xref: /openbmc/linux/fs/xfs/scrub/common.c (revision 8bb04028)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_da_format.h"
27 #include "xfs_da_btree.h"
28 #include "xfs_attr.h"
29 #include "xfs_reflink.h"
30 #include "xfs_ag.h"
31 #include "scrub/scrub.h"
32 #include "scrub/common.h"
33 #include "scrub/trace.h"
34 #include "scrub/repair.h"
35 #include "scrub/health.h"
36 
37 /* Common code for the metadata scrubbers. */
38 
39 /*
40  * Handling operational errors.
41  *
42  * The *_process_error() family of functions are used to process error return
43  * codes from functions called as part of a scrub operation.
44  *
45  * If there's no error, we return true to tell the caller that it's ok
46  * to move on to the next check in its list.
47  *
48  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
49  * caller that something bad happened, and we preserve *error so that
50  * the caller can return the *error up the stack to userspace.
51  *
52  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
53  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
54  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
55  * not via return codes.  We return false to tell the caller that
56  * something bad happened.  Since the error has been cleared, the caller
57  * will (presumably) return that zero and scrubbing will move on to
58  * whatever's next.
59  *
60  * ftrace can be used to record the precise metadata location and the
61  * approximate code location of the failed operation.
62  */
63 
64 /* Check for operational errors. */
65 static bool
__xchk_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error,__u32 errflag,void * ret_ip)66 __xchk_process_error(
67 	struct xfs_scrub	*sc,
68 	xfs_agnumber_t		agno,
69 	xfs_agblock_t		bno,
70 	int			*error,
71 	__u32			errflag,
72 	void			*ret_ip)
73 {
74 	switch (*error) {
75 	case 0:
76 		return true;
77 	case -EDEADLOCK:
78 	case -ECHRNG:
79 		/* Used to restart an op with deadlock avoidance. */
80 		trace_xchk_deadlock_retry(
81 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
82 				sc->sm, *error);
83 		break;
84 	case -EFSBADCRC:
85 	case -EFSCORRUPTED:
86 		/* Note the badness but don't abort. */
87 		sc->sm->sm_flags |= errflag;
88 		*error = 0;
89 		fallthrough;
90 	default:
91 		trace_xchk_op_error(sc, agno, bno, *error,
92 				ret_ip);
93 		break;
94 	}
95 	return false;
96 }
97 
98 bool
xchk_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error)99 xchk_process_error(
100 	struct xfs_scrub	*sc,
101 	xfs_agnumber_t		agno,
102 	xfs_agblock_t		bno,
103 	int			*error)
104 {
105 	return __xchk_process_error(sc, agno, bno, error,
106 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
107 }
108 
109 bool
xchk_xref_process_error(struct xfs_scrub * sc,xfs_agnumber_t agno,xfs_agblock_t bno,int * error)110 xchk_xref_process_error(
111 	struct xfs_scrub	*sc,
112 	xfs_agnumber_t		agno,
113 	xfs_agblock_t		bno,
114 	int			*error)
115 {
116 	return __xchk_process_error(sc, agno, bno, error,
117 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
118 }
119 
120 /* Check for operational errors for a file offset. */
121 static bool
__xchk_fblock_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error,__u32 errflag,void * ret_ip)122 __xchk_fblock_process_error(
123 	struct xfs_scrub	*sc,
124 	int			whichfork,
125 	xfs_fileoff_t		offset,
126 	int			*error,
127 	__u32			errflag,
128 	void			*ret_ip)
129 {
130 	switch (*error) {
131 	case 0:
132 		return true;
133 	case -EDEADLOCK:
134 	case -ECHRNG:
135 		/* Used to restart an op with deadlock avoidance. */
136 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
137 		break;
138 	case -EFSBADCRC:
139 	case -EFSCORRUPTED:
140 		/* Note the badness but don't abort. */
141 		sc->sm->sm_flags |= errflag;
142 		*error = 0;
143 		fallthrough;
144 	default:
145 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
146 				ret_ip);
147 		break;
148 	}
149 	return false;
150 }
151 
152 bool
xchk_fblock_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error)153 xchk_fblock_process_error(
154 	struct xfs_scrub	*sc,
155 	int			whichfork,
156 	xfs_fileoff_t		offset,
157 	int			*error)
158 {
159 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
160 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
161 }
162 
163 bool
xchk_fblock_xref_process_error(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset,int * error)164 xchk_fblock_xref_process_error(
165 	struct xfs_scrub	*sc,
166 	int			whichfork,
167 	xfs_fileoff_t		offset,
168 	int			*error)
169 {
170 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
171 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
172 }
173 
174 /*
175  * Handling scrub corruption/optimization/warning checks.
176  *
177  * The *_set_{corrupt,preen,warning}() family of functions are used to
178  * record the presence of metadata that is incorrect (corrupt), could be
179  * optimized somehow (preen), or should be flagged for administrative
180  * review but is not incorrect (warn).
181  *
182  * ftrace can be used to record the precise metadata location and
183  * approximate code location of the failed check.
184  */
185 
186 /* Record a block which could be optimized. */
187 void
xchk_block_set_preen(struct xfs_scrub * sc,struct xfs_buf * bp)188 xchk_block_set_preen(
189 	struct xfs_scrub	*sc,
190 	struct xfs_buf		*bp)
191 {
192 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
193 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
194 }
195 
196 /*
197  * Record an inode which could be optimized.  The trace data will
198  * include the block given by bp if bp is given; otherwise it will use
199  * the block location of the inode record itself.
200  */
201 void
xchk_ino_set_preen(struct xfs_scrub * sc,xfs_ino_t ino)202 xchk_ino_set_preen(
203 	struct xfs_scrub	*sc,
204 	xfs_ino_t		ino)
205 {
206 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
207 	trace_xchk_ino_preen(sc, ino, __return_address);
208 }
209 
210 /* Record something being wrong with the filesystem primary superblock. */
211 void
xchk_set_corrupt(struct xfs_scrub * sc)212 xchk_set_corrupt(
213 	struct xfs_scrub	*sc)
214 {
215 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
216 	trace_xchk_fs_error(sc, 0, __return_address);
217 }
218 
219 /* Record a corrupt block. */
220 void
xchk_block_set_corrupt(struct xfs_scrub * sc,struct xfs_buf * bp)221 xchk_block_set_corrupt(
222 	struct xfs_scrub	*sc,
223 	struct xfs_buf		*bp)
224 {
225 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
226 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
227 }
228 
229 /* Record a corruption while cross-referencing. */
230 void
xchk_block_xref_set_corrupt(struct xfs_scrub * sc,struct xfs_buf * bp)231 xchk_block_xref_set_corrupt(
232 	struct xfs_scrub	*sc,
233 	struct xfs_buf		*bp)
234 {
235 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
236 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
237 }
238 
239 /*
240  * Record a corrupt inode.  The trace data will include the block given
241  * by bp if bp is given; otherwise it will use the block location of the
242  * inode record itself.
243  */
244 void
xchk_ino_set_corrupt(struct xfs_scrub * sc,xfs_ino_t ino)245 xchk_ino_set_corrupt(
246 	struct xfs_scrub	*sc,
247 	xfs_ino_t		ino)
248 {
249 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
250 	trace_xchk_ino_error(sc, ino, __return_address);
251 }
252 
253 /* Record a corruption while cross-referencing with an inode. */
254 void
xchk_ino_xref_set_corrupt(struct xfs_scrub * sc,xfs_ino_t ino)255 xchk_ino_xref_set_corrupt(
256 	struct xfs_scrub	*sc,
257 	xfs_ino_t		ino)
258 {
259 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
260 	trace_xchk_ino_error(sc, ino, __return_address);
261 }
262 
263 /* Record corruption in a block indexed by a file fork. */
264 void
xchk_fblock_set_corrupt(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)265 xchk_fblock_set_corrupt(
266 	struct xfs_scrub	*sc,
267 	int			whichfork,
268 	xfs_fileoff_t		offset)
269 {
270 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
271 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
272 }
273 
274 /* Record a corruption while cross-referencing a fork block. */
275 void
xchk_fblock_xref_set_corrupt(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)276 xchk_fblock_xref_set_corrupt(
277 	struct xfs_scrub	*sc,
278 	int			whichfork,
279 	xfs_fileoff_t		offset)
280 {
281 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
282 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
283 }
284 
285 /*
286  * Warn about inodes that need administrative review but is not
287  * incorrect.
288  */
289 void
xchk_ino_set_warning(struct xfs_scrub * sc,xfs_ino_t ino)290 xchk_ino_set_warning(
291 	struct xfs_scrub	*sc,
292 	xfs_ino_t		ino)
293 {
294 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
295 	trace_xchk_ino_warning(sc, ino, __return_address);
296 }
297 
298 /* Warn about a block indexed by a file fork that needs review. */
299 void
xchk_fblock_set_warning(struct xfs_scrub * sc,int whichfork,xfs_fileoff_t offset)300 xchk_fblock_set_warning(
301 	struct xfs_scrub	*sc,
302 	int			whichfork,
303 	xfs_fileoff_t		offset)
304 {
305 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
306 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
307 }
308 
309 /* Signal an incomplete scrub. */
310 void
xchk_set_incomplete(struct xfs_scrub * sc)311 xchk_set_incomplete(
312 	struct xfs_scrub	*sc)
313 {
314 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
315 	trace_xchk_incomplete(sc, __return_address);
316 }
317 
318 /*
319  * rmap scrubbing -- compute the number of blocks with a given owner,
320  * at least according to the reverse mapping data.
321  */
322 
323 struct xchk_rmap_ownedby_info {
324 	const struct xfs_owner_info	*oinfo;
325 	xfs_filblks_t			*blocks;
326 };
327 
328 STATIC int
xchk_count_rmap_ownedby_irec(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)329 xchk_count_rmap_ownedby_irec(
330 	struct xfs_btree_cur		*cur,
331 	const struct xfs_rmap_irec	*rec,
332 	void				*priv)
333 {
334 	struct xchk_rmap_ownedby_info	*sroi = priv;
335 	bool				irec_attr;
336 	bool				oinfo_attr;
337 
338 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
339 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
340 
341 	if (rec->rm_owner != sroi->oinfo->oi_owner)
342 		return 0;
343 
344 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
345 		(*sroi->blocks) += rec->rm_blockcount;
346 
347 	return 0;
348 }
349 
350 /*
351  * Calculate the number of blocks the rmap thinks are owned by something.
352  * The caller should pass us an rmapbt cursor.
353  */
354 int
xchk_count_rmap_ownedby_ag(struct xfs_scrub * sc,struct xfs_btree_cur * cur,const struct xfs_owner_info * oinfo,xfs_filblks_t * blocks)355 xchk_count_rmap_ownedby_ag(
356 	struct xfs_scrub		*sc,
357 	struct xfs_btree_cur		*cur,
358 	const struct xfs_owner_info	*oinfo,
359 	xfs_filblks_t			*blocks)
360 {
361 	struct xchk_rmap_ownedby_info	sroi = {
362 		.oinfo			= oinfo,
363 		.blocks			= blocks,
364 	};
365 
366 	*blocks = 0;
367 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
368 			&sroi);
369 }
370 
371 /*
372  * AG scrubbing
373  *
374  * These helpers facilitate locking an allocation group's header
375  * buffers, setting up cursors for all btrees that are present, and
376  * cleaning everything up once we're through.
377  */
378 
379 /* Decide if we want to return an AG header read failure. */
380 static inline bool
want_ag_read_header_failure(struct xfs_scrub * sc,unsigned int type)381 want_ag_read_header_failure(
382 	struct xfs_scrub	*sc,
383 	unsigned int		type)
384 {
385 	/* Return all AG header read failures when scanning btrees. */
386 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
387 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
388 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
389 		return true;
390 	/*
391 	 * If we're scanning a given type of AG header, we only want to
392 	 * see read failures from that specific header.  We'd like the
393 	 * other headers to cross-check them, but this isn't required.
394 	 */
395 	if (sc->sm->sm_type == type)
396 		return true;
397 	return false;
398 }
399 
400 /*
401  * Grab the AG header buffers for the attached perag structure.
402  *
403  * The headers should be released by xchk_ag_free, but as a fail safe we attach
404  * all the buffers we grab to the scrub transaction so they'll all be freed
405  * when we cancel it.
406  */
407 static inline int
xchk_perag_read_headers(struct xfs_scrub * sc,struct xchk_ag * sa)408 xchk_perag_read_headers(
409 	struct xfs_scrub	*sc,
410 	struct xchk_ag		*sa)
411 {
412 	int			error;
413 
414 	error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp);
415 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
416 		return error;
417 
418 	error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp);
419 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
420 		return error;
421 
422 	return 0;
423 }
424 
425 /*
426  * Grab the AG headers for the attached perag structure and wait for pending
427  * intents to drain.
428  */
429 static int
xchk_perag_drain_and_lock(struct xfs_scrub * sc)430 xchk_perag_drain_and_lock(
431 	struct xfs_scrub	*sc)
432 {
433 	struct xchk_ag		*sa = &sc->sa;
434 	int			error = 0;
435 
436 	ASSERT(sa->pag != NULL);
437 	ASSERT(sa->agi_bp == NULL);
438 	ASSERT(sa->agf_bp == NULL);
439 
440 	do {
441 		if (xchk_should_terminate(sc, &error))
442 			return error;
443 
444 		error = xchk_perag_read_headers(sc, sa);
445 		if (error)
446 			return error;
447 
448 		/*
449 		 * If we've grabbed an inode for scrubbing then we assume that
450 		 * holding its ILOCK will suffice to coordinate with any intent
451 		 * chains involving this inode.
452 		 */
453 		if (sc->ip)
454 			return 0;
455 
456 		/*
457 		 * Decide if this AG is quiet enough for all metadata to be
458 		 * consistent with each other.  XFS allows the AG header buffer
459 		 * locks to cycle across transaction rolls while processing
460 		 * chains of deferred ops, which means that there could be
461 		 * other threads in the middle of processing a chain of
462 		 * deferred ops.  For regular operations we are careful about
463 		 * ordering operations to prevent collisions between threads
464 		 * (which is why we don't need a per-AG lock), but scrub and
465 		 * repair have to serialize against chained operations.
466 		 *
467 		 * We just locked all the AG headers buffers; now take a look
468 		 * to see if there are any intents in progress.  If there are,
469 		 * drop the AG headers and wait for the intents to drain.
470 		 * Since we hold all the AG header locks for the duration of
471 		 * the scrub, this is the only time we have to sample the
472 		 * intents counter; any threads increasing it after this point
473 		 * can't possibly be in the middle of a chain of AG metadata
474 		 * updates.
475 		 *
476 		 * Obviously, this should be slanted against scrub and in favor
477 		 * of runtime threads.
478 		 */
479 		if (!xfs_perag_intent_busy(sa->pag))
480 			return 0;
481 
482 		if (sa->agf_bp) {
483 			xfs_trans_brelse(sc->tp, sa->agf_bp);
484 			sa->agf_bp = NULL;
485 		}
486 
487 		if (sa->agi_bp) {
488 			xfs_trans_brelse(sc->tp, sa->agi_bp);
489 			sa->agi_bp = NULL;
490 		}
491 
492 		if (!(sc->flags & XCHK_FSGATES_DRAIN))
493 			return -ECHRNG;
494 		error = xfs_perag_intent_drain(sa->pag);
495 		if (error == -ERESTARTSYS)
496 			error = -EINTR;
497 	} while (!error);
498 
499 	return error;
500 }
501 
502 /*
503  * Grab the per-AG structure, grab all AG header buffers, and wait until there
504  * aren't any pending intents.  Returns -ENOENT if we can't grab the perag
505  * structure.
506  */
507 int
xchk_ag_read_headers(struct xfs_scrub * sc,xfs_agnumber_t agno,struct xchk_ag * sa)508 xchk_ag_read_headers(
509 	struct xfs_scrub	*sc,
510 	xfs_agnumber_t		agno,
511 	struct xchk_ag		*sa)
512 {
513 	struct xfs_mount	*mp = sc->mp;
514 
515 	ASSERT(!sa->pag);
516 	sa->pag = xfs_perag_get(mp, agno);
517 	if (!sa->pag)
518 		return -ENOENT;
519 
520 	return xchk_perag_drain_and_lock(sc);
521 }
522 
523 /* Release all the AG btree cursors. */
524 void
xchk_ag_btcur_free(struct xchk_ag * sa)525 xchk_ag_btcur_free(
526 	struct xchk_ag		*sa)
527 {
528 	if (sa->refc_cur)
529 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
530 	if (sa->rmap_cur)
531 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
532 	if (sa->fino_cur)
533 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
534 	if (sa->ino_cur)
535 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
536 	if (sa->cnt_cur)
537 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
538 	if (sa->bno_cur)
539 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
540 
541 	sa->refc_cur = NULL;
542 	sa->rmap_cur = NULL;
543 	sa->fino_cur = NULL;
544 	sa->ino_cur = NULL;
545 	sa->bno_cur = NULL;
546 	sa->cnt_cur = NULL;
547 }
548 
549 /* Initialize all the btree cursors for an AG. */
550 void
xchk_ag_btcur_init(struct xfs_scrub * sc,struct xchk_ag * sa)551 xchk_ag_btcur_init(
552 	struct xfs_scrub	*sc,
553 	struct xchk_ag		*sa)
554 {
555 	struct xfs_mount	*mp = sc->mp;
556 
557 	if (sa->agf_bp &&
558 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
559 		/* Set up a bnobt cursor for cross-referencing. */
560 		sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
561 				sa->pag, XFS_BTNUM_BNO);
562 	}
563 
564 	if (sa->agf_bp &&
565 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
566 		/* Set up a cntbt cursor for cross-referencing. */
567 		sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
568 				sa->pag, XFS_BTNUM_CNT);
569 	}
570 
571 	/* Set up a inobt cursor for cross-referencing. */
572 	if (sa->agi_bp &&
573 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
574 		sa->ino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
575 				XFS_BTNUM_INO);
576 	}
577 
578 	/* Set up a finobt cursor for cross-referencing. */
579 	if (sa->agi_bp && xfs_has_finobt(mp) &&
580 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
581 		sa->fino_cur = xfs_inobt_init_cursor(sa->pag, sc->tp, sa->agi_bp,
582 				XFS_BTNUM_FINO);
583 	}
584 
585 	/* Set up a rmapbt cursor for cross-referencing. */
586 	if (sa->agf_bp && xfs_has_rmapbt(mp) &&
587 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
588 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
589 				sa->pag);
590 	}
591 
592 	/* Set up a refcountbt cursor for cross-referencing. */
593 	if (sa->agf_bp && xfs_has_reflink(mp) &&
594 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
595 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
596 				sa->agf_bp, sa->pag);
597 	}
598 }
599 
600 /* Release the AG header context and btree cursors. */
601 void
xchk_ag_free(struct xfs_scrub * sc,struct xchk_ag * sa)602 xchk_ag_free(
603 	struct xfs_scrub	*sc,
604 	struct xchk_ag		*sa)
605 {
606 	xchk_ag_btcur_free(sa);
607 	if (sa->agf_bp) {
608 		xfs_trans_brelse(sc->tp, sa->agf_bp);
609 		sa->agf_bp = NULL;
610 	}
611 	if (sa->agi_bp) {
612 		xfs_trans_brelse(sc->tp, sa->agi_bp);
613 		sa->agi_bp = NULL;
614 	}
615 	if (sa->pag) {
616 		xfs_perag_put(sa->pag);
617 		sa->pag = NULL;
618 	}
619 }
620 
621 /*
622  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
623  * order.  Locking order requires us to get the AGI before the AGF.  We use the
624  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
625  * caller passes one in (bmap scrub) or we have to create a transaction
626  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
627  */
628 int
xchk_ag_init(struct xfs_scrub * sc,xfs_agnumber_t agno,struct xchk_ag * sa)629 xchk_ag_init(
630 	struct xfs_scrub	*sc,
631 	xfs_agnumber_t		agno,
632 	struct xchk_ag		*sa)
633 {
634 	int			error;
635 
636 	error = xchk_ag_read_headers(sc, agno, sa);
637 	if (error)
638 		return error;
639 
640 	xchk_ag_btcur_init(sc, sa);
641 	return 0;
642 }
643 
644 /* Per-scrubber setup functions */
645 
646 void
xchk_trans_cancel(struct xfs_scrub * sc)647 xchk_trans_cancel(
648 	struct xfs_scrub	*sc)
649 {
650 	xfs_trans_cancel(sc->tp);
651 	sc->tp = NULL;
652 }
653 
654 /*
655  * Grab an empty transaction so that we can re-grab locked buffers if
656  * one of our btrees turns out to be cyclic.
657  *
658  * If we're going to repair something, we need to ask for the largest possible
659  * log reservation so that we can handle the worst case scenario for metadata
660  * updates while rebuilding a metadata item.  We also need to reserve as many
661  * blocks in the head transaction as we think we're going to need to rebuild
662  * the metadata object.
663  */
664 int
xchk_trans_alloc(struct xfs_scrub * sc,uint resblks)665 xchk_trans_alloc(
666 	struct xfs_scrub	*sc,
667 	uint			resblks)
668 {
669 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
670 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
671 				resblks, 0, 0, &sc->tp);
672 
673 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
674 }
675 
676 /* Set us up with a transaction and an empty context. */
677 int
xchk_setup_fs(struct xfs_scrub * sc)678 xchk_setup_fs(
679 	struct xfs_scrub	*sc)
680 {
681 	uint			resblks;
682 
683 	resblks = xrep_calc_ag_resblks(sc);
684 	return xchk_trans_alloc(sc, resblks);
685 }
686 
687 /* Set us up with AG headers and btree cursors. */
688 int
xchk_setup_ag_btree(struct xfs_scrub * sc,bool force_log)689 xchk_setup_ag_btree(
690 	struct xfs_scrub	*sc,
691 	bool			force_log)
692 {
693 	struct xfs_mount	*mp = sc->mp;
694 	int			error;
695 
696 	/*
697 	 * If the caller asks us to checkpont the log, do so.  This
698 	 * expensive operation should be performed infrequently and only
699 	 * as a last resort.  Any caller that sets force_log should
700 	 * document why they need to do so.
701 	 */
702 	if (force_log) {
703 		error = xchk_checkpoint_log(mp);
704 		if (error)
705 			return error;
706 	}
707 
708 	error = xchk_setup_fs(sc);
709 	if (error)
710 		return error;
711 
712 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
713 }
714 
715 /* Push everything out of the log onto disk. */
716 int
xchk_checkpoint_log(struct xfs_mount * mp)717 xchk_checkpoint_log(
718 	struct xfs_mount	*mp)
719 {
720 	int			error;
721 
722 	error = xfs_log_force(mp, XFS_LOG_SYNC);
723 	if (error)
724 		return error;
725 	xfs_ail_push_all_sync(mp->m_ail);
726 	return 0;
727 }
728 
729 /* Verify that an inode is allocated ondisk, then return its cached inode. */
730 int
xchk_iget(struct xfs_scrub * sc,xfs_ino_t inum,struct xfs_inode ** ipp)731 xchk_iget(
732 	struct xfs_scrub	*sc,
733 	xfs_ino_t		inum,
734 	struct xfs_inode	**ipp)
735 {
736 	ASSERT(sc->tp != NULL);
737 
738 	return xfs_iget(sc->mp, sc->tp, inum, XFS_IGET_UNTRUSTED, 0, ipp);
739 }
740 
741 /*
742  * Try to grab an inode in a manner that avoids races with physical inode
743  * allocation.  If we can't, return the locked AGI buffer so that the caller
744  * can single-step the loading process to see where things went wrong.
745  * Callers must have a valid scrub transaction.
746  *
747  * If the iget succeeds, return 0, a NULL AGI, and the inode.
748  *
749  * If the iget fails, return the error, the locked AGI, and a NULL inode.  This
750  * can include -EINVAL and -ENOENT for invalid inode numbers or inodes that are
751  * no longer allocated; or any other corruption or runtime error.
752  *
753  * If the AGI read fails, return the error, a NULL AGI, and NULL inode.
754  *
755  * If a fatal signal is pending, return -EINTR, a NULL AGI, and a NULL inode.
756  */
757 int
xchk_iget_agi(struct xfs_scrub * sc,xfs_ino_t inum,struct xfs_buf ** agi_bpp,struct xfs_inode ** ipp)758 xchk_iget_agi(
759 	struct xfs_scrub	*sc,
760 	xfs_ino_t		inum,
761 	struct xfs_buf		**agi_bpp,
762 	struct xfs_inode	**ipp)
763 {
764 	struct xfs_mount	*mp = sc->mp;
765 	struct xfs_trans	*tp = sc->tp;
766 	struct xfs_perag	*pag;
767 	int			error;
768 
769 	ASSERT(sc->tp != NULL);
770 
771 again:
772 	*agi_bpp = NULL;
773 	*ipp = NULL;
774 	error = 0;
775 
776 	if (xchk_should_terminate(sc, &error))
777 		return error;
778 
779 	/*
780 	 * Attach the AGI buffer to the scrub transaction to avoid deadlocks
781 	 * in the iget cache miss path.
782 	 */
783 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
784 	error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
785 	xfs_perag_put(pag);
786 	if (error)
787 		return error;
788 
789 	error = xfs_iget(mp, tp, inum,
790 			XFS_IGET_NORETRY | XFS_IGET_UNTRUSTED, 0, ipp);
791 	if (error == -EAGAIN) {
792 		/*
793 		 * The inode may be in core but temporarily unavailable and may
794 		 * require the AGI buffer before it can be returned.  Drop the
795 		 * AGI buffer and retry the lookup.
796 		 *
797 		 * Incore lookup will fail with EAGAIN on a cache hit if the
798 		 * inode is queued to the inactivation list.  The inactivation
799 		 * worker may remove the inode from the unlinked list and hence
800 		 * needs the AGI.
801 		 *
802 		 * Hence xchk_iget_agi() needs to drop the AGI lock on EAGAIN
803 		 * to allow inodegc to make progress and move the inode to
804 		 * IRECLAIMABLE state where xfs_iget will be able to return it
805 		 * again if it can lock the inode.
806 		 */
807 		xfs_trans_brelse(tp, *agi_bpp);
808 		delay(1);
809 		goto again;
810 	}
811 	if (error)
812 		return error;
813 
814 	/* We got the inode, so we can release the AGI. */
815 	ASSERT(*ipp != NULL);
816 	xfs_trans_brelse(tp, *agi_bpp);
817 	*agi_bpp = NULL;
818 	return 0;
819 }
820 
821 /* Install an inode that we opened by handle for scrubbing. */
822 int
xchk_install_handle_inode(struct xfs_scrub * sc,struct xfs_inode * ip)823 xchk_install_handle_inode(
824 	struct xfs_scrub	*sc,
825 	struct xfs_inode	*ip)
826 {
827 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
828 		xchk_irele(sc, ip);
829 		return -ENOENT;
830 	}
831 
832 	sc->ip = ip;
833 	return 0;
834 }
835 
836 /*
837  * Install an already-referenced inode for scrubbing.  Get our own reference to
838  * the inode to make disposal simpler.  The inode must not be in I_FREEING or
839  * I_WILL_FREE state!
840  */
841 int
xchk_install_live_inode(struct xfs_scrub * sc,struct xfs_inode * ip)842 xchk_install_live_inode(
843 	struct xfs_scrub	*sc,
844 	struct xfs_inode	*ip)
845 {
846 	if (!igrab(VFS_I(ip))) {
847 		xchk_ino_set_corrupt(sc, ip->i_ino);
848 		return -EFSCORRUPTED;
849 	}
850 
851 	sc->ip = ip;
852 	return 0;
853 }
854 
855 /*
856  * In preparation to scrub metadata structures that hang off of an inode,
857  * grab either the inode referenced in the scrub control structure or the
858  * inode passed in.  If the inumber does not reference an allocated inode
859  * record, the function returns ENOENT to end the scrub early.  The inode
860  * is not locked.
861  */
862 int
xchk_iget_for_scrubbing(struct xfs_scrub * sc)863 xchk_iget_for_scrubbing(
864 	struct xfs_scrub	*sc)
865 {
866 	struct xfs_imap		imap;
867 	struct xfs_mount	*mp = sc->mp;
868 	struct xfs_perag	*pag;
869 	struct xfs_buf		*agi_bp;
870 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
871 	struct xfs_inode	*ip = NULL;
872 	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, sc->sm->sm_ino);
873 	int			error;
874 
875 	ASSERT(sc->tp == NULL);
876 
877 	/* We want to scan the inode we already had opened. */
878 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino)
879 		return xchk_install_live_inode(sc, ip_in);
880 
881 	/* Reject internal metadata files and obviously bad inode numbers. */
882 	if (xfs_internal_inum(mp, sc->sm->sm_ino))
883 		return -ENOENT;
884 	if (!xfs_verify_ino(sc->mp, sc->sm->sm_ino))
885 		return -ENOENT;
886 
887 	/* Try a safe untrusted iget. */
888 	error = xchk_iget_safe(sc, sc->sm->sm_ino, &ip);
889 	if (!error)
890 		return xchk_install_handle_inode(sc, ip);
891 	if (error == -ENOENT)
892 		return error;
893 	if (error != -EINVAL)
894 		goto out_error;
895 
896 	/*
897 	 * EINVAL with IGET_UNTRUSTED probably means one of several things:
898 	 * userspace gave us an inode number that doesn't correspond to fs
899 	 * space; the inode btree lacks a record for this inode; or there is a
900 	 * record, and it says this inode is free.
901 	 *
902 	 * We want to look up this inode in the inobt to distinguish two
903 	 * scenarios: (1) the inobt says the inode is free, in which case
904 	 * there's nothing to do; and (2) the inobt says the inode is
905 	 * allocated, but loading it failed due to corruption.
906 	 *
907 	 * Allocate a transaction and grab the AGI to prevent inobt activity
908 	 * in this AG.  Retry the iget in case someone allocated a new inode
909 	 * after the first iget failed.
910 	 */
911 	error = xchk_trans_alloc(sc, 0);
912 	if (error)
913 		goto out_error;
914 
915 	error = xchk_iget_agi(sc, sc->sm->sm_ino, &agi_bp, &ip);
916 	if (error == 0) {
917 		/* Actually got the inode, so install it. */
918 		xchk_trans_cancel(sc);
919 		return xchk_install_handle_inode(sc, ip);
920 	}
921 	if (error == -ENOENT)
922 		goto out_gone;
923 	if (error != -EINVAL)
924 		goto out_cancel;
925 
926 	/* Ensure that we have protected against inode allocation/freeing. */
927 	if (agi_bp == NULL) {
928 		ASSERT(agi_bp != NULL);
929 		error = -ECANCELED;
930 		goto out_cancel;
931 	}
932 
933 	/*
934 	 * Untrusted iget failed a second time.  Let's try an inobt lookup.
935 	 * If the inobt thinks this the inode neither can exist inside the
936 	 * filesystem nor is allocated, return ENOENT to signal that the check
937 	 * can be skipped.
938 	 *
939 	 * If the lookup returns corruption, we'll mark this inode corrupt and
940 	 * exit to userspace.  There's little chance of fixing anything until
941 	 * the inobt is straightened out, but there's nothing we can do here.
942 	 *
943 	 * If the lookup encounters any other error, exit to userspace.
944 	 *
945 	 * If the lookup succeeds, something else must be very wrong in the fs
946 	 * such that setting up the incore inode failed in some strange way.
947 	 * Treat those as corruptions.
948 	 */
949 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sc->sm->sm_ino));
950 	if (!pag) {
951 		error = -EFSCORRUPTED;
952 		goto out_cancel;
953 	}
954 
955 	error = xfs_imap(pag, sc->tp, sc->sm->sm_ino, &imap,
956 			XFS_IGET_UNTRUSTED);
957 	xfs_perag_put(pag);
958 	if (error == -EINVAL || error == -ENOENT)
959 		goto out_gone;
960 	if (!error)
961 		error = -EFSCORRUPTED;
962 
963 out_cancel:
964 	xchk_trans_cancel(sc);
965 out_error:
966 	trace_xchk_op_error(sc, agno, XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
967 			error, __return_address);
968 	return error;
969 out_gone:
970 	/* The file is gone, so there's nothing to check. */
971 	xchk_trans_cancel(sc);
972 	return -ENOENT;
973 }
974 
975 /* Release an inode, possibly dropping it in the process. */
976 void
xchk_irele(struct xfs_scrub * sc,struct xfs_inode * ip)977 xchk_irele(
978 	struct xfs_scrub	*sc,
979 	struct xfs_inode	*ip)
980 {
981 	if (sc->tp) {
982 		/*
983 		 * If we are in a transaction, we /cannot/ drop the inode
984 		 * ourselves, because the VFS will trigger writeback, which
985 		 * can require a transaction.  Clear DONTCACHE to force the
986 		 * inode to the LRU, where someone else can take care of
987 		 * dropping it.
988 		 *
989 		 * Note that when we grabbed our reference to the inode, it
990 		 * could have had an active ref and DONTCACHE set if a sysadmin
991 		 * is trying to coerce a change in file access mode.  icache
992 		 * hits do not clear DONTCACHE, so we must do it here.
993 		 */
994 		spin_lock(&VFS_I(ip)->i_lock);
995 		VFS_I(ip)->i_state &= ~I_DONTCACHE;
996 		spin_unlock(&VFS_I(ip)->i_lock);
997 	} else if (atomic_read(&VFS_I(ip)->i_count) == 1) {
998 		/*
999 		 * If this is the last reference to the inode and the caller
1000 		 * permits it, set DONTCACHE to avoid thrashing.
1001 		 */
1002 		d_mark_dontcache(VFS_I(ip));
1003 	}
1004 
1005 	xfs_irele(ip);
1006 }
1007 
1008 /*
1009  * Set us up to scrub metadata mapped by a file's fork.  Callers must not use
1010  * this to operate on user-accessible regular file data because the MMAPLOCK is
1011  * not taken.
1012  */
1013 int
xchk_setup_inode_contents(struct xfs_scrub * sc,unsigned int resblks)1014 xchk_setup_inode_contents(
1015 	struct xfs_scrub	*sc,
1016 	unsigned int		resblks)
1017 {
1018 	int			error;
1019 
1020 	error = xchk_iget_for_scrubbing(sc);
1021 	if (error)
1022 		return error;
1023 
1024 	/* Lock the inode so the VFS cannot touch this file. */
1025 	xchk_ilock(sc, XFS_IOLOCK_EXCL);
1026 
1027 	error = xchk_trans_alloc(sc, resblks);
1028 	if (error)
1029 		goto out;
1030 	xchk_ilock(sc, XFS_ILOCK_EXCL);
1031 out:
1032 	/* scrub teardown will unlock and release the inode for us */
1033 	return error;
1034 }
1035 
1036 void
xchk_ilock(struct xfs_scrub * sc,unsigned int ilock_flags)1037 xchk_ilock(
1038 	struct xfs_scrub	*sc,
1039 	unsigned int		ilock_flags)
1040 {
1041 	xfs_ilock(sc->ip, ilock_flags);
1042 	sc->ilock_flags |= ilock_flags;
1043 }
1044 
1045 bool
xchk_ilock_nowait(struct xfs_scrub * sc,unsigned int ilock_flags)1046 xchk_ilock_nowait(
1047 	struct xfs_scrub	*sc,
1048 	unsigned int		ilock_flags)
1049 {
1050 	if (xfs_ilock_nowait(sc->ip, ilock_flags)) {
1051 		sc->ilock_flags |= ilock_flags;
1052 		return true;
1053 	}
1054 
1055 	return false;
1056 }
1057 
1058 void
xchk_iunlock(struct xfs_scrub * sc,unsigned int ilock_flags)1059 xchk_iunlock(
1060 	struct xfs_scrub	*sc,
1061 	unsigned int		ilock_flags)
1062 {
1063 	sc->ilock_flags &= ~ilock_flags;
1064 	xfs_iunlock(sc->ip, ilock_flags);
1065 }
1066 
1067 /*
1068  * Predicate that decides if we need to evaluate the cross-reference check.
1069  * If there was an error accessing the cross-reference btree, just delete
1070  * the cursor and skip the check.
1071  */
1072 bool
xchk_should_check_xref(struct xfs_scrub * sc,int * error,struct xfs_btree_cur ** curpp)1073 xchk_should_check_xref(
1074 	struct xfs_scrub	*sc,
1075 	int			*error,
1076 	struct xfs_btree_cur	**curpp)
1077 {
1078 	/* No point in xref if we already know we're corrupt. */
1079 	if (xchk_skip_xref(sc->sm))
1080 		return false;
1081 
1082 	if (*error == 0)
1083 		return true;
1084 
1085 	if (curpp) {
1086 		/* If we've already given up on xref, just bail out. */
1087 		if (!*curpp)
1088 			return false;
1089 
1090 		/* xref error, delete cursor and bail out. */
1091 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
1092 		*curpp = NULL;
1093 	}
1094 
1095 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
1096 	trace_xchk_xref_error(sc, *error, __return_address);
1097 
1098 	/*
1099 	 * Errors encountered during cross-referencing with another
1100 	 * data structure should not cause this scrubber to abort.
1101 	 */
1102 	*error = 0;
1103 	return false;
1104 }
1105 
1106 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
1107 void
xchk_buffer_recheck(struct xfs_scrub * sc,struct xfs_buf * bp)1108 xchk_buffer_recheck(
1109 	struct xfs_scrub	*sc,
1110 	struct xfs_buf		*bp)
1111 {
1112 	xfs_failaddr_t		fa;
1113 
1114 	if (bp->b_ops == NULL) {
1115 		xchk_block_set_corrupt(sc, bp);
1116 		return;
1117 	}
1118 	if (bp->b_ops->verify_struct == NULL) {
1119 		xchk_set_incomplete(sc);
1120 		return;
1121 	}
1122 	fa = bp->b_ops->verify_struct(bp);
1123 	if (!fa)
1124 		return;
1125 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
1126 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
1127 }
1128 
1129 static inline int
xchk_metadata_inode_subtype(struct xfs_scrub * sc,unsigned int scrub_type)1130 xchk_metadata_inode_subtype(
1131 	struct xfs_scrub	*sc,
1132 	unsigned int		scrub_type)
1133 {
1134 	__u32			smtype = sc->sm->sm_type;
1135 	int			error;
1136 
1137 	sc->sm->sm_type = scrub_type;
1138 
1139 	switch (scrub_type) {
1140 	case XFS_SCRUB_TYPE_INODE:
1141 		error = xchk_inode(sc);
1142 		break;
1143 	case XFS_SCRUB_TYPE_BMBTD:
1144 		error = xchk_bmap_data(sc);
1145 		break;
1146 	default:
1147 		ASSERT(0);
1148 		error = -EFSCORRUPTED;
1149 		break;
1150 	}
1151 
1152 	sc->sm->sm_type = smtype;
1153 	return error;
1154 }
1155 
1156 /*
1157  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
1158  * pointed to by sc->ip and the ILOCK must be held.
1159  */
1160 int
xchk_metadata_inode_forks(struct xfs_scrub * sc)1161 xchk_metadata_inode_forks(
1162 	struct xfs_scrub	*sc)
1163 {
1164 	bool			shared;
1165 	int			error;
1166 
1167 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
1168 		return 0;
1169 
1170 	/* Check the inode record. */
1171 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1172 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1173 		return error;
1174 
1175 	/* Metadata inodes don't live on the rt device. */
1176 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
1177 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1178 		return 0;
1179 	}
1180 
1181 	/* They should never participate in reflink. */
1182 	if (xfs_is_reflink_inode(sc->ip)) {
1183 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1184 		return 0;
1185 	}
1186 
1187 	/* They also should never have extended attributes. */
1188 	if (xfs_inode_hasattr(sc->ip)) {
1189 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1190 		return 0;
1191 	}
1192 
1193 	/* Invoke the data fork scrubber. */
1194 	error = xchk_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1195 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
1196 		return error;
1197 
1198 	/* Look for incorrect shared blocks. */
1199 	if (xfs_has_reflink(sc->mp)) {
1200 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
1201 				&shared);
1202 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
1203 				&error))
1204 			return error;
1205 		if (shared)
1206 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 /*
1213  * Enable filesystem hooks (i.e. runtime code patching) before starting a scrub
1214  * operation.  Callers must not hold any locks that intersect with the CPU
1215  * hotplug lock (e.g. writeback locks) because code patching must halt the CPUs
1216  * to change kernel code.
1217  */
1218 void
xchk_fsgates_enable(struct xfs_scrub * sc,unsigned int scrub_fsgates)1219 xchk_fsgates_enable(
1220 	struct xfs_scrub	*sc,
1221 	unsigned int		scrub_fsgates)
1222 {
1223 	ASSERT(!(scrub_fsgates & ~XCHK_FSGATES_ALL));
1224 	ASSERT(!(sc->flags & scrub_fsgates));
1225 
1226 	trace_xchk_fsgates_enable(sc, scrub_fsgates);
1227 
1228 	if (scrub_fsgates & XCHK_FSGATES_DRAIN)
1229 		xfs_drain_wait_enable();
1230 
1231 	sc->flags |= scrub_fsgates;
1232 }
1233 
1234 /*
1235  * Decide if this is this a cached inode that's also allocated.  The caller
1236  * must hold a reference to an AG and the AGI buffer lock to prevent inodes
1237  * from being allocated or freed.
1238  *
1239  * Look up an inode by number in the given file system.  If the inode number
1240  * is invalid, return -EINVAL.  If the inode is not in cache, return -ENODATA.
1241  * If the inode is being reclaimed, return -ENODATA because we know the inode
1242  * cache cannot be updating the ondisk metadata.
1243  *
1244  * Otherwise, the incore inode is the one we want, and it is either live,
1245  * somewhere in the inactivation machinery, or reclaimable.  The inode is
1246  * allocated if i_mode is nonzero.  In all three cases, the cached inode will
1247  * be more up to date than the ondisk inode buffer, so we must use the incore
1248  * i_mode.
1249  */
1250 int
xchk_inode_is_allocated(struct xfs_scrub * sc,xfs_agino_t agino,bool * inuse)1251 xchk_inode_is_allocated(
1252 	struct xfs_scrub	*sc,
1253 	xfs_agino_t		agino,
1254 	bool			*inuse)
1255 {
1256 	struct xfs_mount	*mp = sc->mp;
1257 	struct xfs_perag	*pag = sc->sa.pag;
1258 	xfs_ino_t		ino;
1259 	struct xfs_inode	*ip;
1260 	int			error;
1261 
1262 	/* caller must hold perag reference */
1263 	if (pag == NULL) {
1264 		ASSERT(pag != NULL);
1265 		return -EINVAL;
1266 	}
1267 
1268 	/* caller must have AGI buffer */
1269 	if (sc->sa.agi_bp == NULL) {
1270 		ASSERT(sc->sa.agi_bp != NULL);
1271 		return -EINVAL;
1272 	}
1273 
1274 	/* reject inode numbers outside existing AGs */
1275 	ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino);
1276 	if (!xfs_verify_ino(mp, ino))
1277 		return -EINVAL;
1278 
1279 	error = -ENODATA;
1280 	rcu_read_lock();
1281 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1282 	if (!ip) {
1283 		/* cache miss */
1284 		goto out_rcu;
1285 	}
1286 
1287 	/*
1288 	 * If the inode number doesn't match, the incore inode got reused
1289 	 * during an RCU grace period and the radix tree hasn't been updated.
1290 	 * This isn't the inode we want.
1291 	 */
1292 	spin_lock(&ip->i_flags_lock);
1293 	if (ip->i_ino != ino)
1294 		goto out_skip;
1295 
1296 	trace_xchk_inode_is_allocated(ip);
1297 
1298 	/*
1299 	 * We have an incore inode that matches the inode we want, and the
1300 	 * caller holds the perag structure and the AGI buffer.  Let's check
1301 	 * our assumptions below:
1302 	 */
1303 
1304 #ifdef DEBUG
1305 	/*
1306 	 * (1) If the incore inode is live (i.e. referenced from the dcache),
1307 	 * it will not be INEW, nor will it be in the inactivation or reclaim
1308 	 * machinery.  The ondisk inode had better be allocated.  This is the
1309 	 * most trivial case.
1310 	 */
1311 	if (!(ip->i_flags & (XFS_NEED_INACTIVE | XFS_INEW | XFS_IRECLAIMABLE |
1312 			     XFS_INACTIVATING))) {
1313 		/* live inode */
1314 		ASSERT(VFS_I(ip)->i_mode != 0);
1315 	}
1316 
1317 	/*
1318 	 * If the incore inode is INEW, there are several possibilities:
1319 	 *
1320 	 * (2) For a file that is being created, note that we allocate the
1321 	 * ondisk inode before allocating, initializing, and adding the incore
1322 	 * inode to the radix tree.
1323 	 *
1324 	 * (3) If the incore inode is being recycled, the inode has to be
1325 	 * allocated because we don't allow freed inodes to be recycled.
1326 	 * Recycling doesn't touch i_mode.
1327 	 */
1328 	if (ip->i_flags & XFS_INEW) {
1329 		/* created on disk already or recycling */
1330 		ASSERT(VFS_I(ip)->i_mode != 0);
1331 	}
1332 
1333 	/*
1334 	 * (4) If the inode is queued for inactivation (NEED_INACTIVE) but
1335 	 * inactivation has not started (!INACTIVATING), it is still allocated.
1336 	 */
1337 	if ((ip->i_flags & XFS_NEED_INACTIVE) &&
1338 	    !(ip->i_flags & XFS_INACTIVATING)) {
1339 		/* definitely before difree */
1340 		ASSERT(VFS_I(ip)->i_mode != 0);
1341 	}
1342 #endif
1343 
1344 	/*
1345 	 * If the incore inode is undergoing inactivation (INACTIVATING), there
1346 	 * are two possibilities:
1347 	 *
1348 	 * (5) It is before the point where it would get freed ondisk, in which
1349 	 * case i_mode is still nonzero.
1350 	 *
1351 	 * (6) It has already been freed, in which case i_mode is zero.
1352 	 *
1353 	 * We don't take the ILOCK here, but difree and dialloc update the AGI,
1354 	 * and we've taken the AGI buffer lock, which prevents that from
1355 	 * happening.
1356 	 */
1357 
1358 	/*
1359 	 * (7) Inodes undergoing inactivation (INACTIVATING) or queued for
1360 	 * reclaim (IRECLAIMABLE) could be allocated or free.  i_mode still
1361 	 * reflects the ondisk state.
1362 	 */
1363 
1364 	/*
1365 	 * (8) If the inode is in IFLUSHING, it's safe to query i_mode because
1366 	 * the flush code uses i_mode to format the ondisk inode.
1367 	 */
1368 
1369 	/*
1370 	 * (9) If the inode is in IRECLAIM and was reachable via the radix
1371 	 * tree, it still has the same i_mode as it did before it entered
1372 	 * reclaim.  The inode object is still alive because we hold the RCU
1373 	 * read lock.
1374 	 */
1375 
1376 	*inuse = VFS_I(ip)->i_mode != 0;
1377 	error = 0;
1378 
1379 out_skip:
1380 	spin_unlock(&ip->i_flags_lock);
1381 out_rcu:
1382 	rcu_read_unlock();
1383 	return error;
1384 }
1385