1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17
18 #include <cluster/masklog.h>
19
20 #include "ocfs2.h"
21
22 #include "alloc.h"
23 #include "aops.h"
24 #include "dlmglue.h"
25 #include "extent_map.h"
26 #include "file.h"
27 #include "inode.h"
28 #include "journal.h"
29 #include "suballoc.h"
30 #include "super.h"
31 #include "symlink.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
34
35 #include "buffer_head_io.h"
36 #include "dir.h"
37 #include "namei.h"
38 #include "sysfile.h"
39
ocfs2_symlink_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
42 {
43 int err = -EIO;
44 int status;
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
49 void *kaddr;
50
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
54
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
56
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
60 goto bail;
61 }
62
63 status = ocfs2_read_inode_block(inode, &bh);
64 if (status < 0) {
65 mlog_errno(status);
66 goto bail;
67 }
68 fe = (struct ocfs2_dinode *) bh->b_data;
69
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
72 err = -ENOMEM;
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
75 goto bail;
76 }
77
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
82 iblock;
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
85 err = -ENOMEM;
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
87 goto bail;
88 }
89
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
97 if (!kaddr) {
98 mlog(ML_ERROR, "couldn't kmap!\n");
99 goto bail;
100 }
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
103 bh_result->b_size);
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
106 }
107 brelse(buffer_cache_bh);
108 }
109
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112
113 err = 0;
114
115 bail:
116 brelse(bh);
117
118 return err;
119 }
120
ocfs2_lock_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
123 {
124 int ret = 0;
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
126
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
130
131 return ret;
132 }
133
ocfs2_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
136 {
137 int err = 0;
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157 &ext_flags);
158 if (err) {
159 mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
160 "block: %llu\n", inode, (unsigned long long)iblock);
161 goto bail;
162 }
163
164 if (max_blocks < count)
165 count = max_blocks;
166
167 /*
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows __block_write_begin() to zero.
172 *
173 * If we see this on a sparse file system, then a truncate has
174 * raced us and removed the cluster. In this case, we clear
175 * the buffers dirty and uptodate bits and let the buffer code
176 * ignore it as a hole.
177 */
178 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
179 clear_buffer_dirty(bh_result);
180 clear_buffer_uptodate(bh_result);
181 goto bail;
182 }
183
184 /* Treat the unwritten extent as a hole for zeroing purposes. */
185 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
186 map_bh(bh_result, inode->i_sb, p_blkno);
187
188 bh_result->b_size = count << inode->i_blkbits;
189
190 if (!ocfs2_sparse_alloc(osb)) {
191 if (p_blkno == 0) {
192 err = -EIO;
193 mlog(ML_ERROR,
194 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195 (unsigned long long)iblock,
196 (unsigned long long)p_blkno,
197 (unsigned long long)OCFS2_I(inode)->ip_blkno);
198 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
199 dump_stack();
200 goto bail;
201 }
202 }
203
204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205
206 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
207 (unsigned long long)past_eof);
208 if (create && (iblock >= past_eof))
209 set_buffer_new(bh_result);
210
211 bail:
212 if (err < 0)
213 err = -EIO;
214
215 return err;
216 }
217
ocfs2_read_inline_data(struct inode * inode,struct page * page,struct buffer_head * di_bh)218 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
219 struct buffer_head *di_bh)
220 {
221 void *kaddr;
222 loff_t size;
223 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224
225 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
226 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
227 (unsigned long long)OCFS2_I(inode)->ip_blkno);
228 return -EROFS;
229 }
230
231 size = i_size_read(inode);
232
233 if (size > PAGE_SIZE ||
234 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
235 ocfs2_error(inode->i_sb,
236 "Inode %llu has with inline data has bad size: %Lu\n",
237 (unsigned long long)OCFS2_I(inode)->ip_blkno,
238 (unsigned long long)size);
239 return -EROFS;
240 }
241
242 kaddr = kmap_atomic(page);
243 if (size)
244 memcpy(kaddr, di->id2.i_data.id_data, size);
245 /* Clear the remaining part of the page */
246 memset(kaddr + size, 0, PAGE_SIZE - size);
247 flush_dcache_page(page);
248 kunmap_atomic(kaddr);
249
250 SetPageUptodate(page);
251
252 return 0;
253 }
254
ocfs2_readpage_inline(struct inode * inode,struct page * page)255 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256 {
257 int ret;
258 struct buffer_head *di_bh = NULL;
259
260 BUG_ON(!PageLocked(page));
261 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262
263 ret = ocfs2_read_inode_block(inode, &di_bh);
264 if (ret) {
265 mlog_errno(ret);
266 goto out;
267 }
268
269 ret = ocfs2_read_inline_data(inode, page, di_bh);
270 out:
271 unlock_page(page);
272
273 brelse(di_bh);
274 return ret;
275 }
276
ocfs2_read_folio(struct file * file,struct folio * folio)277 static int ocfs2_read_folio(struct file *file, struct folio *folio)
278 {
279 struct inode *inode = folio->mapping->host;
280 struct ocfs2_inode_info *oi = OCFS2_I(inode);
281 loff_t start = folio_pos(folio);
282 int ret, unlock = 1;
283
284 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
285
286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
292 }
293
294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295 /*
296 * Unlock the folio and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
298 */
299 ret = AOP_TRUNCATED_PAGE;
300 folio_unlock(folio);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
304 goto out_inode_unlock;
305 }
306
307 /*
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_folio->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313 * and notice that the folio they just read isn't needed.
314 *
315 * XXX sys_readahead() seems to get that wrong?
316 */
317 if (start >= i_size_read(inode)) {
318 folio_zero_segment(folio, 0, folio_size(folio));
319 folio_mark_uptodate(folio);
320 ret = 0;
321 goto out_alloc;
322 }
323
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, &folio->page);
326 else
327 ret = block_read_full_folio(folio, ocfs2_get_block);
328 unlock = 0;
329
330 out_alloc:
331 up_read(&oi->ip_alloc_sem);
332 out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
334 out:
335 if (unlock)
336 folio_unlock(folio);
337 return ret;
338 }
339
340 /*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
ocfs2_readahead(struct readahead_control * rac)349 static void ocfs2_readahead(struct readahead_control *rac)
350 {
351 int ret;
352 struct inode *inode = rac->mapping->host;
353 struct ocfs2_inode_info *oi = OCFS2_I(inode);
354
355 /*
356 * Use the nonblocking flag for the dlm code to avoid page
357 * lock inversion, but don't bother with retrying.
358 */
359 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
360 if (ret)
361 return;
362
363 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
364 goto out_unlock;
365
366 /*
367 * Don't bother with inline-data. There isn't anything
368 * to read-ahead in that case anyway...
369 */
370 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371 goto out_up;
372
373 /*
374 * Check whether a remote node truncated this file - we just
375 * drop out in that case as it's not worth handling here.
376 */
377 if (readahead_pos(rac) >= i_size_read(inode))
378 goto out_up;
379
380 mpage_readahead(rac, ocfs2_get_block);
381
382 out_up:
383 up_read(&oi->ip_alloc_sem);
384 out_unlock:
385 ocfs2_inode_unlock(inode, 0);
386 }
387
388 /* Note: Because we don't support holes, our allocation has
389 * already happened (allocation writes zeros to the file data)
390 * so we don't have to worry about ordered writes in
391 * ocfs2_writepage.
392 *
393 * ->writepage is called during the process of invalidating the page cache
394 * during blocked lock processing. It can't block on any cluster locks
395 * to during block mapping. It's relying on the fact that the block
396 * mapping can't have disappeared under the dirty pages that it is
397 * being asked to write back.
398 */
ocfs2_writepage(struct page * page,struct writeback_control * wbc)399 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 {
401 trace_ocfs2_writepage(
402 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
403 page->index);
404
405 return block_write_full_page(page, ocfs2_get_block, wbc);
406 }
407
408 /* Taken from ext3. We don't necessarily need the full blown
409 * functionality yet, but IMHO it's better to cut and paste the whole
410 * thing so we can avoid introducing our own bugs (and easily pick up
411 * their fixes when they happen) --Mark */
walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))412 int walk_page_buffers( handle_t *handle,
413 struct buffer_head *head,
414 unsigned from,
415 unsigned to,
416 int *partial,
417 int (*fn)( handle_t *handle,
418 struct buffer_head *bh))
419 {
420 struct buffer_head *bh;
421 unsigned block_start, block_end;
422 unsigned blocksize = head->b_size;
423 int err, ret = 0;
424 struct buffer_head *next;
425
426 for ( bh = head, block_start = 0;
427 ret == 0 && (bh != head || !block_start);
428 block_start = block_end, bh = next)
429 {
430 next = bh->b_this_page;
431 block_end = block_start + blocksize;
432 if (block_end <= from || block_start >= to) {
433 if (partial && !buffer_uptodate(bh))
434 *partial = 1;
435 continue;
436 }
437 err = (*fn)(handle, bh);
438 if (!ret)
439 ret = err;
440 }
441 return ret;
442 }
443
ocfs2_bmap(struct address_space * mapping,sector_t block)444 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
445 {
446 sector_t status;
447 u64 p_blkno = 0;
448 int err = 0;
449 struct inode *inode = mapping->host;
450
451 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
452 (unsigned long long)block);
453
454 /*
455 * The swap code (ab-)uses ->bmap to get a block mapping and then
456 * bypasseѕ the file system for actual I/O. We really can't allow
457 * that on refcounted inodes, so we have to skip out here. And yes,
458 * 0 is the magic code for a bmap error..
459 */
460 if (ocfs2_is_refcount_inode(inode))
461 return 0;
462
463 /* We don't need to lock journal system files, since they aren't
464 * accessed concurrently from multiple nodes.
465 */
466 if (!INODE_JOURNAL(inode)) {
467 err = ocfs2_inode_lock(inode, NULL, 0);
468 if (err) {
469 if (err != -ENOENT)
470 mlog_errno(err);
471 goto bail;
472 }
473 down_read(&OCFS2_I(inode)->ip_alloc_sem);
474 }
475
476 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
477 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
478 NULL);
479
480 if (!INODE_JOURNAL(inode)) {
481 up_read(&OCFS2_I(inode)->ip_alloc_sem);
482 ocfs2_inode_unlock(inode, 0);
483 }
484
485 if (err) {
486 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
487 (unsigned long long)block);
488 mlog_errno(err);
489 goto bail;
490 }
491
492 bail:
493 status = err ? 0 : p_blkno;
494
495 return status;
496 }
497
ocfs2_release_folio(struct folio * folio,gfp_t wait)498 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
499 {
500 if (!folio_buffers(folio))
501 return false;
502 return try_to_free_buffers(folio);
503 }
504
ocfs2_figure_cluster_boundaries(struct ocfs2_super * osb,u32 cpos,unsigned int * start,unsigned int * end)505 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
506 u32 cpos,
507 unsigned int *start,
508 unsigned int *end)
509 {
510 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
511
512 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
513 unsigned int cpp;
514
515 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
516
517 cluster_start = cpos % cpp;
518 cluster_start = cluster_start << osb->s_clustersize_bits;
519
520 cluster_end = cluster_start + osb->s_clustersize;
521 }
522
523 BUG_ON(cluster_start > PAGE_SIZE);
524 BUG_ON(cluster_end > PAGE_SIZE);
525
526 if (start)
527 *start = cluster_start;
528 if (end)
529 *end = cluster_end;
530 }
531
532 /*
533 * 'from' and 'to' are the region in the page to avoid zeroing.
534 *
535 * If pagesize > clustersize, this function will avoid zeroing outside
536 * of the cluster boundary.
537 *
538 * from == to == 0 is code for "zero the entire cluster region"
539 */
ocfs2_clear_page_regions(struct page * page,struct ocfs2_super * osb,u32 cpos,unsigned from,unsigned to)540 static void ocfs2_clear_page_regions(struct page *page,
541 struct ocfs2_super *osb, u32 cpos,
542 unsigned from, unsigned to)
543 {
544 void *kaddr;
545 unsigned int cluster_start, cluster_end;
546
547 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
548
549 kaddr = kmap_atomic(page);
550
551 if (from || to) {
552 if (from > cluster_start)
553 memset(kaddr + cluster_start, 0, from - cluster_start);
554 if (to < cluster_end)
555 memset(kaddr + to, 0, cluster_end - to);
556 } else {
557 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
558 }
559
560 kunmap_atomic(kaddr);
561 }
562
563 /*
564 * Nonsparse file systems fully allocate before we get to the write
565 * code. This prevents ocfs2_write() from tagging the write as an
566 * allocating one, which means ocfs2_map_page_blocks() might try to
567 * read-in the blocks at the tail of our file. Avoid reading them by
568 * testing i_size against each block offset.
569 */
ocfs2_should_read_blk(struct inode * inode,struct page * page,unsigned int block_start)570 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
571 unsigned int block_start)
572 {
573 u64 offset = page_offset(page) + block_start;
574
575 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
576 return 1;
577
578 if (i_size_read(inode) > offset)
579 return 1;
580
581 return 0;
582 }
583
584 /*
585 * Some of this taken from __block_write_begin(). We already have our
586 * mapping by now though, and the entire write will be allocating or
587 * it won't, so not much need to use BH_New.
588 *
589 * This will also skip zeroing, which is handled externally.
590 */
ocfs2_map_page_blocks(struct page * page,u64 * p_blkno,struct inode * inode,unsigned int from,unsigned int to,int new)591 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
592 struct inode *inode, unsigned int from,
593 unsigned int to, int new)
594 {
595 int ret = 0;
596 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
597 unsigned int block_end, block_start;
598 unsigned int bsize = i_blocksize(inode);
599
600 if (!page_has_buffers(page))
601 create_empty_buffers(page, bsize, 0);
602
603 head = page_buffers(page);
604 for (bh = head, block_start = 0; bh != head || !block_start;
605 bh = bh->b_this_page, block_start += bsize) {
606 block_end = block_start + bsize;
607
608 clear_buffer_new(bh);
609
610 /*
611 * Ignore blocks outside of our i/o range -
612 * they may belong to unallocated clusters.
613 */
614 if (block_start >= to || block_end <= from) {
615 if (PageUptodate(page))
616 set_buffer_uptodate(bh);
617 continue;
618 }
619
620 /*
621 * For an allocating write with cluster size >= page
622 * size, we always write the entire page.
623 */
624 if (new)
625 set_buffer_new(bh);
626
627 if (!buffer_mapped(bh)) {
628 map_bh(bh, inode->i_sb, *p_blkno);
629 clean_bdev_bh_alias(bh);
630 }
631
632 if (PageUptodate(page)) {
633 set_buffer_uptodate(bh);
634 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
635 !buffer_new(bh) &&
636 ocfs2_should_read_blk(inode, page, block_start) &&
637 (block_start < from || block_end > to)) {
638 bh_read_nowait(bh, 0);
639 *wait_bh++=bh;
640 }
641
642 *p_blkno = *p_blkno + 1;
643 }
644
645 /*
646 * If we issued read requests - let them complete.
647 */
648 while(wait_bh > wait) {
649 wait_on_buffer(*--wait_bh);
650 if (!buffer_uptodate(*wait_bh))
651 ret = -EIO;
652 }
653
654 if (ret == 0 || !new)
655 return ret;
656
657 /*
658 * If we get -EIO above, zero out any newly allocated blocks
659 * to avoid exposing stale data.
660 */
661 bh = head;
662 block_start = 0;
663 do {
664 block_end = block_start + bsize;
665 if (block_end <= from)
666 goto next_bh;
667 if (block_start >= to)
668 break;
669
670 zero_user(page, block_start, bh->b_size);
671 set_buffer_uptodate(bh);
672 mark_buffer_dirty(bh);
673
674 next_bh:
675 block_start = block_end;
676 bh = bh->b_this_page;
677 } while (bh != head);
678
679 return ret;
680 }
681
682 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
683 #define OCFS2_MAX_CTXT_PAGES 1
684 #else
685 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
686 #endif
687
688 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
689
690 struct ocfs2_unwritten_extent {
691 struct list_head ue_node;
692 struct list_head ue_ip_node;
693 u32 ue_cpos;
694 u32 ue_phys;
695 };
696
697 /*
698 * Describe the state of a single cluster to be written to.
699 */
700 struct ocfs2_write_cluster_desc {
701 u32 c_cpos;
702 u32 c_phys;
703 /*
704 * Give this a unique field because c_phys eventually gets
705 * filled.
706 */
707 unsigned c_new;
708 unsigned c_clear_unwritten;
709 unsigned c_needs_zero;
710 };
711
712 struct ocfs2_write_ctxt {
713 /* Logical cluster position / len of write */
714 u32 w_cpos;
715 u32 w_clen;
716
717 /* First cluster allocated in a nonsparse extend */
718 u32 w_first_new_cpos;
719
720 /* Type of caller. Must be one of buffer, mmap, direct. */
721 ocfs2_write_type_t w_type;
722
723 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
724
725 /*
726 * This is true if page_size > cluster_size.
727 *
728 * It triggers a set of special cases during write which might
729 * have to deal with allocating writes to partial pages.
730 */
731 unsigned int w_large_pages;
732
733 /*
734 * Pages involved in this write.
735 *
736 * w_target_page is the page being written to by the user.
737 *
738 * w_pages is an array of pages which always contains
739 * w_target_page, and in the case of an allocating write with
740 * page_size < cluster size, it will contain zero'd and mapped
741 * pages adjacent to w_target_page which need to be written
742 * out in so that future reads from that region will get
743 * zero's.
744 */
745 unsigned int w_num_pages;
746 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
747 struct page *w_target_page;
748
749 /*
750 * w_target_locked is used for page_mkwrite path indicating no unlocking
751 * against w_target_page in ocfs2_write_end_nolock.
752 */
753 unsigned int w_target_locked:1;
754
755 /*
756 * ocfs2_write_end() uses this to know what the real range to
757 * write in the target should be.
758 */
759 unsigned int w_target_from;
760 unsigned int w_target_to;
761
762 /*
763 * We could use journal_current_handle() but this is cleaner,
764 * IMHO -Mark
765 */
766 handle_t *w_handle;
767
768 struct buffer_head *w_di_bh;
769
770 struct ocfs2_cached_dealloc_ctxt w_dealloc;
771
772 struct list_head w_unwritten_list;
773 unsigned int w_unwritten_count;
774 };
775
ocfs2_unlock_and_free_pages(struct page ** pages,int num_pages)776 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
777 {
778 int i;
779
780 for(i = 0; i < num_pages; i++) {
781 if (pages[i]) {
782 unlock_page(pages[i]);
783 mark_page_accessed(pages[i]);
784 put_page(pages[i]);
785 }
786 }
787 }
788
ocfs2_unlock_pages(struct ocfs2_write_ctxt * wc)789 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
790 {
791 int i;
792
793 /*
794 * w_target_locked is only set to true in the page_mkwrite() case.
795 * The intent is to allow us to lock the target page from write_begin()
796 * to write_end(). The caller must hold a ref on w_target_page.
797 */
798 if (wc->w_target_locked) {
799 BUG_ON(!wc->w_target_page);
800 for (i = 0; i < wc->w_num_pages; i++) {
801 if (wc->w_target_page == wc->w_pages[i]) {
802 wc->w_pages[i] = NULL;
803 break;
804 }
805 }
806 mark_page_accessed(wc->w_target_page);
807 put_page(wc->w_target_page);
808 }
809 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
810 }
811
ocfs2_free_unwritten_list(struct inode * inode,struct list_head * head)812 static void ocfs2_free_unwritten_list(struct inode *inode,
813 struct list_head *head)
814 {
815 struct ocfs2_inode_info *oi = OCFS2_I(inode);
816 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
817
818 list_for_each_entry_safe(ue, tmp, head, ue_node) {
819 list_del(&ue->ue_node);
820 spin_lock(&oi->ip_lock);
821 list_del(&ue->ue_ip_node);
822 spin_unlock(&oi->ip_lock);
823 kfree(ue);
824 }
825 }
826
ocfs2_free_write_ctxt(struct inode * inode,struct ocfs2_write_ctxt * wc)827 static void ocfs2_free_write_ctxt(struct inode *inode,
828 struct ocfs2_write_ctxt *wc)
829 {
830 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
831 ocfs2_unlock_pages(wc);
832 brelse(wc->w_di_bh);
833 kfree(wc);
834 }
835
ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt ** wcp,struct ocfs2_super * osb,loff_t pos,unsigned len,ocfs2_write_type_t type,struct buffer_head * di_bh)836 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
837 struct ocfs2_super *osb, loff_t pos,
838 unsigned len, ocfs2_write_type_t type,
839 struct buffer_head *di_bh)
840 {
841 u32 cend;
842 struct ocfs2_write_ctxt *wc;
843
844 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
845 if (!wc)
846 return -ENOMEM;
847
848 wc->w_cpos = pos >> osb->s_clustersize_bits;
849 wc->w_first_new_cpos = UINT_MAX;
850 cend = (pos + len - 1) >> osb->s_clustersize_bits;
851 wc->w_clen = cend - wc->w_cpos + 1;
852 get_bh(di_bh);
853 wc->w_di_bh = di_bh;
854 wc->w_type = type;
855
856 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
857 wc->w_large_pages = 1;
858 else
859 wc->w_large_pages = 0;
860
861 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
862 INIT_LIST_HEAD(&wc->w_unwritten_list);
863
864 *wcp = wc;
865
866 return 0;
867 }
868
869 /*
870 * If a page has any new buffers, zero them out here, and mark them uptodate
871 * and dirty so they'll be written out (in order to prevent uninitialised
872 * block data from leaking). And clear the new bit.
873 */
ocfs2_zero_new_buffers(struct page * page,unsigned from,unsigned to)874 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
875 {
876 unsigned int block_start, block_end;
877 struct buffer_head *head, *bh;
878
879 BUG_ON(!PageLocked(page));
880 if (!page_has_buffers(page))
881 return;
882
883 bh = head = page_buffers(page);
884 block_start = 0;
885 do {
886 block_end = block_start + bh->b_size;
887
888 if (buffer_new(bh)) {
889 if (block_end > from && block_start < to) {
890 if (!PageUptodate(page)) {
891 unsigned start, end;
892
893 start = max(from, block_start);
894 end = min(to, block_end);
895
896 zero_user_segment(page, start, end);
897 set_buffer_uptodate(bh);
898 }
899
900 clear_buffer_new(bh);
901 mark_buffer_dirty(bh);
902 }
903 }
904
905 block_start = block_end;
906 bh = bh->b_this_page;
907 } while (bh != head);
908 }
909
910 /*
911 * Only called when we have a failure during allocating write to write
912 * zero's to the newly allocated region.
913 */
ocfs2_write_failure(struct inode * inode,struct ocfs2_write_ctxt * wc,loff_t user_pos,unsigned user_len)914 static void ocfs2_write_failure(struct inode *inode,
915 struct ocfs2_write_ctxt *wc,
916 loff_t user_pos, unsigned user_len)
917 {
918 int i;
919 unsigned from = user_pos & (PAGE_SIZE - 1),
920 to = user_pos + user_len;
921 struct page *tmppage;
922
923 if (wc->w_target_page)
924 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
925
926 for(i = 0; i < wc->w_num_pages; i++) {
927 tmppage = wc->w_pages[i];
928
929 if (tmppage && page_has_buffers(tmppage)) {
930 if (ocfs2_should_order_data(inode))
931 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
932 user_pos, user_len);
933
934 block_commit_write(tmppage, from, to);
935 }
936 }
937 }
938
ocfs2_prepare_page_for_write(struct inode * inode,u64 * p_blkno,struct ocfs2_write_ctxt * wc,struct page * page,u32 cpos,loff_t user_pos,unsigned user_len,int new)939 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
940 struct ocfs2_write_ctxt *wc,
941 struct page *page, u32 cpos,
942 loff_t user_pos, unsigned user_len,
943 int new)
944 {
945 int ret;
946 unsigned int map_from = 0, map_to = 0;
947 unsigned int cluster_start, cluster_end;
948 unsigned int user_data_from = 0, user_data_to = 0;
949
950 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
951 &cluster_start, &cluster_end);
952
953 /* treat the write as new if the a hole/lseek spanned across
954 * the page boundary.
955 */
956 new = new | ((i_size_read(inode) <= page_offset(page)) &&
957 (page_offset(page) <= user_pos));
958
959 if (page == wc->w_target_page) {
960 map_from = user_pos & (PAGE_SIZE - 1);
961 map_to = map_from + user_len;
962
963 if (new)
964 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
965 cluster_start, cluster_end,
966 new);
967 else
968 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
969 map_from, map_to, new);
970 if (ret) {
971 mlog_errno(ret);
972 goto out;
973 }
974
975 user_data_from = map_from;
976 user_data_to = map_to;
977 if (new) {
978 map_from = cluster_start;
979 map_to = cluster_end;
980 }
981 } else {
982 /*
983 * If we haven't allocated the new page yet, we
984 * shouldn't be writing it out without copying user
985 * data. This is likely a math error from the caller.
986 */
987 BUG_ON(!new);
988
989 map_from = cluster_start;
990 map_to = cluster_end;
991
992 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
993 cluster_start, cluster_end, new);
994 if (ret) {
995 mlog_errno(ret);
996 goto out;
997 }
998 }
999
1000 /*
1001 * Parts of newly allocated pages need to be zero'd.
1002 *
1003 * Above, we have also rewritten 'to' and 'from' - as far as
1004 * the rest of the function is concerned, the entire cluster
1005 * range inside of a page needs to be written.
1006 *
1007 * We can skip this if the page is up to date - it's already
1008 * been zero'd from being read in as a hole.
1009 */
1010 if (new && !PageUptodate(page))
1011 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1012 cpos, user_data_from, user_data_to);
1013
1014 flush_dcache_page(page);
1015
1016 out:
1017 return ret;
1018 }
1019
1020 /*
1021 * This function will only grab one clusters worth of pages.
1022 */
ocfs2_grab_pages_for_write(struct address_space * mapping,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len,int new,struct page * mmap_page)1023 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1024 struct ocfs2_write_ctxt *wc,
1025 u32 cpos, loff_t user_pos,
1026 unsigned user_len, int new,
1027 struct page *mmap_page)
1028 {
1029 int ret = 0, i;
1030 unsigned long start, target_index, end_index, index;
1031 struct inode *inode = mapping->host;
1032 loff_t last_byte;
1033
1034 target_index = user_pos >> PAGE_SHIFT;
1035
1036 /*
1037 * Figure out how many pages we'll be manipulating here. For
1038 * non allocating write, we just change the one
1039 * page. Otherwise, we'll need a whole clusters worth. If we're
1040 * writing past i_size, we only need enough pages to cover the
1041 * last page of the write.
1042 */
1043 if (new) {
1044 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1045 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1046 /*
1047 * We need the index *past* the last page we could possibly
1048 * touch. This is the page past the end of the write or
1049 * i_size, whichever is greater.
1050 */
1051 last_byte = max(user_pos + user_len, i_size_read(inode));
1052 BUG_ON(last_byte < 1);
1053 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1054 if ((start + wc->w_num_pages) > end_index)
1055 wc->w_num_pages = end_index - start;
1056 } else {
1057 wc->w_num_pages = 1;
1058 start = target_index;
1059 }
1060 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1061
1062 for(i = 0; i < wc->w_num_pages; i++) {
1063 index = start + i;
1064
1065 if (index >= target_index && index <= end_index &&
1066 wc->w_type == OCFS2_WRITE_MMAP) {
1067 /*
1068 * ocfs2_pagemkwrite() is a little different
1069 * and wants us to directly use the page
1070 * passed in.
1071 */
1072 lock_page(mmap_page);
1073
1074 /* Exit and let the caller retry */
1075 if (mmap_page->mapping != mapping) {
1076 WARN_ON(mmap_page->mapping);
1077 unlock_page(mmap_page);
1078 ret = -EAGAIN;
1079 goto out;
1080 }
1081
1082 get_page(mmap_page);
1083 wc->w_pages[i] = mmap_page;
1084 wc->w_target_locked = true;
1085 } else if (index >= target_index && index <= end_index &&
1086 wc->w_type == OCFS2_WRITE_DIRECT) {
1087 /* Direct write has no mapping page. */
1088 wc->w_pages[i] = NULL;
1089 continue;
1090 } else {
1091 wc->w_pages[i] = find_or_create_page(mapping, index,
1092 GFP_NOFS);
1093 if (!wc->w_pages[i]) {
1094 ret = -ENOMEM;
1095 mlog_errno(ret);
1096 goto out;
1097 }
1098 }
1099 wait_for_stable_page(wc->w_pages[i]);
1100
1101 if (index == target_index)
1102 wc->w_target_page = wc->w_pages[i];
1103 }
1104 out:
1105 if (ret)
1106 wc->w_target_locked = false;
1107 return ret;
1108 }
1109
1110 /*
1111 * Prepare a single cluster for write one cluster into the file.
1112 */
ocfs2_write_cluster(struct address_space * mapping,u32 * phys,unsigned int new,unsigned int clear_unwritten,unsigned int should_zero,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,u32 cpos,loff_t user_pos,unsigned user_len)1113 static int ocfs2_write_cluster(struct address_space *mapping,
1114 u32 *phys, unsigned int new,
1115 unsigned int clear_unwritten,
1116 unsigned int should_zero,
1117 struct ocfs2_alloc_context *data_ac,
1118 struct ocfs2_alloc_context *meta_ac,
1119 struct ocfs2_write_ctxt *wc, u32 cpos,
1120 loff_t user_pos, unsigned user_len)
1121 {
1122 int ret, i;
1123 u64 p_blkno;
1124 struct inode *inode = mapping->host;
1125 struct ocfs2_extent_tree et;
1126 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1127
1128 if (new) {
1129 u32 tmp_pos;
1130
1131 /*
1132 * This is safe to call with the page locks - it won't take
1133 * any additional semaphores or cluster locks.
1134 */
1135 tmp_pos = cpos;
1136 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1137 &tmp_pos, 1, !clear_unwritten,
1138 wc->w_di_bh, wc->w_handle,
1139 data_ac, meta_ac, NULL);
1140 /*
1141 * This shouldn't happen because we must have already
1142 * calculated the correct meta data allocation required. The
1143 * internal tree allocation code should know how to increase
1144 * transaction credits itself.
1145 *
1146 * If need be, we could handle -EAGAIN for a
1147 * RESTART_TRANS here.
1148 */
1149 mlog_bug_on_msg(ret == -EAGAIN,
1150 "Inode %llu: EAGAIN return during allocation.\n",
1151 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1152 if (ret < 0) {
1153 mlog_errno(ret);
1154 goto out;
1155 }
1156 } else if (clear_unwritten) {
1157 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1158 wc->w_di_bh);
1159 ret = ocfs2_mark_extent_written(inode, &et,
1160 wc->w_handle, cpos, 1, *phys,
1161 meta_ac, &wc->w_dealloc);
1162 if (ret < 0) {
1163 mlog_errno(ret);
1164 goto out;
1165 }
1166 }
1167
1168 /*
1169 * The only reason this should fail is due to an inability to
1170 * find the extent added.
1171 */
1172 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1173 if (ret < 0) {
1174 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1175 "at logical cluster %u",
1176 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1177 goto out;
1178 }
1179
1180 BUG_ON(*phys == 0);
1181
1182 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1183 if (!should_zero)
1184 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1185
1186 for(i = 0; i < wc->w_num_pages; i++) {
1187 int tmpret;
1188
1189 /* This is the direct io target page. */
1190 if (wc->w_pages[i] == NULL) {
1191 p_blkno++;
1192 continue;
1193 }
1194
1195 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1196 wc->w_pages[i], cpos,
1197 user_pos, user_len,
1198 should_zero);
1199 if (tmpret) {
1200 mlog_errno(tmpret);
1201 if (ret == 0)
1202 ret = tmpret;
1203 }
1204 }
1205
1206 /*
1207 * We only have cleanup to do in case of allocating write.
1208 */
1209 if (ret && new)
1210 ocfs2_write_failure(inode, wc, user_pos, user_len);
1211
1212 out:
1213
1214 return ret;
1215 }
1216
ocfs2_write_cluster_by_desc(struct address_space * mapping,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len)1217 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1218 struct ocfs2_alloc_context *data_ac,
1219 struct ocfs2_alloc_context *meta_ac,
1220 struct ocfs2_write_ctxt *wc,
1221 loff_t pos, unsigned len)
1222 {
1223 int ret, i;
1224 loff_t cluster_off;
1225 unsigned int local_len = len;
1226 struct ocfs2_write_cluster_desc *desc;
1227 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1228
1229 for (i = 0; i < wc->w_clen; i++) {
1230 desc = &wc->w_desc[i];
1231
1232 /*
1233 * We have to make sure that the total write passed in
1234 * doesn't extend past a single cluster.
1235 */
1236 local_len = len;
1237 cluster_off = pos & (osb->s_clustersize - 1);
1238 if ((cluster_off + local_len) > osb->s_clustersize)
1239 local_len = osb->s_clustersize - cluster_off;
1240
1241 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1242 desc->c_new,
1243 desc->c_clear_unwritten,
1244 desc->c_needs_zero,
1245 data_ac, meta_ac,
1246 wc, desc->c_cpos, pos, local_len);
1247 if (ret) {
1248 mlog_errno(ret);
1249 goto out;
1250 }
1251
1252 len -= local_len;
1253 pos += local_len;
1254 }
1255
1256 ret = 0;
1257 out:
1258 return ret;
1259 }
1260
1261 /*
1262 * ocfs2_write_end() wants to know which parts of the target page it
1263 * should complete the write on. It's easiest to compute them ahead of
1264 * time when a more complete view of the write is available.
1265 */
ocfs2_set_target_boundaries(struct ocfs2_super * osb,struct ocfs2_write_ctxt * wc,loff_t pos,unsigned len,int alloc)1266 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1267 struct ocfs2_write_ctxt *wc,
1268 loff_t pos, unsigned len, int alloc)
1269 {
1270 struct ocfs2_write_cluster_desc *desc;
1271
1272 wc->w_target_from = pos & (PAGE_SIZE - 1);
1273 wc->w_target_to = wc->w_target_from + len;
1274
1275 if (alloc == 0)
1276 return;
1277
1278 /*
1279 * Allocating write - we may have different boundaries based
1280 * on page size and cluster size.
1281 *
1282 * NOTE: We can no longer compute one value from the other as
1283 * the actual write length and user provided length may be
1284 * different.
1285 */
1286
1287 if (wc->w_large_pages) {
1288 /*
1289 * We only care about the 1st and last cluster within
1290 * our range and whether they should be zero'd or not. Either
1291 * value may be extended out to the start/end of a
1292 * newly allocated cluster.
1293 */
1294 desc = &wc->w_desc[0];
1295 if (desc->c_needs_zero)
1296 ocfs2_figure_cluster_boundaries(osb,
1297 desc->c_cpos,
1298 &wc->w_target_from,
1299 NULL);
1300
1301 desc = &wc->w_desc[wc->w_clen - 1];
1302 if (desc->c_needs_zero)
1303 ocfs2_figure_cluster_boundaries(osb,
1304 desc->c_cpos,
1305 NULL,
1306 &wc->w_target_to);
1307 } else {
1308 wc->w_target_from = 0;
1309 wc->w_target_to = PAGE_SIZE;
1310 }
1311 }
1312
1313 /*
1314 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1315 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1316 * by the direct io procedure.
1317 * If this is a new extent that allocated by direct io, we should mark it in
1318 * the ip_unwritten_list.
1319 */
ocfs2_unwritten_check(struct inode * inode,struct ocfs2_write_ctxt * wc,struct ocfs2_write_cluster_desc * desc)1320 static int ocfs2_unwritten_check(struct inode *inode,
1321 struct ocfs2_write_ctxt *wc,
1322 struct ocfs2_write_cluster_desc *desc)
1323 {
1324 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1325 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1326 int ret = 0;
1327
1328 if (!desc->c_needs_zero)
1329 return 0;
1330
1331 retry:
1332 spin_lock(&oi->ip_lock);
1333 /* Needs not to zero no metter buffer or direct. The one who is zero
1334 * the cluster is doing zero. And he will clear unwritten after all
1335 * cluster io finished. */
1336 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1337 if (desc->c_cpos == ue->ue_cpos) {
1338 BUG_ON(desc->c_new);
1339 desc->c_needs_zero = 0;
1340 desc->c_clear_unwritten = 0;
1341 goto unlock;
1342 }
1343 }
1344
1345 if (wc->w_type != OCFS2_WRITE_DIRECT)
1346 goto unlock;
1347
1348 if (new == NULL) {
1349 spin_unlock(&oi->ip_lock);
1350 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1351 GFP_NOFS);
1352 if (new == NULL) {
1353 ret = -ENOMEM;
1354 goto out;
1355 }
1356 goto retry;
1357 }
1358 /* This direct write will doing zero. */
1359 new->ue_cpos = desc->c_cpos;
1360 new->ue_phys = desc->c_phys;
1361 desc->c_clear_unwritten = 0;
1362 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1363 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1364 wc->w_unwritten_count++;
1365 new = NULL;
1366 unlock:
1367 spin_unlock(&oi->ip_lock);
1368 out:
1369 kfree(new);
1370 return ret;
1371 }
1372
1373 /*
1374 * Populate each single-cluster write descriptor in the write context
1375 * with information about the i/o to be done.
1376 *
1377 * Returns the number of clusters that will have to be allocated, as
1378 * well as a worst case estimate of the number of extent records that
1379 * would have to be created during a write to an unwritten region.
1380 */
ocfs2_populate_write_desc(struct inode * inode,struct ocfs2_write_ctxt * wc,unsigned int * clusters_to_alloc,unsigned int * extents_to_split)1381 static int ocfs2_populate_write_desc(struct inode *inode,
1382 struct ocfs2_write_ctxt *wc,
1383 unsigned int *clusters_to_alloc,
1384 unsigned int *extents_to_split)
1385 {
1386 int ret;
1387 struct ocfs2_write_cluster_desc *desc;
1388 unsigned int num_clusters = 0;
1389 unsigned int ext_flags = 0;
1390 u32 phys = 0;
1391 int i;
1392
1393 *clusters_to_alloc = 0;
1394 *extents_to_split = 0;
1395
1396 for (i = 0; i < wc->w_clen; i++) {
1397 desc = &wc->w_desc[i];
1398 desc->c_cpos = wc->w_cpos + i;
1399
1400 if (num_clusters == 0) {
1401 /*
1402 * Need to look up the next extent record.
1403 */
1404 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1405 &num_clusters, &ext_flags);
1406 if (ret) {
1407 mlog_errno(ret);
1408 goto out;
1409 }
1410
1411 /* We should already CoW the refcountd extent. */
1412 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1413
1414 /*
1415 * Assume worst case - that we're writing in
1416 * the middle of the extent.
1417 *
1418 * We can assume that the write proceeds from
1419 * left to right, in which case the extent
1420 * insert code is smart enough to coalesce the
1421 * next splits into the previous records created.
1422 */
1423 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1424 *extents_to_split = *extents_to_split + 2;
1425 } else if (phys) {
1426 /*
1427 * Only increment phys if it doesn't describe
1428 * a hole.
1429 */
1430 phys++;
1431 }
1432
1433 /*
1434 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1435 * file that got extended. w_first_new_cpos tells us
1436 * where the newly allocated clusters are so we can
1437 * zero them.
1438 */
1439 if (desc->c_cpos >= wc->w_first_new_cpos) {
1440 BUG_ON(phys == 0);
1441 desc->c_needs_zero = 1;
1442 }
1443
1444 desc->c_phys = phys;
1445 if (phys == 0) {
1446 desc->c_new = 1;
1447 desc->c_needs_zero = 1;
1448 desc->c_clear_unwritten = 1;
1449 *clusters_to_alloc = *clusters_to_alloc + 1;
1450 }
1451
1452 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1453 desc->c_clear_unwritten = 1;
1454 desc->c_needs_zero = 1;
1455 }
1456
1457 ret = ocfs2_unwritten_check(inode, wc, desc);
1458 if (ret) {
1459 mlog_errno(ret);
1460 goto out;
1461 }
1462
1463 num_clusters--;
1464 }
1465
1466 ret = 0;
1467 out:
1468 return ret;
1469 }
1470
ocfs2_write_begin_inline(struct address_space * mapping,struct inode * inode,struct ocfs2_write_ctxt * wc)1471 static int ocfs2_write_begin_inline(struct address_space *mapping,
1472 struct inode *inode,
1473 struct ocfs2_write_ctxt *wc)
1474 {
1475 int ret;
1476 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1477 struct page *page;
1478 handle_t *handle;
1479 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1480
1481 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1482 if (IS_ERR(handle)) {
1483 ret = PTR_ERR(handle);
1484 mlog_errno(ret);
1485 goto out;
1486 }
1487
1488 page = find_or_create_page(mapping, 0, GFP_NOFS);
1489 if (!page) {
1490 ocfs2_commit_trans(osb, handle);
1491 ret = -ENOMEM;
1492 mlog_errno(ret);
1493 goto out;
1494 }
1495 /*
1496 * If we don't set w_num_pages then this page won't get unlocked
1497 * and freed on cleanup of the write context.
1498 */
1499 wc->w_pages[0] = wc->w_target_page = page;
1500 wc->w_num_pages = 1;
1501
1502 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1503 OCFS2_JOURNAL_ACCESS_WRITE);
1504 if (ret) {
1505 ocfs2_commit_trans(osb, handle);
1506
1507 mlog_errno(ret);
1508 goto out;
1509 }
1510
1511 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1512 ocfs2_set_inode_data_inline(inode, di);
1513
1514 if (!PageUptodate(page)) {
1515 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1516 if (ret) {
1517 ocfs2_commit_trans(osb, handle);
1518
1519 goto out;
1520 }
1521 }
1522
1523 wc->w_handle = handle;
1524 out:
1525 return ret;
1526 }
1527
ocfs2_size_fits_inline_data(struct buffer_head * di_bh,u64 new_size)1528 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1529 {
1530 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1531
1532 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1533 return 1;
1534 return 0;
1535 }
1536
ocfs2_try_to_write_inline_data(struct address_space * mapping,struct inode * inode,loff_t pos,unsigned len,struct page * mmap_page,struct ocfs2_write_ctxt * wc)1537 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1538 struct inode *inode, loff_t pos,
1539 unsigned len, struct page *mmap_page,
1540 struct ocfs2_write_ctxt *wc)
1541 {
1542 int ret, written = 0;
1543 loff_t end = pos + len;
1544 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1545 struct ocfs2_dinode *di = NULL;
1546
1547 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1548 len, (unsigned long long)pos,
1549 oi->ip_dyn_features);
1550
1551 /*
1552 * Handle inodes which already have inline data 1st.
1553 */
1554 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1555 if (mmap_page == NULL &&
1556 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1557 goto do_inline_write;
1558
1559 /*
1560 * The write won't fit - we have to give this inode an
1561 * inline extent list now.
1562 */
1563 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1564 if (ret)
1565 mlog_errno(ret);
1566 goto out;
1567 }
1568
1569 /*
1570 * Check whether the inode can accept inline data.
1571 */
1572 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1573 return 0;
1574
1575 /*
1576 * Check whether the write can fit.
1577 */
1578 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1579 if (mmap_page ||
1580 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1581 return 0;
1582
1583 do_inline_write:
1584 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1585 if (ret) {
1586 mlog_errno(ret);
1587 goto out;
1588 }
1589
1590 /*
1591 * This signals to the caller that the data can be written
1592 * inline.
1593 */
1594 written = 1;
1595 out:
1596 return written ? written : ret;
1597 }
1598
1599 /*
1600 * This function only does anything for file systems which can't
1601 * handle sparse files.
1602 *
1603 * What we want to do here is fill in any hole between the current end
1604 * of allocation and the end of our write. That way the rest of the
1605 * write path can treat it as an non-allocating write, which has no
1606 * special case code for sparse/nonsparse files.
1607 */
ocfs2_expand_nonsparse_inode(struct inode * inode,struct buffer_head * di_bh,loff_t pos,unsigned len,struct ocfs2_write_ctxt * wc)1608 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1609 struct buffer_head *di_bh,
1610 loff_t pos, unsigned len,
1611 struct ocfs2_write_ctxt *wc)
1612 {
1613 int ret;
1614 loff_t newsize = pos + len;
1615
1616 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1617
1618 if (newsize <= i_size_read(inode))
1619 return 0;
1620
1621 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1622 if (ret)
1623 mlog_errno(ret);
1624
1625 /* There is no wc if this is call from direct. */
1626 if (wc)
1627 wc->w_first_new_cpos =
1628 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629
1630 return ret;
1631 }
1632
ocfs2_zero_tail(struct inode * inode,struct buffer_head * di_bh,loff_t pos)1633 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634 loff_t pos)
1635 {
1636 int ret = 0;
1637
1638 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639 if (pos > i_size_read(inode))
1640 ret = ocfs2_zero_extend(inode, di_bh, pos);
1641
1642 return ret;
1643 }
1644
ocfs2_write_begin_nolock(struct address_space * mapping,loff_t pos,unsigned len,ocfs2_write_type_t type,struct page ** pagep,void ** fsdata,struct buffer_head * di_bh,struct page * mmap_page)1645 int ocfs2_write_begin_nolock(struct address_space *mapping,
1646 loff_t pos, unsigned len, ocfs2_write_type_t type,
1647 struct page **pagep, void **fsdata,
1648 struct buffer_head *di_bh, struct page *mmap_page)
1649 {
1650 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1651 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1652 struct ocfs2_write_ctxt *wc;
1653 struct inode *inode = mapping->host;
1654 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1655 struct ocfs2_dinode *di;
1656 struct ocfs2_alloc_context *data_ac = NULL;
1657 struct ocfs2_alloc_context *meta_ac = NULL;
1658 handle_t *handle;
1659 struct ocfs2_extent_tree et;
1660 int try_free = 1, ret1;
1661
1662 try_again:
1663 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1664 if (ret) {
1665 mlog_errno(ret);
1666 return ret;
1667 }
1668
1669 if (ocfs2_supports_inline_data(osb)) {
1670 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1671 mmap_page, wc);
1672 if (ret == 1) {
1673 ret = 0;
1674 goto success;
1675 }
1676 if (ret < 0) {
1677 mlog_errno(ret);
1678 goto out;
1679 }
1680 }
1681
1682 /* Direct io change i_size late, should not zero tail here. */
1683 if (type != OCFS2_WRITE_DIRECT) {
1684 if (ocfs2_sparse_alloc(osb))
1685 ret = ocfs2_zero_tail(inode, di_bh, pos);
1686 else
1687 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1688 len, wc);
1689 if (ret) {
1690 mlog_errno(ret);
1691 goto out;
1692 }
1693 }
1694
1695 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1696 if (ret < 0) {
1697 mlog_errno(ret);
1698 goto out;
1699 } else if (ret == 1) {
1700 clusters_need = wc->w_clen;
1701 ret = ocfs2_refcount_cow(inode, di_bh,
1702 wc->w_cpos, wc->w_clen, UINT_MAX);
1703 if (ret) {
1704 mlog_errno(ret);
1705 goto out;
1706 }
1707 }
1708
1709 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1710 &extents_to_split);
1711 if (ret) {
1712 mlog_errno(ret);
1713 goto out;
1714 }
1715 clusters_need += clusters_to_alloc;
1716
1717 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1718
1719 trace_ocfs2_write_begin_nolock(
1720 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1721 (long long)i_size_read(inode),
1722 le32_to_cpu(di->i_clusters),
1723 pos, len, type, mmap_page,
1724 clusters_to_alloc, extents_to_split);
1725
1726 /*
1727 * We set w_target_from, w_target_to here so that
1728 * ocfs2_write_end() knows which range in the target page to
1729 * write out. An allocation requires that we write the entire
1730 * cluster range.
1731 */
1732 if (clusters_to_alloc || extents_to_split) {
1733 /*
1734 * XXX: We are stretching the limits of
1735 * ocfs2_lock_allocators(). It greatly over-estimates
1736 * the work to be done.
1737 */
1738 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1739 wc->w_di_bh);
1740 ret = ocfs2_lock_allocators(inode, &et,
1741 clusters_to_alloc, extents_to_split,
1742 &data_ac, &meta_ac);
1743 if (ret) {
1744 mlog_errno(ret);
1745 goto out;
1746 }
1747
1748 if (data_ac)
1749 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1750
1751 credits = ocfs2_calc_extend_credits(inode->i_sb,
1752 &di->id2.i_list);
1753 } else if (type == OCFS2_WRITE_DIRECT)
1754 /* direct write needs not to start trans if no extents alloc. */
1755 goto success;
1756
1757 /*
1758 * We have to zero sparse allocated clusters, unwritten extent clusters,
1759 * and non-sparse clusters we just extended. For non-sparse writes,
1760 * we know zeros will only be needed in the first and/or last cluster.
1761 */
1762 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1763 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1764 cluster_of_pages = 1;
1765 else
1766 cluster_of_pages = 0;
1767
1768 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1769
1770 handle = ocfs2_start_trans(osb, credits);
1771 if (IS_ERR(handle)) {
1772 ret = PTR_ERR(handle);
1773 mlog_errno(ret);
1774 goto out;
1775 }
1776
1777 wc->w_handle = handle;
1778
1779 if (clusters_to_alloc) {
1780 ret = dquot_alloc_space_nodirty(inode,
1781 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1782 if (ret)
1783 goto out_commit;
1784 }
1785
1786 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1787 OCFS2_JOURNAL_ACCESS_WRITE);
1788 if (ret) {
1789 mlog_errno(ret);
1790 goto out_quota;
1791 }
1792
1793 /*
1794 * Fill our page array first. That way we've grabbed enough so
1795 * that we can zero and flush if we error after adding the
1796 * extent.
1797 */
1798 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1799 cluster_of_pages, mmap_page);
1800 if (ret) {
1801 /*
1802 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1803 * the target page. In this case, we exit with no error and no target
1804 * page. This will trigger the caller, page_mkwrite(), to re-try
1805 * the operation.
1806 */
1807 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1808 BUG_ON(wc->w_target_page);
1809 ret = 0;
1810 goto out_quota;
1811 }
1812
1813 mlog_errno(ret);
1814 goto out_quota;
1815 }
1816
1817 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1818 len);
1819 if (ret) {
1820 mlog_errno(ret);
1821 goto out_quota;
1822 }
1823
1824 if (data_ac)
1825 ocfs2_free_alloc_context(data_ac);
1826 if (meta_ac)
1827 ocfs2_free_alloc_context(meta_ac);
1828
1829 success:
1830 if (pagep)
1831 *pagep = wc->w_target_page;
1832 *fsdata = wc;
1833 return 0;
1834 out_quota:
1835 if (clusters_to_alloc)
1836 dquot_free_space(inode,
1837 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1838 out_commit:
1839 ocfs2_commit_trans(osb, handle);
1840
1841 out:
1842 /*
1843 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1844 * even in case of error here like ENOSPC and ENOMEM. So, we need
1845 * to unlock the target page manually to prevent deadlocks when
1846 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1847 * to VM code.
1848 */
1849 if (wc->w_target_locked)
1850 unlock_page(mmap_page);
1851
1852 ocfs2_free_write_ctxt(inode, wc);
1853
1854 if (data_ac) {
1855 ocfs2_free_alloc_context(data_ac);
1856 data_ac = NULL;
1857 }
1858 if (meta_ac) {
1859 ocfs2_free_alloc_context(meta_ac);
1860 meta_ac = NULL;
1861 }
1862
1863 if (ret == -ENOSPC && try_free) {
1864 /*
1865 * Try to free some truncate log so that we can have enough
1866 * clusters to allocate.
1867 */
1868 try_free = 0;
1869
1870 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1871 if (ret1 == 1)
1872 goto try_again;
1873
1874 if (ret1 < 0)
1875 mlog_errno(ret1);
1876 }
1877
1878 return ret;
1879 }
1880
ocfs2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1881 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1882 loff_t pos, unsigned len,
1883 struct page **pagep, void **fsdata)
1884 {
1885 int ret;
1886 struct buffer_head *di_bh = NULL;
1887 struct inode *inode = mapping->host;
1888
1889 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1890 if (ret) {
1891 mlog_errno(ret);
1892 return ret;
1893 }
1894
1895 /*
1896 * Take alloc sem here to prevent concurrent lookups. That way
1897 * the mapping, zeroing and tree manipulation within
1898 * ocfs2_write() will be safe against ->read_folio(). This
1899 * should also serve to lock out allocation from a shared
1900 * writeable region.
1901 */
1902 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1903
1904 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1905 pagep, fsdata, di_bh, NULL);
1906 if (ret) {
1907 mlog_errno(ret);
1908 goto out_fail;
1909 }
1910
1911 brelse(di_bh);
1912
1913 return 0;
1914
1915 out_fail:
1916 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1917
1918 brelse(di_bh);
1919 ocfs2_inode_unlock(inode, 1);
1920
1921 return ret;
1922 }
1923
ocfs2_write_end_inline(struct inode * inode,loff_t pos,unsigned len,unsigned * copied,struct ocfs2_dinode * di,struct ocfs2_write_ctxt * wc)1924 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1925 unsigned len, unsigned *copied,
1926 struct ocfs2_dinode *di,
1927 struct ocfs2_write_ctxt *wc)
1928 {
1929 void *kaddr;
1930
1931 if (unlikely(*copied < len)) {
1932 if (!PageUptodate(wc->w_target_page)) {
1933 *copied = 0;
1934 return;
1935 }
1936 }
1937
1938 kaddr = kmap_atomic(wc->w_target_page);
1939 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1940 kunmap_atomic(kaddr);
1941
1942 trace_ocfs2_write_end_inline(
1943 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1944 (unsigned long long)pos, *copied,
1945 le16_to_cpu(di->id2.i_data.id_count),
1946 le16_to_cpu(di->i_dyn_features));
1947 }
1948
ocfs2_write_end_nolock(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,void * fsdata)1949 int ocfs2_write_end_nolock(struct address_space *mapping,
1950 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1951 {
1952 int i, ret;
1953 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1954 struct inode *inode = mapping->host;
1955 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1956 struct ocfs2_write_ctxt *wc = fsdata;
1957 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1958 handle_t *handle = wc->w_handle;
1959 struct page *tmppage;
1960
1961 BUG_ON(!list_empty(&wc->w_unwritten_list));
1962
1963 if (handle) {
1964 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1965 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1966 if (ret) {
1967 copied = ret;
1968 mlog_errno(ret);
1969 goto out;
1970 }
1971 }
1972
1973 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1974 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1975 goto out_write_size;
1976 }
1977
1978 if (unlikely(copied < len) && wc->w_target_page) {
1979 loff_t new_isize;
1980
1981 if (!PageUptodate(wc->w_target_page))
1982 copied = 0;
1983
1984 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1985 if (new_isize > page_offset(wc->w_target_page))
1986 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1987 start+len);
1988 else {
1989 /*
1990 * When page is fully beyond new isize (data copy
1991 * failed), do not bother zeroing the page. Invalidate
1992 * it instead so that writeback does not get confused
1993 * put page & buffer dirty bits into inconsistent
1994 * state.
1995 */
1996 block_invalidate_folio(page_folio(wc->w_target_page),
1997 0, PAGE_SIZE);
1998 }
1999 }
2000 if (wc->w_target_page)
2001 flush_dcache_page(wc->w_target_page);
2002
2003 for(i = 0; i < wc->w_num_pages; i++) {
2004 tmppage = wc->w_pages[i];
2005
2006 /* This is the direct io target page. */
2007 if (tmppage == NULL)
2008 continue;
2009
2010 if (tmppage == wc->w_target_page) {
2011 from = wc->w_target_from;
2012 to = wc->w_target_to;
2013
2014 BUG_ON(from > PAGE_SIZE ||
2015 to > PAGE_SIZE ||
2016 to < from);
2017 } else {
2018 /*
2019 * Pages adjacent to the target (if any) imply
2020 * a hole-filling write in which case we want
2021 * to flush their entire range.
2022 */
2023 from = 0;
2024 to = PAGE_SIZE;
2025 }
2026
2027 if (page_has_buffers(tmppage)) {
2028 if (handle && ocfs2_should_order_data(inode)) {
2029 loff_t start_byte =
2030 ((loff_t)tmppage->index << PAGE_SHIFT) +
2031 from;
2032 loff_t length = to - from;
2033 ocfs2_jbd2_inode_add_write(handle, inode,
2034 start_byte, length);
2035 }
2036 block_commit_write(tmppage, from, to);
2037 }
2038 }
2039
2040 out_write_size:
2041 /* Direct io do not update i_size here. */
2042 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2043 pos += copied;
2044 if (pos > i_size_read(inode)) {
2045 i_size_write(inode, pos);
2046 mark_inode_dirty(inode);
2047 }
2048 inode->i_blocks = ocfs2_inode_sector_count(inode);
2049 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2050 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2051 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2052 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2053 if (handle)
2054 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2055 }
2056 if (handle)
2057 ocfs2_journal_dirty(handle, wc->w_di_bh);
2058
2059 out:
2060 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2061 * lock, or it will cause a deadlock since journal commit threads holds
2062 * this lock and will ask for the page lock when flushing the data.
2063 * put it here to preserve the unlock order.
2064 */
2065 ocfs2_unlock_pages(wc);
2066
2067 if (handle)
2068 ocfs2_commit_trans(osb, handle);
2069
2070 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2071
2072 brelse(wc->w_di_bh);
2073 kfree(wc);
2074
2075 return copied;
2076 }
2077
ocfs2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2078 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2079 loff_t pos, unsigned len, unsigned copied,
2080 struct page *page, void *fsdata)
2081 {
2082 int ret;
2083 struct inode *inode = mapping->host;
2084
2085 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2086
2087 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2088 ocfs2_inode_unlock(inode, 1);
2089
2090 return ret;
2091 }
2092
2093 struct ocfs2_dio_write_ctxt {
2094 struct list_head dw_zero_list;
2095 unsigned dw_zero_count;
2096 int dw_orphaned;
2097 pid_t dw_writer_pid;
2098 };
2099
2100 static struct ocfs2_dio_write_ctxt *
ocfs2_dio_alloc_write_ctx(struct buffer_head * bh,int * alloc)2101 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2102 {
2103 struct ocfs2_dio_write_ctxt *dwc = NULL;
2104
2105 if (bh->b_private)
2106 return bh->b_private;
2107
2108 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2109 if (dwc == NULL)
2110 return NULL;
2111 INIT_LIST_HEAD(&dwc->dw_zero_list);
2112 dwc->dw_zero_count = 0;
2113 dwc->dw_orphaned = 0;
2114 dwc->dw_writer_pid = task_pid_nr(current);
2115 bh->b_private = dwc;
2116 *alloc = 1;
2117
2118 return dwc;
2119 }
2120
ocfs2_dio_free_write_ctx(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc)2121 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2122 struct ocfs2_dio_write_ctxt *dwc)
2123 {
2124 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2125 kfree(dwc);
2126 }
2127
2128 /*
2129 * TODO: Make this into a generic get_blocks function.
2130 *
2131 * From do_direct_io in direct-io.c:
2132 * "So what we do is to permit the ->get_blocks function to populate
2133 * bh.b_size with the size of IO which is permitted at this offset and
2134 * this i_blkbits."
2135 *
2136 * This function is called directly from get_more_blocks in direct-io.c.
2137 *
2138 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2139 * fs_count, map_bh, dio->rw == WRITE);
2140 */
ocfs2_dio_wr_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)2141 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2142 struct buffer_head *bh_result, int create)
2143 {
2144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2146 struct ocfs2_write_ctxt *wc;
2147 struct ocfs2_write_cluster_desc *desc = NULL;
2148 struct ocfs2_dio_write_ctxt *dwc = NULL;
2149 struct buffer_head *di_bh = NULL;
2150 u64 p_blkno;
2151 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2152 loff_t pos = iblock << i_blkbits;
2153 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2154 unsigned len, total_len = bh_result->b_size;
2155 int ret = 0, first_get_block = 0;
2156
2157 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2158 len = min(total_len, len);
2159
2160 /*
2161 * bh_result->b_size is count in get_more_blocks according to write
2162 * "pos" and "end", we need map twice to return different buffer state:
2163 * 1. area in file size, not set NEW;
2164 * 2. area out file size, set NEW.
2165 *
2166 * iblock endblk
2167 * |--------|---------|---------|---------
2168 * |<-------area in file------->|
2169 */
2170
2171 if ((iblock <= endblk) &&
2172 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2173 len = (endblk - iblock + 1) << i_blkbits;
2174
2175 mlog(0, "get block of %lu at %llu:%u req %u\n",
2176 inode->i_ino, pos, len, total_len);
2177
2178 /*
2179 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2180 * we may need to add it to orphan dir. So can not fall to fast path
2181 * while file size will be changed.
2182 */
2183 if (pos + total_len <= i_size_read(inode)) {
2184
2185 /* This is the fast path for re-write. */
2186 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2187 if (buffer_mapped(bh_result) &&
2188 !buffer_new(bh_result) &&
2189 ret == 0)
2190 goto out;
2191
2192 /* Clear state set by ocfs2_get_block. */
2193 bh_result->b_state = 0;
2194 }
2195
2196 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2197 if (unlikely(dwc == NULL)) {
2198 ret = -ENOMEM;
2199 mlog_errno(ret);
2200 goto out;
2201 }
2202
2203 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2204 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2205 !dwc->dw_orphaned) {
2206 /*
2207 * when we are going to alloc extents beyond file size, add the
2208 * inode to orphan dir, so we can recall those spaces when
2209 * system crashed during write.
2210 */
2211 ret = ocfs2_add_inode_to_orphan(osb, inode);
2212 if (ret < 0) {
2213 mlog_errno(ret);
2214 goto out;
2215 }
2216 dwc->dw_orphaned = 1;
2217 }
2218
2219 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2220 if (ret) {
2221 mlog_errno(ret);
2222 goto out;
2223 }
2224
2225 down_write(&oi->ip_alloc_sem);
2226
2227 if (first_get_block) {
2228 if (ocfs2_sparse_alloc(osb))
2229 ret = ocfs2_zero_tail(inode, di_bh, pos);
2230 else
2231 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2232 total_len, NULL);
2233 if (ret < 0) {
2234 mlog_errno(ret);
2235 goto unlock;
2236 }
2237 }
2238
2239 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2240 OCFS2_WRITE_DIRECT, NULL,
2241 (void **)&wc, di_bh, NULL);
2242 if (ret) {
2243 mlog_errno(ret);
2244 goto unlock;
2245 }
2246
2247 desc = &wc->w_desc[0];
2248
2249 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2250 BUG_ON(p_blkno == 0);
2251 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2252
2253 map_bh(bh_result, inode->i_sb, p_blkno);
2254 bh_result->b_size = len;
2255 if (desc->c_needs_zero)
2256 set_buffer_new(bh_result);
2257
2258 if (iblock > endblk)
2259 set_buffer_new(bh_result);
2260
2261 /* May sleep in end_io. It should not happen in a irq context. So defer
2262 * it to dio work queue. */
2263 set_buffer_defer_completion(bh_result);
2264
2265 if (!list_empty(&wc->w_unwritten_list)) {
2266 struct ocfs2_unwritten_extent *ue = NULL;
2267
2268 ue = list_first_entry(&wc->w_unwritten_list,
2269 struct ocfs2_unwritten_extent,
2270 ue_node);
2271 BUG_ON(ue->ue_cpos != desc->c_cpos);
2272 /* The physical address may be 0, fill it. */
2273 ue->ue_phys = desc->c_phys;
2274
2275 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2276 dwc->dw_zero_count += wc->w_unwritten_count;
2277 }
2278
2279 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2280 BUG_ON(ret != len);
2281 ret = 0;
2282 unlock:
2283 up_write(&oi->ip_alloc_sem);
2284 ocfs2_inode_unlock(inode, 1);
2285 brelse(di_bh);
2286 out:
2287 if (ret < 0)
2288 ret = -EIO;
2289 return ret;
2290 }
2291
ocfs2_dio_end_io_write(struct inode * inode,struct ocfs2_dio_write_ctxt * dwc,loff_t offset,ssize_t bytes)2292 static int ocfs2_dio_end_io_write(struct inode *inode,
2293 struct ocfs2_dio_write_ctxt *dwc,
2294 loff_t offset,
2295 ssize_t bytes)
2296 {
2297 struct ocfs2_cached_dealloc_ctxt dealloc;
2298 struct ocfs2_extent_tree et;
2299 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2300 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2301 struct ocfs2_unwritten_extent *ue = NULL;
2302 struct buffer_head *di_bh = NULL;
2303 struct ocfs2_dinode *di;
2304 struct ocfs2_alloc_context *data_ac = NULL;
2305 struct ocfs2_alloc_context *meta_ac = NULL;
2306 handle_t *handle = NULL;
2307 loff_t end = offset + bytes;
2308 int ret = 0, credits = 0;
2309
2310 ocfs2_init_dealloc_ctxt(&dealloc);
2311
2312 /* We do clear unwritten, delete orphan, change i_size here. If neither
2313 * of these happen, we can skip all this. */
2314 if (list_empty(&dwc->dw_zero_list) &&
2315 end <= i_size_read(inode) &&
2316 !dwc->dw_orphaned)
2317 goto out;
2318
2319 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2320 if (ret < 0) {
2321 mlog_errno(ret);
2322 goto out;
2323 }
2324
2325 down_write(&oi->ip_alloc_sem);
2326
2327 /* Delete orphan before acquire i_rwsem. */
2328 if (dwc->dw_orphaned) {
2329 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2330
2331 end = end > i_size_read(inode) ? end : 0;
2332
2333 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2334 !!end, end);
2335 if (ret < 0)
2336 mlog_errno(ret);
2337 }
2338
2339 di = (struct ocfs2_dinode *)di_bh->b_data;
2340
2341 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2342
2343 /* Attach dealloc with extent tree in case that we may reuse extents
2344 * which are already unlinked from current extent tree due to extent
2345 * rotation and merging.
2346 */
2347 et.et_dealloc = &dealloc;
2348
2349 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2350 &data_ac, &meta_ac);
2351 if (ret) {
2352 mlog_errno(ret);
2353 goto unlock;
2354 }
2355
2356 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2357
2358 handle = ocfs2_start_trans(osb, credits);
2359 if (IS_ERR(handle)) {
2360 ret = PTR_ERR(handle);
2361 mlog_errno(ret);
2362 goto unlock;
2363 }
2364 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2365 OCFS2_JOURNAL_ACCESS_WRITE);
2366 if (ret) {
2367 mlog_errno(ret);
2368 goto commit;
2369 }
2370
2371 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2372 ret = ocfs2_assure_trans_credits(handle, credits);
2373 if (ret < 0) {
2374 mlog_errno(ret);
2375 break;
2376 }
2377 ret = ocfs2_mark_extent_written(inode, &et, handle,
2378 ue->ue_cpos, 1,
2379 ue->ue_phys,
2380 meta_ac, &dealloc);
2381 if (ret < 0) {
2382 mlog_errno(ret);
2383 break;
2384 }
2385 }
2386
2387 if (end > i_size_read(inode)) {
2388 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2389 if (ret < 0)
2390 mlog_errno(ret);
2391 }
2392 commit:
2393 ocfs2_commit_trans(osb, handle);
2394 unlock:
2395 up_write(&oi->ip_alloc_sem);
2396 ocfs2_inode_unlock(inode, 1);
2397 brelse(di_bh);
2398 out:
2399 if (data_ac)
2400 ocfs2_free_alloc_context(data_ac);
2401 if (meta_ac)
2402 ocfs2_free_alloc_context(meta_ac);
2403 ocfs2_run_deallocs(osb, &dealloc);
2404 ocfs2_dio_free_write_ctx(inode, dwc);
2405
2406 return ret;
2407 }
2408
2409 /*
2410 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2411 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2412 * to protect io on one node from truncation on another.
2413 */
ocfs2_dio_end_io(struct kiocb * iocb,loff_t offset,ssize_t bytes,void * private)2414 static int ocfs2_dio_end_io(struct kiocb *iocb,
2415 loff_t offset,
2416 ssize_t bytes,
2417 void *private)
2418 {
2419 struct inode *inode = file_inode(iocb->ki_filp);
2420 int level;
2421 int ret = 0;
2422
2423 /* this io's submitter should not have unlocked this before we could */
2424 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2425
2426 if (bytes <= 0)
2427 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2428 (long long)bytes);
2429 if (private) {
2430 if (bytes > 0)
2431 ret = ocfs2_dio_end_io_write(inode, private, offset,
2432 bytes);
2433 else
2434 ocfs2_dio_free_write_ctx(inode, private);
2435 }
2436
2437 ocfs2_iocb_clear_rw_locked(iocb);
2438
2439 level = ocfs2_iocb_rw_locked_level(iocb);
2440 ocfs2_rw_unlock(inode, level);
2441 return ret;
2442 }
2443
ocfs2_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2444 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2445 {
2446 struct file *file = iocb->ki_filp;
2447 struct inode *inode = file->f_mapping->host;
2448 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2449 get_block_t *get_block;
2450
2451 /*
2452 * Fallback to buffered I/O if we see an inode without
2453 * extents.
2454 */
2455 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2456 return 0;
2457
2458 /* Fallback to buffered I/O if we do not support append dio. */
2459 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2460 !ocfs2_supports_append_dio(osb))
2461 return 0;
2462
2463 if (iov_iter_rw(iter) == READ)
2464 get_block = ocfs2_lock_get_block;
2465 else
2466 get_block = ocfs2_dio_wr_get_block;
2467
2468 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2469 iter, get_block,
2470 ocfs2_dio_end_io, 0);
2471 }
2472
2473 const struct address_space_operations ocfs2_aops = {
2474 .dirty_folio = block_dirty_folio,
2475 .read_folio = ocfs2_read_folio,
2476 .readahead = ocfs2_readahead,
2477 .writepage = ocfs2_writepage,
2478 .write_begin = ocfs2_write_begin,
2479 .write_end = ocfs2_write_end,
2480 .bmap = ocfs2_bmap,
2481 .direct_IO = ocfs2_direct_IO,
2482 .invalidate_folio = block_invalidate_folio,
2483 .release_folio = ocfs2_release_folio,
2484 .migrate_folio = buffer_migrate_folio,
2485 .is_partially_uptodate = block_is_partially_uptodate,
2486 .error_remove_page = generic_error_remove_page,
2487 };
2488