xref: /openbmc/qemu/target/xtensa/mmu_helper.c (revision da4f7b8561e69112171f52279d23b9014902a398)
1  /*
2   * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3   * All rights reserved.
4   *
5   * Redistribution and use in source and binary forms, with or without
6   * modification, are permitted provided that the following conditions are met:
7   *     * Redistributions of source code must retain the above copyright
8   *       notice, this list of conditions and the following disclaimer.
9   *     * Redistributions in binary form must reproduce the above copyright
10   *       notice, this list of conditions and the following disclaimer in the
11   *       documentation and/or other materials provided with the distribution.
12   *     * Neither the name of the Open Source and Linux Lab nor the
13   *       names of its contributors may be used to endorse or promote products
14   *       derived from this software without specific prior written permission.
15   *
16   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17   * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19   * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26   */
27  
28  #include "qemu/osdep.h"
29  #include "qemu/log.h"
30  #include "qemu/qemu-print.h"
31  #include "qemu/units.h"
32  #include "cpu.h"
33  #include "exec/helper-proto.h"
34  #include "qemu/host-utils.h"
35  #include "exec/exec-all.h"
36  #include "exec/page-protection.h"
37  
38  #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
39  #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
40  #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
41  #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
42  #define XTENSA_MPU_MEM_TYPE_SHIFT 12
43  #define XTENSA_MPU_ATTR_MASK 0x001fff00
44  
45  #define XTENSA_MPU_PROBE_B 0x40000000
46  #define XTENSA_MPU_PROBE_V 0x80000000
47  
48  #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
49  #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
50  #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
51  #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
52  
53  #define XTENSA_MPU_TYPE_SYS_C     0x0010
54  #define XTENSA_MPU_TYPE_SYS_W     0x0020
55  #define XTENSA_MPU_TYPE_SYS_R     0x0040
56  #define XTENSA_MPU_TYPE_CPU_C     0x0100
57  #define XTENSA_MPU_TYPE_CPU_W     0x0200
58  #define XTENSA_MPU_TYPE_CPU_R     0x0400
59  #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
60  #define XTENSA_MPU_TYPE_B         0x1000
61  #define XTENSA_MPU_TYPE_INT       0x2000
62  
HELPER(itlb_hit_test)63  void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
64  {
65      /*
66       * Probe the memory; we don't care about the result but
67       * only the side-effects (ie any MMU or other exception)
68       */
69      probe_access(env, vaddr, 1, MMU_INST_FETCH,
70                   cpu_mmu_index(env_cpu(env), true), GETPC());
71  }
72  
HELPER(wsr_rasid)73  void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
74  {
75      v = (v & 0xffffff00) | 0x1;
76      if (v != env->sregs[RASID]) {
77          env->sregs[RASID] = v;
78          tlb_flush(env_cpu(env));
79      }
80  }
81  
get_page_size(const CPUXtensaState * env,bool dtlb,uint32_t way)82  static uint32_t get_page_size(const CPUXtensaState *env,
83                                bool dtlb, uint32_t way)
84  {
85      uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
86  
87      switch (way) {
88      case 4:
89          return (tlbcfg >> 16) & 0x3;
90  
91      case 5:
92          return (tlbcfg >> 20) & 0x1;
93  
94      case 6:
95          return (tlbcfg >> 24) & 0x1;
96  
97      default:
98          return 0;
99      }
100  }
101  
102  /*!
103   * Get bit mask for the virtual address bits translated by the TLB way
104   */
xtensa_tlb_get_addr_mask(const CPUXtensaState * env,bool dtlb,uint32_t way)105  static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
106                                           bool dtlb, uint32_t way)
107  {
108      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
109          bool varway56 = dtlb ?
110              env->config->dtlb.varway56 :
111              env->config->itlb.varway56;
112  
113          switch (way) {
114          case 4:
115              return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
116  
117          case 5:
118              if (varway56) {
119                  return 0xf8000000 << get_page_size(env, dtlb, way);
120              } else {
121                  return 0xf8000000;
122              }
123  
124          case 6:
125              if (varway56) {
126                  return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
127              } else {
128                  return 0xf0000000;
129              }
130  
131          default:
132              return 0xfffff000;
133          }
134      } else {
135          return REGION_PAGE_MASK;
136      }
137  }
138  
139  /*!
140   * Get bit mask for the 'VPN without index' field.
141   * See ISA, 4.6.5.6, data format for RxTLB0
142   */
get_vpn_mask(const CPUXtensaState * env,bool dtlb,uint32_t way)143  static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
144  {
145      if (way < 4) {
146          bool is32 = (dtlb ?
147                  env->config->dtlb.nrefillentries :
148                  env->config->itlb.nrefillentries) == 32;
149          return is32 ? 0xffff8000 : 0xffffc000;
150      } else if (way == 4) {
151          return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
152      } else if (way <= 6) {
153          uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
154          bool varway56 = dtlb ?
155              env->config->dtlb.varway56 :
156              env->config->itlb.varway56;
157  
158          if (varway56) {
159              return mask << (way == 5 ? 2 : 3);
160          } else {
161              return mask << 1;
162          }
163      } else {
164          return 0xfffff000;
165      }
166  }
167  
168  /*!
169   * Split virtual address into VPN (with index) and entry index
170   * for the given TLB way
171   */
split_tlb_entry_spec_way(const CPUXtensaState * env,uint32_t v,bool dtlb,uint32_t * vpn,uint32_t wi,uint32_t * ei)172  static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
173                                       bool dtlb, uint32_t *vpn,
174                                       uint32_t wi, uint32_t *ei)
175  {
176      bool varway56 = dtlb ?
177          env->config->dtlb.varway56 :
178          env->config->itlb.varway56;
179  
180      if (!dtlb) {
181          wi &= 7;
182      }
183  
184      if (wi < 4) {
185          bool is32 = (dtlb ?
186                  env->config->dtlb.nrefillentries :
187                  env->config->itlb.nrefillentries) == 32;
188          *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
189      } else {
190          switch (wi) {
191          case 4:
192              {
193                  uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
194                  *ei = (v >> eibase) & 0x3;
195              }
196              break;
197  
198          case 5:
199              if (varway56) {
200                  uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
201                  *ei = (v >> eibase) & 0x3;
202              } else {
203                  *ei = (v >> 27) & 0x1;
204              }
205              break;
206  
207          case 6:
208              if (varway56) {
209                  uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
210                  *ei = (v >> eibase) & 0x7;
211              } else {
212                  *ei = (v >> 28) & 0x1;
213              }
214              break;
215  
216          default:
217              *ei = 0;
218              break;
219          }
220      }
221      *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
222  }
223  
224  /*!
225   * Split TLB address into TLB way, entry index and VPN (with index).
226   * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
227   */
split_tlb_entry_spec(CPUXtensaState * env,uint32_t v,bool dtlb,uint32_t * vpn,uint32_t * wi,uint32_t * ei)228  static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
229                                   uint32_t *vpn, uint32_t *wi, uint32_t *ei)
230  {
231      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
232          *wi = v & (dtlb ? 0xf : 0x7);
233          if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) {
234              split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
235              return true;
236          } else {
237              return false;
238          }
239      } else {
240          *vpn = v & REGION_PAGE_MASK;
241          *wi = 0;
242          *ei = (v >> 29) & 0x7;
243          return true;
244      }
245  }
246  
xtensa_tlb_get_entry(CPUXtensaState * env,bool dtlb,unsigned wi,unsigned ei)247  static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
248                                                unsigned wi, unsigned ei)
249  {
250      const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb;
251  
252      assert(wi < tlb->nways && ei < tlb->way_size[wi]);
253      return dtlb ?
254          env->dtlb[wi] + ei :
255          env->itlb[wi] + ei;
256  }
257  
get_tlb_entry(CPUXtensaState * env,uint32_t v,bool dtlb,uint32_t * pwi)258  static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
259          uint32_t v, bool dtlb, uint32_t *pwi)
260  {
261      uint32_t vpn;
262      uint32_t wi;
263      uint32_t ei;
264  
265      if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
266          if (pwi) {
267              *pwi = wi;
268          }
269          return xtensa_tlb_get_entry(env, dtlb, wi, ei);
270      } else {
271          return NULL;
272      }
273  }
274  
xtensa_tlb_set_entry_mmu(const CPUXtensaState * env,xtensa_tlb_entry * entry,bool dtlb,unsigned wi,unsigned ei,uint32_t vpn,uint32_t pte)275  static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
276                                       xtensa_tlb_entry *entry, bool dtlb,
277                                       unsigned wi, unsigned ei, uint32_t vpn,
278                                       uint32_t pte)
279  {
280      entry->vaddr = vpn;
281      entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
282      entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
283      entry->attr = pte & 0xf;
284  }
285  
xtensa_tlb_set_entry(CPUXtensaState * env,bool dtlb,unsigned wi,unsigned ei,uint32_t vpn,uint32_t pte)286  static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
287                                   unsigned wi, unsigned ei,
288                                   uint32_t vpn, uint32_t pte)
289  {
290      CPUState *cs = env_cpu(env);
291      xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
292  
293      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
294          if (entry->variable) {
295              if (entry->asid) {
296                  tlb_flush_page(cs, entry->vaddr);
297              }
298              xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
299              tlb_flush_page(cs, entry->vaddr);
300          } else {
301              qemu_log_mask(LOG_GUEST_ERROR,
302                            "%s %d, %d, %d trying to set immutable entry\n",
303                            __func__, dtlb, wi, ei);
304          }
305      } else {
306          tlb_flush_page(cs, entry->vaddr);
307          if (xtensa_option_enabled(env->config,
308                      XTENSA_OPTION_REGION_TRANSLATION)) {
309              entry->paddr = pte & REGION_PAGE_MASK;
310          }
311          entry->attr = pte & 0xf;
312      }
313  }
314  
xtensa_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)315  hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
316  {
317      XtensaCPU *cpu = XTENSA_CPU(cs);
318      uint32_t paddr;
319      uint32_t page_size;
320      unsigned access;
321  
322      if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
323                  &paddr, &page_size, &access) == 0) {
324          return paddr;
325      }
326      if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
327                  &paddr, &page_size, &access) == 0) {
328          return paddr;
329      }
330      return ~0;
331  }
332  
reset_tlb_mmu_all_ways(CPUXtensaState * env,const xtensa_tlb * tlb,xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])333  static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
334                                     const xtensa_tlb *tlb,
335                                     xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
336  {
337      unsigned wi, ei;
338  
339      for (wi = 0; wi < tlb->nways; ++wi) {
340          for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
341              entry[wi][ei].asid = 0;
342              entry[wi][ei].variable = true;
343          }
344      }
345  }
346  
reset_tlb_mmu_ways56(CPUXtensaState * env,const xtensa_tlb * tlb,xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])347  static void reset_tlb_mmu_ways56(CPUXtensaState *env,
348                                   const xtensa_tlb *tlb,
349                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
350  {
351      if (!tlb->varway56) {
352          static const xtensa_tlb_entry way5[] = {
353              {
354                  .vaddr = 0xd0000000,
355                  .paddr = 0,
356                  .asid = 1,
357                  .attr = 7,
358                  .variable = false,
359              }, {
360                  .vaddr = 0xd8000000,
361                  .paddr = 0,
362                  .asid = 1,
363                  .attr = 3,
364                  .variable = false,
365              }
366          };
367          static const xtensa_tlb_entry way6[] = {
368              {
369                  .vaddr = 0xe0000000,
370                  .paddr = 0xf0000000,
371                  .asid = 1,
372                  .attr = 7,
373                  .variable = false,
374              }, {
375                  .vaddr = 0xf0000000,
376                  .paddr = 0xf0000000,
377                  .asid = 1,
378                  .attr = 3,
379                  .variable = false,
380              }
381          };
382          memcpy(entry[5], way5, sizeof(way5));
383          memcpy(entry[6], way6, sizeof(way6));
384      } else {
385          uint32_t ei;
386          for (ei = 0; ei < 8; ++ei) {
387              entry[6][ei].vaddr = ei << 29;
388              entry[6][ei].paddr = ei << 29;
389              entry[6][ei].asid = 1;
390              entry[6][ei].attr = 3;
391          }
392      }
393  }
394  
reset_tlb_region_way0(CPUXtensaState * env,xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])395  static void reset_tlb_region_way0(CPUXtensaState *env,
396                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
397  {
398      unsigned ei;
399  
400      for (ei = 0; ei < 8; ++ei) {
401          entry[0][ei].vaddr = ei << 29;
402          entry[0][ei].paddr = ei << 29;
403          entry[0][ei].asid = 1;
404          entry[0][ei].attr = 2;
405          entry[0][ei].variable = true;
406      }
407  }
408  
reset_mmu(CPUXtensaState * env)409  void reset_mmu(CPUXtensaState *env)
410  {
411      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
412          env->sregs[RASID] = 0x04030201;
413          env->sregs[ITLBCFG] = 0;
414          env->sregs[DTLBCFG] = 0;
415          env->autorefill_idx = 0;
416          reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
417          reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
418          reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
419          reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
420      } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
421          unsigned i;
422  
423          env->sregs[MPUENB] = 0;
424          env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
425          env->sregs[CACHEADRDIS] = 0;
426          assert(env->config->n_mpu_bg_segments > 0 &&
427                 env->config->mpu_bg[0].vaddr == 0);
428          for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
429              assert(env->config->mpu_bg[i].vaddr >=
430                     env->config->mpu_bg[i - 1].vaddr);
431          }
432      } else {
433          env->sregs[CACHEATTR] = 0x22222222;
434          reset_tlb_region_way0(env, env->itlb);
435          reset_tlb_region_way0(env, env->dtlb);
436      }
437  }
438  
get_ring(const CPUXtensaState * env,uint8_t asid)439  static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
440  {
441      unsigned i;
442      for (i = 0; i < 4; ++i) {
443          if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
444              return i;
445          }
446      }
447      return 0xff;
448  }
449  
450  /*!
451   * Lookup xtensa TLB for the given virtual address.
452   * See ISA, 4.6.2.2
453   *
454   * \param pwi: [out] way index
455   * \param pei: [out] entry index
456   * \param pring: [out] access ring
457   * \return 0 if ok, exception cause code otherwise
458   */
xtensa_tlb_lookup(const CPUXtensaState * env,uint32_t addr,bool dtlb,uint32_t * pwi,uint32_t * pei,uint8_t * pring)459  static int xtensa_tlb_lookup(const CPUXtensaState *env,
460                               uint32_t addr, bool dtlb,
461                               uint32_t *pwi, uint32_t *pei, uint8_t *pring)
462  {
463      const xtensa_tlb *tlb = dtlb ?
464          &env->config->dtlb : &env->config->itlb;
465      const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
466          env->dtlb : env->itlb;
467  
468      int nhits = 0;
469      unsigned wi;
470  
471      for (wi = 0; wi < tlb->nways; ++wi) {
472          uint32_t vpn;
473          uint32_t ei;
474          split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
475          if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
476              unsigned ring = get_ring(env, entry[wi][ei].asid);
477              if (ring < 4) {
478                  if (++nhits > 1) {
479                      return dtlb ?
480                          LOAD_STORE_TLB_MULTI_HIT_CAUSE :
481                          INST_TLB_MULTI_HIT_CAUSE;
482                  }
483                  *pwi = wi;
484                  *pei = ei;
485                  *pring = ring;
486              }
487          }
488      }
489      return nhits ? 0 :
490          (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
491  }
492  
HELPER(rtlb0)493  uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
494  {
495      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
496          uint32_t wi;
497          const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
498  
499          if (entry) {
500              return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
501          } else {
502              return 0;
503          }
504      } else {
505          return v & REGION_PAGE_MASK;
506      }
507  }
508  
HELPER(rtlb1)509  uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
510  {
511      const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
512  
513      if (entry) {
514          return entry->paddr | entry->attr;
515      } else {
516          return 0;
517      }
518  }
519  
HELPER(itlb)520  void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
521  {
522      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
523          uint32_t wi;
524          xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
525          if (entry && entry->variable && entry->asid) {
526              tlb_flush_page(env_cpu(env), entry->vaddr);
527              entry->asid = 0;
528          }
529      }
530  }
531  
HELPER(ptlb)532  uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
533  {
534      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
535          uint32_t wi;
536          uint32_t ei;
537          uint8_t ring;
538          int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
539  
540          switch (res) {
541          case 0:
542              if (ring >= xtensa_get_ring(env)) {
543                  return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
544              }
545              break;
546  
547          case INST_TLB_MULTI_HIT_CAUSE:
548          case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
549              HELPER(exception_cause_vaddr)(env, env->pc, res, v);
550              break;
551          }
552          return 0;
553      } else {
554          return (v & REGION_PAGE_MASK) | 0x1;
555      }
556  }
557  
HELPER(wtlb)558  void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
559  {
560      uint32_t vpn;
561      uint32_t wi;
562      uint32_t ei;
563      if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
564          xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
565      }
566  }
567  
568  /*!
569   * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
570   * See ISA, 4.6.5.10
571   */
mmu_attr_to_access(uint32_t attr)572  static unsigned mmu_attr_to_access(uint32_t attr)
573  {
574      unsigned access = 0;
575  
576      if (attr < 12) {
577          access |= PAGE_READ;
578          if (attr & 0x1) {
579              access |= PAGE_EXEC;
580          }
581          if (attr & 0x2) {
582              access |= PAGE_WRITE;
583          }
584  
585          switch (attr & 0xc) {
586          case 0:
587              access |= PAGE_CACHE_BYPASS;
588              break;
589  
590          case 4:
591              access |= PAGE_CACHE_WB;
592              break;
593  
594          case 8:
595              access |= PAGE_CACHE_WT;
596              break;
597          }
598      } else if (attr == 13) {
599          access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
600      }
601      return access;
602  }
603  
604  /*!
605   * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
606   * See ISA, 4.6.3.3
607   */
region_attr_to_access(uint32_t attr)608  static unsigned region_attr_to_access(uint32_t attr)
609  {
610      static const unsigned access[16] = {
611           [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
612           [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
613           [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
614           [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
615           [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
616           [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
617          [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
618      };
619  
620      return access[attr & 0xf];
621  }
622  
623  /*!
624   * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
625   * See ISA, A.2.14 The Cache Attribute Register
626   */
cacheattr_attr_to_access(uint32_t attr)627  static unsigned cacheattr_attr_to_access(uint32_t attr)
628  {
629      static const unsigned access[16] = {
630           [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
631           [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
632           [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
633           [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
634           [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
635          [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
636      };
637  
638      return access[attr & 0xf];
639  }
640  
641  struct attr_pattern {
642      uint32_t mask;
643      uint32_t value;
644  };
645  
attr_pattern_match(uint32_t attr,const struct attr_pattern * pattern,size_t n)646  static int attr_pattern_match(uint32_t attr,
647                                const struct attr_pattern *pattern,
648                                size_t n)
649  {
650      size_t i;
651  
652      for (i = 0; i < n; ++i) {
653          if ((attr & pattern[i].mask) == pattern[i].value) {
654              return 1;
655          }
656      }
657      return 0;
658  }
659  
mpu_attr_to_cpu_cache(uint32_t attr)660  static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
661  {
662      static const struct attr_pattern cpu_c[] = {
663          { .mask = 0x18f, .value = 0x089 },
664          { .mask = 0x188, .value = 0x080 },
665          { .mask = 0x180, .value = 0x180 },
666      };
667  
668      unsigned type = 0;
669  
670      if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
671          type |= XTENSA_MPU_TYPE_CPU_CACHE;
672          if (attr & 0x10) {
673              type |= XTENSA_MPU_TYPE_CPU_C;
674          }
675          if (attr & 0x20) {
676              type |= XTENSA_MPU_TYPE_CPU_W;
677          }
678          if (attr & 0x40) {
679              type |= XTENSA_MPU_TYPE_CPU_R;
680          }
681      }
682      return type;
683  }
684  
mpu_attr_to_type(uint32_t attr)685  static unsigned mpu_attr_to_type(uint32_t attr)
686  {
687      static const struct attr_pattern device_type[] = {
688          { .mask = 0x1f6, .value = 0x000 },
689          { .mask = 0x1f6, .value = 0x006 },
690      };
691      static const struct attr_pattern sys_nc_type[] = {
692          { .mask = 0x1fe, .value = 0x018 },
693          { .mask = 0x1fe, .value = 0x01e },
694          { .mask = 0x18f, .value = 0x089 },
695      };
696      static const struct attr_pattern sys_c_type[] = {
697          { .mask = 0x1f8, .value = 0x010 },
698          { .mask = 0x188, .value = 0x080 },
699          { .mask = 0x1f0, .value = 0x030 },
700          { .mask = 0x180, .value = 0x180 },
701      };
702      static const struct attr_pattern b[] = {
703          { .mask = 0x1f7, .value = 0x001 },
704          { .mask = 0x1f7, .value = 0x007 },
705          { .mask = 0x1ff, .value = 0x019 },
706          { .mask = 0x1ff, .value = 0x01f },
707      };
708  
709      unsigned type = 0;
710  
711      attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
712      if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
713          type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
714          if (attr & 0x80) {
715              type |= XTENSA_MPU_TYPE_INT;
716          }
717      }
718      if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
719          type |= XTENSA_MPU_SYSTEM_TYPE_NC;
720      }
721      if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
722          type |= XTENSA_MPU_SYSTEM_TYPE_C;
723          if (attr & 0x1) {
724              type |= XTENSA_MPU_TYPE_SYS_C;
725          }
726          if (attr & 0x2) {
727              type |= XTENSA_MPU_TYPE_SYS_W;
728          }
729          if (attr & 0x4) {
730              type |= XTENSA_MPU_TYPE_SYS_R;
731          }
732      }
733      if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
734          type |= XTENSA_MPU_TYPE_B;
735      }
736      type |= mpu_attr_to_cpu_cache(attr);
737  
738      return type;
739  }
740  
mpu_attr_to_access(uint32_t attr,unsigned ring)741  static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
742  {
743      static const unsigned access[2][16] = {
744          [0] = {
745               [4] = PAGE_READ,
746               [5] = PAGE_READ              | PAGE_EXEC,
747               [6] = PAGE_READ | PAGE_WRITE,
748               [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
749               [8] =             PAGE_WRITE,
750               [9] = PAGE_READ | PAGE_WRITE,
751              [10] = PAGE_READ | PAGE_WRITE,
752              [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
753              [12] = PAGE_READ,
754              [13] = PAGE_READ              | PAGE_EXEC,
755              [14] = PAGE_READ | PAGE_WRITE,
756              [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
757          },
758          [1] = {
759               [8] =             PAGE_WRITE,
760               [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
761              [10] = PAGE_READ,
762              [11] = PAGE_READ              | PAGE_EXEC,
763              [12] = PAGE_READ,
764              [13] = PAGE_READ              | PAGE_EXEC,
765              [14] = PAGE_READ | PAGE_WRITE,
766              [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
767          },
768      };
769      unsigned rv;
770      unsigned type;
771  
772      type = mpu_attr_to_cpu_cache(attr);
773      rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
774          XTENSA_MPU_ACC_RIGHTS_SHIFT];
775  
776      if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
777          rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
778      } else {
779          rv |= PAGE_CACHE_BYPASS;
780      }
781      return rv;
782  }
783  
is_access_granted(unsigned access,int is_write)784  static bool is_access_granted(unsigned access, int is_write)
785  {
786      switch (is_write) {
787      case 0:
788          return access & PAGE_READ;
789  
790      case 1:
791          return access & PAGE_WRITE;
792  
793      case 2:
794          return access & PAGE_EXEC;
795  
796      default:
797          return 0;
798      }
799  }
800  
801  static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
802  
get_physical_addr_mmu(CPUXtensaState * env,bool update_tlb,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access,bool may_lookup_pt)803  static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
804                                   uint32_t vaddr, int is_write, int mmu_idx,
805                                   uint32_t *paddr, uint32_t *page_size,
806                                   unsigned *access, bool may_lookup_pt)
807  {
808      bool dtlb = is_write != 2;
809      uint32_t wi;
810      uint32_t ei;
811      uint8_t ring;
812      uint32_t vpn;
813      uint32_t pte;
814      const xtensa_tlb_entry *entry = NULL;
815      xtensa_tlb_entry tmp_entry;
816      int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
817  
818      if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
819          may_lookup_pt && get_pte(env, vaddr, &pte)) {
820          ring = (pte >> 4) & 0x3;
821          wi = 0;
822          split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
823  
824          if (update_tlb) {
825              wi = ++env->autorefill_idx & 0x3;
826              xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
827              env->sregs[EXCVADDR] = vaddr;
828              qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
829                            __func__, vaddr, vpn, pte);
830          } else {
831              xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
832              entry = &tmp_entry;
833          }
834          ret = 0;
835      }
836      if (ret != 0) {
837          return ret;
838      }
839  
840      if (entry == NULL) {
841          entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
842      }
843  
844      if (ring < mmu_idx) {
845          return dtlb ?
846              LOAD_STORE_PRIVILEGE_CAUSE :
847              INST_FETCH_PRIVILEGE_CAUSE;
848      }
849  
850      *access = mmu_attr_to_access(entry->attr) &
851          ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
852      if (!is_access_granted(*access, is_write)) {
853          return dtlb ?
854              (is_write ?
855               STORE_PROHIBITED_CAUSE :
856               LOAD_PROHIBITED_CAUSE) :
857              INST_FETCH_PROHIBITED_CAUSE;
858      }
859  
860      *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
861      *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
862  
863      return 0;
864  }
865  
get_pte(CPUXtensaState * env,uint32_t vaddr,uint32_t * pte)866  static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
867  {
868      CPUState *cs = env_cpu(env);
869      uint32_t paddr;
870      uint32_t page_size;
871      unsigned access;
872      uint32_t pt_vaddr =
873          (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
874      int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
875                                      &paddr, &page_size, &access, false);
876  
877      if (ret == 0) {
878          qemu_log_mask(CPU_LOG_MMU,
879                        "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
880                        __func__, vaddr, pt_vaddr, paddr);
881      } else {
882          qemu_log_mask(CPU_LOG_MMU,
883                        "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
884                        __func__, vaddr, pt_vaddr, ret);
885      }
886  
887      if (ret == 0) {
888          MemTxResult result;
889  
890          *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
891                                   &result);
892          if (result != MEMTX_OK) {
893              qemu_log_mask(CPU_LOG_MMU,
894                            "%s: couldn't load PTE: transaction failed (%u)\n",
895                            __func__, (unsigned)result);
896              ret = 1;
897          }
898      }
899      return ret == 0;
900  }
901  
get_physical_addr_region(CPUXtensaState * env,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access)902  static int get_physical_addr_region(CPUXtensaState *env,
903                                      uint32_t vaddr, int is_write, int mmu_idx,
904                                      uint32_t *paddr, uint32_t *page_size,
905                                      unsigned *access)
906  {
907      bool dtlb = is_write != 2;
908      uint32_t wi = 0;
909      uint32_t ei = (vaddr >> 29) & 0x7;
910      const xtensa_tlb_entry *entry =
911          xtensa_tlb_get_entry(env, dtlb, wi, ei);
912  
913      *access = region_attr_to_access(entry->attr);
914      if (!is_access_granted(*access, is_write)) {
915          return dtlb ?
916              (is_write ?
917               STORE_PROHIBITED_CAUSE :
918               LOAD_PROHIBITED_CAUSE) :
919              INST_FETCH_PROHIBITED_CAUSE;
920      }
921  
922      *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
923      *page_size = ~REGION_PAGE_MASK + 1;
924  
925      return 0;
926  }
927  
xtensa_mpu_lookup(const xtensa_mpu_entry * entry,unsigned n,uint32_t vaddr,unsigned * segment)928  static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
929                               uint32_t vaddr, unsigned *segment)
930  {
931      unsigned nhits = 0;
932      unsigned i;
933  
934      for (i = 0; i < n; ++i) {
935          if (vaddr >= entry[i].vaddr &&
936              (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
937              if (nhits++) {
938                  break;
939              }
940              *segment = i;
941          }
942      }
943      return nhits;
944  }
945  
HELPER(wsr_mpuenb)946  void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
947  {
948      v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
949  
950      if (v != env->sregs[MPUENB]) {
951          env->sregs[MPUENB] = v;
952          tlb_flush(env_cpu(env));
953      }
954  }
955  
HELPER(wptlb)956  void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
957  {
958      unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
959  
960      if (segment < env->config->n_mpu_fg_segments) {
961          env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
962          env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
963          env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
964          tlb_flush(env_cpu(env));
965      }
966  }
967  
HELPER(rptlb0)968  uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
969  {
970      unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
971  
972      if (segment < env->config->n_mpu_fg_segments) {
973          return env->mpu_fg[segment].vaddr |
974              extract32(env->sregs[MPUENB], segment, 1);
975      } else {
976          return 0;
977      }
978  }
979  
HELPER(rptlb1)980  uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
981  {
982      unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
983  
984      if (segment < env->config->n_mpu_fg_segments) {
985          return env->mpu_fg[segment].attr;
986      } else {
987          return 0;
988      }
989  }
990  
HELPER(pptlb)991  uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
992  {
993      unsigned nhits;
994      unsigned segment;
995      unsigned bg_segment;
996  
997      nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
998                                v, &segment);
999      if (nhits > 1) {
1000          HELPER(exception_cause_vaddr)(env, env->pc,
1001                                        LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
1002      } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1003          return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
1004      } else {
1005          xtensa_mpu_lookup(env->config->mpu_bg,
1006                            env->config->n_mpu_bg_segments,
1007                            v, &bg_segment);
1008          return env->config->mpu_bg[bg_segment].attr | XTENSA_MPU_PROBE_B;
1009      }
1010  }
1011  
get_physical_addr_mpu(CPUXtensaState * env,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access)1012  static int get_physical_addr_mpu(CPUXtensaState *env,
1013                                   uint32_t vaddr, int is_write, int mmu_idx,
1014                                   uint32_t *paddr, uint32_t *page_size,
1015                                   unsigned *access)
1016  {
1017      unsigned nhits;
1018      unsigned segment;
1019      uint32_t attr;
1020  
1021      nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1022                                vaddr, &segment);
1023      if (nhits > 1) {
1024          return is_write < 2 ?
1025              LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1026              INST_TLB_MULTI_HIT_CAUSE;
1027      } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1028          attr = env->mpu_fg[segment].attr;
1029      } else {
1030          xtensa_mpu_lookup(env->config->mpu_bg,
1031                            env->config->n_mpu_bg_segments,
1032                            vaddr, &segment);
1033          attr = env->config->mpu_bg[segment].attr;
1034      }
1035  
1036      *access = mpu_attr_to_access(attr, mmu_idx);
1037      if (!is_access_granted(*access, is_write)) {
1038          return is_write < 2 ?
1039              (is_write ?
1040               STORE_PROHIBITED_CAUSE :
1041               LOAD_PROHIBITED_CAUSE) :
1042              INST_FETCH_PROHIBITED_CAUSE;
1043      }
1044      *paddr = vaddr;
1045      *page_size = env->config->mpu_align;
1046      return 0;
1047  }
1048  
1049  /*!
1050   * Convert virtual address to physical addr.
1051   * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1052   *
1053   * \return 0 if ok, exception cause code otherwise
1054   */
xtensa_get_physical_addr(CPUXtensaState * env,bool update_tlb,uint32_t vaddr,int is_write,int mmu_idx,uint32_t * paddr,uint32_t * page_size,unsigned * access)1055  int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1056                               uint32_t vaddr, int is_write, int mmu_idx,
1057                               uint32_t *paddr, uint32_t *page_size,
1058                               unsigned *access)
1059  {
1060      if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1061          return get_physical_addr_mmu(env, update_tlb,
1062                                       vaddr, is_write, mmu_idx, paddr,
1063                                       page_size, access, true);
1064      } else if (xtensa_option_bits_enabled(env->config,
1065                  XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1066                  XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1067          return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1068                                          paddr, page_size, access);
1069      } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1070          return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1071                                       paddr, page_size, access);
1072      } else {
1073          *paddr = vaddr;
1074          *page_size = TARGET_PAGE_SIZE;
1075          *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1076                                             ((vaddr & 0xe0000000) >> 27));
1077          return 0;
1078      }
1079  }
1080  
dump_tlb(CPUXtensaState * env,bool dtlb)1081  static void dump_tlb(CPUXtensaState *env, bool dtlb)
1082  {
1083      unsigned wi, ei;
1084      const xtensa_tlb *conf =
1085          dtlb ? &env->config->dtlb : &env->config->itlb;
1086      unsigned (*attr_to_access)(uint32_t) =
1087          xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1088          mmu_attr_to_access : region_attr_to_access;
1089  
1090      for (wi = 0; wi < conf->nways; ++wi) {
1091          uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1092          const char *sz_text;
1093          bool print_header = true;
1094  
1095          if (sz >= 0x100000) {
1096              sz /= MiB;
1097              sz_text = "MB";
1098          } else {
1099              sz /= KiB;
1100              sz_text = "KB";
1101          }
1102  
1103          for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1104              const xtensa_tlb_entry *entry =
1105                  xtensa_tlb_get_entry(env, dtlb, wi, ei);
1106  
1107              if (entry->asid) {
1108                  static const char * const cache_text[8] = {
1109                      [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1110                      [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1111                      [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1112                      [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1113                  };
1114                  unsigned access = attr_to_access(entry->attr);
1115                  unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1116                      PAGE_CACHE_SHIFT;
1117  
1118                  if (print_header) {
1119                      print_header = false;
1120                      qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1121                      qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1122                                  "\t----------  ----------  ----  ---- --- -------\n");
1123                  }
1124                  qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1125                              entry->vaddr,
1126                              entry->paddr,
1127                              entry->asid,
1128                              entry->attr,
1129                              (access & PAGE_READ) ? 'R' : '-',
1130                              (access & PAGE_WRITE) ? 'W' : '-',
1131                              (access & PAGE_EXEC) ? 'X' : '-',
1132                              cache_text[cache_idx] ?
1133                              cache_text[cache_idx] : "Invalid");
1134              }
1135          }
1136      }
1137  }
1138  
dump_mpu(CPUXtensaState * env,const xtensa_mpu_entry * entry,unsigned n)1139  static void dump_mpu(CPUXtensaState *env,
1140                       const xtensa_mpu_entry *entry, unsigned n)
1141  {
1142      unsigned i;
1143  
1144      qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1145                  "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1146                  env ? "En" : "  ",
1147                  env ? "--" : "  ");
1148  
1149      for (i = 0; i < n; ++i) {
1150          uint32_t attr = entry[i].attr;
1151          unsigned access0 = mpu_attr_to_access(attr, 0);
1152          unsigned access1 = mpu_attr_to_access(attr, 1);
1153          unsigned type = mpu_attr_to_type(attr);
1154          char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1155  
1156          qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1157                      env ?
1158                      ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1159                      entry[i].vaddr, attr,
1160                      (access0 & PAGE_READ) ? 'R' : '-',
1161                      (access0 & PAGE_WRITE) ? 'W' : '-',
1162                      (access0 & PAGE_EXEC) ? 'X' : '-',
1163                      (access1 & PAGE_READ) ? 'R' : '-',
1164                      (access1 & PAGE_WRITE) ? 'W' : '-',
1165                      (access1 & PAGE_EXEC) ? 'X' : '-');
1166  
1167          switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1168          case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1169              qemu_printf("Device %cB %3s\n",
1170                          (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1171                          (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1172              break;
1173          case XTENSA_MPU_SYSTEM_TYPE_NC:
1174              qemu_printf("Sys NC %cB      %c%c%c\n",
1175                          (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1176                          (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1177                          (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1178                          (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1179              break;
1180          case XTENSA_MPU_SYSTEM_TYPE_C:
1181              qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1182                          (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1183                          (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1184                          (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1185                          (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1186                          (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1187                          (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1188              break;
1189          default:
1190              qemu_printf("Unknown\n");
1191              break;
1192          }
1193      }
1194  }
1195  
dump_mmu(CPUXtensaState * env)1196  void dump_mmu(CPUXtensaState *env)
1197  {
1198      if (xtensa_option_bits_enabled(env->config,
1199                  XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1200                  XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1201                  XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1202  
1203          qemu_printf("ITLB:\n");
1204          dump_tlb(env, false);
1205          qemu_printf("\nDTLB:\n");
1206          dump_tlb(env, true);
1207      } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1208          qemu_printf("Foreground map:\n");
1209          dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1210          qemu_printf("\nBackground map:\n");
1211          dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1212      } else {
1213          qemu_printf("No TLB for this CPU core\n");
1214      }
1215  }
1216