xref: /openbmc/linux/drivers/net/ethernet/wangxun/libwx/wx_lib.c (revision d699090510c3223641a23834b4710e2d4309a6ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13 
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_hw.h"
17 
18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
19 static struct wx_dec_ptype wx_ptype_lookup[256] = {
20 	/* L2: mac */
21 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
23 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28 
29 	/* L2: ethertype filter */
30 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31 
32 	/* L3: ip non-tunnel */
33 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
36 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
37 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
41 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
42 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43 
44 	/* L2: fcoe */
45 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47 
48 	/* IPv4 --> IPv4/IPv6 */
49 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
52 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
53 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
57 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
58 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59 
60 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
65 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
66 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
70 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
71 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72 
73 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
78 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
79 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
83 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
84 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85 
86 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
91 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
92 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
96 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
97 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98 
99 	/* IPv6 --> IPv4/IPv6 */
100 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
103 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
104 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
108 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
109 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110 
111 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
116 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
117 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
121 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
122 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123 
124 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
129 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
130 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
134 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
135 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136 
137 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
142 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
143 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
147 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
148 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149 };
150 
wx_decode_ptype(const u8 ptype)151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152 {
153 	return wx_ptype_lookup[ptype];
154 }
155 
156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
wx_test_staterr(union wx_rx_desc * rx_desc,const u32 stat_err_bits)157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158 			      const u32 stat_err_bits)
159 {
160 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161 }
162 
wx_dma_sync_frag(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer)163 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
164 			     struct wx_rx_buffer *rx_buffer)
165 {
166 	struct sk_buff *skb = rx_buffer->skb;
167 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
168 
169 	dma_sync_single_range_for_cpu(rx_ring->dev,
170 				      WX_CB(skb)->dma,
171 				      skb_frag_off(frag),
172 				      skb_frag_size(frag),
173 				      DMA_FROM_DEVICE);
174 
175 	/* If the page was released, just unmap it. */
176 	if (unlikely(WX_CB(skb)->page_released))
177 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
178 }
179 
wx_get_rx_buffer(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff ** skb,int * rx_buffer_pgcnt)180 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
181 					     union wx_rx_desc *rx_desc,
182 					     struct sk_buff **skb,
183 					     int *rx_buffer_pgcnt)
184 {
185 	struct wx_rx_buffer *rx_buffer;
186 	unsigned int size;
187 
188 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
189 	size = le16_to_cpu(rx_desc->wb.upper.length);
190 
191 #if (PAGE_SIZE < 8192)
192 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
193 #else
194 	*rx_buffer_pgcnt = 0;
195 #endif
196 
197 	prefetchw(rx_buffer->page);
198 	*skb = rx_buffer->skb;
199 
200 	/* Delay unmapping of the first packet. It carries the header
201 	 * information, HW may still access the header after the writeback.
202 	 * Only unmap it when EOP is reached
203 	 */
204 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
205 		if (!*skb)
206 			goto skip_sync;
207 	} else {
208 		if (*skb)
209 			wx_dma_sync_frag(rx_ring, rx_buffer);
210 	}
211 
212 	/* we are reusing so sync this buffer for CPU use */
213 	dma_sync_single_range_for_cpu(rx_ring->dev,
214 				      rx_buffer->dma,
215 				      rx_buffer->page_offset,
216 				      size,
217 				      DMA_FROM_DEVICE);
218 skip_sync:
219 	return rx_buffer;
220 }
221 
wx_put_rx_buffer(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,struct sk_buff * skb,int rx_buffer_pgcnt)222 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
223 			     struct wx_rx_buffer *rx_buffer,
224 			     struct sk_buff *skb,
225 			     int rx_buffer_pgcnt)
226 {
227 	if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
228 		/* the page has been released from the ring */
229 		WX_CB(skb)->page_released = true;
230 
231 	/* clear contents of rx_buffer */
232 	rx_buffer->page = NULL;
233 	rx_buffer->skb = NULL;
234 }
235 
wx_build_skb(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,union wx_rx_desc * rx_desc)236 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
237 				    struct wx_rx_buffer *rx_buffer,
238 				    union wx_rx_desc *rx_desc)
239 {
240 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
241 #if (PAGE_SIZE < 8192)
242 	unsigned int truesize = WX_RX_BUFSZ;
243 #else
244 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
245 #endif
246 	struct sk_buff *skb = rx_buffer->skb;
247 
248 	if (!skb) {
249 		void *page_addr = page_address(rx_buffer->page) +
250 				  rx_buffer->page_offset;
251 
252 		/* prefetch first cache line of first page */
253 		prefetch(page_addr);
254 #if L1_CACHE_BYTES < 128
255 		prefetch(page_addr + L1_CACHE_BYTES);
256 #endif
257 
258 		/* allocate a skb to store the frags */
259 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
260 		if (unlikely(!skb))
261 			return NULL;
262 
263 		/* we will be copying header into skb->data in
264 		 * pskb_may_pull so it is in our interest to prefetch
265 		 * it now to avoid a possible cache miss
266 		 */
267 		prefetchw(skb->data);
268 
269 		if (size <= WX_RXBUFFER_256) {
270 			memcpy(__skb_put(skb, size), page_addr,
271 			       ALIGN(size, sizeof(long)));
272 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
273 			return skb;
274 		}
275 
276 		skb_mark_for_recycle(skb);
277 
278 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
279 			WX_CB(skb)->dma = rx_buffer->dma;
280 
281 		skb_add_rx_frag(skb, 0, rx_buffer->page,
282 				rx_buffer->page_offset,
283 				size, truesize);
284 		goto out;
285 
286 	} else {
287 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
288 				rx_buffer->page_offset, size, truesize);
289 	}
290 
291 out:
292 #if (PAGE_SIZE < 8192)
293 	/* flip page offset to other buffer */
294 	rx_buffer->page_offset ^= truesize;
295 #else
296 	/* move offset up to the next cache line */
297 	rx_buffer->page_offset += truesize;
298 #endif
299 
300 	return skb;
301 }
302 
wx_alloc_mapped_page(struct wx_ring * rx_ring,struct wx_rx_buffer * bi)303 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
304 				 struct wx_rx_buffer *bi)
305 {
306 	struct page *page = bi->page;
307 	dma_addr_t dma;
308 
309 	/* since we are recycling buffers we should seldom need to alloc */
310 	if (likely(page))
311 		return true;
312 
313 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
314 	if (unlikely(!page))
315 		return false;
316 	dma = page_pool_get_dma_addr(page);
317 
318 	bi->page_dma = dma;
319 	bi->page = page;
320 	bi->page_offset = 0;
321 
322 	return true;
323 }
324 
325 /**
326  * wx_alloc_rx_buffers - Replace used receive buffers
327  * @rx_ring: ring to place buffers on
328  * @cleaned_count: number of buffers to replace
329  **/
wx_alloc_rx_buffers(struct wx_ring * rx_ring,u16 cleaned_count)330 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
331 {
332 	u16 i = rx_ring->next_to_use;
333 	union wx_rx_desc *rx_desc;
334 	struct wx_rx_buffer *bi;
335 
336 	/* nothing to do */
337 	if (!cleaned_count)
338 		return;
339 
340 	rx_desc = WX_RX_DESC(rx_ring, i);
341 	bi = &rx_ring->rx_buffer_info[i];
342 	i -= rx_ring->count;
343 
344 	do {
345 		if (!wx_alloc_mapped_page(rx_ring, bi))
346 			break;
347 
348 		/* sync the buffer for use by the device */
349 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
350 						 bi->page_offset,
351 						 WX_RX_BUFSZ,
352 						 DMA_FROM_DEVICE);
353 
354 		rx_desc->read.pkt_addr =
355 			cpu_to_le64(bi->page_dma + bi->page_offset);
356 
357 		rx_desc++;
358 		bi++;
359 		i++;
360 		if (unlikely(!i)) {
361 			rx_desc = WX_RX_DESC(rx_ring, 0);
362 			bi = rx_ring->rx_buffer_info;
363 			i -= rx_ring->count;
364 		}
365 
366 		/* clear the status bits for the next_to_use descriptor */
367 		rx_desc->wb.upper.status_error = 0;
368 
369 		cleaned_count--;
370 	} while (cleaned_count);
371 
372 	i += rx_ring->count;
373 
374 	if (rx_ring->next_to_use != i) {
375 		rx_ring->next_to_use = i;
376 		/* update next to alloc since we have filled the ring */
377 		rx_ring->next_to_alloc = i;
378 
379 		/* Force memory writes to complete before letting h/w
380 		 * know there are new descriptors to fetch.  (Only
381 		 * applicable for weak-ordered memory model archs,
382 		 * such as IA-64).
383 		 */
384 		wmb();
385 		writel(i, rx_ring->tail);
386 	}
387 }
388 
wx_desc_unused(struct wx_ring * ring)389 u16 wx_desc_unused(struct wx_ring *ring)
390 {
391 	u16 ntc = ring->next_to_clean;
392 	u16 ntu = ring->next_to_use;
393 
394 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
395 }
396 
397 /**
398  * wx_is_non_eop - process handling of non-EOP buffers
399  * @rx_ring: Rx ring being processed
400  * @rx_desc: Rx descriptor for current buffer
401  * @skb: Current socket buffer containing buffer in progress
402  *
403  * This function updates next to clean. If the buffer is an EOP buffer
404  * this function exits returning false, otherwise it will place the
405  * sk_buff in the next buffer to be chained and return true indicating
406  * that this is in fact a non-EOP buffer.
407  **/
wx_is_non_eop(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)408 static bool wx_is_non_eop(struct wx_ring *rx_ring,
409 			  union wx_rx_desc *rx_desc,
410 			  struct sk_buff *skb)
411 {
412 	u32 ntc = rx_ring->next_to_clean + 1;
413 
414 	/* fetch, update, and store next to clean */
415 	ntc = (ntc < rx_ring->count) ? ntc : 0;
416 	rx_ring->next_to_clean = ntc;
417 
418 	prefetch(WX_RX_DESC(rx_ring, ntc));
419 
420 	/* if we are the last buffer then there is nothing else to do */
421 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
422 		return false;
423 
424 	rx_ring->rx_buffer_info[ntc].skb = skb;
425 
426 	return true;
427 }
428 
wx_pull_tail(struct sk_buff * skb)429 static void wx_pull_tail(struct sk_buff *skb)
430 {
431 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
432 	unsigned int pull_len;
433 	unsigned char *va;
434 
435 	/* it is valid to use page_address instead of kmap since we are
436 	 * working with pages allocated out of the lomem pool per
437 	 * alloc_page(GFP_ATOMIC)
438 	 */
439 	va = skb_frag_address(frag);
440 
441 	/* we need the header to contain the greater of either ETH_HLEN or
442 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
443 	 */
444 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
445 
446 	/* align pull length to size of long to optimize memcpy performance */
447 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
448 
449 	/* update all of the pointers */
450 	skb_frag_size_sub(frag, pull_len);
451 	skb_frag_off_add(frag, pull_len);
452 	skb->data_len -= pull_len;
453 	skb->tail += pull_len;
454 }
455 
456 /**
457  * wx_cleanup_headers - Correct corrupted or empty headers
458  * @rx_ring: rx descriptor ring packet is being transacted on
459  * @rx_desc: pointer to the EOP Rx descriptor
460  * @skb: pointer to current skb being fixed
461  *
462  * Check for corrupted packet headers caused by senders on the local L2
463  * embedded NIC switch not setting up their Tx Descriptors right.  These
464  * should be very rare.
465  *
466  * Also address the case where we are pulling data in on pages only
467  * and as such no data is present in the skb header.
468  *
469  * In addition if skb is not at least 60 bytes we need to pad it so that
470  * it is large enough to qualify as a valid Ethernet frame.
471  *
472  * Returns true if an error was encountered and skb was freed.
473  **/
wx_cleanup_headers(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)474 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
475 			       union wx_rx_desc *rx_desc,
476 			       struct sk_buff *skb)
477 {
478 	struct net_device *netdev = rx_ring->netdev;
479 
480 	/* verify that the packet does not have any known errors */
481 	if (!netdev ||
482 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
483 		     !(netdev->features & NETIF_F_RXALL))) {
484 		dev_kfree_skb_any(skb);
485 		return true;
486 	}
487 
488 	/* place header in linear portion of buffer */
489 	if (!skb_headlen(skb))
490 		wx_pull_tail(skb);
491 
492 	/* if eth_skb_pad returns an error the skb was freed */
493 	if (eth_skb_pad(skb))
494 		return true;
495 
496 	return false;
497 }
498 
wx_rx_hash(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)499 static void wx_rx_hash(struct wx_ring *ring,
500 		       union wx_rx_desc *rx_desc,
501 		       struct sk_buff *skb)
502 {
503 	u16 rss_type;
504 
505 	if (!(ring->netdev->features & NETIF_F_RXHASH))
506 		return;
507 
508 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
509 			       WX_RXD_RSSTYPE_MASK;
510 
511 	if (!rss_type)
512 		return;
513 
514 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
515 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
516 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
517 }
518 
519 /**
520  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
521  * @ring: structure containing ring specific data
522  * @rx_desc: current Rx descriptor being processed
523  * @skb: skb currently being received and modified
524  **/
wx_rx_checksum(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)525 static void wx_rx_checksum(struct wx_ring *ring,
526 			   union wx_rx_desc *rx_desc,
527 			   struct sk_buff *skb)
528 {
529 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
530 
531 	skb_checksum_none_assert(skb);
532 	/* Rx csum disabled */
533 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
534 		return;
535 
536 	/* if IPv4 header checksum error */
537 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
538 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
539 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
540 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
541 		ring->rx_stats.csum_err++;
542 		return;
543 	}
544 
545 	/* L4 checksum offload flag must set for the below code to work */
546 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
547 		return;
548 
549 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
550 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
551 		return;
552 
553 	/* if L4 checksum error */
554 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
555 		ring->rx_stats.csum_err++;
556 		return;
557 	}
558 
559 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
560 	skb->ip_summed = CHECKSUM_UNNECESSARY;
561 
562 	/* If there is an outer header present that might contain a checksum
563 	 * we need to bump the checksum level by 1 to reflect the fact that
564 	 * we are indicating we validated the inner checksum.
565 	 */
566 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
567 		__skb_incr_checksum_unnecessary(skb);
568 	ring->rx_stats.csum_good_cnt++;
569 }
570 
wx_rx_vlan(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)571 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
572 		       struct sk_buff *skb)
573 {
574 	u16 ethertype;
575 	u8 idx = 0;
576 
577 	if ((ring->netdev->features &
578 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
579 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
580 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
581 		       0x1c0) >> 6;
582 		ethertype = ring->q_vector->wx->tpid[idx];
583 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
584 				       le16_to_cpu(rx_desc->wb.upper.vlan));
585 	}
586 }
587 
588 /**
589  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
590  * @rx_ring: rx descriptor ring packet is being transacted on
591  * @rx_desc: pointer to the EOP Rx descriptor
592  * @skb: pointer to current skb being populated
593  *
594  * This function checks the ring, descriptor, and packet information in
595  * order to populate the hash, checksum, protocol, and
596  * other fields within the skb.
597  **/
wx_process_skb_fields(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)598 static void wx_process_skb_fields(struct wx_ring *rx_ring,
599 				  union wx_rx_desc *rx_desc,
600 				  struct sk_buff *skb)
601 {
602 	wx_rx_hash(rx_ring, rx_desc, skb);
603 	wx_rx_checksum(rx_ring, rx_desc, skb);
604 	wx_rx_vlan(rx_ring, rx_desc, skb);
605 	skb_record_rx_queue(skb, rx_ring->queue_index);
606 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
607 }
608 
609 /**
610  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
611  * @q_vector: structure containing interrupt and ring information
612  * @rx_ring: rx descriptor ring to transact packets on
613  * @budget: Total limit on number of packets to process
614  *
615  * This function provides a "bounce buffer" approach to Rx interrupt
616  * processing.  The advantage to this is that on systems that have
617  * expensive overhead for IOMMU access this provides a means of avoiding
618  * it by maintaining the mapping of the page to the system.
619  *
620  * Returns amount of work completed.
621  **/
wx_clean_rx_irq(struct wx_q_vector * q_vector,struct wx_ring * rx_ring,int budget)622 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
623 			   struct wx_ring *rx_ring,
624 			   int budget)
625 {
626 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
627 	u16 cleaned_count = wx_desc_unused(rx_ring);
628 
629 	do {
630 		struct wx_rx_buffer *rx_buffer;
631 		union wx_rx_desc *rx_desc;
632 		struct sk_buff *skb;
633 		int rx_buffer_pgcnt;
634 
635 		/* return some buffers to hardware, one at a time is too slow */
636 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
637 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
638 			cleaned_count = 0;
639 		}
640 
641 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
642 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
643 			break;
644 
645 		/* This memory barrier is needed to keep us from reading
646 		 * any other fields out of the rx_desc until we know the
647 		 * descriptor has been written back
648 		 */
649 		dma_rmb();
650 
651 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
652 
653 		/* retrieve a buffer from the ring */
654 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
655 
656 		/* exit if we failed to retrieve a buffer */
657 		if (!skb) {
658 			break;
659 		}
660 
661 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
662 		cleaned_count++;
663 
664 		/* place incomplete frames back on ring for completion */
665 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
666 			continue;
667 
668 		/* verify the packet layout is correct */
669 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
670 			continue;
671 
672 		/* probably a little skewed due to removing CRC */
673 		total_rx_bytes += skb->len;
674 
675 		/* populate checksum, timestamp, VLAN, and protocol */
676 		wx_process_skb_fields(rx_ring, rx_desc, skb);
677 		napi_gro_receive(&q_vector->napi, skb);
678 
679 		/* update budget accounting */
680 		total_rx_packets++;
681 	} while (likely(total_rx_packets < budget));
682 
683 	u64_stats_update_begin(&rx_ring->syncp);
684 	rx_ring->stats.packets += total_rx_packets;
685 	rx_ring->stats.bytes += total_rx_bytes;
686 	u64_stats_update_end(&rx_ring->syncp);
687 	q_vector->rx.total_packets += total_rx_packets;
688 	q_vector->rx.total_bytes += total_rx_bytes;
689 
690 	return total_rx_packets;
691 }
692 
wx_txring_txq(const struct wx_ring * ring)693 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
694 {
695 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
696 }
697 
698 /**
699  * wx_clean_tx_irq - Reclaim resources after transmit completes
700  * @q_vector: structure containing interrupt and ring information
701  * @tx_ring: tx ring to clean
702  * @napi_budget: Used to determine if we are in netpoll
703  **/
wx_clean_tx_irq(struct wx_q_vector * q_vector,struct wx_ring * tx_ring,int napi_budget)704 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
705 			    struct wx_ring *tx_ring, int napi_budget)
706 {
707 	unsigned int budget = q_vector->wx->tx_work_limit;
708 	unsigned int total_bytes = 0, total_packets = 0;
709 	unsigned int i = tx_ring->next_to_clean;
710 	struct wx_tx_buffer *tx_buffer;
711 	union wx_tx_desc *tx_desc;
712 
713 	if (!netif_carrier_ok(tx_ring->netdev))
714 		return true;
715 
716 	tx_buffer = &tx_ring->tx_buffer_info[i];
717 	tx_desc = WX_TX_DESC(tx_ring, i);
718 	i -= tx_ring->count;
719 
720 	do {
721 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
722 
723 		/* if next_to_watch is not set then there is no work pending */
724 		if (!eop_desc)
725 			break;
726 
727 		/* prevent any other reads prior to eop_desc */
728 		smp_rmb();
729 
730 		/* if DD is not set pending work has not been completed */
731 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
732 			break;
733 
734 		/* clear next_to_watch to prevent false hangs */
735 		tx_buffer->next_to_watch = NULL;
736 
737 		/* update the statistics for this packet */
738 		total_bytes += tx_buffer->bytecount;
739 		total_packets += tx_buffer->gso_segs;
740 
741 		/* free the skb */
742 		napi_consume_skb(tx_buffer->skb, napi_budget);
743 
744 		/* unmap skb header data */
745 		dma_unmap_single(tx_ring->dev,
746 				 dma_unmap_addr(tx_buffer, dma),
747 				 dma_unmap_len(tx_buffer, len),
748 				 DMA_TO_DEVICE);
749 
750 		/* clear tx_buffer data */
751 		dma_unmap_len_set(tx_buffer, len, 0);
752 
753 		/* unmap remaining buffers */
754 		while (tx_desc != eop_desc) {
755 			tx_buffer++;
756 			tx_desc++;
757 			i++;
758 			if (unlikely(!i)) {
759 				i -= tx_ring->count;
760 				tx_buffer = tx_ring->tx_buffer_info;
761 				tx_desc = WX_TX_DESC(tx_ring, 0);
762 			}
763 
764 			/* unmap any remaining paged data */
765 			if (dma_unmap_len(tx_buffer, len)) {
766 				dma_unmap_page(tx_ring->dev,
767 					       dma_unmap_addr(tx_buffer, dma),
768 					       dma_unmap_len(tx_buffer, len),
769 					       DMA_TO_DEVICE);
770 				dma_unmap_len_set(tx_buffer, len, 0);
771 			}
772 		}
773 
774 		/* move us one more past the eop_desc for start of next pkt */
775 		tx_buffer++;
776 		tx_desc++;
777 		i++;
778 		if (unlikely(!i)) {
779 			i -= tx_ring->count;
780 			tx_buffer = tx_ring->tx_buffer_info;
781 			tx_desc = WX_TX_DESC(tx_ring, 0);
782 		}
783 
784 		/* issue prefetch for next Tx descriptor */
785 		prefetch(tx_desc);
786 
787 		/* update budget accounting */
788 		budget--;
789 	} while (likely(budget));
790 
791 	i += tx_ring->count;
792 	tx_ring->next_to_clean = i;
793 	u64_stats_update_begin(&tx_ring->syncp);
794 	tx_ring->stats.bytes += total_bytes;
795 	tx_ring->stats.packets += total_packets;
796 	u64_stats_update_end(&tx_ring->syncp);
797 	q_vector->tx.total_bytes += total_bytes;
798 	q_vector->tx.total_packets += total_packets;
799 
800 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
801 				  total_packets, total_bytes);
802 
803 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
804 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
805 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
806 		/* Make sure that anybody stopping the queue after this
807 		 * sees the new next_to_clean.
808 		 */
809 		smp_mb();
810 
811 		if (__netif_subqueue_stopped(tx_ring->netdev,
812 					     tx_ring->queue_index) &&
813 		    netif_running(tx_ring->netdev))
814 			netif_wake_subqueue(tx_ring->netdev,
815 					    tx_ring->queue_index);
816 	}
817 
818 	return !!budget;
819 }
820 
821 /**
822  * wx_poll - NAPI polling RX/TX cleanup routine
823  * @napi: napi struct with our devices info in it
824  * @budget: amount of work driver is allowed to do this pass, in packets
825  *
826  * This function will clean all queues associated with a q_vector.
827  **/
wx_poll(struct napi_struct * napi,int budget)828 static int wx_poll(struct napi_struct *napi, int budget)
829 {
830 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
831 	int per_ring_budget, work_done = 0;
832 	struct wx *wx = q_vector->wx;
833 	bool clean_complete = true;
834 	struct wx_ring *ring;
835 
836 	wx_for_each_ring(ring, q_vector->tx) {
837 		if (!wx_clean_tx_irq(q_vector, ring, budget))
838 			clean_complete = false;
839 	}
840 
841 	/* Exit if we are called by netpoll */
842 	if (budget <= 0)
843 		return budget;
844 
845 	/* attempt to distribute budget to each queue fairly, but don't allow
846 	 * the budget to go below 1 because we'll exit polling
847 	 */
848 	if (q_vector->rx.count > 1)
849 		per_ring_budget = max(budget / q_vector->rx.count, 1);
850 	else
851 		per_ring_budget = budget;
852 
853 	wx_for_each_ring(ring, q_vector->rx) {
854 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
855 
856 		work_done += cleaned;
857 		if (cleaned >= per_ring_budget)
858 			clean_complete = false;
859 	}
860 
861 	/* If all work not completed, return budget and keep polling */
862 	if (!clean_complete)
863 		return budget;
864 
865 	/* all work done, exit the polling mode */
866 	if (likely(napi_complete_done(napi, work_done))) {
867 		if (netif_running(wx->netdev))
868 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
869 	}
870 
871 	return min(work_done, budget - 1);
872 }
873 
wx_maybe_stop_tx(struct wx_ring * tx_ring,u16 size)874 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
875 {
876 	if (likely(wx_desc_unused(tx_ring) >= size))
877 		return 0;
878 
879 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
880 
881 	/* For the next check */
882 	smp_mb();
883 
884 	/* We need to check again in a case another CPU has just
885 	 * made room available.
886 	 */
887 	if (likely(wx_desc_unused(tx_ring) < size))
888 		return -EBUSY;
889 
890 	/* A reprieve! - use start_queue because it doesn't call schedule */
891 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
892 
893 	return 0;
894 }
895 
wx_tx_cmd_type(u32 tx_flags)896 static u32 wx_tx_cmd_type(u32 tx_flags)
897 {
898 	/* set type for advanced descriptor with frame checksum insertion */
899 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
900 
901 	/* set HW vlan bit if vlan is present */
902 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
903 	/* set segmentation enable bits for TSO/FSO */
904 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
905 	/* set timestamp bit if present */
906 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
907 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
908 
909 	return cmd_type;
910 }
911 
wx_tx_olinfo_status(union wx_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)912 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
913 				u32 tx_flags, unsigned int paylen)
914 {
915 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
916 
917 	/* enable L4 checksum for TSO and TX checksum offload */
918 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
919 	/* enable IPv4 checksum for TSO */
920 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
921 	/* enable outer IPv4 checksum for TSO */
922 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
923 				     WX_TXD_EIPCS);
924 	/* Check Context must be set if Tx switch is enabled, which it
925 	 * always is for case where virtual functions are running
926 	 */
927 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
928 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
929 				     WX_TXD_IPSEC);
930 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
931 }
932 
wx_tx_map(struct wx_ring * tx_ring,struct wx_tx_buffer * first,const u8 hdr_len)933 static void wx_tx_map(struct wx_ring *tx_ring,
934 		      struct wx_tx_buffer *first,
935 		      const u8 hdr_len)
936 {
937 	struct sk_buff *skb = first->skb;
938 	struct wx_tx_buffer *tx_buffer;
939 	u32 tx_flags = first->tx_flags;
940 	u16 i = tx_ring->next_to_use;
941 	unsigned int data_len, size;
942 	union wx_tx_desc *tx_desc;
943 	skb_frag_t *frag;
944 	dma_addr_t dma;
945 	u32 cmd_type;
946 
947 	cmd_type = wx_tx_cmd_type(tx_flags);
948 	tx_desc = WX_TX_DESC(tx_ring, i);
949 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
950 
951 	size = skb_headlen(skb);
952 	data_len = skb->data_len;
953 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
954 
955 	tx_buffer = first;
956 
957 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
958 		if (dma_mapping_error(tx_ring->dev, dma))
959 			goto dma_error;
960 
961 		/* record length, and DMA address */
962 		dma_unmap_len_set(tx_buffer, len, size);
963 		dma_unmap_addr_set(tx_buffer, dma, dma);
964 
965 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
966 
967 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
968 			tx_desc->read.cmd_type_len =
969 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
970 
971 			i++;
972 			tx_desc++;
973 			if (i == tx_ring->count) {
974 				tx_desc = WX_TX_DESC(tx_ring, 0);
975 				i = 0;
976 			}
977 			tx_desc->read.olinfo_status = 0;
978 
979 			dma += WX_MAX_DATA_PER_TXD;
980 			size -= WX_MAX_DATA_PER_TXD;
981 
982 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
983 		}
984 
985 		if (likely(!data_len))
986 			break;
987 
988 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
989 
990 		i++;
991 		tx_desc++;
992 		if (i == tx_ring->count) {
993 			tx_desc = WX_TX_DESC(tx_ring, 0);
994 			i = 0;
995 		}
996 		tx_desc->read.olinfo_status = 0;
997 
998 		size = skb_frag_size(frag);
999 
1000 		data_len -= size;
1001 
1002 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1003 				       DMA_TO_DEVICE);
1004 
1005 		tx_buffer = &tx_ring->tx_buffer_info[i];
1006 	}
1007 
1008 	/* write last descriptor with RS and EOP bits */
1009 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1010 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1011 
1012 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1013 
1014 	skb_tx_timestamp(skb);
1015 
1016 	/* Force memory writes to complete before letting h/w know there
1017 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1018 	 * memory model archs, such as IA-64).
1019 	 *
1020 	 * We also need this memory barrier to make certain all of the
1021 	 * status bits have been updated before next_to_watch is written.
1022 	 */
1023 	wmb();
1024 
1025 	/* set next_to_watch value indicating a packet is present */
1026 	first->next_to_watch = tx_desc;
1027 
1028 	i++;
1029 	if (i == tx_ring->count)
1030 		i = 0;
1031 
1032 	tx_ring->next_to_use = i;
1033 
1034 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1035 
1036 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1037 		writel(i, tx_ring->tail);
1038 
1039 	return;
1040 dma_error:
1041 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1042 
1043 	/* clear dma mappings for failed tx_buffer_info map */
1044 	for (;;) {
1045 		tx_buffer = &tx_ring->tx_buffer_info[i];
1046 		if (dma_unmap_len(tx_buffer, len))
1047 			dma_unmap_page(tx_ring->dev,
1048 				       dma_unmap_addr(tx_buffer, dma),
1049 				       dma_unmap_len(tx_buffer, len),
1050 				       DMA_TO_DEVICE);
1051 		dma_unmap_len_set(tx_buffer, len, 0);
1052 		if (tx_buffer == first)
1053 			break;
1054 		if (i == 0)
1055 			i += tx_ring->count;
1056 		i--;
1057 	}
1058 
1059 	dev_kfree_skb_any(first->skb);
1060 	first->skb = NULL;
1061 
1062 	tx_ring->next_to_use = i;
1063 }
1064 
wx_tx_ctxtdesc(struct wx_ring * tx_ring,u32 vlan_macip_lens,u32 fcoe_sof_eof,u32 type_tucmd,u32 mss_l4len_idx)1065 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1066 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1067 {
1068 	struct wx_tx_context_desc *context_desc;
1069 	u16 i = tx_ring->next_to_use;
1070 
1071 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1072 	i++;
1073 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1074 
1075 	/* set bits to identify this as an advanced context descriptor */
1076 	type_tucmd |= WX_TXD_DTYP_CTXT;
1077 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1078 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1079 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1080 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1081 }
1082 
wx_get_ipv6_proto(struct sk_buff * skb,int offset,u8 * nexthdr)1083 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1084 {
1085 	struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1086 
1087 	*nexthdr = hdr->nexthdr;
1088 	offset += sizeof(struct ipv6hdr);
1089 	while (ipv6_ext_hdr(*nexthdr)) {
1090 		struct ipv6_opt_hdr _hdr, *hp;
1091 
1092 		if (*nexthdr == NEXTHDR_NONE)
1093 			return;
1094 		hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1095 		if (!hp)
1096 			return;
1097 		if (*nexthdr == NEXTHDR_FRAGMENT)
1098 			break;
1099 		*nexthdr = hp->nexthdr;
1100 	}
1101 }
1102 
1103 union network_header {
1104 	struct iphdr *ipv4;
1105 	struct ipv6hdr *ipv6;
1106 	void *raw;
1107 };
1108 
wx_encode_tx_desc_ptype(const struct wx_tx_buffer * first)1109 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1110 {
1111 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1112 	struct sk_buff *skb = first->skb;
1113 
1114 	if (skb->encapsulation) {
1115 		union network_header hdr;
1116 
1117 		switch (first->protocol) {
1118 		case htons(ETH_P_IP):
1119 			tun_prot = ip_hdr(skb)->protocol;
1120 			ptype = WX_PTYPE_TUN_IPV4;
1121 			break;
1122 		case htons(ETH_P_IPV6):
1123 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1124 			ptype = WX_PTYPE_TUN_IPV6;
1125 			break;
1126 		default:
1127 			return ptype;
1128 		}
1129 
1130 		if (tun_prot == IPPROTO_IPIP) {
1131 			hdr.raw = (void *)inner_ip_hdr(skb);
1132 			ptype |= WX_PTYPE_PKT_IPIP;
1133 		} else if (tun_prot == IPPROTO_UDP) {
1134 			hdr.raw = (void *)inner_ip_hdr(skb);
1135 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1136 			    skb->inner_protocol != htons(ETH_P_TEB)) {
1137 				ptype |= WX_PTYPE_PKT_IG;
1138 			} else {
1139 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1140 				     == htons(ETH_P_8021Q))
1141 					ptype |= WX_PTYPE_PKT_IGMV;
1142 				else
1143 					ptype |= WX_PTYPE_PKT_IGM;
1144 			}
1145 
1146 		} else if (tun_prot == IPPROTO_GRE) {
1147 			hdr.raw = (void *)inner_ip_hdr(skb);
1148 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1149 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1150 				ptype |= WX_PTYPE_PKT_IG;
1151 			} else {
1152 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1153 				    == htons(ETH_P_8021Q))
1154 					ptype |= WX_PTYPE_PKT_IGMV;
1155 				else
1156 					ptype |= WX_PTYPE_PKT_IGM;
1157 			}
1158 		} else {
1159 			return ptype;
1160 		}
1161 
1162 		switch (hdr.ipv4->version) {
1163 		case IPVERSION:
1164 			l4_prot = hdr.ipv4->protocol;
1165 			break;
1166 		case 6:
1167 			wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1168 			ptype |= WX_PTYPE_PKT_IPV6;
1169 			break;
1170 		default:
1171 			return ptype;
1172 		}
1173 	} else {
1174 		switch (first->protocol) {
1175 		case htons(ETH_P_IP):
1176 			l4_prot = ip_hdr(skb)->protocol;
1177 			ptype = WX_PTYPE_PKT_IP;
1178 			break;
1179 		case htons(ETH_P_IPV6):
1180 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1181 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1182 			break;
1183 		default:
1184 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1185 		}
1186 	}
1187 	switch (l4_prot) {
1188 	case IPPROTO_TCP:
1189 		ptype |= WX_PTYPE_TYP_TCP;
1190 		break;
1191 	case IPPROTO_UDP:
1192 		ptype |= WX_PTYPE_TYP_UDP;
1193 		break;
1194 	case IPPROTO_SCTP:
1195 		ptype |= WX_PTYPE_TYP_SCTP;
1196 		break;
1197 	default:
1198 		ptype |= WX_PTYPE_TYP_IP;
1199 		break;
1200 	}
1201 
1202 	return ptype;
1203 }
1204 
wx_tso(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 * hdr_len,u8 ptype)1205 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1206 		  u8 *hdr_len, u8 ptype)
1207 {
1208 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1209 	struct net_device *netdev = tx_ring->netdev;
1210 	u32 l4len, tunhdr_eiplen_tunlen = 0;
1211 	struct sk_buff *skb = first->skb;
1212 	bool enc = skb->encapsulation;
1213 	struct ipv6hdr *ipv6h;
1214 	struct tcphdr *tcph;
1215 	struct iphdr *iph;
1216 	u8 tun_prot = 0;
1217 	int err;
1218 
1219 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1220 		return 0;
1221 
1222 	if (!skb_is_gso(skb))
1223 		return 0;
1224 
1225 	err = skb_cow_head(skb, 0);
1226 	if (err < 0)
1227 		return err;
1228 
1229 	/* indicates the inner headers in the skbuff are valid. */
1230 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1231 	if (iph->version == 4) {
1232 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1233 		iph->tot_len = 0;
1234 		iph->check = 0;
1235 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1236 						 iph->daddr, 0,
1237 						 IPPROTO_TCP, 0);
1238 		first->tx_flags |= WX_TX_FLAGS_TSO |
1239 				   WX_TX_FLAGS_CSUM |
1240 				   WX_TX_FLAGS_IPV4 |
1241 				   WX_TX_FLAGS_CC;
1242 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1243 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1244 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1245 		ipv6h->payload_len = 0;
1246 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1247 					       &ipv6h->daddr, 0,
1248 					       IPPROTO_TCP, 0);
1249 		first->tx_flags |= WX_TX_FLAGS_TSO |
1250 				   WX_TX_FLAGS_CSUM |
1251 				   WX_TX_FLAGS_CC;
1252 	}
1253 
1254 	/* compute header lengths */
1255 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1256 	*hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
1257 			 skb_transport_offset(skb);
1258 	*hdr_len += l4len;
1259 
1260 	/* update gso size and bytecount with header size */
1261 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1262 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1263 
1264 	/* mss_l4len_id: use 0 as index for TSO */
1265 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1266 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1267 
1268 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1269 	if (enc) {
1270 		switch (first->protocol) {
1271 		case htons(ETH_P_IP):
1272 			tun_prot = ip_hdr(skb)->protocol;
1273 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1274 			break;
1275 		case htons(ETH_P_IPV6):
1276 			tun_prot = ipv6_hdr(skb)->nexthdr;
1277 			break;
1278 		default:
1279 			break;
1280 		}
1281 		switch (tun_prot) {
1282 		case IPPROTO_UDP:
1283 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1284 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1285 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1286 						(((skb_inner_mac_header(skb) -
1287 						skb_transport_header(skb)) >> 1) <<
1288 						WX_TXD_TUNNEL_LEN_SHIFT);
1289 			break;
1290 		case IPPROTO_GRE:
1291 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1292 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1293 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1294 						(((skb_inner_mac_header(skb) -
1295 						skb_transport_header(skb)) >> 1) <<
1296 						WX_TXD_TUNNEL_LEN_SHIFT);
1297 			break;
1298 		case IPPROTO_IPIP:
1299 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1300 						(char *)ip_hdr(skb)) >> 2) <<
1301 						WX_TXD_OUTER_IPLEN_SHIFT;
1302 			break;
1303 		default:
1304 			break;
1305 		}
1306 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1307 	} else {
1308 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1309 	}
1310 
1311 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1312 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1313 
1314 	type_tucmd = ptype << 24;
1315 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1316 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1317 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1318 					  WX_TX_FLAGS_HW_VLAN,
1319 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1320 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1321 		       type_tucmd, mss_l4len_idx);
1322 
1323 	return 1;
1324 }
1325 
wx_tx_csum(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 ptype)1326 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1327 		       u8 ptype)
1328 {
1329 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1330 	struct net_device *netdev = tx_ring->netdev;
1331 	u32 mss_l4len_idx = 0, type_tucmd;
1332 	struct sk_buff *skb = first->skb;
1333 	u8 tun_prot = 0;
1334 
1335 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1336 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1337 		    !(first->tx_flags & WX_TX_FLAGS_CC))
1338 			return;
1339 		vlan_macip_lens = skb_network_offset(skb) <<
1340 				  WX_TXD_MACLEN_SHIFT;
1341 	} else {
1342 		u8 l4_prot = 0;
1343 		union {
1344 			struct iphdr *ipv4;
1345 			struct ipv6hdr *ipv6;
1346 			u8 *raw;
1347 		} network_hdr;
1348 		union {
1349 			struct tcphdr *tcphdr;
1350 			u8 *raw;
1351 		} transport_hdr;
1352 
1353 		if (skb->encapsulation) {
1354 			network_hdr.raw = skb_inner_network_header(skb);
1355 			transport_hdr.raw = skb_inner_transport_header(skb);
1356 			vlan_macip_lens = skb_network_offset(skb) <<
1357 					  WX_TXD_MACLEN_SHIFT;
1358 			switch (first->protocol) {
1359 			case htons(ETH_P_IP):
1360 				tun_prot = ip_hdr(skb)->protocol;
1361 				break;
1362 			case htons(ETH_P_IPV6):
1363 				tun_prot = ipv6_hdr(skb)->nexthdr;
1364 				break;
1365 			default:
1366 				return;
1367 			}
1368 			switch (tun_prot) {
1369 			case IPPROTO_UDP:
1370 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1371 				tunhdr_eiplen_tunlen |=
1372 					((skb_network_header_len(skb) >> 2) <<
1373 					WX_TXD_OUTER_IPLEN_SHIFT) |
1374 					(((skb_inner_mac_header(skb) -
1375 					skb_transport_header(skb)) >> 1) <<
1376 					WX_TXD_TUNNEL_LEN_SHIFT);
1377 				break;
1378 			case IPPROTO_GRE:
1379 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1380 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1381 							 WX_TXD_OUTER_IPLEN_SHIFT) |
1382 							 (((skb_inner_mac_header(skb) -
1383 							    skb_transport_header(skb)) >> 1) <<
1384 							  WX_TXD_TUNNEL_LEN_SHIFT);
1385 				break;
1386 			case IPPROTO_IPIP:
1387 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1388 							(char *)ip_hdr(skb)) >> 2) <<
1389 							WX_TXD_OUTER_IPLEN_SHIFT;
1390 				break;
1391 			default:
1392 				break;
1393 			}
1394 
1395 		} else {
1396 			network_hdr.raw = skb_network_header(skb);
1397 			transport_hdr.raw = skb_transport_header(skb);
1398 			vlan_macip_lens = skb_network_offset(skb) <<
1399 					  WX_TXD_MACLEN_SHIFT;
1400 		}
1401 
1402 		switch (network_hdr.ipv4->version) {
1403 		case IPVERSION:
1404 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1405 			l4_prot = network_hdr.ipv4->protocol;
1406 			break;
1407 		case 6:
1408 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1409 			l4_prot = network_hdr.ipv6->nexthdr;
1410 			break;
1411 		default:
1412 			break;
1413 		}
1414 
1415 		switch (l4_prot) {
1416 		case IPPROTO_TCP:
1417 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1418 				WX_TXD_L4LEN_SHIFT;
1419 			break;
1420 		case IPPROTO_SCTP:
1421 			mss_l4len_idx = sizeof(struct sctphdr) <<
1422 					WX_TXD_L4LEN_SHIFT;
1423 			break;
1424 		case IPPROTO_UDP:
1425 			mss_l4len_idx = sizeof(struct udphdr) <<
1426 					WX_TXD_L4LEN_SHIFT;
1427 			break;
1428 		default:
1429 			break;
1430 		}
1431 
1432 		/* update TX checksum flag */
1433 		first->tx_flags |= WX_TX_FLAGS_CSUM;
1434 	}
1435 	first->tx_flags |= WX_TX_FLAGS_CC;
1436 	/* vlan_macip_lens: MACLEN, VLAN tag */
1437 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1438 
1439 	type_tucmd = ptype << 24;
1440 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1441 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1442 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1443 					  WX_TX_FLAGS_HW_VLAN,
1444 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1445 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1446 		       type_tucmd, mss_l4len_idx);
1447 }
1448 
wx_xmit_frame_ring(struct sk_buff * skb,struct wx_ring * tx_ring)1449 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1450 				      struct wx_ring *tx_ring)
1451 {
1452 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1453 	struct wx_tx_buffer *first;
1454 	u8 hdr_len = 0, ptype;
1455 	unsigned short f;
1456 	u32 tx_flags = 0;
1457 	int tso;
1458 
1459 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1460 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1461 	 *       + 2 desc gap to keep tail from touching head,
1462 	 *       + 1 desc for context descriptor,
1463 	 * otherwise try next time
1464 	 */
1465 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1466 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1467 						     frags[f]));
1468 
1469 	if (wx_maybe_stop_tx(tx_ring, count + 3))
1470 		return NETDEV_TX_BUSY;
1471 
1472 	/* record the location of the first descriptor for this packet */
1473 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1474 	first->skb = skb;
1475 	first->bytecount = skb->len;
1476 	first->gso_segs = 1;
1477 
1478 	/* if we have a HW VLAN tag being added default to the HW one */
1479 	if (skb_vlan_tag_present(skb)) {
1480 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1481 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1482 	}
1483 
1484 	/* record initial flags and protocol */
1485 	first->tx_flags = tx_flags;
1486 	first->protocol = vlan_get_protocol(skb);
1487 
1488 	ptype = wx_encode_tx_desc_ptype(first);
1489 
1490 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1491 	if (tso < 0)
1492 		goto out_drop;
1493 	else if (!tso)
1494 		wx_tx_csum(tx_ring, first, ptype);
1495 	wx_tx_map(tx_ring, first, hdr_len);
1496 
1497 	return NETDEV_TX_OK;
1498 out_drop:
1499 	dev_kfree_skb_any(first->skb);
1500 	first->skb = NULL;
1501 
1502 	return NETDEV_TX_OK;
1503 }
1504 
wx_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1505 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1506 			  struct net_device *netdev)
1507 {
1508 	unsigned int r_idx = skb->queue_mapping;
1509 	struct wx *wx = netdev_priv(netdev);
1510 	struct wx_ring *tx_ring;
1511 
1512 	if (!netif_carrier_ok(netdev)) {
1513 		dev_kfree_skb_any(skb);
1514 		return NETDEV_TX_OK;
1515 	}
1516 
1517 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1518 	 * in order to meet this minimum size requirement.
1519 	 */
1520 	if (skb_put_padto(skb, 17))
1521 		return NETDEV_TX_OK;
1522 
1523 	if (r_idx >= wx->num_tx_queues)
1524 		r_idx = r_idx % wx->num_tx_queues;
1525 	tx_ring = wx->tx_ring[r_idx];
1526 
1527 	return wx_xmit_frame_ring(skb, tx_ring);
1528 }
1529 EXPORT_SYMBOL(wx_xmit_frame);
1530 
wx_napi_enable_all(struct wx * wx)1531 void wx_napi_enable_all(struct wx *wx)
1532 {
1533 	struct wx_q_vector *q_vector;
1534 	int q_idx;
1535 
1536 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1537 		q_vector = wx->q_vector[q_idx];
1538 		napi_enable(&q_vector->napi);
1539 	}
1540 }
1541 EXPORT_SYMBOL(wx_napi_enable_all);
1542 
wx_napi_disable_all(struct wx * wx)1543 void wx_napi_disable_all(struct wx *wx)
1544 {
1545 	struct wx_q_vector *q_vector;
1546 	int q_idx;
1547 
1548 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1549 		q_vector = wx->q_vector[q_idx];
1550 		napi_disable(&q_vector->napi);
1551 	}
1552 }
1553 EXPORT_SYMBOL(wx_napi_disable_all);
1554 
1555 /**
1556  * wx_set_rss_queues: Allocate queues for RSS
1557  * @wx: board private structure to initialize
1558  *
1559  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1560  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1561  *
1562  **/
wx_set_rss_queues(struct wx * wx)1563 static void wx_set_rss_queues(struct wx *wx)
1564 {
1565 	wx->num_rx_queues = wx->mac.max_rx_queues;
1566 	wx->num_tx_queues = wx->mac.max_tx_queues;
1567 }
1568 
wx_set_num_queues(struct wx * wx)1569 static void wx_set_num_queues(struct wx *wx)
1570 {
1571 	/* Start with base case */
1572 	wx->num_rx_queues = 1;
1573 	wx->num_tx_queues = 1;
1574 	wx->queues_per_pool = 1;
1575 
1576 	wx_set_rss_queues(wx);
1577 }
1578 
1579 /**
1580  * wx_acquire_msix_vectors - acquire MSI-X vectors
1581  * @wx: board private structure
1582  *
1583  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1584  * return a negative error code if unable to acquire MSI-X vectors for any
1585  * reason.
1586  */
wx_acquire_msix_vectors(struct wx * wx)1587 static int wx_acquire_msix_vectors(struct wx *wx)
1588 {
1589 	struct irq_affinity affd = {0, };
1590 	int nvecs, i;
1591 
1592 	nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
1593 
1594 	wx->msix_entries = kcalloc(nvecs,
1595 				   sizeof(struct msix_entry),
1596 				   GFP_KERNEL);
1597 	if (!wx->msix_entries)
1598 		return -ENOMEM;
1599 
1600 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1601 					       nvecs,
1602 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1603 					       &affd);
1604 	if (nvecs < 0) {
1605 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1606 		kfree(wx->msix_entries);
1607 		wx->msix_entries = NULL;
1608 		return nvecs;
1609 	}
1610 
1611 	for (i = 0; i < nvecs; i++) {
1612 		wx->msix_entries[i].entry = i;
1613 		wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
1614 	}
1615 
1616 	/* one for msix_other */
1617 	nvecs -= 1;
1618 	wx->num_q_vectors = nvecs;
1619 	wx->num_rx_queues = nvecs;
1620 	wx->num_tx_queues = nvecs;
1621 
1622 	return 0;
1623 }
1624 
1625 /**
1626  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1627  * @wx: board private structure to initialize
1628  *
1629  * Attempt to configure the interrupts using the best available
1630  * capabilities of the hardware and the kernel.
1631  **/
wx_set_interrupt_capability(struct wx * wx)1632 static int wx_set_interrupt_capability(struct wx *wx)
1633 {
1634 	struct pci_dev *pdev = wx->pdev;
1635 	int nvecs, ret;
1636 
1637 	/* We will try to get MSI-X interrupts first */
1638 	ret = wx_acquire_msix_vectors(wx);
1639 	if (ret == 0 || (ret == -ENOMEM))
1640 		return ret;
1641 
1642 	wx->num_rx_queues = 1;
1643 	wx->num_tx_queues = 1;
1644 	wx->num_q_vectors = 1;
1645 
1646 	/* minmum one for queue, one for misc*/
1647 	nvecs = 1;
1648 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1649 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1650 	if (nvecs == 1) {
1651 		if (pdev->msi_enabled)
1652 			wx_err(wx, "Fallback to MSI.\n");
1653 		else
1654 			wx_err(wx, "Fallback to LEGACY.\n");
1655 	} else {
1656 		wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1657 		return nvecs;
1658 	}
1659 
1660 	pdev->irq = pci_irq_vector(pdev, 0);
1661 	wx->num_q_vectors = 1;
1662 
1663 	return 0;
1664 }
1665 
1666 /**
1667  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1668  * @wx: board private structure to initialize
1669  *
1670  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1671  *
1672  **/
wx_cache_ring_rss(struct wx * wx)1673 static void wx_cache_ring_rss(struct wx *wx)
1674 {
1675 	u16 i;
1676 
1677 	for (i = 0; i < wx->num_rx_queues; i++)
1678 		wx->rx_ring[i]->reg_idx = i;
1679 
1680 	for (i = 0; i < wx->num_tx_queues; i++)
1681 		wx->tx_ring[i]->reg_idx = i;
1682 }
1683 
wx_add_ring(struct wx_ring * ring,struct wx_ring_container * head)1684 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1685 {
1686 	ring->next = head->ring;
1687 	head->ring = ring;
1688 	head->count++;
1689 }
1690 
1691 /**
1692  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1693  * @wx: board private structure to initialize
1694  * @v_count: q_vectors allocated on wx, used for ring interleaving
1695  * @v_idx: index of vector in wx struct
1696  * @txr_count: total number of Tx rings to allocate
1697  * @txr_idx: index of first Tx ring to allocate
1698  * @rxr_count: total number of Rx rings to allocate
1699  * @rxr_idx: index of first Rx ring to allocate
1700  *
1701  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1702  **/
wx_alloc_q_vector(struct wx * wx,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)1703 static int wx_alloc_q_vector(struct wx *wx,
1704 			     unsigned int v_count, unsigned int v_idx,
1705 			     unsigned int txr_count, unsigned int txr_idx,
1706 			     unsigned int rxr_count, unsigned int rxr_idx)
1707 {
1708 	struct wx_q_vector *q_vector;
1709 	int ring_count, default_itr;
1710 	struct wx_ring *ring;
1711 
1712 	/* note this will allocate space for the ring structure as well! */
1713 	ring_count = txr_count + rxr_count;
1714 
1715 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1716 			   GFP_KERNEL);
1717 	if (!q_vector)
1718 		return -ENOMEM;
1719 
1720 	/* initialize NAPI */
1721 	netif_napi_add(wx->netdev, &q_vector->napi,
1722 		       wx_poll);
1723 
1724 	/* tie q_vector and wx together */
1725 	wx->q_vector[v_idx] = q_vector;
1726 	q_vector->wx = wx;
1727 	q_vector->v_idx = v_idx;
1728 	if (cpu_online(v_idx))
1729 		q_vector->numa_node = cpu_to_node(v_idx);
1730 
1731 	/* initialize pointer to rings */
1732 	ring = q_vector->ring;
1733 
1734 	if (wx->mac.type == wx_mac_sp)
1735 		default_itr = WX_12K_ITR;
1736 	else
1737 		default_itr = WX_7K_ITR;
1738 	/* initialize ITR */
1739 	if (txr_count && !rxr_count)
1740 		/* tx only vector */
1741 		q_vector->itr = wx->tx_itr_setting ?
1742 				default_itr : wx->tx_itr_setting;
1743 	else
1744 		/* rx or rx/tx vector */
1745 		q_vector->itr = wx->rx_itr_setting ?
1746 				default_itr : wx->rx_itr_setting;
1747 
1748 	while (txr_count) {
1749 		/* assign generic ring traits */
1750 		ring->dev = &wx->pdev->dev;
1751 		ring->netdev = wx->netdev;
1752 
1753 		/* configure backlink on ring */
1754 		ring->q_vector = q_vector;
1755 
1756 		/* update q_vector Tx values */
1757 		wx_add_ring(ring, &q_vector->tx);
1758 
1759 		/* apply Tx specific ring traits */
1760 		ring->count = wx->tx_ring_count;
1761 
1762 		ring->queue_index = txr_idx;
1763 
1764 		/* assign ring to wx */
1765 		wx->tx_ring[txr_idx] = ring;
1766 
1767 		/* update count and index */
1768 		txr_count--;
1769 		txr_idx += v_count;
1770 
1771 		/* push pointer to next ring */
1772 		ring++;
1773 	}
1774 
1775 	while (rxr_count) {
1776 		/* assign generic ring traits */
1777 		ring->dev = &wx->pdev->dev;
1778 		ring->netdev = wx->netdev;
1779 
1780 		/* configure backlink on ring */
1781 		ring->q_vector = q_vector;
1782 
1783 		/* update q_vector Rx values */
1784 		wx_add_ring(ring, &q_vector->rx);
1785 
1786 		/* apply Rx specific ring traits */
1787 		ring->count = wx->rx_ring_count;
1788 		ring->queue_index = rxr_idx;
1789 
1790 		/* assign ring to wx */
1791 		wx->rx_ring[rxr_idx] = ring;
1792 
1793 		/* update count and index */
1794 		rxr_count--;
1795 		rxr_idx += v_count;
1796 
1797 		/* push pointer to next ring */
1798 		ring++;
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 /**
1805  * wx_free_q_vector - Free memory allocated for specific interrupt vector
1806  * @wx: board private structure to initialize
1807  * @v_idx: Index of vector to be freed
1808  *
1809  * This function frees the memory allocated to the q_vector.  In addition if
1810  * NAPI is enabled it will delete any references to the NAPI struct prior
1811  * to freeing the q_vector.
1812  **/
wx_free_q_vector(struct wx * wx,int v_idx)1813 static void wx_free_q_vector(struct wx *wx, int v_idx)
1814 {
1815 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1816 	struct wx_ring *ring;
1817 
1818 	wx_for_each_ring(ring, q_vector->tx)
1819 		wx->tx_ring[ring->queue_index] = NULL;
1820 
1821 	wx_for_each_ring(ring, q_vector->rx)
1822 		wx->rx_ring[ring->queue_index] = NULL;
1823 
1824 	wx->q_vector[v_idx] = NULL;
1825 	netif_napi_del(&q_vector->napi);
1826 	kfree_rcu(q_vector, rcu);
1827 }
1828 
1829 /**
1830  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1831  * @wx: board private structure to initialize
1832  *
1833  * We allocate one q_vector per queue interrupt.  If allocation fails we
1834  * return -ENOMEM.
1835  **/
wx_alloc_q_vectors(struct wx * wx)1836 static int wx_alloc_q_vectors(struct wx *wx)
1837 {
1838 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1839 	unsigned int rxr_remaining = wx->num_rx_queues;
1840 	unsigned int txr_remaining = wx->num_tx_queues;
1841 	unsigned int q_vectors = wx->num_q_vectors;
1842 	int rqpv, tqpv;
1843 	int err;
1844 
1845 	for (; v_idx < q_vectors; v_idx++) {
1846 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1847 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1848 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1849 					tqpv, txr_idx,
1850 					rqpv, rxr_idx);
1851 
1852 		if (err)
1853 			goto err_out;
1854 
1855 		/* update counts and index */
1856 		rxr_remaining -= rqpv;
1857 		txr_remaining -= tqpv;
1858 		rxr_idx++;
1859 		txr_idx++;
1860 	}
1861 
1862 	return 0;
1863 
1864 err_out:
1865 	wx->num_tx_queues = 0;
1866 	wx->num_rx_queues = 0;
1867 	wx->num_q_vectors = 0;
1868 
1869 	while (v_idx--)
1870 		wx_free_q_vector(wx, v_idx);
1871 
1872 	return -ENOMEM;
1873 }
1874 
1875 /**
1876  * wx_free_q_vectors - Free memory allocated for interrupt vectors
1877  * @wx: board private structure to initialize
1878  *
1879  * This function frees the memory allocated to the q_vectors.  In addition if
1880  * NAPI is enabled it will delete any references to the NAPI struct prior
1881  * to freeing the q_vector.
1882  **/
wx_free_q_vectors(struct wx * wx)1883 static void wx_free_q_vectors(struct wx *wx)
1884 {
1885 	int v_idx = wx->num_q_vectors;
1886 
1887 	wx->num_tx_queues = 0;
1888 	wx->num_rx_queues = 0;
1889 	wx->num_q_vectors = 0;
1890 
1891 	while (v_idx--)
1892 		wx_free_q_vector(wx, v_idx);
1893 }
1894 
wx_reset_interrupt_capability(struct wx * wx)1895 void wx_reset_interrupt_capability(struct wx *wx)
1896 {
1897 	struct pci_dev *pdev = wx->pdev;
1898 
1899 	if (!pdev->msi_enabled && !pdev->msix_enabled)
1900 		return;
1901 
1902 	if (pdev->msix_enabled) {
1903 		kfree(wx->msix_entries);
1904 		wx->msix_entries = NULL;
1905 	}
1906 	pci_free_irq_vectors(wx->pdev);
1907 }
1908 EXPORT_SYMBOL(wx_reset_interrupt_capability);
1909 
1910 /**
1911  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1912  * @wx: board private structure to clear interrupt scheme on
1913  *
1914  * We go through and clear interrupt specific resources and reset the structure
1915  * to pre-load conditions
1916  **/
wx_clear_interrupt_scheme(struct wx * wx)1917 void wx_clear_interrupt_scheme(struct wx *wx)
1918 {
1919 	wx_free_q_vectors(wx);
1920 	wx_reset_interrupt_capability(wx);
1921 }
1922 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1923 
wx_init_interrupt_scheme(struct wx * wx)1924 int wx_init_interrupt_scheme(struct wx *wx)
1925 {
1926 	int ret;
1927 
1928 	/* Number of supported queues */
1929 	wx_set_num_queues(wx);
1930 
1931 	/* Set interrupt mode */
1932 	ret = wx_set_interrupt_capability(wx);
1933 	if (ret) {
1934 		wx_err(wx, "Allocate irq vectors for failed.\n");
1935 		return ret;
1936 	}
1937 
1938 	/* Allocate memory for queues */
1939 	ret = wx_alloc_q_vectors(wx);
1940 	if (ret) {
1941 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
1942 		wx_reset_interrupt_capability(wx);
1943 		return ret;
1944 	}
1945 
1946 	wx_cache_ring_rss(wx);
1947 
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL(wx_init_interrupt_scheme);
1951 
wx_msix_clean_rings(int __always_unused irq,void * data)1952 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
1953 {
1954 	struct wx_q_vector *q_vector = data;
1955 
1956 	/* EIAM disabled interrupts (on this vector) for us */
1957 	if (q_vector->rx.ring || q_vector->tx.ring)
1958 		napi_schedule_irqoff(&q_vector->napi);
1959 
1960 	return IRQ_HANDLED;
1961 }
1962 EXPORT_SYMBOL(wx_msix_clean_rings);
1963 
wx_free_irq(struct wx * wx)1964 void wx_free_irq(struct wx *wx)
1965 {
1966 	struct pci_dev *pdev = wx->pdev;
1967 	int vector;
1968 
1969 	if (!(pdev->msix_enabled)) {
1970 		free_irq(pdev->irq, wx);
1971 		return;
1972 	}
1973 
1974 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
1975 		struct wx_q_vector *q_vector = wx->q_vector[vector];
1976 		struct msix_entry *entry = &wx->msix_entries[vector];
1977 
1978 		/* free only the irqs that were actually requested */
1979 		if (!q_vector->rx.ring && !q_vector->tx.ring)
1980 			continue;
1981 
1982 		free_irq(entry->vector, q_vector);
1983 	}
1984 
1985 	if (wx->mac.type == wx_mac_em)
1986 		free_irq(wx->msix_entries[vector].vector, wx);
1987 }
1988 EXPORT_SYMBOL(wx_free_irq);
1989 
1990 /**
1991  * wx_setup_isb_resources - allocate interrupt status resources
1992  * @wx: board private structure
1993  *
1994  * Return 0 on success, negative on failure
1995  **/
wx_setup_isb_resources(struct wx * wx)1996 int wx_setup_isb_resources(struct wx *wx)
1997 {
1998 	struct pci_dev *pdev = wx->pdev;
1999 
2000 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2001 					 sizeof(u32) * 4,
2002 					 &wx->isb_dma,
2003 					 GFP_KERNEL);
2004 	if (!wx->isb_mem) {
2005 		wx_err(wx, "Alloc isb_mem failed\n");
2006 		return -ENOMEM;
2007 	}
2008 
2009 	return 0;
2010 }
2011 EXPORT_SYMBOL(wx_setup_isb_resources);
2012 
2013 /**
2014  * wx_free_isb_resources - allocate all queues Rx resources
2015  * @wx: board private structure
2016  *
2017  * Return 0 on success, negative on failure
2018  **/
wx_free_isb_resources(struct wx * wx)2019 void wx_free_isb_resources(struct wx *wx)
2020 {
2021 	struct pci_dev *pdev = wx->pdev;
2022 
2023 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2024 			  wx->isb_mem, wx->isb_dma);
2025 	wx->isb_mem = NULL;
2026 }
2027 EXPORT_SYMBOL(wx_free_isb_resources);
2028 
wx_misc_isb(struct wx * wx,enum wx_isb_idx idx)2029 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2030 {
2031 	u32 cur_tag = 0;
2032 
2033 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2034 	wx->isb_tag[idx] = cur_tag;
2035 
2036 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2037 }
2038 EXPORT_SYMBOL(wx_misc_isb);
2039 
2040 /**
2041  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2042  * @wx: pointer to wx struct
2043  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2044  * @queue: queue to map the corresponding interrupt to
2045  * @msix_vector: the vector to map to the corresponding queue
2046  *
2047  **/
wx_set_ivar(struct wx * wx,s8 direction,u16 queue,u16 msix_vector)2048 static void wx_set_ivar(struct wx *wx, s8 direction,
2049 			u16 queue, u16 msix_vector)
2050 {
2051 	u32 ivar, index;
2052 
2053 	if (direction == -1) {
2054 		/* other causes */
2055 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2056 		index = 0;
2057 		ivar = rd32(wx, WX_PX_MISC_IVAR);
2058 		ivar &= ~(0xFF << index);
2059 		ivar |= (msix_vector << index);
2060 		wr32(wx, WX_PX_MISC_IVAR, ivar);
2061 	} else {
2062 		/* tx or rx causes */
2063 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2064 		index = ((16 * (queue & 1)) + (8 * direction));
2065 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2066 		ivar &= ~(0xFF << index);
2067 		ivar |= (msix_vector << index);
2068 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2069 	}
2070 }
2071 
2072 /**
2073  * wx_write_eitr - write EITR register in hardware specific way
2074  * @q_vector: structure containing interrupt and ring information
2075  *
2076  * This function is made to be called by ethtool and by the driver
2077  * when it needs to update EITR registers at runtime.  Hardware
2078  * specific quirks/differences are taken care of here.
2079  */
wx_write_eitr(struct wx_q_vector * q_vector)2080 static void wx_write_eitr(struct wx_q_vector *q_vector)
2081 {
2082 	struct wx *wx = q_vector->wx;
2083 	int v_idx = q_vector->v_idx;
2084 	u32 itr_reg;
2085 
2086 	if (wx->mac.type == wx_mac_sp)
2087 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2088 	else
2089 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2090 
2091 	itr_reg |= WX_PX_ITR_CNT_WDIS;
2092 
2093 	wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2094 }
2095 
2096 /**
2097  * wx_configure_vectors - Configure vectors for hardware
2098  * @wx: board private structure
2099  *
2100  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2101  * interrupts.
2102  **/
wx_configure_vectors(struct wx * wx)2103 void wx_configure_vectors(struct wx *wx)
2104 {
2105 	struct pci_dev *pdev = wx->pdev;
2106 	u32 eitrsel = 0;
2107 	u16 v_idx;
2108 
2109 	if (pdev->msix_enabled) {
2110 		/* Populate MSIX to EITR Select */
2111 		wr32(wx, WX_PX_ITRSEL, eitrsel);
2112 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2113 		 * this saves a register write for every interrupt
2114 		 */
2115 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2116 	} else {
2117 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2118 		 * specifically only auto mask tx and rx interrupts.
2119 		 */
2120 		wr32(wx, WX_PX_GPIE, 0);
2121 	}
2122 
2123 	/* Populate the IVAR table and set the ITR values to the
2124 	 * corresponding register.
2125 	 */
2126 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2127 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2128 		struct wx_ring *ring;
2129 
2130 		wx_for_each_ring(ring, q_vector->rx)
2131 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2132 
2133 		wx_for_each_ring(ring, q_vector->tx)
2134 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2135 
2136 		wx_write_eitr(q_vector);
2137 	}
2138 
2139 	wx_set_ivar(wx, -1, 0, v_idx);
2140 	if (pdev->msix_enabled)
2141 		wr32(wx, WX_PX_ITR(v_idx), 1950);
2142 }
2143 EXPORT_SYMBOL(wx_configure_vectors);
2144 
2145 /**
2146  * wx_clean_rx_ring - Free Rx Buffers per Queue
2147  * @rx_ring: ring to free buffers from
2148  **/
wx_clean_rx_ring(struct wx_ring * rx_ring)2149 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2150 {
2151 	struct wx_rx_buffer *rx_buffer;
2152 	u16 i = rx_ring->next_to_clean;
2153 
2154 	rx_buffer = &rx_ring->rx_buffer_info[i];
2155 
2156 	/* Free all the Rx ring sk_buffs */
2157 	while (i != rx_ring->next_to_alloc) {
2158 		if (rx_buffer->skb) {
2159 			struct sk_buff *skb = rx_buffer->skb;
2160 
2161 			if (WX_CB(skb)->page_released)
2162 				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2163 
2164 			dev_kfree_skb(skb);
2165 		}
2166 
2167 		/* Invalidate cache lines that may have been written to by
2168 		 * device so that we avoid corrupting memory.
2169 		 */
2170 		dma_sync_single_range_for_cpu(rx_ring->dev,
2171 					      rx_buffer->dma,
2172 					      rx_buffer->page_offset,
2173 					      WX_RX_BUFSZ,
2174 					      DMA_FROM_DEVICE);
2175 
2176 		/* free resources associated with mapping */
2177 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2178 
2179 		i++;
2180 		rx_buffer++;
2181 		if (i == rx_ring->count) {
2182 			i = 0;
2183 			rx_buffer = rx_ring->rx_buffer_info;
2184 		}
2185 	}
2186 
2187 	rx_ring->next_to_alloc = 0;
2188 	rx_ring->next_to_clean = 0;
2189 	rx_ring->next_to_use = 0;
2190 }
2191 
2192 /**
2193  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2194  * @wx: board private structure
2195  **/
wx_clean_all_rx_rings(struct wx * wx)2196 void wx_clean_all_rx_rings(struct wx *wx)
2197 {
2198 	int i;
2199 
2200 	for (i = 0; i < wx->num_rx_queues; i++)
2201 		wx_clean_rx_ring(wx->rx_ring[i]);
2202 }
2203 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2204 
2205 /**
2206  * wx_free_rx_resources - Free Rx Resources
2207  * @rx_ring: ring to clean the resources from
2208  *
2209  * Free all receive software resources
2210  **/
wx_free_rx_resources(struct wx_ring * rx_ring)2211 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2212 {
2213 	wx_clean_rx_ring(rx_ring);
2214 	kvfree(rx_ring->rx_buffer_info);
2215 	rx_ring->rx_buffer_info = NULL;
2216 
2217 	/* if not set, then don't free */
2218 	if (!rx_ring->desc)
2219 		return;
2220 
2221 	dma_free_coherent(rx_ring->dev, rx_ring->size,
2222 			  rx_ring->desc, rx_ring->dma);
2223 
2224 	rx_ring->desc = NULL;
2225 
2226 	if (rx_ring->page_pool) {
2227 		page_pool_destroy(rx_ring->page_pool);
2228 		rx_ring->page_pool = NULL;
2229 	}
2230 }
2231 
2232 /**
2233  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2234  * @wx: pointer to hardware structure
2235  *
2236  * Free all receive software resources
2237  **/
wx_free_all_rx_resources(struct wx * wx)2238 static void wx_free_all_rx_resources(struct wx *wx)
2239 {
2240 	int i;
2241 
2242 	for (i = 0; i < wx->num_rx_queues; i++)
2243 		wx_free_rx_resources(wx->rx_ring[i]);
2244 }
2245 
2246 /**
2247  * wx_clean_tx_ring - Free Tx Buffers
2248  * @tx_ring: ring to be cleaned
2249  **/
wx_clean_tx_ring(struct wx_ring * tx_ring)2250 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2251 {
2252 	struct wx_tx_buffer *tx_buffer;
2253 	u16 i = tx_ring->next_to_clean;
2254 
2255 	tx_buffer = &tx_ring->tx_buffer_info[i];
2256 
2257 	while (i != tx_ring->next_to_use) {
2258 		union wx_tx_desc *eop_desc, *tx_desc;
2259 
2260 		/* Free all the Tx ring sk_buffs */
2261 		dev_kfree_skb_any(tx_buffer->skb);
2262 
2263 		/* unmap skb header data */
2264 		dma_unmap_single(tx_ring->dev,
2265 				 dma_unmap_addr(tx_buffer, dma),
2266 				 dma_unmap_len(tx_buffer, len),
2267 				 DMA_TO_DEVICE);
2268 
2269 		/* check for eop_desc to determine the end of the packet */
2270 		eop_desc = tx_buffer->next_to_watch;
2271 		tx_desc = WX_TX_DESC(tx_ring, i);
2272 
2273 		/* unmap remaining buffers */
2274 		while (tx_desc != eop_desc) {
2275 			tx_buffer++;
2276 			tx_desc++;
2277 			i++;
2278 			if (unlikely(i == tx_ring->count)) {
2279 				i = 0;
2280 				tx_buffer = tx_ring->tx_buffer_info;
2281 				tx_desc = WX_TX_DESC(tx_ring, 0);
2282 			}
2283 
2284 			/* unmap any remaining paged data */
2285 			if (dma_unmap_len(tx_buffer, len))
2286 				dma_unmap_page(tx_ring->dev,
2287 					       dma_unmap_addr(tx_buffer, dma),
2288 					       dma_unmap_len(tx_buffer, len),
2289 					       DMA_TO_DEVICE);
2290 		}
2291 
2292 		/* move us one more past the eop_desc for start of next pkt */
2293 		tx_buffer++;
2294 		i++;
2295 		if (unlikely(i == tx_ring->count)) {
2296 			i = 0;
2297 			tx_buffer = tx_ring->tx_buffer_info;
2298 		}
2299 	}
2300 
2301 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2302 
2303 	/* reset next_to_use and next_to_clean */
2304 	tx_ring->next_to_use = 0;
2305 	tx_ring->next_to_clean = 0;
2306 }
2307 
2308 /**
2309  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2310  * @wx: board private structure
2311  **/
wx_clean_all_tx_rings(struct wx * wx)2312 void wx_clean_all_tx_rings(struct wx *wx)
2313 {
2314 	int i;
2315 
2316 	for (i = 0; i < wx->num_tx_queues; i++)
2317 		wx_clean_tx_ring(wx->tx_ring[i]);
2318 }
2319 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2320 
2321 /**
2322  * wx_free_tx_resources - Free Tx Resources per Queue
2323  * @tx_ring: Tx descriptor ring for a specific queue
2324  *
2325  * Free all transmit software resources
2326  **/
wx_free_tx_resources(struct wx_ring * tx_ring)2327 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2328 {
2329 	wx_clean_tx_ring(tx_ring);
2330 	kvfree(tx_ring->tx_buffer_info);
2331 	tx_ring->tx_buffer_info = NULL;
2332 
2333 	/* if not set, then don't free */
2334 	if (!tx_ring->desc)
2335 		return;
2336 
2337 	dma_free_coherent(tx_ring->dev, tx_ring->size,
2338 			  tx_ring->desc, tx_ring->dma);
2339 	tx_ring->desc = NULL;
2340 }
2341 
2342 /**
2343  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2344  * @wx: pointer to hardware structure
2345  *
2346  * Free all transmit software resources
2347  **/
wx_free_all_tx_resources(struct wx * wx)2348 static void wx_free_all_tx_resources(struct wx *wx)
2349 {
2350 	int i;
2351 
2352 	for (i = 0; i < wx->num_tx_queues; i++)
2353 		wx_free_tx_resources(wx->tx_ring[i]);
2354 }
2355 
wx_free_resources(struct wx * wx)2356 void wx_free_resources(struct wx *wx)
2357 {
2358 	wx_free_isb_resources(wx);
2359 	wx_free_all_rx_resources(wx);
2360 	wx_free_all_tx_resources(wx);
2361 }
2362 EXPORT_SYMBOL(wx_free_resources);
2363 
wx_alloc_page_pool(struct wx_ring * rx_ring)2364 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2365 {
2366 	int ret = 0;
2367 
2368 	struct page_pool_params pp_params = {
2369 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2370 		.order = 0,
2371 		.pool_size = rx_ring->size,
2372 		.nid = dev_to_node(rx_ring->dev),
2373 		.dev = rx_ring->dev,
2374 		.dma_dir = DMA_FROM_DEVICE,
2375 		.offset = 0,
2376 		.max_len = PAGE_SIZE,
2377 	};
2378 
2379 	rx_ring->page_pool = page_pool_create(&pp_params);
2380 	if (IS_ERR(rx_ring->page_pool)) {
2381 		ret = PTR_ERR(rx_ring->page_pool);
2382 		rx_ring->page_pool = NULL;
2383 	}
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2390  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2391  *
2392  * Returns 0 on success, negative on failure
2393  **/
wx_setup_rx_resources(struct wx_ring * rx_ring)2394 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2395 {
2396 	struct device *dev = rx_ring->dev;
2397 	int orig_node = dev_to_node(dev);
2398 	int numa_node = NUMA_NO_NODE;
2399 	int size, ret;
2400 
2401 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2402 
2403 	if (rx_ring->q_vector)
2404 		numa_node = rx_ring->q_vector->numa_node;
2405 
2406 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2407 	if (!rx_ring->rx_buffer_info)
2408 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2409 	if (!rx_ring->rx_buffer_info)
2410 		goto err;
2411 
2412 	/* Round up to nearest 4K */
2413 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2414 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2415 
2416 	set_dev_node(dev, numa_node);
2417 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2418 					   &rx_ring->dma, GFP_KERNEL);
2419 	if (!rx_ring->desc) {
2420 		set_dev_node(dev, orig_node);
2421 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2422 						   &rx_ring->dma, GFP_KERNEL);
2423 	}
2424 
2425 	if (!rx_ring->desc)
2426 		goto err;
2427 
2428 	rx_ring->next_to_clean = 0;
2429 	rx_ring->next_to_use = 0;
2430 
2431 	ret = wx_alloc_page_pool(rx_ring);
2432 	if (ret < 0) {
2433 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2434 		goto err_desc;
2435 	}
2436 
2437 	return 0;
2438 
2439 err_desc:
2440 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2441 err:
2442 	kvfree(rx_ring->rx_buffer_info);
2443 	rx_ring->rx_buffer_info = NULL;
2444 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2445 	return -ENOMEM;
2446 }
2447 
2448 /**
2449  * wx_setup_all_rx_resources - allocate all queues Rx resources
2450  * @wx: pointer to hardware structure
2451  *
2452  * If this function returns with an error, then it's possible one or
2453  * more of the rings is populated (while the rest are not).  It is the
2454  * callers duty to clean those orphaned rings.
2455  *
2456  * Return 0 on success, negative on failure
2457  **/
wx_setup_all_rx_resources(struct wx * wx)2458 static int wx_setup_all_rx_resources(struct wx *wx)
2459 {
2460 	int i, err = 0;
2461 
2462 	for (i = 0; i < wx->num_rx_queues; i++) {
2463 		err = wx_setup_rx_resources(wx->rx_ring[i]);
2464 		if (!err)
2465 			continue;
2466 
2467 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2468 		goto err_setup_rx;
2469 	}
2470 
2471 	return 0;
2472 err_setup_rx:
2473 	/* rewind the index freeing the rings as we go */
2474 	while (i--)
2475 		wx_free_rx_resources(wx->rx_ring[i]);
2476 	return err;
2477 }
2478 
2479 /**
2480  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2481  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2482  *
2483  * Return 0 on success, negative on failure
2484  **/
wx_setup_tx_resources(struct wx_ring * tx_ring)2485 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2486 {
2487 	struct device *dev = tx_ring->dev;
2488 	int orig_node = dev_to_node(dev);
2489 	int numa_node = NUMA_NO_NODE;
2490 	int size;
2491 
2492 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2493 
2494 	if (tx_ring->q_vector)
2495 		numa_node = tx_ring->q_vector->numa_node;
2496 
2497 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2498 	if (!tx_ring->tx_buffer_info)
2499 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2500 	if (!tx_ring->tx_buffer_info)
2501 		goto err;
2502 
2503 	/* round up to nearest 4K */
2504 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2505 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2506 
2507 	set_dev_node(dev, numa_node);
2508 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2509 					   &tx_ring->dma, GFP_KERNEL);
2510 	if (!tx_ring->desc) {
2511 		set_dev_node(dev, orig_node);
2512 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2513 						   &tx_ring->dma, GFP_KERNEL);
2514 	}
2515 
2516 	if (!tx_ring->desc)
2517 		goto err;
2518 
2519 	tx_ring->next_to_use = 0;
2520 	tx_ring->next_to_clean = 0;
2521 
2522 	return 0;
2523 
2524 err:
2525 	kvfree(tx_ring->tx_buffer_info);
2526 	tx_ring->tx_buffer_info = NULL;
2527 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2528 	return -ENOMEM;
2529 }
2530 
2531 /**
2532  * wx_setup_all_tx_resources - allocate all queues Tx resources
2533  * @wx: pointer to private structure
2534  *
2535  * If this function returns with an error, then it's possible one or
2536  * more of the rings is populated (while the rest are not).  It is the
2537  * callers duty to clean those orphaned rings.
2538  *
2539  * Return 0 on success, negative on failure
2540  **/
wx_setup_all_tx_resources(struct wx * wx)2541 static int wx_setup_all_tx_resources(struct wx *wx)
2542 {
2543 	int i, err = 0;
2544 
2545 	for (i = 0; i < wx->num_tx_queues; i++) {
2546 		err = wx_setup_tx_resources(wx->tx_ring[i]);
2547 		if (!err)
2548 			continue;
2549 
2550 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2551 		goto err_setup_tx;
2552 	}
2553 
2554 	return 0;
2555 err_setup_tx:
2556 	/* rewind the index freeing the rings as we go */
2557 	while (i--)
2558 		wx_free_tx_resources(wx->tx_ring[i]);
2559 	return err;
2560 }
2561 
wx_setup_resources(struct wx * wx)2562 int wx_setup_resources(struct wx *wx)
2563 {
2564 	int err;
2565 
2566 	/* allocate transmit descriptors */
2567 	err = wx_setup_all_tx_resources(wx);
2568 	if (err)
2569 		return err;
2570 
2571 	/* allocate receive descriptors */
2572 	err = wx_setup_all_rx_resources(wx);
2573 	if (err)
2574 		goto err_free_tx;
2575 
2576 	err = wx_setup_isb_resources(wx);
2577 	if (err)
2578 		goto err_free_rx;
2579 
2580 	return 0;
2581 
2582 err_free_rx:
2583 	wx_free_all_rx_resources(wx);
2584 err_free_tx:
2585 	wx_free_all_tx_resources(wx);
2586 
2587 	return err;
2588 }
2589 EXPORT_SYMBOL(wx_setup_resources);
2590 
2591 /**
2592  * wx_get_stats64 - Get System Network Statistics
2593  * @netdev: network interface device structure
2594  * @stats: storage space for 64bit statistics
2595  */
wx_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2596 void wx_get_stats64(struct net_device *netdev,
2597 		    struct rtnl_link_stats64 *stats)
2598 {
2599 	struct wx *wx = netdev_priv(netdev);
2600 	int i;
2601 
2602 	rcu_read_lock();
2603 	for (i = 0; i < wx->num_rx_queues; i++) {
2604 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2605 		u64 bytes, packets;
2606 		unsigned int start;
2607 
2608 		if (ring) {
2609 			do {
2610 				start = u64_stats_fetch_begin(&ring->syncp);
2611 				packets = ring->stats.packets;
2612 				bytes   = ring->stats.bytes;
2613 			} while (u64_stats_fetch_retry(&ring->syncp, start));
2614 			stats->rx_packets += packets;
2615 			stats->rx_bytes   += bytes;
2616 		}
2617 	}
2618 
2619 	for (i = 0; i < wx->num_tx_queues; i++) {
2620 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2621 		u64 bytes, packets;
2622 		unsigned int start;
2623 
2624 		if (ring) {
2625 			do {
2626 				start = u64_stats_fetch_begin(&ring->syncp);
2627 				packets = ring->stats.packets;
2628 				bytes   = ring->stats.bytes;
2629 			} while (u64_stats_fetch_retry(&ring->syncp,
2630 							   start));
2631 			stats->tx_packets += packets;
2632 			stats->tx_bytes   += bytes;
2633 		}
2634 	}
2635 
2636 	rcu_read_unlock();
2637 }
2638 EXPORT_SYMBOL(wx_get_stats64);
2639 
wx_set_features(struct net_device * netdev,netdev_features_t features)2640 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2641 {
2642 	netdev_features_t changed = netdev->features ^ features;
2643 	struct wx *wx = netdev_priv(netdev);
2644 
2645 	if (changed & NETIF_F_RXHASH)
2646 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2647 		      WX_RDB_RA_CTL_RSS_EN);
2648 	else
2649 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2650 
2651 	netdev->features = features;
2652 
2653 	if (changed &
2654 	    (NETIF_F_HW_VLAN_CTAG_RX |
2655 	     NETIF_F_HW_VLAN_STAG_RX))
2656 		wx_set_rx_mode(netdev);
2657 
2658 	return 0;
2659 }
2660 EXPORT_SYMBOL(wx_set_features);
2661 
2662 MODULE_LICENSE("GPL");
2663