
1418 trace_xfs_attr_leaf_add(args);
1419
1420 leaf = bp->b_addr;
1421 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
1422 ASSERT(args->index >= 0 && args->index <= ichdr.count);
1423 entsize = xfs_attr_leaf_newentsize(args, NULL);
1424
1425 /*
1426 * Search through freemap for first-fit on new name length.
1427 * (may need to figure in size of entry struct too)
1428 */
1429 tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
1430 + xfs_attr3_leaf_hdr_size(leaf);
1431 for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
1432 if (tablesize > ichdr.firstused) {
1433 sum += ichdr.freemap[i].size;
1434 continue;
1435 }
1436 if (!ichdr.freemap[i].size)
1437 continue; /* no space in this map */
1438 tmp = entsize;
1439 if (ichdr.freemap[i].base < ichdr.firstused)
1440 tmp += sizeof(xfs_attr_leaf_entry_t);
1441 if (ichdr.freemap[i].size >= tmp) {
1442 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
1443 goto out_log_hdr;
1444 }
1445 sum += ichdr.freemap[i].size;
1446 }
1447
1448 /*
1449 * If there are no holes in the address space of the block,
1450 * and we don't have enough freespace, then compaction will do us
1451 * no good and we should just give up.
1452 */
1453 if (!ichdr.holes && sum < entsize)
1454 return -ENOSPC;
1455
1456 /*
1457 * Compact the entries to coalesce free space.
1458 * This may change the hdr->count via dropping INCOMPLETE entries.
1459 */
1460 xfs_attr3_leaf_compact(args, &ichdr, bp);
1461
1462 /*
1463 * After compaction, the block is guaranteed to have only one
1464 * free region, in freemap[0]. If it is not big enough, give up.
1465 */
1466 if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
1467 tmp = -ENOSPC;
1468 goto out_log_hdr;
1469 }
1470
1471 tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
1472
1473 out_log_hdr:
1474 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
1475 xfs_trans_log_buf(args->trans, bp,
1476 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
1477 xfs_attr3_leaf_hdr_size(leaf)));
1478 return tmp;
1479 }
1480
1481 /*
1482 * Add a name to a leaf attribute list structure.
1483 */
1484 STATIC int
xfs_attr3_leaf_add_work(struct xfs_buf * bp,struct xfs_attr3_icleaf_hdr * ichdr,struct xfs_da_args * args,int mapindex)1485 xfs_attr3_leaf_add_work(
1486 struct xfs_buf *bp,
1487 struct xfs_attr3_icleaf_hdr *ichdr,
1488 struct xfs_da_args *args,
1489 int mapindex)
1490 {
1491 struct xfs_attr_leafblock *leaf;
1492 struct xfs_attr_leaf_entry *entry;
1493 struct xfs_attr_leaf_name_local *name_loc;
1494 struct xfs_attr_leaf_name_remote *name_rmt;
1495 struct xfs_mount *mp;
1496 int tmp;
1497 int i;
1498
1499 trace_xfs_attr_leaf_add_work(args);
1500
1501 leaf = bp->b_addr;
1502 ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
1503 ASSERT(args->index >= 0 && args->index <= ichdr->count);
1504
1505 /*
1506 * Force open some space in the entry array and fill it in.
1507 */
1508 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
1509 if (args->index < ichdr->count) {
1510 tmp = ichdr->count - args->index;
1511 tmp *= sizeof(xfs_attr_leaf_entry_t);
1512 memmove(entry + 1, entry, tmp);
1513 xfs_trans_log_buf(args->trans, bp,
1514 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
1515 }
1516 ichdr->count++;
1517
1518 /*
1519 * Allocate space for the new string (at the end of the run).
1520 */
1521 mp = args->trans->t_mountp;
1522 ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
1523 ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
1524 ASSERT(ichdr->freemap[mapindex].size >=
1525 xfs_attr_leaf_newentsize(args, NULL));
1526 ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
1527 ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
1528
1529 ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
1530
1531 entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
1532 ichdr->freemap[mapindex].size);
1533 entry->hashval = cpu_to_be32(args->hashval);
1534 entry->flags = args->attr_filter;
1535 if (tmp)
1536 entry->flags |= XFS_ATTR_LOCAL;
1537 if (args->op_flags & XFS_DA_OP_REPLACE) {
1538 if (!(args->op_flags & XFS_DA_OP_LOGGED))
1539 entry->flags |= XFS_ATTR_INCOMPLETE;
1540 if ((args->blkno2 == args->blkno) &&
1541 (args->index2 <= args->index)) {
1542 args->index2++;
1543 }
1544 }
1545 xfs_trans_log_buf(args->trans, bp,
1546 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
1547 ASSERT((args->index == 0) ||
1548 (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
1549 ASSERT((args->index == ichdr->count - 1) ||
1550 (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
1551
1552 /*
1553 * For "remote" attribute values, simply note that we need to
1554 * allocate space for the "remote" value. We can't actually
1555 * allocate the extents in this transaction, and we can't decide
1556 * which blocks they should be as we might allocate more blocks
1557 * as part of this transaction (a split operation for example).
1558 */
1559 if (entry->flags & XFS_ATTR_LOCAL) {
1560 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
1561 name_loc->namelen = args->namelen;
1562 name_loc->valuelen = cpu_to_be16(args->valuelen);
1563 memcpy((char *)name_loc->nameval, args->name, args->namelen);
1564 memcpy((char *)&name_loc->nameval[args->namelen], args->value,
1565 be16_to_cpu(name_loc->valuelen));
1566 } else {
1567 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
1568 name_rmt->namelen = args->namelen;
1569 memcpy((char *)name_rmt->name, args->name, args->namelen);
1570 entry->flags |= XFS_ATTR_INCOMPLETE;
1571 /* just in case */
1572 name_rmt->valuelen = 0;
1573 name_rmt->valueblk = 0;
1574 args->rmtblkno = 1;
1575 args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
1576 args->rmtvaluelen = args->valuelen;
1577 }
1578 xfs_trans_log_buf(args->trans, bp,
1579 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
1580 xfs_attr_leaf_entsize(leaf, args->index)));
1581
1582 /*
1583 * Update the control info for this leaf node
1584 */
1585 if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
1586 ichdr->firstused = be16_to_cpu(entry->nameidx);
1587
1588 ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
1589 + xfs_attr3_leaf_hdr_size(leaf));
1590 tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
1591 + xfs_attr3_leaf_hdr_size(leaf);
1592
1593 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
1594 if (ichdr->freemap[i].base == tmp) {
1595 ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
1596 ichdr->freemap[i].size -=
1597 min_t(uint16_t, ichdr->freemap[i].size,
1598 sizeof(xfs_attr_leaf_entry_t));
1599 }
1600 }
1601 ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
1602 return 0;
1603 }
1604
1605 /*
1606 * Garbage collect a leaf attribute list block by copying it to a new buffer.
1607 */
1608 STATIC void
xfs_attr3_leaf_compact(struct xfs_da_args * args,struct xfs_attr3_icleaf_hdr * ichdr_dst,struct xfs_buf * bp)1609 xfs_attr3_leaf_compact(
1610 struct xfs_da_args *args,
1611 struct xfs_attr3_icleaf_hdr *ichdr_dst,
1612 struct xfs_buf *bp)
1613 {
1614 struct xfs_attr_leafblock *leaf_src;
1615 struct xfs_attr_leafblock *leaf_dst;
1616 struct xfs_attr3_icleaf_hdr ichdr_src;
1617 struct xfs_trans *trans = args->trans;
1618 char *tmpbuffer;
1619
1620 trace_xfs_attr_leaf_compact(args);
1621
1622 tmpbuffer = kmem_alloc(args->geo->blksize, 0);
1623 memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
1624 memset(bp->b_addr, 0, args->geo->blksize);
1625 leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
1626 leaf_dst = bp->b_addr;
1627
1628 /*
1629 * Copy the on-disk header back into the destination buffer to ensure
1630 * all the information in the header that is not part of the incore
1631 * header structure is preserved.
1632 */
1633 memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
1634
1635 /* Initialise the incore headers */
1636 ichdr_src = *ichdr_dst; /* struct copy */
1637 ichdr_dst->firstused = args->geo->blksize;
1638 ichdr_dst->usedbytes = 0;
1639 ichdr_dst->count = 0;
1640 ichdr_dst->holes = 0;
1641 ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
1642 ichdr_dst->freemap[0].size = ichdr_dst->firstused -
1643 ichdr_dst->freemap[0].base;
1644
1645 /* write the header back to initialise the underlying buffer */
1646 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
1647
1648 /*
1649 * Copy all entry's in the same (sorted) order,
1650 * but allocate name/value pairs packed and in sequence.
1651 */
1652 xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
1653 leaf_dst, ichdr_dst, 0, ichdr_src.count);
1654 /*
1655 * this logs the entire buffer, but the caller must write the header
1656 * back to the buffer when it is finished modifying it.
1657 */
1658 xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
1659
1660 kmem_free(tmpbuffer);
1661 }
1662
1663 /*
1664 * Compare two leaf blocks "order".
1665 * Return 0 unless leaf2 should go before leaf1.
1666 */
1667 static int
xfs_attr3_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_attr3_icleaf_hdr * leaf1hdr,struct xfs_buf * leaf2_bp,struct xfs_attr3_icleaf_hdr * leaf2hdr)1668 xfs_attr3_leaf_order(
1669 struct xfs_buf *leaf1_bp,
1670 struct xfs_attr3_icleaf_hdr *leaf1hdr,
1671 struct xfs_buf *leaf2_bp,
1672 struct xfs_attr3_icleaf_hdr *leaf2hdr)
1673 {
1674 struct xfs_attr_leaf_entry *entries1;
1675 struct xfs_attr_leaf_entry *entries2;
1676
1677 entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
1678 entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
1679 if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
1680 ((be32_to_cpu(entries2[0].hashval) <
1681 be32_to_cpu(entries1[0].hashval)) ||
1682 (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
1683 be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
1684 return 1;
1685 }
1686 return 0;
1687 }
1688
1689 int
xfs_attr_leaf_order(struct xfs_buf * leaf1_bp,struct xfs_buf * leaf2_bp)1690 xfs_attr_leaf_order(
1691 struct xfs_buf *leaf1_bp,
1692 struct xfs_buf *leaf2_bp)
1693 {
1694 struct xfs_attr3_icleaf_hdr ichdr1;
1695 struct xfs_attr3_icleaf_hdr ichdr2;
1696 struct xfs_mount *mp = leaf1_bp->b_mount;
1697
1698 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
1699 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
1700 return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
1701 }
1702
1703 /*
1704 * Redistribute the attribute list entries between two leaf nodes,
1705 * taking into account the size of the new entry.
1706 *
1707 * NOTE: if new block is empty, then it will get the upper half of the
1708 * old block. At present, all (one) callers pass in an empty second block.
1709 *
1710 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
1711 * to match what it is doing in splitting the attribute leaf block. Those
1712 * values are used in "atomic rename" operations on attributes. Note that
1713 * the "new" and "old" values can end up in different blocks.
1714 */
1715 STATIC void
xfs_attr3_leaf_rebalance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_da_state_blk * blk2)1716 xfs_attr3_leaf_rebalance(
1717 struct xfs_da_state *state,
1718 struct xfs_da_state_blk *blk1,
1719 struct xfs_da_state_blk *blk2)
1720 {
1721 struct xfs_da_args *args;
1722 struct xfs_attr_leafblock *leaf1;
1723 struct xfs_attr_leafblock *leaf2;
1724 struct xfs_attr3_icleaf_hdr ichdr1;
1725 struct xfs_attr3_icleaf_hdr ichdr2;
1726 struct xfs_attr_leaf_entry *entries1;
1727 struct xfs_attr_leaf_entry *entries2;
1728 int count;
1729 int totallen;
1730 int max;
1731 int space;
1732 int swap;
1733
1734 /*
1735 * Set up environment.
1736 */
1737 ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
1738 ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
1739 leaf1 = blk1->bp->b_addr;
1740 leaf2 = blk2->bp->b_addr;
1741 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
1742 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
1743 ASSERT(ichdr2.count == 0);
1744 args = state->args;
1745
1746 trace_xfs_attr_leaf_rebalance(args);
1747
1748 /*
1749 * Check ordering of blocks, reverse if it makes things simpler.
1750 *
1751 * NOTE: Given that all (current) callers pass in an empty
1752 * second block, this code should never set "swap".
1753 */
1754 swap = 0;
1755 if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
1756 swap(blk1, blk2);
1757
1758 /* swap structures rather than reconverting them */
1759 swap(ichdr1, ichdr2);
1760
1761 leaf1 = blk1->bp->b_addr;
1762 leaf2 = blk2->bp->b_addr;
1763 swap = 1;
1764 }
1765
1766 /*
1767 * Examine entries until we reduce the absolute difference in
1768 * byte usage between the two blocks to a minimum. Then get
1769 * the direction to copy and the number of elements to move.
1770 *
1771 * "inleaf" is true if the new entry should be inserted into blk1.
1772 * If "swap" is also true, then reverse the sense of "inleaf".
1773 */
1774 state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
1775 blk2, &ichdr2,
1776 &count, &totallen);
1777 if (swap)
1778 state->inleaf = !state->inleaf;
1779
1780 /*
1781 * Move any entries required from leaf to leaf:
1782 */
1783 if (count < ichdr1.count) {
1784 /*
1785 * Figure the total bytes to be added to the destination leaf.
1786 */
1787 /* number entries being moved */
1788 count = ichdr1.count - count;
1789 space = ichdr1.usedbytes - totallen;
1790 space += count * sizeof(xfs_attr_leaf_entry_t);
1791
1792 /*
1793 * leaf2 is the destination, compact it if it looks tight.
1794 */
1795 max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1796 max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
1797 if (space > max)
1798 xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
1799
1800 /*
1801 * Move high entries from leaf1 to low end of leaf2.
1802 */
1803 xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
1804 ichdr1.count - count, leaf2, &ichdr2, 0, count);
1805
1806 } else if (count > ichdr1.count) {
1807 /*
1808 * I assert that since all callers pass in an empty
1809 * second buffer, this code should never execute.
1810 */
1811 ASSERT(0);
1812
1813 /*
1814 * Figure the total bytes to be added to the destination leaf.
1815 */
1816 /* number entries being moved */
1817 count -= ichdr1.count;
1818 space = totallen - ichdr1.usedbytes;
1819 space += count * sizeof(xfs_attr_leaf_entry_t);
1820
1821 /*
1822 * leaf1 is the destination, compact it if it looks tight.
1823 */
1824 max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
1825 max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
1826 if (space > max)
1827 xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
1828
1829 /*
1830 * Move low entries from leaf2 to high end of leaf1.
1831 */
1832 xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
1833 ichdr1.count, count);
1834 }
1835
1836 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
1837 xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
1838 xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
1839 xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
1840
1841 /*
1842 * Copy out last hashval in each block for B-tree code.
1843 */
1844 entries1 = xfs_attr3_leaf_entryp(leaf1);
1845 entries2 = xfs_attr3_leaf_entryp(leaf2);
1846 blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
1847 blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
1848
1849 /*
1850 * Adjust the expected index for insertion.
1851 * NOTE: this code depends on the (current) situation that the
1852 * second block was originally empty.
1853 *
1854 * If the insertion point moved to the 2nd block, we must adjust
1855 * the index. We must also track the entry just following the
1856 * new entry for use in an "atomic rename" operation, that entry
1857 * is always the "old" entry and the "new" entry is what we are
1858 * inserting. The index/blkno fields refer to the "old" entry,
1859 * while the index2/blkno2 fields refer to the "new" entry.
1860 */
1861 if (blk1->index > ichdr1.count) {
1862 ASSERT(state->inleaf == 0);
1863 blk2->index = blk1->index - ichdr1.count;
1864 args->index = args->index2 = blk2->index;
1865 args->blkno = args->blkno2 = blk2->blkno;
1866 } else if (blk1->index == ichdr1.count) {
1867 if (state->inleaf) {
1868 args->index = blk1->index;
1869 args->blkno = blk1->blkno;
1870 args->index2 = 0;
1871 args->blkno2 = blk2->blkno;
1872 } else {
1873 /*
1874 * On a double leaf split, the original attr location
1875 * is already stored in blkno2/index2, so don't
1876 * overwrite it overwise we corrupt the tree.
1877 */
1878 blk2->index = blk1->index - ichdr1.count;
1879 args->index = blk2->index;
1880 args->blkno = blk2->blkno;
1881 if (!state->extravalid) {
1882 /*
1883 * set the new attr location to match the old
1884 * one and let the higher level split code
1885 * decide where in the leaf to place it.
1886 */
1887 args->index2 = blk2->index;
1888 args->blkno2 = blk2->blkno;
1889 }
1890 }
1891 } else {
1892 ASSERT(state->inleaf == 1);
1893 args->index = args->index2 = blk1->index;
1894 args->blkno = args->blkno2 = blk1->blkno;
1895 }
1896 }
1897
1898 /*
1899 * Examine entries until we reduce the absolute difference in
1900 * byte usage between the two blocks to a minimum.
1901 * GROT: Is this really necessary? With other than a 512 byte blocksize,
1902 * GROT: there will always be enough room in either block for a new entry.
1903 * GROT: Do a double-split for this case?
1904 */
1905 STATIC int
xfs_attr3_leaf_figure_balance(struct xfs_da_state * state,struct xfs_da_state_blk * blk1,struct xfs_attr3_icleaf_hdr * ichdr1,struct xfs_da_state_blk * blk2,struct xfs_attr3_icleaf_hdr * ichdr2,int * countarg,int * usedbytesarg)1906 xfs_attr3_leaf_figure_balance(
1907 struct xfs_da_state *state,
1908 struct xfs_da_state_blk *blk1,
1909 struct xfs_attr3_icleaf_hdr *ichdr1,
1910 struct xfs_da_state_blk *blk2,
1911 struct xfs_attr3_icleaf_hdr *ichdr2,
1912 int *countarg,
1913 int *usedbytesarg)
1914 {
1915 struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
1916 struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
1917 struct xfs_attr_leaf_entry *entry;
1918 int count;
1919 int max;
1920 int index;
1921 int totallen = 0;
1922 int half;
1923 int lastdelta;
1924 int foundit = 0;
1925 int tmp;
1926
1927 /*
1928 * Examine entries until we reduce the absolute difference in
1929 * byte usage between the two blocks to a minimum.
1930 */
1931 max = ichdr1->count + ichdr2->count;
1932 half = (max + 1) * sizeof(*entry);
1933 half += ichdr1->usedbytes + ichdr2->usedbytes +
1934 xfs_attr_leaf_newentsize(state->args, NULL);
1935 half /= 2;
1936 lastdelta = state->args->geo->blksize;
1937 entry = xfs_attr3_leaf_entryp(leaf1);
1938 for (count = index = 0; count < max; entry++, index++, count++) {
1939
1940 #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
1941 /*
1942 * The new entry is in the first block, account for it.
1943 */
1944 if (count == blk1->index) {
1945 tmp = totallen + sizeof(*entry) +
1946 xfs_attr_leaf_newentsize(state->args, NULL);
1947 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1948 break;
1949 lastdelta = XFS_ATTR_ABS(half - tmp);
1950 totallen = tmp;
1951 foundit = 1;
1952 }
1953
1954 /*
1955 * Wrap around into the second block if necessary.
1956 */
1957 if (count == ichdr1->count) {
1958 leaf1 = leaf2;
1959 entry = xfs_attr3_leaf_entryp(leaf1);
1960 index = 0;
1961 }
1962
1963 /*
1964 * Figure out if next leaf entry would be too much.
1965 */
1966 tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
1967 index);
1968 if (XFS_ATTR_ABS(half - tmp) > lastdelta)
1969 break;
1970 lastdelta = XFS_ATTR_ABS(half - tmp);
1971 totallen = tmp;
1972 #undef XFS_ATTR_ABS
1973 }
1974
1975 /*
1976 * Calculate the number of usedbytes that will end up in lower block.
1977 * If new entry not in lower block, fix up the count.
1978 */
1979 totallen -= count * sizeof(*entry);
1980 if (foundit) {
1981 totallen -= sizeof(*entry) +
1982 xfs_attr_leaf_newentsize(state->args, NULL);
1983 }
1984
1985 *countarg = count;
1986 *usedbytesarg = totallen;
1987 return foundit;
1988 }
1989
1990 /*========================================================================
1991 * Routines used for shrinking the Btree.
1992 *========================================================================*/
1993
1994 /*
1995 * Check a leaf block and its neighbors to see if the block should be
1996 * collapsed into one or the other neighbor. Always keep the block
1997 * with the smaller block number.
1998 * If the current block is over 50% full, don't try to join it, return 0.
1999 * If the block is empty, fill in the state structure and return 2.
2000 * If it can be collapsed, fill in the state structure and return 1.
2001 * If nothing can be done, return 0.
2002 *
2003 * GROT: allow for INCOMPLETE entries in calculation.
2004 */
2005 int
xfs_attr3_leaf_toosmall(struct xfs_da_state * state,int * action)2006 xfs_attr3_leaf_toosmall(
2007 struct xfs_da_state *state,
2008 int *action)
2009 {
2010 struct xfs_attr_leafblock *leaf;
2011 struct xfs_da_state_blk *blk;
2012 struct xfs_attr3_icleaf_hdr ichdr;
2013 struct xfs_buf *bp;
2014 xfs_dablk_t blkno;
2015 int bytes;
2016 int forward;
2017 int error;
2018 int retval;
2019 int i;
2020
2021 trace_xfs_attr_leaf_toosmall(state->args);
2022
2023 /*
2024 * Check for the degenerate case of the block being over 50% full.
2025 * If so, it's not worth even looking to see if we might be able
2026 * to coalesce with a sibling.
2027 */
2028 blk = &state->path.blk[ state->path.active-1 ];
2029 leaf = blk->bp->b_addr;
2030 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
2031 bytes = xfs_attr3_leaf_hdr_size(leaf) +
2032 ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
2033 ichdr.usedbytes;
2034 if (bytes > (state->args->geo->blksize >> 1)) {
2035 *action = 0; /* blk over 50%, don't try to join */
2036 return 0;
2037 }
2038
2039 /*
2040 * Check for the degenerate case of the block being empty.
2041 * If the block is empty, we'll simply delete it, no need to
2042 * coalesce it with a sibling block. We choose (arbitrarily)
2043 * to merge with the forward block unless it is NULL.
2044 */
2045 if (ichdr.count == 0) {
2046 /*
2047 * Make altpath point to the block we want to keep and
2048 * path point to the block we want to drop (this one).
2049 */
2050 forward = (ichdr.forw != 0);
2051 memcpy(&state->altpath, &state->path, sizeof(state->path));
2052 error = xfs_da3_path_shift(state, &state->altpath, forward,
2053 0, &retval);
2054 if (error)
2055 return error;
2056 if (retval) {
2057 *action = 0;
2058 } else {
2059 *action = 2;
2060 }
2061 return 0;
2062 }
2063
2064 /*
2065 * Examine each sibling block to see if we can coalesce with
2066 * at least 25% free space to spare. We need to figure out
2067 * whether to merge with the forward or the backward block.
2068 * We prefer coalescing with the lower numbered sibling so as
2069 * to shrink an attribute list over time.
2070 */
2071 /* start with smaller blk num */
2072 forward = ichdr.forw < ichdr.back;
2073 for (i = 0; i < 2; forward = !forward, i++) {
2074 struct xfs_attr3_icleaf_hdr ichdr2;
2075 if (forward)
2076 blkno = ichdr.forw;
2077 else
2078 blkno = ichdr.back;
2079 if (blkno == 0)
2080 continue;
2081 error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
2082 blkno, &bp);
2083 if (error)
2084 return error;
2085
2086 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
2087
2088 bytes = state->args->geo->blksize -
2089 (state->args->geo->blksize >> 2) -
2090 ichdr.usedbytes - ichdr2.usedbytes -
2091 ((ichdr.count + ichdr2.count) *
2092 sizeof(xfs_attr_leaf_entry_t)) -
2093 xfs_attr3_leaf_hdr_size(leaf);
2094
2095 xfs_trans_brelse(state->args->trans, bp);
2096 if (bytes >= 0)
2097 break; /* fits with at least 25% to spare */
2098 }
2099 if (i >= 2) {
2100 *action = 0;
2101 return 0;
2102 }
2103
2104 /*
2105 * Make altpath point to the block we want to keep (the lower
2106 * numbered block) and path point to the block we want to drop.
2107 */
2108 memcpy(&state->altpath, &state->path, sizeof(state->path));
2109 if (blkno < blk->blkno) {
2110 error = xfs_da3_path_shift(state, &state->altpath, forward,
2111 0, &retval);
2112 } else {
2113 error = xfs_da3_path_shift(state, &state->path, forward,
2114 0, &retval);
2115 }
2116 if (error)
2117 return error;
2118 if (retval) {
2119 *action = 0;
2120 } else {
2121 *action = 1;
2122 }
2123 return 0;
2124 }
2125
2126 /*
2127 * Remove a name from the leaf attribute list structure.
2128 *
2129 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
2130 * If two leaves are 37% full, when combined they will leave 25% free.
2131 */
2132 int
xfs_attr3_leaf_remove(struct xfs_buf * bp,struct xfs_da_args * args)2133 xfs_attr3_leaf_remove(
2134 struct xfs_buf *bp,
2135 struct xfs_da_args *args)
2136 {
2137 struct xfs_attr_leafblock *leaf;
2138 struct xfs_attr3_icleaf_hdr ichdr;
2139 struct xfs_attr_leaf_entry *entry;
2140 int before;
2141 int after;
2142 int smallest;
2143 int entsize;
2144 int tablesize;
2145 int tmp;
2146 int i;
2147
2148 trace_xfs_attr_leaf_remove(args);
2149
2150 leaf = bp->b_addr;
2151 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2152
2153 ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
2154 ASSERT(args->index >= 0 && args->index < ichdr.count);
2155 ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
2156 xfs_attr3_leaf_hdr_size(leaf));
2157
2158 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2159
2160 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2161 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2162
2163 /*
2164 * Scan through free region table:
2165 * check for adjacency of free'd entry with an existing one,
2166 * find smallest free region in case we need to replace it,
2167 * adjust any map that borders the entry table,
2168 */
2169 tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
2170 + xfs_attr3_leaf_hdr_size(leaf);
2171 tmp = ichdr.freemap[0].size;
2172 before = after = -1;
2173 smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
2174 entsize = xfs_attr_leaf_entsize(leaf, args->index);
2175 for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
2176 ASSERT(ichdr.freemap[i].base < args->geo->blksize);
2177 ASSERT(ichdr.freemap[i].size < args->geo->blksize);
2178 if (ichdr.freemap[i].base == tablesize) {
2179 ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
2180 ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
2181 }
2182
2183 if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
2184 be16_to_cpu(entry->nameidx)) {
2185 before = i;
2186 } else if (ichdr.freemap[i].base ==
2187 (be16_to_cpu(entry->nameidx) + entsize)) {
2188 after = i;
2189 } else if (ichdr.freemap[i].size < tmp) {
2190 tmp = ichdr.freemap[i].size;
2191 smallest = i;
2192 }
2193 }
2194
2195 /*
2196 * Coalesce adjacent freemap regions,
2197 * or replace the smallest region.
2198 */
2199 if ((before >= 0) || (after >= 0)) {
2200 if ((before >= 0) && (after >= 0)) {
2201 ichdr.freemap[before].size += entsize;
2202 ichdr.freemap[before].size += ichdr.freemap[after].size;
2203 ichdr.freemap[after].base = 0;
2204 ichdr.freemap[after].size = 0;
2205 } else if (before >= 0) {
2206 ichdr.freemap[before].size += entsize;
2207 } else {
2208 ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
2209 ichdr.freemap[after].size += entsize;
2210 }
2211 } else {
2212 /*
2213 * Replace smallest region (if it is smaller than free'd entry)
2214 */
2215 if (ichdr.freemap[smallest].size < entsize) {
2216 ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
2217 ichdr.freemap[smallest].size = entsize;
2218 }
2219 }
2220
2221 /*
2222 * Did we remove the first entry?
2223 */
2224 if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
2225 smallest = 1;
2226 else
2227 smallest = 0;
2228
2229 /*
2230 * Compress the remaining entries and zero out the removed stuff.
2231 */
2232 memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
2233 ichdr.usedbytes -= entsize;
2234 xfs_trans_log_buf(args->trans, bp,
2235 XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
2236 entsize));
2237
2238 tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
2239 memmove(entry, entry + 1, tmp);
2240 ichdr.count--;
2241 xfs_trans_log_buf(args->trans, bp,
2242 XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
2243
2244 entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
2245 memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
2246
2247 /*
2248 * If we removed the first entry, re-find the first used byte
2249 * in the name area. Note that if the entry was the "firstused",
2250 * then we don't have a "hole" in our block resulting from
2251 * removing the name.
2252 */
2253 if (smallest) {
2254 tmp = args->geo->blksize;
2255 entry = xfs_attr3_leaf_entryp(leaf);
2256 for (i = ichdr.count - 1; i >= 0; entry++, i--) {
2257 ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
2258 ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
2259
2260 if (be16_to_cpu(entry->nameidx) < tmp)
2261 tmp = be16_to_cpu(entry->nameidx);
2262 }
2263 ichdr.firstused = tmp;
2264 ASSERT(ichdr.firstused != 0);
2265 } else {
2266 ichdr.holes = 1; /* mark as needing compaction */
2267 }
2268 xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
2269 xfs_trans_log_buf(args->trans, bp,
2270 XFS_DA_LOGRANGE(leaf, &leaf->hdr,
2271 xfs_attr3_leaf_hdr_size(leaf)));
2272
2273 /*
2274 * Check if leaf is less than 50% full, caller may want to
2275 * "join" the leaf with a sibling if so.
2276 */
2277 tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
2278 ichdr.count * sizeof(xfs_attr_leaf_entry_t);
2279
2280 return tmp < args->geo->magicpct; /* leaf is < 37% full */
2281 }
2282
2283 /*
2284 * Move all the attribute list entries from drop_leaf into save_leaf.
2285 */
2286 void
xfs_attr3_leaf_unbalance(struct xfs_da_state * state,struct xfs_da_state_blk * drop_blk,struct xfs_da_state_blk * save_blk)2287 xfs_attr3_leaf_unbalance(
2288 struct xfs_da_state *state,
2289 struct xfs_da_state_blk *drop_blk,
2290 struct xfs_da_state_blk *save_blk)
2291 {
2292 struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
2293 struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
2294 struct xfs_attr3_icleaf_hdr drophdr;
2295 struct xfs_attr3_icleaf_hdr savehdr;
2296 struct xfs_attr_leaf_entry *entry;
2297
2298 trace_xfs_attr_leaf_unbalance(state->args);
2299
2300 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
2301 xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
2302 entry = xfs_attr3_leaf_entryp(drop_leaf);
2303
2304 /*
2305 * Save last hashval from dying block for later Btree fixup.
2306 */
2307 drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
2308
2309 /*
2310 * Check if we need a temp buffer, or can we do it in place.
2311 * Note that we don't check "leaf" for holes because we will
2312 * always be dropping it, toosmall() decided that for us already.
2313 */
2314 if (savehdr.holes == 0) {
2315 /*
2316 * dest leaf has no holes, so we add there. May need
2317 * to make some room in the entry array.
2318 */
2319 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2320 drop_blk->bp, &drophdr)) {
2321 xfs_attr3_leaf_moveents(state->args,
2322 drop_leaf, &drophdr, 0,
2323 save_leaf, &savehdr, 0,
2324 drophdr.count);
2325 } else {
2326 xfs_attr3_leaf_moveents(state->args,
2327 drop_leaf, &drophdr, 0,
2328 save_leaf, &savehdr,
2329 savehdr.count, drophdr.count);
2330 }
2331 } else {
2332 /*
2333 * Destination has holes, so we make a temporary copy
2334 * of the leaf and add them both to that.
2335 */
2336 struct xfs_attr_leafblock *tmp_leaf;
2337 struct xfs_attr3_icleaf_hdr tmphdr;
2338
2339 tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
2340
2341 /*
2342 * Copy the header into the temp leaf so that all the stuff
2343 * not in the incore header is present and gets copied back in
2344 * once we've moved all the entries.
2345 */
2346 memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
2347
2348 memset(&tmphdr, 0, sizeof(tmphdr));
2349 tmphdr.magic = savehdr.magic;
2350 tmphdr.forw = savehdr.forw;
2351 tmphdr.back = savehdr.back;
2352 tmphdr.firstused = state->args->geo->blksize;
2353
2354 /* write the header to the temp buffer to initialise it */
2355 xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
2356
2357 if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
2358 drop_blk->bp, &drophdr)) {
2359 xfs_attr3_leaf_moveents(state->args,
2360 drop_leaf, &drophdr, 0,
2361 tmp_leaf, &tmphdr, 0,
2362 drophdr.count);
2363 xfs_attr3_leaf_moveents(state->args,
2364 save_leaf, &savehdr, 0,
2365 tmp_leaf, &tmphdr, tmphdr.count,
2366 savehdr.count);
2367 } else {
2368 xfs_attr3_leaf_moveents(state->args,
2369 save_leaf, &savehdr, 0,
2370 tmp_leaf, &tmphdr, 0,
2371 savehdr.count);
2372 xfs_attr3_leaf_moveents(state->args,
2373 drop_leaf, &drophdr, 0,
2374 tmp_leaf, &tmphdr, tmphdr.count,
2375 drophdr.count);
2376 }
2377 memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
2378 savehdr = tmphdr; /* struct copy */
2379 kmem_free(tmp_leaf);
2380 }
2381
2382 xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
2383 xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
2384 state->args->geo->blksize - 1);
2385
2386 /*
2387 * Copy out last hashval in each block for B-tree code.
2388 */
2389 entry = xfs_attr3_leaf_entryp(save_leaf);
2390 save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
2391 }
2392
2393 /*========================================================================
2394 * Routines used for finding things in the Btree.
2395 *========================================================================*/
2396
2397 /*
2398 * Look up a name in a leaf attribute list structure.
2399 * This is the internal routine, it uses the caller's buffer.
2400 *
2401 * Note that duplicate keys are allowed, but only check within the
2402 * current leaf node. The Btree code must check in adjacent leaf nodes.
2403 *
2404 * Return in args->index the index into the entry[] array of either
2405 * the found entry, or where the entry should have been (insert before
2406 * that entry).
2407 *
2408 * Don't change the args->value unless we find the attribute.
2409 */
2410 int
xfs_attr3_leaf_lookup_int(struct xfs_buf * bp,struct xfs_da_args * args)2411 xfs_attr3_leaf_lookup_int(
2412 struct xfs_buf *bp,
2413 struct xfs_da_args *args)
2414 {
2415 struct xfs_attr_leafblock *leaf;
2416 struct xfs_attr3_icleaf_hdr ichdr;
2417 struct xfs_attr_leaf_entry *entry;
2418 struct xfs_attr_leaf_entry *entries;
2419 struct xfs_attr_leaf_name_local *name_loc;
2420 struct xfs_attr_leaf_name_remote *name_rmt;
2421 xfs_dahash_t hashval;
2422 int probe;
2423 int span;
2424
2425 trace_xfs_attr_leaf_lookup(args);
2426
2427 leaf = bp->b_addr;
2428 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2429 entries = xfs_attr3_leaf_entryp(leaf);
2430 if (ichdr.count >= args->geo->blksize / 8) {
2431 xfs_buf_mark_corrupt(bp);
2432 return -EFSCORRUPTED;
2433 }
2434
2435 /*
2436 * Binary search. (note: small blocks will skip this loop)
2437 */
2438 hashval = args->hashval;
2439 probe = span = ichdr.count / 2;
2440 for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
2441 span /= 2;
2442 if (be32_to_cpu(entry->hashval) < hashval)
2443 probe += span;
2444 else if (be32_to_cpu(entry->hashval) > hashval)
2445 probe -= span;
2446 else
2447 break;
2448 }
2449 if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
2450 xfs_buf_mark_corrupt(bp);
2451 return -EFSCORRUPTED;
2452 }
2453 if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
2454 xfs_buf_mark_corrupt(bp);
2455 return -EFSCORRUPTED;
2456 }
2457
2458 /*
2459 * Since we may have duplicate hashval's, find the first matching
2460 * hashval in the leaf.
2461 */
2462 while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
2463 entry--;
2464 probe--;
2465 }
2466 while (probe < ichdr.count &&
2467 be32_to_cpu(entry->hashval) < hashval) {
2468 entry++;
2469 probe++;
2470 }
2471 if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
2472 args->index = probe;
2473 return -ENOATTR;
2474 }
2475
2476 /*
2477 * Duplicate keys may be present, so search all of them for a match.
2478 */
2479 for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
2480 entry++, probe++) {
2481 /*
2482 * GROT: Add code to remove incomplete entries.
2483 */
2484 if (entry->flags & XFS_ATTR_LOCAL) {
2485 name_loc = xfs_attr3_leaf_name_local(leaf, probe);
2486 if (!xfs_attr_match(args, name_loc->namelen,
2487 name_loc->nameval, entry->flags))
2488 continue;
2489 args->index = probe;
2490 return -EEXIST;
2491 } else {
2492 name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
2493 if (!xfs_attr_match(args, name_rmt->namelen,
2494 name_rmt->name, entry->flags))
2495 continue;
2496 args->index = probe;
2497 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2498 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2499 args->rmtblkcnt = xfs_attr3_rmt_blocks(
2500 args->dp->i_mount,
2501 args->rmtvaluelen);
2502 return -EEXIST;
2503 }
2504 }
2505 args->index = probe;
2506 return -ENOATTR;
2507 }
2508
2509 /*
2510 * Get the value associated with an attribute name from a leaf attribute
2511 * list structure.
2512 *
2513 * If args->valuelen is zero, only the length needs to be returned. Unlike a
2514 * lookup, we only return an error if the attribute does not exist or we can't
2515 * retrieve the value.
2516 */
2517 int
xfs_attr3_leaf_getvalue(struct xfs_buf * bp,struct xfs_da_args * args)2518 xfs_attr3_leaf_getvalue(
2519 struct xfs_buf *bp,
2520 struct xfs_da_args *args)
2521 {
2522 struct xfs_attr_leafblock *leaf;
2523 struct xfs_attr3_icleaf_hdr ichdr;
2524 struct xfs_attr_leaf_entry *entry;
2525 struct xfs_attr_leaf_name_local *name_loc;
2526 struct xfs_attr_leaf_name_remote *name_rmt;
2527
2528 leaf = bp->b_addr;
2529 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2530 ASSERT(ichdr.count < args->geo->blksize / 8);
2531 ASSERT(args->index < ichdr.count);
2532
2533 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2534 if (entry->flags & XFS_ATTR_LOCAL) {
2535 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2536 ASSERT(name_loc->namelen == args->namelen);
2537 ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
2538 return xfs_attr_copy_value(args,
2539 &name_loc->nameval[args->namelen],
2540 be16_to_cpu(name_loc->valuelen));
2541 }
2542
2543 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2544 ASSERT(name_rmt->namelen == args->namelen);
2545 ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
2546 args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
2547 args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
2548 args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
2549 args->rmtvaluelen);
2550 return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
2551 }
2552
2553 /*========================================================================
2554 * Utility routines.
2555 *========================================================================*/
2556
2557 /*
2558 * Move the indicated entries from one leaf to another.
2559 * NOTE: this routine modifies both source and destination leaves.
2560 */
2561 /*ARGSUSED*/
2562 STATIC void
xfs_attr3_leaf_moveents(struct xfs_da_args * args,struct xfs_attr_leafblock * leaf_s,struct xfs_attr3_icleaf_hdr * ichdr_s,int start_s,struct xfs_attr_leafblock * leaf_d,struct xfs_attr3_icleaf_hdr * ichdr_d,int start_d,int count)2563 xfs_attr3_leaf_moveents(
2564 struct xfs_da_args *args,
2565 struct xfs_attr_leafblock *leaf_s,
2566 struct xfs_attr3_icleaf_hdr *ichdr_s,
2567 int start_s,
2568 struct xfs_attr_leafblock *leaf_d,
2569 struct xfs_attr3_icleaf_hdr *ichdr_d,
2570 int start_d,
2571 int count)
2572 {
2573 struct xfs_attr_leaf_entry *entry_s;
2574 struct xfs_attr_leaf_entry *entry_d;
2575 int desti;
2576 int tmp;
2577 int i;
2578
2579 /*
2580 * Check for nothing to do.
2581 */
2582 if (count == 0)
2583 return;
2584
2585 /*
2586 * Set up environment.
2587 */
2588 ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
2589 ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
2590 ASSERT(ichdr_s->magic == ichdr_d->magic);
2591 ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
2592 ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
2593 + xfs_attr3_leaf_hdr_size(leaf_s));
2594 ASSERT(ichdr_d->count < args->geo->blksize / 8);
2595 ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
2596 + xfs_attr3_leaf_hdr_size(leaf_d));
2597
2598 ASSERT(start_s < ichdr_s->count);
2599 ASSERT(start_d <= ichdr_d->count);
2600 ASSERT(count <= ichdr_s->count);
2601
2602
2603 /*
2604 * Move the entries in the destination leaf up to make a hole?
2605 */
2606 if (start_d < ichdr_d->count) {
2607 tmp = ichdr_d->count - start_d;
2608 tmp *= sizeof(xfs_attr_leaf_entry_t);
2609 entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2610 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
2611 memmove(entry_d, entry_s, tmp);
2612 }
2613
2614 /*
2615 * Copy all entry's in the same (sorted) order,
2616 * but allocate attribute info packed and in sequence.
2617 */
2618 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2619 entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
2620 desti = start_d;
2621 for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
2622 ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
2623 tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
2624 #ifdef GROT
2625 /*
2626 * Code to drop INCOMPLETE entries. Difficult to use as we
2627 * may also need to change the insertion index. Code turned
2628 * off for 6.2, should be revisited later.
2629 */
2630 if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
2631 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2632 ichdr_s->usedbytes -= tmp;
2633 ichdr_s->count -= 1;
2634 entry_d--; /* to compensate for ++ in loop hdr */
2635 desti--;
2636 if ((start_s + i) < offset)
2637 result++; /* insertion index adjustment */
2638 } else {
2639 #endif /* GROT */
2640 ichdr_d->firstused -= tmp;
2641 /* both on-disk, don't endian flip twice */
2642 entry_d->hashval = entry_s->hashval;
2643 entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
2644 entry_d->flags = entry_s->flags;
2645 ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
2646 <= args->geo->blksize);
2647 memmove(xfs_attr3_leaf_name(leaf_d, desti),
2648 xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
2649 ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
2650 <= args->geo->blksize);
2651 memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
2652 ichdr_s->usedbytes -= tmp;
2653 ichdr_d->usedbytes += tmp;
2654 ichdr_s->count -= 1;
2655 ichdr_d->count += 1;
2656 tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
2657 + xfs_attr3_leaf_hdr_size(leaf_d);
2658 ASSERT(ichdr_d->firstused >= tmp);
2659 #ifdef GROT
2660 }
2661 #endif /* GROT */
2662 }
2663
2664 /*
2665 * Zero out the entries we just copied.
2666 */
2667 if (start_s == ichdr_s->count) {
2668 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2669 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2670 ASSERT(((char *)entry_s + tmp) <=
2671 ((char *)leaf_s + args->geo->blksize));
2672 memset(entry_s, 0, tmp);
2673 } else {
2674 /*
2675 * Move the remaining entries down to fill the hole,
2676 * then zero the entries at the top.
2677 */
2678 tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
2679 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
2680 entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
2681 memmove(entry_d, entry_s, tmp);
2682
2683 tmp = count * sizeof(xfs_attr_leaf_entry_t);
2684 entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
2685 ASSERT(((char *)entry_s + tmp) <=
2686 ((char *)leaf_s + args->geo->blksize));
2687 memset(entry_s, 0, tmp);
2688 }
2689
2690 /*
2691 * Fill in the freemap information
2692 */
2693 ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
2694 ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
2695 ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
2696 ichdr_d->freemap[1].base = 0;
2697 ichdr_d->freemap[2].base = 0;
2698 ichdr_d->freemap[1].size = 0;
2699 ichdr_d->freemap[2].size = 0;
2700 ichdr_s->holes = 1; /* leaf may not be compact */
2701 }
2702
2703 /*
2704 * Pick up the last hashvalue from a leaf block.
2705 */
2706 xfs_dahash_t
xfs_attr_leaf_lasthash(struct xfs_buf * bp,int * count)2707 xfs_attr_leaf_lasthash(
2708 struct xfs_buf *bp,
2709 int *count)
2710 {
2711 struct xfs_attr3_icleaf_hdr ichdr;
2712 struct xfs_attr_leaf_entry *entries;
2713 struct xfs_mount *mp = bp->b_mount;
2714
2715 xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
2716 entries = xfs_attr3_leaf_entryp(bp->b_addr);
2717 if (count)
2718 *count = ichdr.count;
2719 if (!ichdr.count)
2720 return 0;
2721 return be32_to_cpu(entries[ichdr.count - 1].hashval);
2722 }
2723
2724 /*
2725 * Calculate the number of bytes used to store the indicated attribute
2726 * (whether local or remote only calculate bytes in this block).
2727 */
2728 STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t * leaf,int index)2729 xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
2730 {
2731 struct xfs_attr_leaf_entry *entries;
2732 xfs_attr_leaf_name_local_t *name_loc;
2733 xfs_attr_leaf_name_remote_t *name_rmt;
2734 int size;
2735
2736 entries = xfs_attr3_leaf_entryp(leaf);
2737 if (entries[index].flags & XFS_ATTR_LOCAL) {
2738 name_loc = xfs_attr3_leaf_name_local(leaf, index);
2739 size = xfs_attr_leaf_entsize_local(name_loc->namelen,
2740 be16_to_cpu(name_loc->valuelen));
2741 } else {
2742 name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
2743 size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
2744 }
2745 return size;
2746 }
2747
2748 /*
2749 * Calculate the number of bytes that would be required to store the new
2750 * attribute (whether local or remote only calculate bytes in this block).
2751 * This routine decides as a side effect whether the attribute will be
2752 * a "local" or a "remote" attribute.
2753 */
2754 int
xfs_attr_leaf_newentsize(struct xfs_da_args * args,int * local)2755 xfs_attr_leaf_newentsize(
2756 struct xfs_da_args *args,
2757 int *local)
2758 {
2759 int size;
2760
2761 size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
2762 if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
2763 if (local)
2764 *local = 1;
2765 return size;
2766 }
2767 if (local)
2768 *local = 0;
2769 return xfs_attr_leaf_entsize_remote(args->namelen);
2770 }
2771
2772
2773 /*========================================================================
2774 * Manage the INCOMPLETE flag in a leaf entry
2775 *========================================================================*/
2776
2777 /*
2778 * Clear the INCOMPLETE flag on an entry in a leaf block.
2779 */
2780 int
xfs_attr3_leaf_clearflag(struct xfs_da_args * args)2781 xfs_attr3_leaf_clearflag(
2782 struct xfs_da_args *args)
2783 {
2784 struct xfs_attr_leafblock *leaf;
2785 struct xfs_attr_leaf_entry *entry;
2786 struct xfs_attr_leaf_name_remote *name_rmt;
2787 struct xfs_buf *bp;
2788 int error;
2789 #ifdef DEBUG
2790 struct xfs_attr3_icleaf_hdr ichdr;
2791 xfs_attr_leaf_name_local_t *name_loc;
2792 int namelen;
2793 char *name;
2794 #endif /* DEBUG */
2795
2796 trace_xfs_attr_leaf_clearflag(args);
2797 /*
2798 * Set up the operation.
2799 */
2800 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2801 if (error)
2802 return error;
2803
2804 leaf = bp->b_addr;
2805 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2806 ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
2807
2808 #ifdef DEBUG
2809 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2810 ASSERT(args->index < ichdr.count);
2811 ASSERT(args->index >= 0);
2812
2813 if (entry->flags & XFS_ATTR_LOCAL) {
2814 name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
2815 namelen = name_loc->namelen;
2816 name = (char *)name_loc->nameval;
2817 } else {
2818 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2819 namelen = name_rmt->namelen;
2820 name = (char *)name_rmt->name;
2821 }
2822 ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
2823 ASSERT(namelen == args->namelen);
2824 ASSERT(memcmp(name, args->name, namelen) == 0);
2825 #endif /* DEBUG */
2826
2827 entry->flags &= ~XFS_ATTR_INCOMPLETE;
2828 xfs_trans_log_buf(args->trans, bp,
2829 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2830
2831 if (args->rmtblkno) {
2832 ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
2833 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2834 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2835 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2836 xfs_trans_log_buf(args->trans, bp,
2837 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2838 }
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * Set the INCOMPLETE flag on an entry in a leaf block.
2845 */
2846 int
xfs_attr3_leaf_setflag(struct xfs_da_args * args)2847 xfs_attr3_leaf_setflag(
2848 struct xfs_da_args *args)
2849 {
2850 struct xfs_attr_leafblock *leaf;
2851 struct xfs_attr_leaf_entry *entry;
2852 struct xfs_attr_leaf_name_remote *name_rmt;
2853 struct xfs_buf *bp;
2854 int error;
2855 #ifdef DEBUG
2856 struct xfs_attr3_icleaf_hdr ichdr;
2857 #endif
2858
2859 trace_xfs_attr_leaf_setflag(args);
2860
2861 /*
2862 * Set up the operation.
2863 */
2864 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
2865 if (error)
2866 return error;
2867
2868 leaf = bp->b_addr;
2869 #ifdef DEBUG
2870 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
2871 ASSERT(args->index < ichdr.count);
2872 ASSERT(args->index >= 0);
2873 #endif
2874 entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
2875
2876 ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
2877 entry->flags |= XFS_ATTR_INCOMPLETE;
2878 xfs_trans_log_buf(args->trans, bp,
2879 XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
2880 if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
2881 name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
2882 name_rmt->valueblk = 0;
2883 name_rmt->valuelen = 0;
2884 xfs_trans_log_buf(args->trans, bp,
2885 XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
2886 }
2887
2888 return 0;
2889 }
2890
2891 /*
2892 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
2893 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
2894 * entry given by args->blkno2/index2.
2895 *
2896 * Note that they could be in different blocks, or in the same block.
2897 */
2898 int
xfs_attr3_leaf_flipflags(struct xfs_da_args * args)2899 xfs_attr3_leaf_flipflags(
2900 struct xfs_da_args *args)
2901 {
2902 struct xfs_attr_leafblock *leaf1;
2903 struct xfs_attr_leafblock *leaf2;
2904 struct xfs_attr_leaf_entry *entry1;
2905 struct xfs_attr_leaf_entry *entry2;
2906 struct xfs_attr_leaf_name_remote *name_rmt;
2907 struct xfs_buf *bp1;
2908 struct xfs_buf *bp2;
2909 int error;
2910 #ifdef DEBUG
2911 struct xfs_attr3_icleaf_hdr ichdr1;
2912 struct xfs_attr3_icleaf_hdr ichdr2;
2913 xfs_attr_leaf_name_local_t *name_loc;
2914 int namelen1, namelen2;
2915 char *name1, *name2;
2916 #endif /* DEBUG */
2917
2918 trace_xfs_attr_leaf_flipflags(args);
2919
2920 /*
2921 * Read the block containing the "old" attr
2922 */
2923 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
2924 if (error)
2925 return error;
2926
2927 /*
2928 * Read the block containing the "new" attr, if it is different
2929 */
2930 if (args->blkno2 != args->blkno) {
2931 error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
2932 &bp2);
2933 if (error)
2934 return error;
2935 } else {
2936 bp2 = bp1;
2937 }
2938
2939 leaf1 = bp1->b_addr;
2940 entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
2941
2942 leaf2 = bp2->b_addr;
2943 entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
2944
2945 #ifdef DEBUG
2946 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
2947 ASSERT(args->index < ichdr1.count);
2948 ASSERT(args->index >= 0);
2949
2950 xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
2951 ASSERT(args->index2 < ichdr2.count);
2952 ASSERT(args->index2 >= 0);
2953
2954 if (entry1->flags & XFS_ATTR_LOCAL) {
2955 name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
2956 namelen1 = name_loc->namelen;
2957 name1 = (char *)name_loc->nameval;
2958 } else {
2959 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2960 namelen1 = name_rmt->namelen;
2961 name1 = (char *)name_rmt->name;
2962 }
2963 if (entry2->flags & XFS_ATTR_LOCAL) {
2964 name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
2965 namelen2 = name_loc->namelen;
2966 name2 = (char *)name_loc->nameval;
2967 } else {
2968 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2969 namelen2 = name_rmt->namelen;
2970 name2 = (char *)name_rmt->name;
2971 }
2972 ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
2973 ASSERT(namelen1 == namelen2);
2974 ASSERT(memcmp(name1, name2, namelen1) == 0);
2975 #endif /* DEBUG */
2976
2977 ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
2978 ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
2979
2980 entry1->flags &= ~XFS_ATTR_INCOMPLETE;
2981 xfs_trans_log_buf(args->trans, bp1,
2982 XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
2983 if (args->rmtblkno) {
2984 ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
2985 name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
2986 name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
2987 name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
2988 xfs_trans_log_buf(args->trans, bp1,
2989 XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
2990 }
2991
2992 entry2->flags |= XFS_ATTR_INCOMPLETE;
2993 xfs_trans_log_buf(args->trans, bp2,
2994 XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
2995 if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
2996 name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
2997 name_rmt->valueblk = 0;
2998 name_rmt->valuelen = 0;
2999 xfs_trans_log_buf(args->trans, bp2,
3000 XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
3001 }
3002
3003 return 0;
3004 }
3005