1 /*
2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
4 *
5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52
53 /*
54 * PCI bus number (or SID) is not reliable since the device is usaully
55 * initialized before guest can configure the PCI bridge
56 * (SECONDARY_BUS_NUMBER).
57 */
58 struct vtd_as_key {
59 PCIBus *bus;
60 uint8_t devfn;
61 uint32_t pasid;
62 };
63
64 /* bus/devfn is PCI device's real BDF not the aliased one */
65 struct vtd_hiod_key {
66 PCIBus *bus;
67 uint8_t devfn;
68 };
69
70 struct vtd_iotlb_key {
71 uint64_t gfn;
72 uint32_t pasid;
73 uint16_t sid;
74 uint8_t level;
75 };
76
77 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
78 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
79
vtd_panic_require_caching_mode(void)80 static void vtd_panic_require_caching_mode(void)
81 {
82 error_report("We need to set caching-mode=on for intel-iommu to enable "
83 "device assignment with IOMMU protection.");
84 exit(1);
85 }
86
vtd_define_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val,uint64_t wmask,uint64_t w1cmask)87 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
88 uint64_t wmask, uint64_t w1cmask)
89 {
90 stq_le_p(&s->csr[addr], val);
91 stq_le_p(&s->wmask[addr], wmask);
92 stq_le_p(&s->w1cmask[addr], w1cmask);
93 }
94
vtd_define_quad_wo(IntelIOMMUState * s,hwaddr addr,uint64_t mask)95 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
96 {
97 stq_le_p(&s->womask[addr], mask);
98 }
99
vtd_define_long(IntelIOMMUState * s,hwaddr addr,uint32_t val,uint32_t wmask,uint32_t w1cmask)100 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
101 uint32_t wmask, uint32_t w1cmask)
102 {
103 stl_le_p(&s->csr[addr], val);
104 stl_le_p(&s->wmask[addr], wmask);
105 stl_le_p(&s->w1cmask[addr], w1cmask);
106 }
107
vtd_define_long_wo(IntelIOMMUState * s,hwaddr addr,uint32_t mask)108 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
109 {
110 stl_le_p(&s->womask[addr], mask);
111 }
112
113 /* "External" get/set operations */
vtd_set_quad(IntelIOMMUState * s,hwaddr addr,uint64_t val)114 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
115 {
116 uint64_t oldval = ldq_le_p(&s->csr[addr]);
117 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
118 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
119 stq_le_p(&s->csr[addr],
120 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
121 }
122
vtd_set_long(IntelIOMMUState * s,hwaddr addr,uint32_t val)123 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
124 {
125 uint32_t oldval = ldl_le_p(&s->csr[addr]);
126 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
127 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
128 stl_le_p(&s->csr[addr],
129 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
130 }
131
vtd_get_quad(IntelIOMMUState * s,hwaddr addr)132 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
133 {
134 uint64_t val = ldq_le_p(&s->csr[addr]);
135 uint64_t womask = ldq_le_p(&s->womask[addr]);
136 return val & ~womask;
137 }
138
vtd_get_long(IntelIOMMUState * s,hwaddr addr)139 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
140 {
141 uint32_t val = ldl_le_p(&s->csr[addr]);
142 uint32_t womask = ldl_le_p(&s->womask[addr]);
143 return val & ~womask;
144 }
145
146 /* "Internal" get/set operations */
vtd_get_quad_raw(IntelIOMMUState * s,hwaddr addr)147 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
148 {
149 return ldq_le_p(&s->csr[addr]);
150 }
151
vtd_get_long_raw(IntelIOMMUState * s,hwaddr addr)152 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
153 {
154 return ldl_le_p(&s->csr[addr]);
155 }
156
vtd_set_quad_raw(IntelIOMMUState * s,hwaddr addr,uint64_t val)157 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
158 {
159 stq_le_p(&s->csr[addr], val);
160 }
161
vtd_set_clear_mask_long(IntelIOMMUState * s,hwaddr addr,uint32_t clear,uint32_t mask)162 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
163 uint32_t clear, uint32_t mask)
164 {
165 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
166 stl_le_p(&s->csr[addr], new_val);
167 return new_val;
168 }
169
vtd_set_clear_mask_quad(IntelIOMMUState * s,hwaddr addr,uint64_t clear,uint64_t mask)170 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
171 uint64_t clear, uint64_t mask)
172 {
173 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
174 stq_le_p(&s->csr[addr], new_val);
175 return new_val;
176 }
177
vtd_iommu_lock(IntelIOMMUState * s)178 static inline void vtd_iommu_lock(IntelIOMMUState *s)
179 {
180 qemu_mutex_lock(&s->iommu_lock);
181 }
182
vtd_iommu_unlock(IntelIOMMUState * s)183 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
184 {
185 qemu_mutex_unlock(&s->iommu_lock);
186 }
187
vtd_update_scalable_state(IntelIOMMUState * s)188 static void vtd_update_scalable_state(IntelIOMMUState *s)
189 {
190 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
191
192 if (s->scalable_mode) {
193 s->root_scalable = val & VTD_RTADDR_SMT;
194 }
195 }
196
vtd_update_iq_dw(IntelIOMMUState * s)197 static void vtd_update_iq_dw(IntelIOMMUState *s)
198 {
199 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
200
201 if (s->ecap & VTD_ECAP_SMTS &&
202 val & VTD_IQA_DW_MASK) {
203 s->iq_dw = true;
204 } else {
205 s->iq_dw = false;
206 }
207 }
208
209 /* Whether the address space needs to notify new mappings */
vtd_as_has_map_notifier(VTDAddressSpace * as)210 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
211 {
212 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
213 }
214
215 /* GHashTable functions */
vtd_iotlb_equal(gconstpointer v1,gconstpointer v2)216 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2)
217 {
218 const struct vtd_iotlb_key *key1 = v1;
219 const struct vtd_iotlb_key *key2 = v2;
220
221 return key1->sid == key2->sid &&
222 key1->pasid == key2->pasid &&
223 key1->level == key2->level &&
224 key1->gfn == key2->gfn;
225 }
226
vtd_iotlb_hash(gconstpointer v)227 static guint vtd_iotlb_hash(gconstpointer v)
228 {
229 const struct vtd_iotlb_key *key = v;
230 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) |
231 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT |
232 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT;
233
234 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU));
235 }
236
vtd_as_equal(gconstpointer v1,gconstpointer v2)237 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2)
238 {
239 const struct vtd_as_key *key1 = v1;
240 const struct vtd_as_key *key2 = v2;
241
242 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) &&
243 (key1->pasid == key2->pasid);
244 }
245
246 /*
247 * Note that we use pointer to PCIBus as the key, so hashing/shifting
248 * based on the pointer value is intended. Note that we deal with
249 * collisions through vtd_as_equal().
250 */
vtd_as_hash(gconstpointer v)251 static guint vtd_as_hash(gconstpointer v)
252 {
253 const struct vtd_as_key *key = v;
254 guint value = (guint)(uintptr_t)key->bus;
255
256 return (guint)(value << 8 | key->devfn);
257 }
258
259 /* Same implementation as vtd_as_hash() */
vtd_hiod_hash(gconstpointer v)260 static guint vtd_hiod_hash(gconstpointer v)
261 {
262 return vtd_as_hash(v);
263 }
264
vtd_hiod_equal(gconstpointer v1,gconstpointer v2)265 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2)
266 {
267 const struct vtd_hiod_key *key1 = v1;
268 const struct vtd_hiod_key *key2 = v2;
269
270 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn);
271 }
272
vtd_hiod_destroy(gpointer v)273 static void vtd_hiod_destroy(gpointer v)
274 {
275 object_unref(v);
276 }
277
vtd_hash_remove_by_domain(gpointer key,gpointer value,gpointer user_data)278 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
279 gpointer user_data)
280 {
281 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
282 uint16_t domain_id = *(uint16_t *)user_data;
283 return entry->domain_id == domain_id;
284 }
285
286 /* The shift of an addr for a certain level of paging structure */
vtd_slpt_level_shift(uint32_t level)287 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
288 {
289 assert(level != 0);
290 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
291 }
292
vtd_slpt_level_page_mask(uint32_t level)293 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
294 {
295 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
296 }
297
vtd_hash_remove_by_page(gpointer key,gpointer value,gpointer user_data)298 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
299 gpointer user_data)
300 {
301 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
302 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
303 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
304 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
305 return (entry->domain_id == info->domain_id) &&
306 (((entry->gfn & info->mask) == gfn) ||
307 (entry->gfn == gfn_tlb));
308 }
309
310 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
311 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
312 */
vtd_reset_context_cache_locked(IntelIOMMUState * s)313 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
314 {
315 VTDAddressSpace *vtd_as;
316 GHashTableIter as_it;
317
318 trace_vtd_context_cache_reset();
319
320 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
321
322 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
323 vtd_as->context_cache_entry.context_cache_gen = 0;
324 }
325 s->context_cache_gen = 1;
326 }
327
328 /* Must be called with IOMMU lock held. */
vtd_reset_iotlb_locked(IntelIOMMUState * s)329 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
330 {
331 assert(s->iotlb);
332 g_hash_table_remove_all(s->iotlb);
333 }
334
vtd_reset_iotlb(IntelIOMMUState * s)335 static void vtd_reset_iotlb(IntelIOMMUState *s)
336 {
337 vtd_iommu_lock(s);
338 vtd_reset_iotlb_locked(s);
339 vtd_iommu_unlock(s);
340 }
341
vtd_reset_caches(IntelIOMMUState * s)342 static void vtd_reset_caches(IntelIOMMUState *s)
343 {
344 vtd_iommu_lock(s);
345 vtd_reset_iotlb_locked(s);
346 vtd_reset_context_cache_locked(s);
347 vtd_iommu_unlock(s);
348 }
349
vtd_get_iotlb_gfn(hwaddr addr,uint32_t level)350 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
351 {
352 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
353 }
354
355 /* Must be called with IOMMU lock held */
vtd_lookup_iotlb(IntelIOMMUState * s,uint16_t source_id,uint32_t pasid,hwaddr addr)356 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
357 uint32_t pasid, hwaddr addr)
358 {
359 struct vtd_iotlb_key key;
360 VTDIOTLBEntry *entry;
361 unsigned level;
362
363 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
364 key.gfn = vtd_get_iotlb_gfn(addr, level);
365 key.level = level;
366 key.sid = source_id;
367 key.pasid = pasid;
368 entry = g_hash_table_lookup(s->iotlb, &key);
369 if (entry) {
370 goto out;
371 }
372 }
373
374 out:
375 return entry;
376 }
377
378 /* Must be with IOMMU lock held */
vtd_update_iotlb(IntelIOMMUState * s,uint16_t source_id,uint16_t domain_id,hwaddr addr,uint64_t slpte,uint8_t access_flags,uint32_t level,uint32_t pasid)379 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
380 uint16_t domain_id, hwaddr addr, uint64_t slpte,
381 uint8_t access_flags, uint32_t level,
382 uint32_t pasid)
383 {
384 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
385 struct vtd_iotlb_key *key = g_malloc(sizeof(*key));
386 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
387
388 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
389 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
390 trace_vtd_iotlb_reset("iotlb exceeds size limit");
391 vtd_reset_iotlb_locked(s);
392 }
393
394 entry->gfn = gfn;
395 entry->domain_id = domain_id;
396 entry->slpte = slpte;
397 entry->access_flags = access_flags;
398 entry->mask = vtd_slpt_level_page_mask(level);
399 entry->pasid = pasid;
400
401 key->gfn = gfn;
402 key->sid = source_id;
403 key->level = level;
404 key->pasid = pasid;
405
406 g_hash_table_replace(s->iotlb, key, entry);
407 }
408
409 /* Given the reg addr of both the message data and address, generate an
410 * interrupt via MSI.
411 */
vtd_generate_interrupt(IntelIOMMUState * s,hwaddr mesg_addr_reg,hwaddr mesg_data_reg)412 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
413 hwaddr mesg_data_reg)
414 {
415 MSIMessage msi;
416
417 assert(mesg_data_reg < DMAR_REG_SIZE);
418 assert(mesg_addr_reg < DMAR_REG_SIZE);
419
420 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
421 msi.data = vtd_get_long_raw(s, mesg_data_reg);
422
423 trace_vtd_irq_generate(msi.address, msi.data);
424
425 apic_get_class(NULL)->send_msi(&msi);
426 }
427
428 /* Generate a fault event to software via MSI if conditions are met.
429 * Notice that the value of FSTS_REG being passed to it should be the one
430 * before any update.
431 */
vtd_generate_fault_event(IntelIOMMUState * s,uint32_t pre_fsts)432 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
433 {
434 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
435 pre_fsts & VTD_FSTS_IQE) {
436 error_report_once("There are previous interrupt conditions "
437 "to be serviced by software, fault event "
438 "is not generated");
439 return;
440 }
441 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
442 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
443 error_report_once("Interrupt Mask set, irq is not generated");
444 } else {
445 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
446 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
447 }
448 }
449
450 /* Check if the Fault (F) field of the Fault Recording Register referenced by
451 * @index is Set.
452 */
vtd_is_frcd_set(IntelIOMMUState * s,uint16_t index)453 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
454 {
455 /* Each reg is 128-bit */
456 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
457 addr += 8; /* Access the high 64-bit half */
458
459 assert(index < DMAR_FRCD_REG_NR);
460
461 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
462 }
463
464 /* Update the PPF field of Fault Status Register.
465 * Should be called whenever change the F field of any fault recording
466 * registers.
467 */
vtd_update_fsts_ppf(IntelIOMMUState * s)468 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
469 {
470 uint32_t i;
471 uint32_t ppf_mask = 0;
472
473 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
474 if (vtd_is_frcd_set(s, i)) {
475 ppf_mask = VTD_FSTS_PPF;
476 break;
477 }
478 }
479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
480 trace_vtd_fsts_ppf(!!ppf_mask);
481 }
482
vtd_set_frcd_and_update_ppf(IntelIOMMUState * s,uint16_t index)483 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
484 {
485 /* Each reg is 128-bit */
486 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
487 addr += 8; /* Access the high 64-bit half */
488
489 assert(index < DMAR_FRCD_REG_NR);
490
491 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
492 vtd_update_fsts_ppf(s);
493 }
494
495 /* Must not update F field now, should be done later */
vtd_record_frcd(IntelIOMMUState * s,uint16_t index,uint64_t hi,uint64_t lo)496 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
497 uint64_t hi, uint64_t lo)
498 {
499 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
500
501 assert(index < DMAR_FRCD_REG_NR);
502
503 vtd_set_quad_raw(s, frcd_reg_addr, lo);
504 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
505
506 trace_vtd_frr_new(index, hi, lo);
507 }
508
509 /* Try to collapse multiple pending faults from the same requester */
vtd_try_collapse_fault(IntelIOMMUState * s,uint16_t source_id)510 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
511 {
512 uint32_t i;
513 uint64_t frcd_reg;
514 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
515
516 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
517 frcd_reg = vtd_get_quad_raw(s, addr);
518 if ((frcd_reg & VTD_FRCD_F) &&
519 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
520 return true;
521 }
522 addr += 16; /* 128-bit for each */
523 }
524 return false;
525 }
526
527 /* Log and report an DMAR (address translation) fault to software */
vtd_report_frcd_fault(IntelIOMMUState * s,uint64_t source_id,uint64_t hi,uint64_t lo)528 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id,
529 uint64_t hi, uint64_t lo)
530 {
531 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
532
533 if (fsts_reg & VTD_FSTS_PFO) {
534 error_report_once("New fault is not recorded due to "
535 "Primary Fault Overflow");
536 return;
537 }
538
539 if (vtd_try_collapse_fault(s, source_id)) {
540 error_report_once("New fault is not recorded due to "
541 "compression of faults");
542 return;
543 }
544
545 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
546 error_report_once("Next Fault Recording Reg is used, "
547 "new fault is not recorded, set PFO field");
548 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
549 return;
550 }
551
552 vtd_record_frcd(s, s->next_frcd_reg, hi, lo);
553
554 if (fsts_reg & VTD_FSTS_PPF) {
555 error_report_once("There are pending faults already, "
556 "fault event is not generated");
557 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
558 s->next_frcd_reg++;
559 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
560 s->next_frcd_reg = 0;
561 }
562 } else {
563 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
564 VTD_FSTS_FRI(s->next_frcd_reg));
565 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
566 s->next_frcd_reg++;
567 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
568 s->next_frcd_reg = 0;
569 }
570 /* This case actually cause the PPF to be Set.
571 * So generate fault event (interrupt).
572 */
573 vtd_generate_fault_event(s, fsts_reg);
574 }
575 }
576
577 /* Log and report an DMAR (address translation) fault to software */
vtd_report_dmar_fault(IntelIOMMUState * s,uint16_t source_id,hwaddr addr,VTDFaultReason fault,bool is_write,bool is_pasid,uint32_t pasid)578 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
579 hwaddr addr, VTDFaultReason fault,
580 bool is_write, bool is_pasid,
581 uint32_t pasid)
582 {
583 uint64_t hi, lo;
584
585 assert(fault < VTD_FR_MAX);
586
587 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
588
589 lo = VTD_FRCD_FI(addr);
590 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) |
591 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid);
592 if (!is_write) {
593 hi |= VTD_FRCD_T;
594 }
595
596 vtd_report_frcd_fault(s, source_id, hi, lo);
597 }
598
599
vtd_report_ir_fault(IntelIOMMUState * s,uint64_t source_id,VTDFaultReason fault,uint16_t index)600 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id,
601 VTDFaultReason fault, uint16_t index)
602 {
603 uint64_t hi, lo;
604
605 lo = VTD_FRCD_IR_IDX(index);
606 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
607
608 vtd_report_frcd_fault(s, source_id, hi, lo);
609 }
610
611 /* Handle Invalidation Queue Errors of queued invalidation interface error
612 * conditions.
613 */
vtd_handle_inv_queue_error(IntelIOMMUState * s)614 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
615 {
616 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
617
618 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
619 vtd_generate_fault_event(s, fsts_reg);
620 }
621
622 /* Set the IWC field and try to generate an invalidation completion interrupt */
vtd_generate_completion_event(IntelIOMMUState * s)623 static void vtd_generate_completion_event(IntelIOMMUState *s)
624 {
625 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
626 trace_vtd_inv_desc_wait_irq("One pending, skip current");
627 return;
628 }
629 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
630 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
631 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
632 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
633 "new event not generated");
634 return;
635 } else {
636 /* Generate the interrupt event */
637 trace_vtd_inv_desc_wait_irq("Generating complete event");
638 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
639 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
640 }
641 }
642
vtd_root_entry_present(IntelIOMMUState * s,VTDRootEntry * re,uint8_t devfn)643 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
644 VTDRootEntry *re,
645 uint8_t devfn)
646 {
647 if (s->root_scalable && devfn > UINT8_MAX / 2) {
648 return re->hi & VTD_ROOT_ENTRY_P;
649 }
650
651 return re->lo & VTD_ROOT_ENTRY_P;
652 }
653
vtd_get_root_entry(IntelIOMMUState * s,uint8_t index,VTDRootEntry * re)654 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
655 VTDRootEntry *re)
656 {
657 dma_addr_t addr;
658
659 addr = s->root + index * sizeof(*re);
660 if (dma_memory_read(&address_space_memory, addr,
661 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
662 re->lo = 0;
663 return -VTD_FR_ROOT_TABLE_INV;
664 }
665 re->lo = le64_to_cpu(re->lo);
666 re->hi = le64_to_cpu(re->hi);
667 return 0;
668 }
669
vtd_ce_present(VTDContextEntry * context)670 static inline bool vtd_ce_present(VTDContextEntry *context)
671 {
672 return context->lo & VTD_CONTEXT_ENTRY_P;
673 }
674
vtd_get_context_entry_from_root(IntelIOMMUState * s,VTDRootEntry * re,uint8_t index,VTDContextEntry * ce)675 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
676 VTDRootEntry *re,
677 uint8_t index,
678 VTDContextEntry *ce)
679 {
680 dma_addr_t addr, ce_size;
681
682 /* we have checked that root entry is present */
683 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
684 VTD_CTX_ENTRY_LEGACY_SIZE;
685
686 if (s->root_scalable && index > UINT8_MAX / 2) {
687 index = index & (~VTD_DEVFN_CHECK_MASK);
688 addr = re->hi & VTD_ROOT_ENTRY_CTP;
689 } else {
690 addr = re->lo & VTD_ROOT_ENTRY_CTP;
691 }
692
693 addr = addr + index * ce_size;
694 if (dma_memory_read(&address_space_memory, addr,
695 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
696 return -VTD_FR_CONTEXT_TABLE_INV;
697 }
698
699 ce->lo = le64_to_cpu(ce->lo);
700 ce->hi = le64_to_cpu(ce->hi);
701 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
702 ce->val[2] = le64_to_cpu(ce->val[2]);
703 ce->val[3] = le64_to_cpu(ce->val[3]);
704 }
705 return 0;
706 }
707
vtd_ce_get_slpt_base(VTDContextEntry * ce)708 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
709 {
710 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
711 }
712
vtd_get_slpte_addr(uint64_t slpte,uint8_t aw)713 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
714 {
715 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
716 }
717
718 /* Whether the pte indicates the address of the page frame */
vtd_is_last_slpte(uint64_t slpte,uint32_t level)719 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
720 {
721 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
722 }
723
724 /* Get the content of a spte located in @base_addr[@index] */
vtd_get_slpte(dma_addr_t base_addr,uint32_t index)725 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
726 {
727 uint64_t slpte;
728
729 assert(index < VTD_SL_PT_ENTRY_NR);
730
731 if (dma_memory_read(&address_space_memory,
732 base_addr + index * sizeof(slpte),
733 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
734 slpte = (uint64_t)-1;
735 return slpte;
736 }
737 slpte = le64_to_cpu(slpte);
738 return slpte;
739 }
740
741 /* Given an iova and the level of paging structure, return the offset
742 * of current level.
743 */
vtd_iova_level_offset(uint64_t iova,uint32_t level)744 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
745 {
746 return (iova >> vtd_slpt_level_shift(level)) &
747 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
748 }
749
750 /* Check Capability Register to see if the @level of page-table is supported */
vtd_is_level_supported(IntelIOMMUState * s,uint32_t level)751 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
752 {
753 return VTD_CAP_SAGAW_MASK & s->cap &
754 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
755 }
756
757 /* Return true if check passed, otherwise false */
vtd_pe_type_check(X86IOMMUState * x86_iommu,VTDPASIDEntry * pe)758 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
759 VTDPASIDEntry *pe)
760 {
761 switch (VTD_PE_GET_TYPE(pe)) {
762 case VTD_SM_PASID_ENTRY_FLT:
763 case VTD_SM_PASID_ENTRY_SLT:
764 case VTD_SM_PASID_ENTRY_NESTED:
765 break;
766 case VTD_SM_PASID_ENTRY_PT:
767 if (!x86_iommu->pt_supported) {
768 return false;
769 }
770 break;
771 default:
772 /* Unknown type */
773 return false;
774 }
775 return true;
776 }
777
vtd_pdire_present(VTDPASIDDirEntry * pdire)778 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
779 {
780 return pdire->val & 1;
781 }
782
783 /**
784 * Caller of this function should check present bit if wants
785 * to use pdir entry for further usage except for fpd bit check.
786 */
vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDDirEntry * pdire)787 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
788 uint32_t pasid,
789 VTDPASIDDirEntry *pdire)
790 {
791 uint32_t index;
792 dma_addr_t addr, entry_size;
793
794 index = VTD_PASID_DIR_INDEX(pasid);
795 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
796 addr = pasid_dir_base + index * entry_size;
797 if (dma_memory_read(&address_space_memory, addr,
798 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
799 return -VTD_FR_PASID_TABLE_INV;
800 }
801
802 pdire->val = le64_to_cpu(pdire->val);
803
804 return 0;
805 }
806
vtd_pe_present(VTDPASIDEntry * pe)807 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
808 {
809 return pe->val[0] & VTD_PASID_ENTRY_P;
810 }
811
vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState * s,uint32_t pasid,dma_addr_t addr,VTDPASIDEntry * pe)812 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
813 uint32_t pasid,
814 dma_addr_t addr,
815 VTDPASIDEntry *pe)
816 {
817 uint32_t index;
818 dma_addr_t entry_size;
819 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
820
821 index = VTD_PASID_TABLE_INDEX(pasid);
822 entry_size = VTD_PASID_ENTRY_SIZE;
823 addr = addr + index * entry_size;
824 if (dma_memory_read(&address_space_memory, addr,
825 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
826 return -VTD_FR_PASID_TABLE_INV;
827 }
828 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) {
829 pe->val[i] = le64_to_cpu(pe->val[i]);
830 }
831
832 /* Do translation type check */
833 if (!vtd_pe_type_check(x86_iommu, pe)) {
834 return -VTD_FR_PASID_TABLE_INV;
835 }
836
837 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
838 return -VTD_FR_PASID_TABLE_INV;
839 }
840
841 return 0;
842 }
843
844 /**
845 * Caller of this function should check present bit if wants
846 * to use pasid entry for further usage except for fpd bit check.
847 */
vtd_get_pe_from_pdire(IntelIOMMUState * s,uint32_t pasid,VTDPASIDDirEntry * pdire,VTDPASIDEntry * pe)848 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
849 uint32_t pasid,
850 VTDPASIDDirEntry *pdire,
851 VTDPASIDEntry *pe)
852 {
853 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
854
855 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
856 }
857
858 /**
859 * This function gets a pasid entry from a specified pasid
860 * table (includes dir and leaf table) with a specified pasid.
861 * Sanity check should be done to ensure return a present
862 * pasid entry to caller.
863 */
vtd_get_pe_from_pasid_table(IntelIOMMUState * s,dma_addr_t pasid_dir_base,uint32_t pasid,VTDPASIDEntry * pe)864 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
865 dma_addr_t pasid_dir_base,
866 uint32_t pasid,
867 VTDPASIDEntry *pe)
868 {
869 int ret;
870 VTDPASIDDirEntry pdire;
871
872 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
873 pasid, &pdire);
874 if (ret) {
875 return ret;
876 }
877
878 if (!vtd_pdire_present(&pdire)) {
879 return -VTD_FR_PASID_TABLE_INV;
880 }
881
882 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
883 if (ret) {
884 return ret;
885 }
886
887 if (!vtd_pe_present(pe)) {
888 return -VTD_FR_PASID_TABLE_INV;
889 }
890
891 return 0;
892 }
893
vtd_ce_get_rid2pasid_entry(IntelIOMMUState * s,VTDContextEntry * ce,VTDPASIDEntry * pe,uint32_t pasid)894 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
895 VTDContextEntry *ce,
896 VTDPASIDEntry *pe,
897 uint32_t pasid)
898 {
899 dma_addr_t pasid_dir_base;
900 int ret = 0;
901
902 if (pasid == PCI_NO_PASID) {
903 pasid = VTD_CE_GET_RID2PASID(ce);
904 }
905 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
906 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
907
908 return ret;
909 }
910
vtd_ce_get_pasid_fpd(IntelIOMMUState * s,VTDContextEntry * ce,bool * pe_fpd_set,uint32_t pasid)911 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
912 VTDContextEntry *ce,
913 bool *pe_fpd_set,
914 uint32_t pasid)
915 {
916 int ret;
917 dma_addr_t pasid_dir_base;
918 VTDPASIDDirEntry pdire;
919 VTDPASIDEntry pe;
920
921 if (pasid == PCI_NO_PASID) {
922 pasid = VTD_CE_GET_RID2PASID(ce);
923 }
924 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
925
926 /*
927 * No present bit check since fpd is meaningful even
928 * if the present bit is clear.
929 */
930 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
931 if (ret) {
932 return ret;
933 }
934
935 if (pdire.val & VTD_PASID_DIR_FPD) {
936 *pe_fpd_set = true;
937 return 0;
938 }
939
940 if (!vtd_pdire_present(&pdire)) {
941 return -VTD_FR_PASID_TABLE_INV;
942 }
943
944 /*
945 * No present bit check since fpd is meaningful even
946 * if the present bit is clear.
947 */
948 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
949 if (ret) {
950 return ret;
951 }
952
953 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
954 *pe_fpd_set = true;
955 }
956
957 return 0;
958 }
959
960 /* Get the page-table level that hardware should use for the second-level
961 * page-table walk from the Address Width field of context-entry.
962 */
vtd_ce_get_level(VTDContextEntry * ce)963 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
964 {
965 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
966 }
967
vtd_get_iova_level(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)968 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
969 VTDContextEntry *ce,
970 uint32_t pasid)
971 {
972 VTDPASIDEntry pe;
973
974 if (s->root_scalable) {
975 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
976 return VTD_PE_GET_LEVEL(&pe);
977 }
978
979 return vtd_ce_get_level(ce);
980 }
981
vtd_ce_get_agaw(VTDContextEntry * ce)982 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
983 {
984 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
985 }
986
vtd_get_iova_agaw(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)987 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
988 VTDContextEntry *ce,
989 uint32_t pasid)
990 {
991 VTDPASIDEntry pe;
992
993 if (s->root_scalable) {
994 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
995 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
996 }
997
998 return vtd_ce_get_agaw(ce);
999 }
1000
vtd_ce_get_type(VTDContextEntry * ce)1001 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
1002 {
1003 return ce->lo & VTD_CONTEXT_ENTRY_TT;
1004 }
1005
1006 /* Only for Legacy Mode. Return true if check passed, otherwise false */
vtd_ce_type_check(X86IOMMUState * x86_iommu,VTDContextEntry * ce)1007 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
1008 VTDContextEntry *ce)
1009 {
1010 switch (vtd_ce_get_type(ce)) {
1011 case VTD_CONTEXT_TT_MULTI_LEVEL:
1012 /* Always supported */
1013 break;
1014 case VTD_CONTEXT_TT_DEV_IOTLB:
1015 if (!x86_iommu->dt_supported) {
1016 error_report_once("%s: DT specified but not supported", __func__);
1017 return false;
1018 }
1019 break;
1020 case VTD_CONTEXT_TT_PASS_THROUGH:
1021 if (!x86_iommu->pt_supported) {
1022 error_report_once("%s: PT specified but not supported", __func__);
1023 return false;
1024 }
1025 break;
1026 default:
1027 /* Unknown type */
1028 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
1029 vtd_ce_get_type(ce));
1030 return false;
1031 }
1032 return true;
1033 }
1034
vtd_iova_limit(IntelIOMMUState * s,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1035 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
1036 VTDContextEntry *ce, uint8_t aw,
1037 uint32_t pasid)
1038 {
1039 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid);
1040 return 1ULL << MIN(ce_agaw, aw);
1041 }
1042
1043 /* Return true if IOVA passes range check, otherwise false. */
vtd_iova_range_check(IntelIOMMUState * s,uint64_t iova,VTDContextEntry * ce,uint8_t aw,uint32_t pasid)1044 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
1045 uint64_t iova, VTDContextEntry *ce,
1046 uint8_t aw, uint32_t pasid)
1047 {
1048 /*
1049 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
1050 * in CAP_REG and AW in context-entry.
1051 */
1052 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1));
1053 }
1054
vtd_get_iova_pgtbl_base(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1055 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
1056 VTDContextEntry *ce,
1057 uint32_t pasid)
1058 {
1059 VTDPASIDEntry pe;
1060
1061 if (s->root_scalable) {
1062 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1063 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
1064 }
1065
1066 return vtd_ce_get_slpt_base(ce);
1067 }
1068
1069 /*
1070 * Rsvd field masks for spte:
1071 * vtd_spte_rsvd 4k pages
1072 * vtd_spte_rsvd_large large pages
1073 *
1074 * We support only 3-level and 4-level page tables (see vtd_init() which
1075 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap).
1076 */
1077 #define VTD_SPTE_RSVD_LEN 5
1078 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN];
1079 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN];
1080
vtd_slpte_nonzero_rsvd(uint64_t slpte,uint32_t level)1081 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
1082 {
1083 uint64_t rsvd_mask;
1084
1085 /*
1086 * We should have caught a guest-mis-programmed level earlier,
1087 * via vtd_is_level_supported.
1088 */
1089 assert(level < VTD_SPTE_RSVD_LEN);
1090 /*
1091 * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and
1092 * checked by vtd_is_last_slpte().
1093 */
1094 assert(level);
1095
1096 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
1097 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
1098 /* large page */
1099 rsvd_mask = vtd_spte_rsvd_large[level];
1100 } else {
1101 rsvd_mask = vtd_spte_rsvd[level];
1102 }
1103
1104 return slpte & rsvd_mask;
1105 }
1106
1107 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1108 * of the translation, can be used for deciding the size of large page.
1109 */
vtd_iova_to_slpte(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t iova,bool is_write,uint64_t * slptep,uint32_t * slpte_level,bool * reads,bool * writes,uint8_t aw_bits,uint32_t pasid)1110 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1111 uint64_t iova, bool is_write,
1112 uint64_t *slptep, uint32_t *slpte_level,
1113 bool *reads, bool *writes, uint8_t aw_bits,
1114 uint32_t pasid)
1115 {
1116 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1117 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1118 uint32_t offset;
1119 uint64_t slpte;
1120 uint64_t access_right_check;
1121 uint64_t xlat, size;
1122
1123 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) {
1124 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ","
1125 "pasid=0x%" PRIx32 ")", __func__, iova, pasid);
1126 return -VTD_FR_ADDR_BEYOND_MGAW;
1127 }
1128
1129 /* FIXME: what is the Atomics request here? */
1130 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1131
1132 while (true) {
1133 offset = vtd_iova_level_offset(iova, level);
1134 slpte = vtd_get_slpte(addr, offset);
1135
1136 if (slpte == (uint64_t)-1) {
1137 error_report_once("%s: detected read error on DMAR slpte "
1138 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")",
1139 __func__, iova, pasid);
1140 if (level == vtd_get_iova_level(s, ce, pasid)) {
1141 /* Invalid programming of context-entry */
1142 return -VTD_FR_CONTEXT_ENTRY_INV;
1143 } else {
1144 return -VTD_FR_PAGING_ENTRY_INV;
1145 }
1146 }
1147 *reads = (*reads) && (slpte & VTD_SL_R);
1148 *writes = (*writes) && (slpte & VTD_SL_W);
1149 if (!(slpte & access_right_check)) {
1150 error_report_once("%s: detected slpte permission error "
1151 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1152 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%"
1153 PRIx32 ")", __func__, iova, level,
1154 slpte, is_write, pasid);
1155 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1156 }
1157 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1158 error_report_once("%s: detected splte reserve non-zero "
1159 "iova=0x%" PRIx64 ", level=0x%" PRIx32
1160 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")",
1161 __func__, iova, level, slpte, pasid);
1162 return -VTD_FR_PAGING_ENTRY_RSVD;
1163 }
1164
1165 if (vtd_is_last_slpte(slpte, level)) {
1166 *slptep = slpte;
1167 *slpte_level = level;
1168 break;
1169 }
1170 addr = vtd_get_slpte_addr(slpte, aw_bits);
1171 level--;
1172 }
1173
1174 xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1175 size = ~vtd_slpt_level_page_mask(level) + 1;
1176
1177 /*
1178 * From VT-d spec 3.14: Untranslated requests and translation
1179 * requests that result in an address in the interrupt range will be
1180 * blocked with condition code LGN.4 or SGN.8.
1181 */
1182 if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1183 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1184 return 0;
1185 } else {
1186 error_report_once("%s: xlat address is in interrupt range "
1187 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1188 "slpte=0x%" PRIx64 ", write=%d, "
1189 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", "
1190 "pasid=0x%" PRIx32 ")",
1191 __func__, iova, level, slpte, is_write,
1192 xlat, size, pasid);
1193 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1194 -VTD_FR_INTERRUPT_ADDR;
1195 }
1196 }
1197
1198 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private);
1199
1200 /**
1201 * Constant information used during page walking
1202 *
1203 * @hook_fn: hook func to be called when detected page
1204 * @private: private data to be passed into hook func
1205 * @notify_unmap: whether we should notify invalid entries
1206 * @as: VT-d address space of the device
1207 * @aw: maximum address width
1208 * @domain: domain ID of the page walk
1209 */
1210 typedef struct {
1211 VTDAddressSpace *as;
1212 vtd_page_walk_hook hook_fn;
1213 void *private;
1214 bool notify_unmap;
1215 uint8_t aw;
1216 uint16_t domain_id;
1217 } vtd_page_walk_info;
1218
vtd_page_walk_one(IOMMUTLBEvent * event,vtd_page_walk_info * info)1219 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1220 {
1221 VTDAddressSpace *as = info->as;
1222 vtd_page_walk_hook hook_fn = info->hook_fn;
1223 void *private = info->private;
1224 IOMMUTLBEntry *entry = &event->entry;
1225 DMAMap target = {
1226 .iova = entry->iova,
1227 .size = entry->addr_mask,
1228 .translated_addr = entry->translated_addr,
1229 .perm = entry->perm,
1230 };
1231 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1232
1233 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1234 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1235 return 0;
1236 }
1237
1238 assert(hook_fn);
1239
1240 /* Update local IOVA mapped ranges */
1241 if (event->type == IOMMU_NOTIFIER_MAP) {
1242 if (mapped) {
1243 /* If it's exactly the same translation, skip */
1244 if (!memcmp(mapped, &target, sizeof(target))) {
1245 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1246 entry->translated_addr);
1247 return 0;
1248 } else {
1249 /*
1250 * Translation changed. Normally this should not
1251 * happen, but it can happen when with buggy guest
1252 * OSes. Note that there will be a small window that
1253 * we don't have map at all. But that's the best
1254 * effort we can do. The ideal way to emulate this is
1255 * atomically modify the PTE to follow what has
1256 * changed, but we can't. One example is that vfio
1257 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1258 * interface to modify a mapping (meanwhile it seems
1259 * meaningless to even provide one). Anyway, let's
1260 * mark this as a TODO in case one day we'll have
1261 * a better solution.
1262 */
1263 IOMMUAccessFlags cache_perm = entry->perm;
1264 int ret;
1265
1266 /* Emulate an UNMAP */
1267 event->type = IOMMU_NOTIFIER_UNMAP;
1268 entry->perm = IOMMU_NONE;
1269 trace_vtd_page_walk_one(info->domain_id,
1270 entry->iova,
1271 entry->translated_addr,
1272 entry->addr_mask,
1273 entry->perm);
1274 ret = hook_fn(event, private);
1275 if (ret) {
1276 return ret;
1277 }
1278 /* Drop any existing mapping */
1279 iova_tree_remove(as->iova_tree, target);
1280 /* Recover the correct type */
1281 event->type = IOMMU_NOTIFIER_MAP;
1282 entry->perm = cache_perm;
1283 }
1284 }
1285 iova_tree_insert(as->iova_tree, &target);
1286 } else {
1287 if (!mapped) {
1288 /* Skip since we didn't map this range at all */
1289 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1290 return 0;
1291 }
1292 iova_tree_remove(as->iova_tree, target);
1293 }
1294
1295 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1296 entry->translated_addr, entry->addr_mask,
1297 entry->perm);
1298 return hook_fn(event, private);
1299 }
1300
1301 /**
1302 * vtd_page_walk_level - walk over specific level for IOVA range
1303 *
1304 * @addr: base GPA addr to start the walk
1305 * @start: IOVA range start address
1306 * @end: IOVA range end address (start <= addr < end)
1307 * @read: whether parent level has read permission
1308 * @write: whether parent level has write permission
1309 * @info: constant information for the page walk
1310 */
vtd_page_walk_level(dma_addr_t addr,uint64_t start,uint64_t end,uint32_t level,bool read,bool write,vtd_page_walk_info * info)1311 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1312 uint64_t end, uint32_t level, bool read,
1313 bool write, vtd_page_walk_info *info)
1314 {
1315 bool read_cur, write_cur, entry_valid;
1316 uint32_t offset;
1317 uint64_t slpte;
1318 uint64_t subpage_size, subpage_mask;
1319 IOMMUTLBEvent event;
1320 uint64_t iova = start;
1321 uint64_t iova_next;
1322 int ret = 0;
1323
1324 trace_vtd_page_walk_level(addr, level, start, end);
1325
1326 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1327 subpage_mask = vtd_slpt_level_page_mask(level);
1328
1329 while (iova < end) {
1330 iova_next = (iova & subpage_mask) + subpage_size;
1331
1332 offset = vtd_iova_level_offset(iova, level);
1333 slpte = vtd_get_slpte(addr, offset);
1334
1335 if (slpte == (uint64_t)-1) {
1336 trace_vtd_page_walk_skip_read(iova, iova_next);
1337 goto next;
1338 }
1339
1340 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1341 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1342 goto next;
1343 }
1344
1345 /* Permissions are stacked with parents' */
1346 read_cur = read && (slpte & VTD_SL_R);
1347 write_cur = write && (slpte & VTD_SL_W);
1348
1349 /*
1350 * As long as we have either read/write permission, this is a
1351 * valid entry. The rule works for both page entries and page
1352 * table entries.
1353 */
1354 entry_valid = read_cur | write_cur;
1355
1356 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1357 /*
1358 * This is a valid PDE (or even bigger than PDE). We need
1359 * to walk one further level.
1360 */
1361 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1362 iova, MIN(iova_next, end), level - 1,
1363 read_cur, write_cur, info);
1364 } else {
1365 /*
1366 * This means we are either:
1367 *
1368 * (1) the real page entry (either 4K page, or huge page)
1369 * (2) the whole range is invalid
1370 *
1371 * In either case, we send an IOTLB notification down.
1372 */
1373 event.entry.target_as = &address_space_memory;
1374 event.entry.iova = iova & subpage_mask;
1375 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1376 event.entry.addr_mask = ~subpage_mask;
1377 /* NOTE: this is only meaningful if entry_valid == true */
1378 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1379 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1380 IOMMU_NOTIFIER_UNMAP;
1381 ret = vtd_page_walk_one(&event, info);
1382 }
1383
1384 if (ret < 0) {
1385 return ret;
1386 }
1387
1388 next:
1389 iova = iova_next;
1390 }
1391
1392 return 0;
1393 }
1394
1395 /**
1396 * vtd_page_walk - walk specific IOVA range, and call the hook
1397 *
1398 * @s: intel iommu state
1399 * @ce: context entry to walk upon
1400 * @start: IOVA address to start the walk
1401 * @end: IOVA range end address (start <= addr < end)
1402 * @info: page walking information struct
1403 */
vtd_page_walk(IntelIOMMUState * s,VTDContextEntry * ce,uint64_t start,uint64_t end,vtd_page_walk_info * info,uint32_t pasid)1404 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1405 uint64_t start, uint64_t end,
1406 vtd_page_walk_info *info,
1407 uint32_t pasid)
1408 {
1409 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid);
1410 uint32_t level = vtd_get_iova_level(s, ce, pasid);
1411
1412 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) {
1413 return -VTD_FR_ADDR_BEYOND_MGAW;
1414 }
1415
1416 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) {
1417 /* Fix end so that it reaches the maximum */
1418 end = vtd_iova_limit(s, ce, info->aw, pasid);
1419 }
1420
1421 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1422 }
1423
vtd_root_entry_rsvd_bits_check(IntelIOMMUState * s,VTDRootEntry * re)1424 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1425 VTDRootEntry *re)
1426 {
1427 /* Legacy Mode reserved bits check */
1428 if (!s->root_scalable &&
1429 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1430 goto rsvd_err;
1431
1432 /* Scalable Mode reserved bits check */
1433 if (s->root_scalable &&
1434 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1435 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1436 goto rsvd_err;
1437
1438 return 0;
1439
1440 rsvd_err:
1441 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1442 ", lo=0x%"PRIx64,
1443 __func__, re->hi, re->lo);
1444 return -VTD_FR_ROOT_ENTRY_RSVD;
1445 }
1446
vtd_context_entry_rsvd_bits_check(IntelIOMMUState * s,VTDContextEntry * ce)1447 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1448 VTDContextEntry *ce)
1449 {
1450 if (!s->root_scalable &&
1451 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1452 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1453 error_report_once("%s: invalid context entry: hi=%"PRIx64
1454 ", lo=%"PRIx64" (reserved nonzero)",
1455 __func__, ce->hi, ce->lo);
1456 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1457 }
1458
1459 if (s->root_scalable &&
1460 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1461 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1462 ce->val[2] ||
1463 ce->val[3])) {
1464 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1465 ", val[2]=%"PRIx64
1466 ", val[1]=%"PRIx64
1467 ", val[0]=%"PRIx64" (reserved nonzero)",
1468 __func__, ce->val[3], ce->val[2],
1469 ce->val[1], ce->val[0]);
1470 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1471 }
1472
1473 return 0;
1474 }
1475
vtd_ce_rid2pasid_check(IntelIOMMUState * s,VTDContextEntry * ce)1476 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1477 VTDContextEntry *ce)
1478 {
1479 VTDPASIDEntry pe;
1480
1481 /*
1482 * Make sure in Scalable Mode, a present context entry
1483 * has valid rid2pasid setting, which includes valid
1484 * rid2pasid field and corresponding pasid entry setting
1485 */
1486 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID);
1487 }
1488
1489 /* Map a device to its corresponding domain (context-entry) */
vtd_dev_to_context_entry(IntelIOMMUState * s,uint8_t bus_num,uint8_t devfn,VTDContextEntry * ce)1490 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1491 uint8_t devfn, VTDContextEntry *ce)
1492 {
1493 VTDRootEntry re;
1494 int ret_fr;
1495 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1496
1497 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1498 if (ret_fr) {
1499 return ret_fr;
1500 }
1501
1502 if (!vtd_root_entry_present(s, &re, devfn)) {
1503 /* Not error - it's okay we don't have root entry. */
1504 trace_vtd_re_not_present(bus_num);
1505 return -VTD_FR_ROOT_ENTRY_P;
1506 }
1507
1508 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1509 if (ret_fr) {
1510 return ret_fr;
1511 }
1512
1513 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1514 if (ret_fr) {
1515 return ret_fr;
1516 }
1517
1518 if (!vtd_ce_present(ce)) {
1519 /* Not error - it's okay we don't have context entry. */
1520 trace_vtd_ce_not_present(bus_num, devfn);
1521 return -VTD_FR_CONTEXT_ENTRY_P;
1522 }
1523
1524 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1525 if (ret_fr) {
1526 return ret_fr;
1527 }
1528
1529 /* Check if the programming of context-entry is valid */
1530 if (!s->root_scalable &&
1531 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1532 error_report_once("%s: invalid context entry: hi=%"PRIx64
1533 ", lo=%"PRIx64" (level %d not supported)",
1534 __func__, ce->hi, ce->lo,
1535 vtd_ce_get_level(ce));
1536 return -VTD_FR_CONTEXT_ENTRY_INV;
1537 }
1538
1539 if (!s->root_scalable) {
1540 /* Do translation type check */
1541 if (!vtd_ce_type_check(x86_iommu, ce)) {
1542 /* Errors dumped in vtd_ce_type_check() */
1543 return -VTD_FR_CONTEXT_ENTRY_INV;
1544 }
1545 } else {
1546 /*
1547 * Check if the programming of context-entry.rid2pasid
1548 * and corresponding pasid setting is valid, and thus
1549 * avoids to check pasid entry fetching result in future
1550 * helper function calling.
1551 */
1552 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1553 if (ret_fr) {
1554 return ret_fr;
1555 }
1556 }
1557
1558 return 0;
1559 }
1560
vtd_sync_shadow_page_hook(const IOMMUTLBEvent * event,void * private)1561 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event,
1562 void *private)
1563 {
1564 memory_region_notify_iommu(private, 0, *event);
1565 return 0;
1566 }
1567
vtd_get_domain_id(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1568 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1569 VTDContextEntry *ce,
1570 uint32_t pasid)
1571 {
1572 VTDPASIDEntry pe;
1573
1574 if (s->root_scalable) {
1575 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1576 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1577 }
1578
1579 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1580 }
1581
vtd_sync_shadow_page_table_range(VTDAddressSpace * vtd_as,VTDContextEntry * ce,hwaddr addr,hwaddr size)1582 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1583 VTDContextEntry *ce,
1584 hwaddr addr, hwaddr size)
1585 {
1586 IntelIOMMUState *s = vtd_as->iommu_state;
1587 vtd_page_walk_info info = {
1588 .hook_fn = vtd_sync_shadow_page_hook,
1589 .private = (void *)&vtd_as->iommu,
1590 .notify_unmap = true,
1591 .aw = s->aw_bits,
1592 .as = vtd_as,
1593 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid),
1594 };
1595
1596 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid);
1597 }
1598
vtd_address_space_sync(VTDAddressSpace * vtd_as)1599 static int vtd_address_space_sync(VTDAddressSpace *vtd_as)
1600 {
1601 int ret;
1602 VTDContextEntry ce;
1603 IOMMUNotifier *n;
1604
1605 /* If no MAP notifier registered, we simply invalidate all the cache */
1606 if (!vtd_as_has_map_notifier(vtd_as)) {
1607 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1608 memory_region_unmap_iommu_notifier_range(n);
1609 }
1610 return 0;
1611 }
1612
1613 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1614 pci_bus_num(vtd_as->bus),
1615 vtd_as->devfn, &ce);
1616 if (ret) {
1617 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1618 /*
1619 * It's a valid scenario to have a context entry that is
1620 * not present. For example, when a device is removed
1621 * from an existing domain then the context entry will be
1622 * zeroed by the guest before it was put into another
1623 * domain. When this happens, instead of synchronizing
1624 * the shadow pages we should invalidate all existing
1625 * mappings and notify the backends.
1626 */
1627 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1628 vtd_address_space_unmap(vtd_as, n);
1629 }
1630 ret = 0;
1631 }
1632 return ret;
1633 }
1634
1635 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1636 }
1637
1638 /*
1639 * Check if specific device is configured to bypass address
1640 * translation for DMA requests. In Scalable Mode, bypass
1641 * 1st-level translation or 2nd-level translation, it depends
1642 * on PGTT setting.
1643 */
vtd_dev_pt_enabled(IntelIOMMUState * s,VTDContextEntry * ce,uint32_t pasid)1644 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce,
1645 uint32_t pasid)
1646 {
1647 VTDPASIDEntry pe;
1648 int ret;
1649
1650 if (s->root_scalable) {
1651 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid);
1652 if (ret) {
1653 /*
1654 * This error is guest triggerable. We should assumt PT
1655 * not enabled for safety.
1656 */
1657 return false;
1658 }
1659 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1660 }
1661
1662 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1663
1664 }
1665
vtd_as_pt_enabled(VTDAddressSpace * as)1666 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1667 {
1668 IntelIOMMUState *s;
1669 VTDContextEntry ce;
1670
1671 assert(as);
1672
1673 s = as->iommu_state;
1674 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn,
1675 &ce)) {
1676 /*
1677 * Possibly failed to parse the context entry for some reason
1678 * (e.g., during init, or any guest configuration errors on
1679 * context entries). We should assume PT not enabled for
1680 * safety.
1681 */
1682 return false;
1683 }
1684
1685 return vtd_dev_pt_enabled(s, &ce, as->pasid);
1686 }
1687
1688 /* Return whether the device is using IOMMU translation. */
vtd_switch_address_space(VTDAddressSpace * as)1689 static bool vtd_switch_address_space(VTDAddressSpace *as)
1690 {
1691 bool use_iommu, pt;
1692 /* Whether we need to take the BQL on our own */
1693 bool take_bql = !bql_locked();
1694
1695 assert(as);
1696
1697 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1698 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as);
1699
1700 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1701 VTD_PCI_SLOT(as->devfn),
1702 VTD_PCI_FUNC(as->devfn),
1703 use_iommu);
1704
1705 /*
1706 * It's possible that we reach here without BQL, e.g., when called
1707 * from vtd_pt_enable_fast_path(). However the memory APIs need
1708 * it. We'd better make sure we have had it already, or, take it.
1709 */
1710 if (take_bql) {
1711 bql_lock();
1712 }
1713
1714 /* Turn off first then on the other */
1715 if (use_iommu) {
1716 memory_region_set_enabled(&as->nodmar, false);
1717 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1718 /*
1719 * vt-d spec v3.4 3.14:
1720 *
1721 * """
1722 * Requests-with-PASID with input address in range 0xFEEx_xxxx
1723 * are translated normally like any other request-with-PASID
1724 * through DMA-remapping hardware.
1725 * """
1726 *
1727 * Need to disable ir for as with PASID.
1728 */
1729 if (as->pasid != PCI_NO_PASID) {
1730 memory_region_set_enabled(&as->iommu_ir, false);
1731 } else {
1732 memory_region_set_enabled(&as->iommu_ir, true);
1733 }
1734 } else {
1735 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1736 memory_region_set_enabled(&as->nodmar, true);
1737 }
1738
1739 /*
1740 * vtd-spec v3.4 3.14:
1741 *
1742 * """
1743 * Requests-with-PASID with input address in range 0xFEEx_xxxx are
1744 * translated normally like any other request-with-PASID through
1745 * DMA-remapping hardware. However, if such a request is processed
1746 * using pass-through translation, it will be blocked as described
1747 * in the paragraph below.
1748 *
1749 * Software must not program paging-structure entries to remap any
1750 * address to the interrupt address range. Untranslated requests
1751 * and translation requests that result in an address in the
1752 * interrupt range will be blocked with condition code LGN.4 or
1753 * SGN.8.
1754 * """
1755 *
1756 * We enable per as memory region (iommu_ir_fault) for catching
1757 * the translation for interrupt range through PASID + PT.
1758 */
1759 if (pt && as->pasid != PCI_NO_PASID) {
1760 memory_region_set_enabled(&as->iommu_ir_fault, true);
1761 } else {
1762 memory_region_set_enabled(&as->iommu_ir_fault, false);
1763 }
1764
1765 if (take_bql) {
1766 bql_unlock();
1767 }
1768
1769 return use_iommu;
1770 }
1771
vtd_switch_address_space_all(IntelIOMMUState * s)1772 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1773 {
1774 VTDAddressSpace *vtd_as;
1775 GHashTableIter iter;
1776
1777 g_hash_table_iter_init(&iter, s->vtd_address_spaces);
1778 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) {
1779 vtd_switch_address_space(vtd_as);
1780 }
1781 }
1782
1783 static const bool vtd_qualified_faults[] = {
1784 [VTD_FR_RESERVED] = false,
1785 [VTD_FR_ROOT_ENTRY_P] = false,
1786 [VTD_FR_CONTEXT_ENTRY_P] = true,
1787 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1788 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1789 [VTD_FR_WRITE] = true,
1790 [VTD_FR_READ] = true,
1791 [VTD_FR_PAGING_ENTRY_INV] = true,
1792 [VTD_FR_ROOT_TABLE_INV] = false,
1793 [VTD_FR_CONTEXT_TABLE_INV] = false,
1794 [VTD_FR_INTERRUPT_ADDR] = true,
1795 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1796 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1797 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1798 [VTD_FR_PASID_TABLE_INV] = false,
1799 [VTD_FR_SM_INTERRUPT_ADDR] = true,
1800 [VTD_FR_MAX] = false,
1801 };
1802
1803 /* To see if a fault condition is "qualified", which is reported to software
1804 * only if the FPD field in the context-entry used to process the faulting
1805 * request is 0.
1806 */
vtd_is_qualified_fault(VTDFaultReason fault)1807 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1808 {
1809 return vtd_qualified_faults[fault];
1810 }
1811
vtd_is_interrupt_addr(hwaddr addr)1812 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1813 {
1814 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1815 }
1816
vtd_find_as_by_sid(gpointer key,gpointer value,gpointer user_data)1817 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value,
1818 gpointer user_data)
1819 {
1820 struct vtd_as_key *as_key = (struct vtd_as_key *)key;
1821 uint16_t target_sid = *(uint16_t *)user_data;
1822 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn);
1823 return sid == target_sid;
1824 }
1825
vtd_get_as_by_sid(IntelIOMMUState * s,uint16_t sid)1826 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid)
1827 {
1828 uint8_t bus_num = PCI_BUS_NUM(sid);
1829 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num];
1830
1831 if (vtd_as &&
1832 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) {
1833 return vtd_as;
1834 }
1835
1836 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid);
1837 s->vtd_as_cache[bus_num] = vtd_as;
1838
1839 return vtd_as;
1840 }
1841
vtd_pt_enable_fast_path(IntelIOMMUState * s,uint16_t source_id)1842 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1843 {
1844 VTDAddressSpace *vtd_as;
1845 bool success = false;
1846
1847 vtd_as = vtd_get_as_by_sid(s, source_id);
1848 if (!vtd_as) {
1849 goto out;
1850 }
1851
1852 if (vtd_switch_address_space(vtd_as) == false) {
1853 /* We switched off IOMMU region successfully. */
1854 success = true;
1855 }
1856
1857 out:
1858 trace_vtd_pt_enable_fast_path(source_id, success);
1859 }
1860
vtd_report_fault(IntelIOMMUState * s,int err,bool is_fpd_set,uint16_t source_id,hwaddr addr,bool is_write,bool is_pasid,uint32_t pasid)1861 static void vtd_report_fault(IntelIOMMUState *s,
1862 int err, bool is_fpd_set,
1863 uint16_t source_id,
1864 hwaddr addr,
1865 bool is_write,
1866 bool is_pasid,
1867 uint32_t pasid)
1868 {
1869 if (is_fpd_set && vtd_is_qualified_fault(err)) {
1870 trace_vtd_fault_disabled();
1871 } else {
1872 vtd_report_dmar_fault(s, source_id, addr, err, is_write,
1873 is_pasid, pasid);
1874 }
1875 }
1876
1877 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1878 * translation.
1879 *
1880 * Called from RCU critical section.
1881 *
1882 * @bus_num: The bus number
1883 * @devfn: The devfn, which is the combined of device and function number
1884 * @is_write: The access is a write operation
1885 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1886 *
1887 * Returns true if translation is successful, otherwise false.
1888 */
vtd_do_iommu_translate(VTDAddressSpace * vtd_as,PCIBus * bus,uint8_t devfn,hwaddr addr,bool is_write,IOMMUTLBEntry * entry)1889 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1890 uint8_t devfn, hwaddr addr, bool is_write,
1891 IOMMUTLBEntry *entry)
1892 {
1893 IntelIOMMUState *s = vtd_as->iommu_state;
1894 VTDContextEntry ce;
1895 uint8_t bus_num = pci_bus_num(bus);
1896 VTDContextCacheEntry *cc_entry;
1897 uint64_t slpte, page_mask;
1898 uint32_t level, pasid = vtd_as->pasid;
1899 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn);
1900 int ret_fr;
1901 bool is_fpd_set = false;
1902 bool reads = true;
1903 bool writes = true;
1904 uint8_t access_flags;
1905 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable;
1906 VTDIOTLBEntry *iotlb_entry;
1907
1908 /*
1909 * We have standalone memory region for interrupt addresses, we
1910 * should never receive translation requests in this region.
1911 */
1912 assert(!vtd_is_interrupt_addr(addr));
1913
1914 vtd_iommu_lock(s);
1915
1916 cc_entry = &vtd_as->context_cache_entry;
1917
1918 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */
1919 if (!rid2pasid) {
1920 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1921 if (iotlb_entry) {
1922 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1923 iotlb_entry->domain_id);
1924 slpte = iotlb_entry->slpte;
1925 access_flags = iotlb_entry->access_flags;
1926 page_mask = iotlb_entry->mask;
1927 goto out;
1928 }
1929 }
1930
1931 /* Try to fetch context-entry from cache first */
1932 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1933 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1934 cc_entry->context_entry.lo,
1935 cc_entry->context_cache_gen);
1936 ce = cc_entry->context_entry;
1937 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1938 if (!is_fpd_set && s->root_scalable) {
1939 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1940 if (ret_fr) {
1941 vtd_report_fault(s, -ret_fr, is_fpd_set,
1942 source_id, addr, is_write,
1943 false, 0);
1944 goto error;
1945 }
1946 }
1947 } else {
1948 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1949 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1950 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1951 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid);
1952 }
1953 if (ret_fr) {
1954 vtd_report_fault(s, -ret_fr, is_fpd_set,
1955 source_id, addr, is_write,
1956 false, 0);
1957 goto error;
1958 }
1959 /* Update context-cache */
1960 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1961 cc_entry->context_cache_gen,
1962 s->context_cache_gen);
1963 cc_entry->context_entry = ce;
1964 cc_entry->context_cache_gen = s->context_cache_gen;
1965 }
1966
1967 if (rid2pasid) {
1968 pasid = VTD_CE_GET_RID2PASID(&ce);
1969 }
1970
1971 /*
1972 * We don't need to translate for pass-through context entries.
1973 * Also, let's ignore IOTLB caching as well for PT devices.
1974 */
1975 if (vtd_dev_pt_enabled(s, &ce, pasid)) {
1976 entry->iova = addr & VTD_PAGE_MASK_4K;
1977 entry->translated_addr = entry->iova;
1978 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1979 entry->perm = IOMMU_RW;
1980 trace_vtd_translate_pt(source_id, entry->iova);
1981
1982 /*
1983 * When this happens, it means firstly caching-mode is not
1984 * enabled, and this is the first passthrough translation for
1985 * the device. Let's enable the fast path for passthrough.
1986 *
1987 * When passthrough is disabled again for the device, we can
1988 * capture it via the context entry invalidation, then the
1989 * IOMMU region can be swapped back.
1990 */
1991 vtd_pt_enable_fast_path(s, source_id);
1992 vtd_iommu_unlock(s);
1993 return true;
1994 }
1995
1996 /* Try to fetch slpte form IOTLB for RID2PASID slow path */
1997 if (rid2pasid) {
1998 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr);
1999 if (iotlb_entry) {
2000 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
2001 iotlb_entry->domain_id);
2002 slpte = iotlb_entry->slpte;
2003 access_flags = iotlb_entry->access_flags;
2004 page_mask = iotlb_entry->mask;
2005 goto out;
2006 }
2007 }
2008
2009 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
2010 &reads, &writes, s->aw_bits, pasid);
2011 if (ret_fr) {
2012 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id,
2013 addr, is_write, pasid != PCI_NO_PASID, pasid);
2014 goto error;
2015 }
2016
2017 page_mask = vtd_slpt_level_page_mask(level);
2018 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
2019 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid),
2020 addr, slpte, access_flags, level, pasid);
2021 out:
2022 vtd_iommu_unlock(s);
2023 entry->iova = addr & page_mask;
2024 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
2025 entry->addr_mask = ~page_mask;
2026 entry->perm = access_flags;
2027 return true;
2028
2029 error:
2030 vtd_iommu_unlock(s);
2031 entry->iova = 0;
2032 entry->translated_addr = 0;
2033 entry->addr_mask = 0;
2034 entry->perm = IOMMU_NONE;
2035 return false;
2036 }
2037
vtd_root_table_setup(IntelIOMMUState * s)2038 static void vtd_root_table_setup(IntelIOMMUState *s)
2039 {
2040 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2041 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
2042
2043 vtd_update_scalable_state(s);
2044
2045 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
2046 }
2047
vtd_iec_notify_all(IntelIOMMUState * s,bool global,uint32_t index,uint32_t mask)2048 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
2049 uint32_t index, uint32_t mask)
2050 {
2051 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
2052 }
2053
vtd_interrupt_remap_table_setup(IntelIOMMUState * s)2054 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
2055 {
2056 uint64_t value = 0;
2057 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
2058 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
2059 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
2060 s->intr_eime = value & VTD_IRTA_EIME;
2061
2062 /* Notify global invalidation */
2063 vtd_iec_notify_all(s, true, 0, 0);
2064
2065 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
2066 }
2067
vtd_iommu_replay_all(IntelIOMMUState * s)2068 static void vtd_iommu_replay_all(IntelIOMMUState *s)
2069 {
2070 VTDAddressSpace *vtd_as;
2071
2072 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2073 vtd_address_space_sync(vtd_as);
2074 }
2075 }
2076
vtd_context_global_invalidate(IntelIOMMUState * s)2077 static void vtd_context_global_invalidate(IntelIOMMUState *s)
2078 {
2079 trace_vtd_inv_desc_cc_global();
2080 /* Protects context cache */
2081 vtd_iommu_lock(s);
2082 s->context_cache_gen++;
2083 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
2084 vtd_reset_context_cache_locked(s);
2085 }
2086 vtd_iommu_unlock(s);
2087 vtd_address_space_refresh_all(s);
2088 /*
2089 * From VT-d spec 6.5.2.1, a global context entry invalidation
2090 * should be followed by a IOTLB global invalidation, so we should
2091 * be safe even without this. Hoewever, let's replay the region as
2092 * well to be safer, and go back here when we need finer tunes for
2093 * VT-d emulation codes.
2094 */
2095 vtd_iommu_replay_all(s);
2096 }
2097
2098 /* Do a context-cache device-selective invalidation.
2099 * @func_mask: FM field after shifting
2100 */
vtd_context_device_invalidate(IntelIOMMUState * s,uint16_t source_id,uint16_t func_mask)2101 static void vtd_context_device_invalidate(IntelIOMMUState *s,
2102 uint16_t source_id,
2103 uint16_t func_mask)
2104 {
2105 GHashTableIter as_it;
2106 uint16_t mask;
2107 VTDAddressSpace *vtd_as;
2108 uint8_t bus_n, devfn;
2109
2110 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
2111
2112 switch (func_mask & 3) {
2113 case 0:
2114 mask = 0; /* No bits in the SID field masked */
2115 break;
2116 case 1:
2117 mask = 4; /* Mask bit 2 in the SID field */
2118 break;
2119 case 2:
2120 mask = 6; /* Mask bit 2:1 in the SID field */
2121 break;
2122 case 3:
2123 mask = 7; /* Mask bit 2:0 in the SID field */
2124 break;
2125 default:
2126 g_assert_not_reached();
2127 }
2128 mask = ~mask;
2129
2130 bus_n = VTD_SID_TO_BUS(source_id);
2131 devfn = VTD_SID_TO_DEVFN(source_id);
2132
2133 g_hash_table_iter_init(&as_it, s->vtd_address_spaces);
2134 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) {
2135 if ((pci_bus_num(vtd_as->bus) == bus_n) &&
2136 (vtd_as->devfn & mask) == (devfn & mask)) {
2137 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn),
2138 VTD_PCI_FUNC(vtd_as->devfn));
2139 vtd_iommu_lock(s);
2140 vtd_as->context_cache_entry.context_cache_gen = 0;
2141 vtd_iommu_unlock(s);
2142 /*
2143 * Do switch address space when needed, in case if the
2144 * device passthrough bit is switched.
2145 */
2146 vtd_switch_address_space(vtd_as);
2147 /*
2148 * So a device is moving out of (or moving into) a
2149 * domain, resync the shadow page table.
2150 * This won't bring bad even if we have no such
2151 * notifier registered - the IOMMU notification
2152 * framework will skip MAP notifications if that
2153 * happened.
2154 */
2155 vtd_address_space_sync(vtd_as);
2156 }
2157 }
2158 }
2159
2160 /* Context-cache invalidation
2161 * Returns the Context Actual Invalidation Granularity.
2162 * @val: the content of the CCMD_REG
2163 */
vtd_context_cache_invalidate(IntelIOMMUState * s,uint64_t val)2164 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
2165 {
2166 uint64_t caig;
2167 uint64_t type = val & VTD_CCMD_CIRG_MASK;
2168
2169 switch (type) {
2170 case VTD_CCMD_DOMAIN_INVL:
2171 /* Fall through */
2172 case VTD_CCMD_GLOBAL_INVL:
2173 caig = VTD_CCMD_GLOBAL_INVL_A;
2174 vtd_context_global_invalidate(s);
2175 break;
2176
2177 case VTD_CCMD_DEVICE_INVL:
2178 caig = VTD_CCMD_DEVICE_INVL_A;
2179 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
2180 break;
2181
2182 default:
2183 error_report_once("%s: invalid context: 0x%" PRIx64,
2184 __func__, val);
2185 caig = 0;
2186 }
2187 return caig;
2188 }
2189
vtd_iotlb_global_invalidate(IntelIOMMUState * s)2190 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
2191 {
2192 trace_vtd_inv_desc_iotlb_global();
2193 vtd_reset_iotlb(s);
2194 vtd_iommu_replay_all(s);
2195 }
2196
vtd_iotlb_domain_invalidate(IntelIOMMUState * s,uint16_t domain_id)2197 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2198 {
2199 VTDContextEntry ce;
2200 VTDAddressSpace *vtd_as;
2201
2202 trace_vtd_inv_desc_iotlb_domain(domain_id);
2203
2204 vtd_iommu_lock(s);
2205 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2206 &domain_id);
2207 vtd_iommu_unlock(s);
2208
2209 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2210 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2211 vtd_as->devfn, &ce) &&
2212 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2213 vtd_address_space_sync(vtd_as);
2214 }
2215 }
2216 }
2217
vtd_iotlb_page_invalidate_notify(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am,uint32_t pasid)2218 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2219 uint16_t domain_id, hwaddr addr,
2220 uint8_t am, uint32_t pasid)
2221 {
2222 VTDAddressSpace *vtd_as;
2223 VTDContextEntry ce;
2224 int ret;
2225 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2226
2227 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2228 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) {
2229 continue;
2230 }
2231 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2232 vtd_as->devfn, &ce);
2233 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) {
2234 if (vtd_as_has_map_notifier(vtd_as)) {
2235 /*
2236 * As long as we have MAP notifications registered in
2237 * any of our IOMMU notifiers, we need to sync the
2238 * shadow page table.
2239 */
2240 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2241 } else {
2242 /*
2243 * For UNMAP-only notifiers, we don't need to walk the
2244 * page tables. We just deliver the PSI down to
2245 * invalidate caches.
2246 */
2247 const IOMMUTLBEvent event = {
2248 .type = IOMMU_NOTIFIER_UNMAP,
2249 .entry = {
2250 .target_as = &address_space_memory,
2251 .iova = addr,
2252 .translated_addr = 0,
2253 .addr_mask = size - 1,
2254 .perm = IOMMU_NONE,
2255 },
2256 };
2257 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2258 }
2259 }
2260 }
2261 }
2262
vtd_iotlb_page_invalidate(IntelIOMMUState * s,uint16_t domain_id,hwaddr addr,uint8_t am)2263 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2264 hwaddr addr, uint8_t am)
2265 {
2266 VTDIOTLBPageInvInfo info;
2267
2268 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2269
2270 assert(am <= VTD_MAMV);
2271 info.domain_id = domain_id;
2272 info.addr = addr;
2273 info.mask = ~((1 << am) - 1);
2274 vtd_iommu_lock(s);
2275 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2276 vtd_iommu_unlock(s);
2277 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID);
2278 }
2279
2280 /* Flush IOTLB
2281 * Returns the IOTLB Actual Invalidation Granularity.
2282 * @val: the content of the IOTLB_REG
2283 */
vtd_iotlb_flush(IntelIOMMUState * s,uint64_t val)2284 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2285 {
2286 uint64_t iaig;
2287 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2288 uint16_t domain_id;
2289 hwaddr addr;
2290 uint8_t am;
2291
2292 switch (type) {
2293 case VTD_TLB_GLOBAL_FLUSH:
2294 iaig = VTD_TLB_GLOBAL_FLUSH_A;
2295 vtd_iotlb_global_invalidate(s);
2296 break;
2297
2298 case VTD_TLB_DSI_FLUSH:
2299 domain_id = VTD_TLB_DID(val);
2300 iaig = VTD_TLB_DSI_FLUSH_A;
2301 vtd_iotlb_domain_invalidate(s, domain_id);
2302 break;
2303
2304 case VTD_TLB_PSI_FLUSH:
2305 domain_id = VTD_TLB_DID(val);
2306 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2307 am = VTD_IVA_AM(addr);
2308 addr = VTD_IVA_ADDR(addr);
2309 if (am > VTD_MAMV) {
2310 error_report_once("%s: address mask overflow: 0x%" PRIx64,
2311 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2312 iaig = 0;
2313 break;
2314 }
2315 iaig = VTD_TLB_PSI_FLUSH_A;
2316 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2317 break;
2318
2319 default:
2320 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2321 __func__, val);
2322 iaig = 0;
2323 }
2324 return iaig;
2325 }
2326
2327 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2328
vtd_queued_inv_disable_check(IntelIOMMUState * s)2329 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2330 {
2331 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2332 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2333 }
2334
vtd_handle_gcmd_qie(IntelIOMMUState * s,bool en)2335 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2336 {
2337 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2338
2339 trace_vtd_inv_qi_enable(en);
2340
2341 if (en) {
2342 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2343 /* 2^(x+8) entries */
2344 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2345 s->qi_enabled = true;
2346 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2347 /* Ok - report back to driver */
2348 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2349
2350 if (s->iq_tail != 0) {
2351 /*
2352 * This is a spec violation but Windows guests are known to set up
2353 * Queued Invalidation this way so we allow the write and process
2354 * Invalidation Descriptors right away.
2355 */
2356 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2357 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2358 vtd_fetch_inv_desc(s);
2359 }
2360 }
2361 } else {
2362 if (vtd_queued_inv_disable_check(s)) {
2363 /* disable Queued Invalidation */
2364 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2365 s->iq_head = 0;
2366 s->qi_enabled = false;
2367 /* Ok - report back to driver */
2368 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2369 } else {
2370 error_report_once("%s: detected improper state when disable QI "
2371 "(head=0x%x, tail=0x%x, last_type=%d)",
2372 __func__,
2373 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2374 }
2375 }
2376 }
2377
2378 /* Set Root Table Pointer */
vtd_handle_gcmd_srtp(IntelIOMMUState * s)2379 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2380 {
2381 vtd_root_table_setup(s);
2382 /* Ok - report back to driver */
2383 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2384 vtd_reset_caches(s);
2385 vtd_address_space_refresh_all(s);
2386 }
2387
2388 /* Set Interrupt Remap Table Pointer */
vtd_handle_gcmd_sirtp(IntelIOMMUState * s)2389 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2390 {
2391 vtd_interrupt_remap_table_setup(s);
2392 /* Ok - report back to driver */
2393 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2394 }
2395
2396 /* Handle Translation Enable/Disable */
vtd_handle_gcmd_te(IntelIOMMUState * s,bool en)2397 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2398 {
2399 if (s->dmar_enabled == en) {
2400 return;
2401 }
2402
2403 trace_vtd_dmar_enable(en);
2404
2405 if (en) {
2406 s->dmar_enabled = true;
2407 /* Ok - report back to driver */
2408 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2409 } else {
2410 s->dmar_enabled = false;
2411
2412 /* Clear the index of Fault Recording Register */
2413 s->next_frcd_reg = 0;
2414 /* Ok - report back to driver */
2415 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2416 }
2417
2418 vtd_reset_caches(s);
2419 vtd_address_space_refresh_all(s);
2420 }
2421
2422 /* Handle Interrupt Remap Enable/Disable */
vtd_handle_gcmd_ire(IntelIOMMUState * s,bool en)2423 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2424 {
2425 trace_vtd_ir_enable(en);
2426
2427 if (en) {
2428 s->intr_enabled = true;
2429 /* Ok - report back to driver */
2430 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2431 } else {
2432 s->intr_enabled = false;
2433 /* Ok - report back to driver */
2434 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2435 }
2436 }
2437
2438 /* Handle write to Global Command Register */
vtd_handle_gcmd_write(IntelIOMMUState * s)2439 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2440 {
2441 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2442 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2443 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2444 uint32_t changed = status ^ val;
2445
2446 trace_vtd_reg_write_gcmd(status, val);
2447 if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2448 /* Translation enable/disable */
2449 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2450 }
2451 if (val & VTD_GCMD_SRTP) {
2452 /* Set/update the root-table pointer */
2453 vtd_handle_gcmd_srtp(s);
2454 }
2455 if (changed & VTD_GCMD_QIE) {
2456 /* Queued Invalidation Enable */
2457 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2458 }
2459 if (val & VTD_GCMD_SIRTP) {
2460 /* Set/update the interrupt remapping root-table pointer */
2461 vtd_handle_gcmd_sirtp(s);
2462 }
2463 if ((changed & VTD_GCMD_IRE) &&
2464 x86_iommu_ir_supported(x86_iommu)) {
2465 /* Interrupt remap enable/disable */
2466 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2467 }
2468 }
2469
2470 /* Handle write to Context Command Register */
vtd_handle_ccmd_write(IntelIOMMUState * s)2471 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2472 {
2473 uint64_t ret;
2474 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2475
2476 /* Context-cache invalidation request */
2477 if (val & VTD_CCMD_ICC) {
2478 if (s->qi_enabled) {
2479 error_report_once("Queued Invalidation enabled, "
2480 "should not use register-based invalidation");
2481 return;
2482 }
2483 ret = vtd_context_cache_invalidate(s, val);
2484 /* Invalidation completed. Change something to show */
2485 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2486 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2487 ret);
2488 }
2489 }
2490
2491 /* Handle write to IOTLB Invalidation Register */
vtd_handle_iotlb_write(IntelIOMMUState * s)2492 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2493 {
2494 uint64_t ret;
2495 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2496
2497 /* IOTLB invalidation request */
2498 if (val & VTD_TLB_IVT) {
2499 if (s->qi_enabled) {
2500 error_report_once("Queued Invalidation enabled, "
2501 "should not use register-based invalidation");
2502 return;
2503 }
2504 ret = vtd_iotlb_flush(s, val);
2505 /* Invalidation completed. Change something to show */
2506 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2507 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2508 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2509 }
2510 }
2511
2512 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
vtd_get_inv_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2513 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2514 VTDInvDesc *inv_desc)
2515 {
2516 dma_addr_t base_addr = s->iq;
2517 uint32_t offset = s->iq_head;
2518 uint32_t dw = s->iq_dw ? 32 : 16;
2519 dma_addr_t addr = base_addr + offset * dw;
2520
2521 if (dma_memory_read(&address_space_memory, addr,
2522 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2523 error_report_once("Read INV DESC failed.");
2524 return false;
2525 }
2526 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2527 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2528 if (dw == 32) {
2529 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2530 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2531 }
2532 return true;
2533 }
2534
vtd_inv_desc_reserved_check(IntelIOMMUState * s,VTDInvDesc * inv_desc,uint64_t mask[4],bool dw,const char * func_name,const char * desc_type)2535 static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s,
2536 VTDInvDesc *inv_desc,
2537 uint64_t mask[4], bool dw,
2538 const char *func_name,
2539 const char *desc_type)
2540 {
2541 if (s->iq_dw) {
2542 if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] ||
2543 inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) {
2544 error_report("%s: invalid %s desc val[3]: 0x%"PRIx64
2545 " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64
2546 " val[0]=0x%"PRIx64" (reserved nonzero)",
2547 func_name, desc_type, inv_desc->val[3],
2548 inv_desc->val[2], inv_desc->val[1],
2549 inv_desc->val[0]);
2550 return false;
2551 }
2552 } else {
2553 if (dw) {
2554 error_report("%s: 256-bit %s desc in 128-bit invalidation queue",
2555 func_name, desc_type);
2556 return false;
2557 }
2558
2559 if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) {
2560 error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64
2561 " (reserved nonzero)", func_name, desc_type,
2562 inv_desc->hi, inv_desc->lo);
2563 return false;
2564 }
2565 }
2566
2567 return true;
2568 }
2569
vtd_process_wait_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2570 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2571 {
2572 uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI,
2573 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2574
2575 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2576 __func__, "wait")) {
2577 return false;
2578 }
2579
2580 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2581 /* Status Write */
2582 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2583 VTD_INV_DESC_WAIT_DATA_SHIFT);
2584
2585 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2586
2587 /* FIXME: need to be masked with HAW? */
2588 dma_addr_t status_addr = inv_desc->hi;
2589 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2590 status_data = cpu_to_le32(status_data);
2591 if (dma_memory_write(&address_space_memory, status_addr,
2592 &status_data, sizeof(status_data),
2593 MEMTXATTRS_UNSPECIFIED)) {
2594 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2595 return false;
2596 }
2597 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2598 /* Interrupt flag */
2599 vtd_generate_completion_event(s);
2600 } else {
2601 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2602 " (unknown type)", __func__, inv_desc->hi,
2603 inv_desc->lo);
2604 return false;
2605 }
2606 return true;
2607 }
2608
vtd_process_context_cache_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2609 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2610 VTDInvDesc *inv_desc)
2611 {
2612 uint16_t sid, fmask;
2613 uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE,
2614 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2615
2616 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2617 __func__, "cc inv")) {
2618 return false;
2619 }
2620
2621 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2622 case VTD_INV_DESC_CC_DOMAIN:
2623 trace_vtd_inv_desc_cc_domain(
2624 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2625 /* Fall through */
2626 case VTD_INV_DESC_CC_GLOBAL:
2627 vtd_context_global_invalidate(s);
2628 break;
2629
2630 case VTD_INV_DESC_CC_DEVICE:
2631 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2632 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2633 vtd_context_device_invalidate(s, sid, fmask);
2634 break;
2635
2636 default:
2637 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2638 " (invalid type)", __func__, inv_desc->hi,
2639 inv_desc->lo);
2640 return false;
2641 }
2642 return true;
2643 }
2644
vtd_process_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2645 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2646 {
2647 uint16_t domain_id;
2648 uint8_t am;
2649 hwaddr addr;
2650 uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI,
2651 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2652
2653 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2654 __func__, "iotlb inv")) {
2655 return false;
2656 }
2657
2658 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2659 case VTD_INV_DESC_IOTLB_GLOBAL:
2660 vtd_iotlb_global_invalidate(s);
2661 break;
2662
2663 case VTD_INV_DESC_IOTLB_DOMAIN:
2664 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2665 vtd_iotlb_domain_invalidate(s, domain_id);
2666 break;
2667
2668 case VTD_INV_DESC_IOTLB_PAGE:
2669 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2670 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2671 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2672 if (am > VTD_MAMV) {
2673 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2674 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2675 __func__, inv_desc->hi, inv_desc->lo,
2676 am, (unsigned)VTD_MAMV);
2677 return false;
2678 }
2679 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2680 break;
2681
2682 default:
2683 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2684 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2685 __func__, inv_desc->hi, inv_desc->lo,
2686 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2687 return false;
2688 }
2689 return true;
2690 }
2691
vtd_process_inv_iec_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2692 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2693 VTDInvDesc *inv_desc)
2694 {
2695 uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE,
2696 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2697
2698 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2699 __func__, "iec inv")) {
2700 return false;
2701 }
2702
2703 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2704 inv_desc->iec.index,
2705 inv_desc->iec.index_mask);
2706
2707 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2708 inv_desc->iec.index,
2709 inv_desc->iec.index_mask);
2710 return true;
2711 }
2712
do_invalidate_device_tlb(VTDAddressSpace * vtd_dev_as,bool size,hwaddr addr)2713 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as,
2714 bool size, hwaddr addr)
2715 {
2716 /*
2717 * According to ATS spec table 2.4:
2718 * S = 0, bits 15:12 = xxxx range size: 4K
2719 * S = 1, bits 15:12 = xxx0 range size: 8K
2720 * S = 1, bits 15:12 = xx01 range size: 16K
2721 * S = 1, bits 15:12 = x011 range size: 32K
2722 * S = 1, bits 15:12 = 0111 range size: 64K
2723 * ...
2724 */
2725
2726 IOMMUTLBEvent event;
2727 uint64_t sz;
2728
2729 if (size) {
2730 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2731 addr &= ~(sz - 1);
2732 } else {
2733 sz = VTD_PAGE_SIZE;
2734 }
2735
2736 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2737 event.entry.target_as = &vtd_dev_as->as;
2738 event.entry.addr_mask = sz - 1;
2739 event.entry.iova = addr;
2740 event.entry.perm = IOMMU_NONE;
2741 event.entry.translated_addr = 0;
2742 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2743 }
2744
vtd_process_device_iotlb_desc(IntelIOMMUState * s,VTDInvDesc * inv_desc)2745 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2746 VTDInvDesc *inv_desc)
2747 {
2748 VTDAddressSpace *vtd_dev_as;
2749 hwaddr addr;
2750 uint16_t sid;
2751 bool size;
2752 uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO,
2753 VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI,
2754 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE};
2755
2756 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false,
2757 __func__, "dev-iotlb inv")) {
2758 return false;
2759 }
2760
2761 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2762 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2763 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2764
2765 /*
2766 * Using sid is OK since the guest should have finished the
2767 * initialization of both the bus and device.
2768 */
2769 vtd_dev_as = vtd_get_as_by_sid(s, sid);
2770 if (!vtd_dev_as) {
2771 goto done;
2772 }
2773
2774 do_invalidate_device_tlb(vtd_dev_as, size, addr);
2775
2776 done:
2777 return true;
2778 }
2779
vtd_process_inv_desc(IntelIOMMUState * s)2780 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2781 {
2782 VTDInvDesc inv_desc;
2783 uint8_t desc_type;
2784
2785 trace_vtd_inv_qi_head(s->iq_head);
2786 if (!vtd_get_inv_desc(s, &inv_desc)) {
2787 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2788 return false;
2789 }
2790
2791 desc_type = VTD_INV_DESC_TYPE(inv_desc.lo);
2792 /* FIXME: should update at first or at last? */
2793 s->iq_last_desc_type = desc_type;
2794
2795 switch (desc_type) {
2796 case VTD_INV_DESC_CC:
2797 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2798 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2799 return false;
2800 }
2801 break;
2802
2803 case VTD_INV_DESC_IOTLB:
2804 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2805 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2806 return false;
2807 }
2808 break;
2809
2810 case VTD_INV_DESC_WAIT:
2811 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2812 if (!vtd_process_wait_desc(s, &inv_desc)) {
2813 return false;
2814 }
2815 break;
2816
2817 case VTD_INV_DESC_IEC:
2818 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2819 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2820 return false;
2821 }
2822 break;
2823
2824 case VTD_INV_DESC_DEVICE:
2825 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2826 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2827 return false;
2828 }
2829 break;
2830
2831 /*
2832 * TODO: the entity of below two cases will be implemented in future series.
2833 * To make guest (which integrates scalable mode support patch set in
2834 * iommu driver) work, just return true is enough so far.
2835 */
2836 case VTD_INV_DESC_PC:
2837 case VTD_INV_DESC_PIOTLB:
2838 if (s->scalable_mode) {
2839 break;
2840 }
2841 /* fallthrough */
2842 default:
2843 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2844 " (unknown type)", __func__, inv_desc.hi,
2845 inv_desc.lo);
2846 return false;
2847 }
2848 s->iq_head++;
2849 if (s->iq_head == s->iq_size) {
2850 s->iq_head = 0;
2851 }
2852 return true;
2853 }
2854
2855 /* Try to fetch and process more Invalidation Descriptors */
vtd_fetch_inv_desc(IntelIOMMUState * s)2856 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2857 {
2858 int qi_shift;
2859
2860 /* Refer to 10.4.23 of VT-d spec 3.0 */
2861 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2862
2863 trace_vtd_inv_qi_fetch();
2864
2865 if (s->iq_tail >= s->iq_size) {
2866 /* Detects an invalid Tail pointer */
2867 error_report_once("%s: detected invalid QI tail "
2868 "(tail=0x%x, size=0x%x)",
2869 __func__, s->iq_tail, s->iq_size);
2870 vtd_handle_inv_queue_error(s);
2871 return;
2872 }
2873 while (s->iq_head != s->iq_tail) {
2874 if (!vtd_process_inv_desc(s)) {
2875 /* Invalidation Queue Errors */
2876 vtd_handle_inv_queue_error(s);
2877 break;
2878 }
2879 /* Must update the IQH_REG in time */
2880 vtd_set_quad_raw(s, DMAR_IQH_REG,
2881 (((uint64_t)(s->iq_head)) << qi_shift) &
2882 VTD_IQH_QH_MASK);
2883 }
2884 }
2885
2886 /* Handle write to Invalidation Queue Tail Register */
vtd_handle_iqt_write(IntelIOMMUState * s)2887 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2888 {
2889 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2890
2891 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2892 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2893 __func__, val);
2894 vtd_handle_inv_queue_error(s);
2895 return;
2896 }
2897 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2898 trace_vtd_inv_qi_tail(s->iq_tail);
2899
2900 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2901 /* Process Invalidation Queue here */
2902 vtd_fetch_inv_desc(s);
2903 }
2904 }
2905
vtd_handle_fsts_write(IntelIOMMUState * s)2906 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2907 {
2908 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2909 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2910 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2911
2912 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2913 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2914 trace_vtd_fsts_clear_ip();
2915 }
2916 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2917 * Descriptors if there are any when Queued Invalidation is enabled?
2918 */
2919 }
2920
vtd_handle_fectl_write(IntelIOMMUState * s)2921 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2922 {
2923 uint32_t fectl_reg;
2924 /* FIXME: when software clears the IM field, check the IP field. But do we
2925 * need to compare the old value and the new value to conclude that
2926 * software clears the IM field? Or just check if the IM field is zero?
2927 */
2928 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2929
2930 trace_vtd_reg_write_fectl(fectl_reg);
2931
2932 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2933 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2934 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2935 }
2936 }
2937
vtd_handle_ics_write(IntelIOMMUState * s)2938 static void vtd_handle_ics_write(IntelIOMMUState *s)
2939 {
2940 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2941 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2942
2943 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2944 trace_vtd_reg_ics_clear_ip();
2945 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2946 }
2947 }
2948
vtd_handle_iectl_write(IntelIOMMUState * s)2949 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2950 {
2951 uint32_t iectl_reg;
2952 /* FIXME: when software clears the IM field, check the IP field. But do we
2953 * need to compare the old value and the new value to conclude that
2954 * software clears the IM field? Or just check if the IM field is zero?
2955 */
2956 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2957
2958 trace_vtd_reg_write_iectl(iectl_reg);
2959
2960 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2961 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2962 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2963 }
2964 }
2965
vtd_mem_read(void * opaque,hwaddr addr,unsigned size)2966 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2967 {
2968 IntelIOMMUState *s = opaque;
2969 uint64_t val;
2970
2971 trace_vtd_reg_read(addr, size);
2972
2973 if (addr + size > DMAR_REG_SIZE) {
2974 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2975 " size=0x%x", __func__, addr, size);
2976 return (uint64_t)-1;
2977 }
2978
2979 switch (addr) {
2980 /* Root Table Address Register, 64-bit */
2981 case DMAR_RTADDR_REG:
2982 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2983 if (size == 4) {
2984 val = val & ((1ULL << 32) - 1);
2985 }
2986 break;
2987
2988 case DMAR_RTADDR_REG_HI:
2989 assert(size == 4);
2990 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2991 break;
2992
2993 /* Invalidation Queue Address Register, 64-bit */
2994 case DMAR_IQA_REG:
2995 val = s->iq |
2996 (vtd_get_quad(s, DMAR_IQA_REG) &
2997 (VTD_IQA_QS | VTD_IQA_DW_MASK));
2998 if (size == 4) {
2999 val = val & ((1ULL << 32) - 1);
3000 }
3001 break;
3002
3003 case DMAR_IQA_REG_HI:
3004 assert(size == 4);
3005 val = s->iq >> 32;
3006 break;
3007
3008 default:
3009 if (size == 4) {
3010 val = vtd_get_long(s, addr);
3011 } else {
3012 val = vtd_get_quad(s, addr);
3013 }
3014 }
3015
3016 return val;
3017 }
3018
vtd_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)3019 static void vtd_mem_write(void *opaque, hwaddr addr,
3020 uint64_t val, unsigned size)
3021 {
3022 IntelIOMMUState *s = opaque;
3023
3024 trace_vtd_reg_write(addr, size, val);
3025
3026 if (addr + size > DMAR_REG_SIZE) {
3027 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
3028 " size=0x%x", __func__, addr, size);
3029 return;
3030 }
3031
3032 switch (addr) {
3033 /* Global Command Register, 32-bit */
3034 case DMAR_GCMD_REG:
3035 vtd_set_long(s, addr, val);
3036 vtd_handle_gcmd_write(s);
3037 break;
3038
3039 /* Context Command Register, 64-bit */
3040 case DMAR_CCMD_REG:
3041 if (size == 4) {
3042 vtd_set_long(s, addr, val);
3043 } else {
3044 vtd_set_quad(s, addr, val);
3045 vtd_handle_ccmd_write(s);
3046 }
3047 break;
3048
3049 case DMAR_CCMD_REG_HI:
3050 assert(size == 4);
3051 vtd_set_long(s, addr, val);
3052 vtd_handle_ccmd_write(s);
3053 break;
3054
3055 /* IOTLB Invalidation Register, 64-bit */
3056 case DMAR_IOTLB_REG:
3057 if (size == 4) {
3058 vtd_set_long(s, addr, val);
3059 } else {
3060 vtd_set_quad(s, addr, val);
3061 vtd_handle_iotlb_write(s);
3062 }
3063 break;
3064
3065 case DMAR_IOTLB_REG_HI:
3066 assert(size == 4);
3067 vtd_set_long(s, addr, val);
3068 vtd_handle_iotlb_write(s);
3069 break;
3070
3071 /* Invalidate Address Register, 64-bit */
3072 case DMAR_IVA_REG:
3073 if (size == 4) {
3074 vtd_set_long(s, addr, val);
3075 } else {
3076 vtd_set_quad(s, addr, val);
3077 }
3078 break;
3079
3080 case DMAR_IVA_REG_HI:
3081 assert(size == 4);
3082 vtd_set_long(s, addr, val);
3083 break;
3084
3085 /* Fault Status Register, 32-bit */
3086 case DMAR_FSTS_REG:
3087 assert(size == 4);
3088 vtd_set_long(s, addr, val);
3089 vtd_handle_fsts_write(s);
3090 break;
3091
3092 /* Fault Event Control Register, 32-bit */
3093 case DMAR_FECTL_REG:
3094 assert(size == 4);
3095 vtd_set_long(s, addr, val);
3096 vtd_handle_fectl_write(s);
3097 break;
3098
3099 /* Fault Event Data Register, 32-bit */
3100 case DMAR_FEDATA_REG:
3101 assert(size == 4);
3102 vtd_set_long(s, addr, val);
3103 break;
3104
3105 /* Fault Event Address Register, 32-bit */
3106 case DMAR_FEADDR_REG:
3107 if (size == 4) {
3108 vtd_set_long(s, addr, val);
3109 } else {
3110 /*
3111 * While the register is 32-bit only, some guests (Xen...) write to
3112 * it with 64-bit.
3113 */
3114 vtd_set_quad(s, addr, val);
3115 }
3116 break;
3117
3118 /* Fault Event Upper Address Register, 32-bit */
3119 case DMAR_FEUADDR_REG:
3120 assert(size == 4);
3121 vtd_set_long(s, addr, val);
3122 break;
3123
3124 /* Protected Memory Enable Register, 32-bit */
3125 case DMAR_PMEN_REG:
3126 assert(size == 4);
3127 vtd_set_long(s, addr, val);
3128 break;
3129
3130 /* Root Table Address Register, 64-bit */
3131 case DMAR_RTADDR_REG:
3132 if (size == 4) {
3133 vtd_set_long(s, addr, val);
3134 } else {
3135 vtd_set_quad(s, addr, val);
3136 }
3137 break;
3138
3139 case DMAR_RTADDR_REG_HI:
3140 assert(size == 4);
3141 vtd_set_long(s, addr, val);
3142 break;
3143
3144 /* Invalidation Queue Tail Register, 64-bit */
3145 case DMAR_IQT_REG:
3146 if (size == 4) {
3147 vtd_set_long(s, addr, val);
3148 } else {
3149 vtd_set_quad(s, addr, val);
3150 }
3151 vtd_handle_iqt_write(s);
3152 break;
3153
3154 case DMAR_IQT_REG_HI:
3155 assert(size == 4);
3156 vtd_set_long(s, addr, val);
3157 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
3158 break;
3159
3160 /* Invalidation Queue Address Register, 64-bit */
3161 case DMAR_IQA_REG:
3162 if (size == 4) {
3163 vtd_set_long(s, addr, val);
3164 } else {
3165 vtd_set_quad(s, addr, val);
3166 }
3167 vtd_update_iq_dw(s);
3168 break;
3169
3170 case DMAR_IQA_REG_HI:
3171 assert(size == 4);
3172 vtd_set_long(s, addr, val);
3173 break;
3174
3175 /* Invalidation Completion Status Register, 32-bit */
3176 case DMAR_ICS_REG:
3177 assert(size == 4);
3178 vtd_set_long(s, addr, val);
3179 vtd_handle_ics_write(s);
3180 break;
3181
3182 /* Invalidation Event Control Register, 32-bit */
3183 case DMAR_IECTL_REG:
3184 assert(size == 4);
3185 vtd_set_long(s, addr, val);
3186 vtd_handle_iectl_write(s);
3187 break;
3188
3189 /* Invalidation Event Data Register, 32-bit */
3190 case DMAR_IEDATA_REG:
3191 assert(size == 4);
3192 vtd_set_long(s, addr, val);
3193 break;
3194
3195 /* Invalidation Event Address Register, 32-bit */
3196 case DMAR_IEADDR_REG:
3197 assert(size == 4);
3198 vtd_set_long(s, addr, val);
3199 break;
3200
3201 /* Invalidation Event Upper Address Register, 32-bit */
3202 case DMAR_IEUADDR_REG:
3203 assert(size == 4);
3204 vtd_set_long(s, addr, val);
3205 break;
3206
3207 /* Fault Recording Registers, 128-bit */
3208 case DMAR_FRCD_REG_0_0:
3209 if (size == 4) {
3210 vtd_set_long(s, addr, val);
3211 } else {
3212 vtd_set_quad(s, addr, val);
3213 }
3214 break;
3215
3216 case DMAR_FRCD_REG_0_1:
3217 assert(size == 4);
3218 vtd_set_long(s, addr, val);
3219 break;
3220
3221 case DMAR_FRCD_REG_0_2:
3222 if (size == 4) {
3223 vtd_set_long(s, addr, val);
3224 } else {
3225 vtd_set_quad(s, addr, val);
3226 /* May clear bit 127 (Fault), update PPF */
3227 vtd_update_fsts_ppf(s);
3228 }
3229 break;
3230
3231 case DMAR_FRCD_REG_0_3:
3232 assert(size == 4);
3233 vtd_set_long(s, addr, val);
3234 /* May clear bit 127 (Fault), update PPF */
3235 vtd_update_fsts_ppf(s);
3236 break;
3237
3238 case DMAR_IRTA_REG:
3239 if (size == 4) {
3240 vtd_set_long(s, addr, val);
3241 } else {
3242 vtd_set_quad(s, addr, val);
3243 }
3244 break;
3245
3246 case DMAR_IRTA_REG_HI:
3247 assert(size == 4);
3248 vtd_set_long(s, addr, val);
3249 break;
3250
3251 default:
3252 if (size == 4) {
3253 vtd_set_long(s, addr, val);
3254 } else {
3255 vtd_set_quad(s, addr, val);
3256 }
3257 }
3258 }
3259
vtd_iommu_translate(IOMMUMemoryRegion * iommu,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)3260 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3261 IOMMUAccessFlags flag, int iommu_idx)
3262 {
3263 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3264 IntelIOMMUState *s = vtd_as->iommu_state;
3265 IOMMUTLBEntry iotlb = {
3266 /* We'll fill in the rest later. */
3267 .target_as = &address_space_memory,
3268 };
3269 bool success;
3270
3271 if (likely(s->dmar_enabled)) {
3272 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3273 addr, flag & IOMMU_WO, &iotlb);
3274 } else {
3275 /* DMAR disabled, passthrough, use 4k-page*/
3276 iotlb.iova = addr & VTD_PAGE_MASK_4K;
3277 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3278 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3279 iotlb.perm = IOMMU_RW;
3280 success = true;
3281 }
3282
3283 if (likely(success)) {
3284 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3285 VTD_PCI_SLOT(vtd_as->devfn),
3286 VTD_PCI_FUNC(vtd_as->devfn),
3287 iotlb.iova, iotlb.translated_addr,
3288 iotlb.addr_mask);
3289 } else {
3290 error_report_once("%s: detected translation failure "
3291 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3292 __func__, pci_bus_num(vtd_as->bus),
3293 VTD_PCI_SLOT(vtd_as->devfn),
3294 VTD_PCI_FUNC(vtd_as->devfn),
3295 addr);
3296 }
3297
3298 return iotlb;
3299 }
3300
vtd_iommu_notify_flag_changed(IOMMUMemoryRegion * iommu,IOMMUNotifierFlag old,IOMMUNotifierFlag new,Error ** errp)3301 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3302 IOMMUNotifierFlag old,
3303 IOMMUNotifierFlag new,
3304 Error **errp)
3305 {
3306 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3307 IntelIOMMUState *s = vtd_as->iommu_state;
3308 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3309
3310 /* TODO: add support for VFIO and vhost users */
3311 if (s->snoop_control) {
3312 error_setg_errno(errp, ENOTSUP,
3313 "Snoop Control with vhost or VFIO is not supported");
3314 return -ENOTSUP;
3315 }
3316 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) {
3317 error_setg_errno(errp, ENOTSUP,
3318 "device %02x.%02x.%x requires caching mode",
3319 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3320 PCI_FUNC(vtd_as->devfn));
3321 return -ENOTSUP;
3322 }
3323 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) {
3324 error_setg_errno(errp, ENOTSUP,
3325 "device %02x.%02x.%x requires device IOTLB mode",
3326 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn),
3327 PCI_FUNC(vtd_as->devfn));
3328 return -ENOTSUP;
3329 }
3330
3331 /* Update per-address-space notifier flags */
3332 vtd_as->notifier_flags = new;
3333
3334 if (old == IOMMU_NOTIFIER_NONE) {
3335 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3336 } else if (new == IOMMU_NOTIFIER_NONE) {
3337 QLIST_REMOVE(vtd_as, next);
3338 }
3339 return 0;
3340 }
3341
vtd_post_load(void * opaque,int version_id)3342 static int vtd_post_load(void *opaque, int version_id)
3343 {
3344 IntelIOMMUState *iommu = opaque;
3345
3346 /*
3347 * We don't need to migrate the root_scalable because we can
3348 * simply do the calculation after the loading is complete. We
3349 * can actually do similar things with root, dmar_enabled, etc.
3350 * however since we've had them already so we'd better keep them
3351 * for compatibility of migration.
3352 */
3353 vtd_update_scalable_state(iommu);
3354
3355 vtd_update_iq_dw(iommu);
3356
3357 /*
3358 * Memory regions are dynamically turned on/off depending on
3359 * context entry configurations from the guest. After migration,
3360 * we need to make sure the memory regions are still correct.
3361 */
3362 vtd_switch_address_space_all(iommu);
3363
3364 return 0;
3365 }
3366
3367 static const VMStateDescription vtd_vmstate = {
3368 .name = "iommu-intel",
3369 .version_id = 1,
3370 .minimum_version_id = 1,
3371 .priority = MIG_PRI_IOMMU,
3372 .post_load = vtd_post_load,
3373 .fields = (const VMStateField[]) {
3374 VMSTATE_UINT64(root, IntelIOMMUState),
3375 VMSTATE_UINT64(intr_root, IntelIOMMUState),
3376 VMSTATE_UINT64(iq, IntelIOMMUState),
3377 VMSTATE_UINT32(intr_size, IntelIOMMUState),
3378 VMSTATE_UINT16(iq_head, IntelIOMMUState),
3379 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3380 VMSTATE_UINT16(iq_size, IntelIOMMUState),
3381 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3382 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3383 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3384 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
3385 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3386 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3387 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3388 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3389 VMSTATE_END_OF_LIST()
3390 }
3391 };
3392
3393 static const MemoryRegionOps vtd_mem_ops = {
3394 .read = vtd_mem_read,
3395 .write = vtd_mem_write,
3396 .endianness = DEVICE_LITTLE_ENDIAN,
3397 .impl = {
3398 .min_access_size = 4,
3399 .max_access_size = 8,
3400 },
3401 .valid = {
3402 .min_access_size = 4,
3403 .max_access_size = 8,
3404 },
3405 };
3406
3407 static Property vtd_properties[] = {
3408 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3409 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3410 ON_OFF_AUTO_AUTO),
3411 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3412 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3413 VTD_HOST_ADDRESS_WIDTH),
3414 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3415 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3416 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3417 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false),
3418 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3419 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3420 DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false),
3421 DEFINE_PROP_END_OF_LIST(),
3422 };
3423
3424 /* Read IRTE entry with specific index */
vtd_irte_get(IntelIOMMUState * iommu,uint16_t index,VTD_IR_TableEntry * entry,uint16_t sid,bool do_fault)3425 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3426 VTD_IR_TableEntry *entry, uint16_t sid,
3427 bool do_fault)
3428 {
3429 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3430 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3431 dma_addr_t addr = 0x00;
3432 uint16_t mask, source_id;
3433 uint8_t bus, bus_max, bus_min;
3434
3435 if (index >= iommu->intr_size) {
3436 error_report_once("%s: index too large: ind=0x%x",
3437 __func__, index);
3438 if (do_fault) {
3439 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index);
3440 }
3441 return false;
3442 }
3443
3444 addr = iommu->intr_root + index * sizeof(*entry);
3445 if (dma_memory_read(&address_space_memory, addr,
3446 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3447 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3448 __func__, index, addr);
3449 if (do_fault) {
3450 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index);
3451 }
3452 return false;
3453 }
3454
3455 entry->data[0] = le64_to_cpu(entry->data[0]);
3456 entry->data[1] = le64_to_cpu(entry->data[1]);
3457
3458 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]);
3459
3460 /*
3461 * The remaining potential fault conditions are "qualified" by the
3462 * Fault Processing Disable bit in the IRTE. Even "not present".
3463 * So just clear the do_fault flag if PFD is set, which will
3464 * prevent faults being raised.
3465 */
3466 if (entry->irte.fault_disable) {
3467 do_fault = false;
3468 }
3469
3470 if (!entry->irte.present) {
3471 error_report_once("%s: detected non-present IRTE "
3472 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3473 __func__, index, entry->data[1], entry->data[0]);
3474 if (do_fault) {
3475 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index);
3476 }
3477 return false;
3478 }
3479
3480 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3481 entry->irte.__reserved_2) {
3482 error_report_once("%s: detected non-zero reserved IRTE "
3483 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3484 __func__, index, entry->data[1], entry->data[0]);
3485 if (do_fault) {
3486 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index);
3487 }
3488 return false;
3489 }
3490
3491 if (sid != X86_IOMMU_SID_INVALID) {
3492 /* Validate IRTE SID */
3493 source_id = entry->irte.source_id;
3494 switch (entry->irte.sid_vtype) {
3495 case VTD_SVT_NONE:
3496 break;
3497
3498 case VTD_SVT_ALL:
3499 mask = vtd_svt_mask[entry->irte.sid_q];
3500 if ((source_id & mask) != (sid & mask)) {
3501 error_report_once("%s: invalid IRTE SID "
3502 "(index=%u, sid=%u, source_id=%u)",
3503 __func__, index, sid, source_id);
3504 if (do_fault) {
3505 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3506 }
3507 return false;
3508 }
3509 break;
3510
3511 case VTD_SVT_BUS:
3512 bus_max = source_id >> 8;
3513 bus_min = source_id & 0xff;
3514 bus = sid >> 8;
3515 if (bus > bus_max || bus < bus_min) {
3516 error_report_once("%s: invalid SVT_BUS "
3517 "(index=%u, bus=%u, min=%u, max=%u)",
3518 __func__, index, bus, bus_min, bus_max);
3519 if (do_fault) {
3520 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3521 }
3522 return false;
3523 }
3524 break;
3525
3526 default:
3527 error_report_once("%s: detected invalid IRTE SVT "
3528 "(index=%u, type=%d)", __func__,
3529 index, entry->irte.sid_vtype);
3530 /* Take this as verification failure. */
3531 if (do_fault) {
3532 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index);
3533 }
3534 return false;
3535 }
3536 }
3537
3538 return true;
3539 }
3540
3541 /* Fetch IRQ information of specific IR index */
vtd_remap_irq_get(IntelIOMMUState * iommu,uint16_t index,X86IOMMUIrq * irq,uint16_t sid,bool do_fault)3542 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3543 X86IOMMUIrq *irq, uint16_t sid, bool do_fault)
3544 {
3545 VTD_IR_TableEntry irte = {};
3546
3547 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) {
3548 return false;
3549 }
3550
3551 irq->trigger_mode = irte.irte.trigger_mode;
3552 irq->vector = irte.irte.vector;
3553 irq->delivery_mode = irte.irte.delivery_mode;
3554 irq->dest = irte.irte.dest_id;
3555 if (!iommu->intr_eime) {
3556 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3557 #define VTD_IR_APIC_DEST_SHIFT (8)
3558 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3559 VTD_IR_APIC_DEST_SHIFT;
3560 }
3561 irq->dest_mode = irte.irte.dest_mode;
3562 irq->redir_hint = irte.irte.redir_hint;
3563
3564 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3565 irq->delivery_mode, irq->dest, irq->dest_mode);
3566
3567 return true;
3568 }
3569
3570 /* Interrupt remapping for MSI/MSI-X entry */
vtd_interrupt_remap_msi(IntelIOMMUState * iommu,MSIMessage * origin,MSIMessage * translated,uint16_t sid,bool do_fault)3571 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3572 MSIMessage *origin,
3573 MSIMessage *translated,
3574 uint16_t sid, bool do_fault)
3575 {
3576 VTD_IR_MSIAddress addr;
3577 uint16_t index;
3578 X86IOMMUIrq irq = {};
3579
3580 assert(origin && translated);
3581
3582 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3583
3584 if (!iommu || !iommu->intr_enabled) {
3585 memcpy(translated, origin, sizeof(*origin));
3586 goto out;
3587 }
3588
3589 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3590 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3591 "address=0x%" PRIx64, __func__, origin->address);
3592 if (do_fault) {
3593 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3594 }
3595 return -EINVAL;
3596 }
3597
3598 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3599 if (addr.addr.__head != 0xfee) {
3600 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3601 __func__, addr.data);
3602 if (do_fault) {
3603 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3604 }
3605 return -EINVAL;
3606 }
3607
3608 /* This is compatible mode. */
3609 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3610 memcpy(translated, origin, sizeof(*origin));
3611 goto out;
3612 }
3613
3614 index = addr.addr.index_h << 15 | addr.addr.index_l;
3615
3616 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3617 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3618
3619 if (addr.addr.sub_valid) {
3620 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3621 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3622 }
3623
3624 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) {
3625 return -EINVAL;
3626 }
3627
3628 if (addr.addr.sub_valid) {
3629 trace_vtd_ir_remap_type("MSI");
3630 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3631 error_report_once("%s: invalid IR MSI "
3632 "(sid=%u, address=0x%" PRIx64
3633 ", data=0x%" PRIx32 ")",
3634 __func__, sid, origin->address, origin->data);
3635 if (do_fault) {
3636 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0);
3637 }
3638 return -EINVAL;
3639 }
3640 } else {
3641 uint8_t vector = origin->data & 0xff;
3642 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3643
3644 trace_vtd_ir_remap_type("IOAPIC");
3645 /* IOAPIC entry vector should be aligned with IRTE vector
3646 * (see vt-d spec 5.1.5.1). */
3647 if (vector != irq.vector) {
3648 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3649 }
3650
3651 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3652 * (see vt-d spec 5.1.5.1). */
3653 if (trigger_mode != irq.trigger_mode) {
3654 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3655 irq.trigger_mode);
3656 }
3657 }
3658
3659 /*
3660 * We'd better keep the last two bits, assuming that guest OS
3661 * might modify it. Keep it does not hurt after all.
3662 */
3663 irq.msi_addr_last_bits = addr.addr.__not_care;
3664
3665 /* Translate X86IOMMUIrq to MSI message */
3666 x86_iommu_irq_to_msi_message(&irq, translated);
3667
3668 out:
3669 trace_vtd_ir_remap_msi(origin->address, origin->data,
3670 translated->address, translated->data);
3671 return 0;
3672 }
3673
vtd_int_remap(X86IOMMUState * iommu,MSIMessage * src,MSIMessage * dst,uint16_t sid)3674 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3675 MSIMessage *dst, uint16_t sid)
3676 {
3677 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3678 src, dst, sid, false);
3679 }
3680
vtd_mem_ir_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)3681 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3682 uint64_t *data, unsigned size,
3683 MemTxAttrs attrs)
3684 {
3685 return MEMTX_OK;
3686 }
3687
vtd_mem_ir_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)3688 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3689 uint64_t value, unsigned size,
3690 MemTxAttrs attrs)
3691 {
3692 int ret = 0;
3693 MSIMessage from = {}, to = {};
3694 uint16_t sid = X86_IOMMU_SID_INVALID;
3695
3696 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3697 from.data = (uint32_t) value;
3698
3699 if (!attrs.unspecified) {
3700 /* We have explicit Source ID */
3701 sid = attrs.requester_id;
3702 }
3703
3704 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true);
3705 if (ret) {
3706 /* Drop this interrupt */
3707 return MEMTX_ERROR;
3708 }
3709
3710 apic_get_class(NULL)->send_msi(&to);
3711
3712 return MEMTX_OK;
3713 }
3714
3715 static const MemoryRegionOps vtd_mem_ir_ops = {
3716 .read_with_attrs = vtd_mem_ir_read,
3717 .write_with_attrs = vtd_mem_ir_write,
3718 .endianness = DEVICE_LITTLE_ENDIAN,
3719 .impl = {
3720 .min_access_size = 4,
3721 .max_access_size = 4,
3722 },
3723 .valid = {
3724 .min_access_size = 4,
3725 .max_access_size = 4,
3726 },
3727 };
3728
vtd_report_ir_illegal_access(VTDAddressSpace * vtd_as,hwaddr addr,bool is_write)3729 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as,
3730 hwaddr addr, bool is_write)
3731 {
3732 IntelIOMMUState *s = vtd_as->iommu_state;
3733 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3734 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn);
3735 bool is_fpd_set = false;
3736 VTDContextEntry ce;
3737
3738 assert(vtd_as->pasid != PCI_NO_PASID);
3739
3740 /* Try out best to fetch FPD, we can't do anything more */
3741 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3742 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
3743 if (!is_fpd_set && s->root_scalable) {
3744 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid);
3745 }
3746 }
3747
3748 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR,
3749 is_fpd_set, sid, addr, is_write,
3750 true, vtd_as->pasid);
3751 }
3752
vtd_mem_ir_fault_read(void * opaque,hwaddr addr,uint64_t * data,unsigned size,MemTxAttrs attrs)3753 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr,
3754 uint64_t *data, unsigned size,
3755 MemTxAttrs attrs)
3756 {
3757 vtd_report_ir_illegal_access(opaque, addr, false);
3758
3759 return MEMTX_ERROR;
3760 }
3761
vtd_mem_ir_fault_write(void * opaque,hwaddr addr,uint64_t value,unsigned size,MemTxAttrs attrs)3762 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr,
3763 uint64_t value, unsigned size,
3764 MemTxAttrs attrs)
3765 {
3766 vtd_report_ir_illegal_access(opaque, addr, true);
3767
3768 return MEMTX_ERROR;
3769 }
3770
3771 static const MemoryRegionOps vtd_mem_ir_fault_ops = {
3772 .read_with_attrs = vtd_mem_ir_fault_read,
3773 .write_with_attrs = vtd_mem_ir_fault_write,
3774 .endianness = DEVICE_LITTLE_ENDIAN,
3775 .impl = {
3776 .min_access_size = 1,
3777 .max_access_size = 8,
3778 },
3779 .valid = {
3780 .min_access_size = 1,
3781 .max_access_size = 8,
3782 },
3783 };
3784
vtd_find_add_as(IntelIOMMUState * s,PCIBus * bus,int devfn,unsigned int pasid)3785 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus,
3786 int devfn, unsigned int pasid)
3787 {
3788 /*
3789 * We can't simply use sid here since the bus number might not be
3790 * initialized by the guest.
3791 */
3792 struct vtd_as_key key = {
3793 .bus = bus,
3794 .devfn = devfn,
3795 .pasid = pasid,
3796 };
3797 VTDAddressSpace *vtd_dev_as;
3798 char name[128];
3799
3800 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key);
3801 if (!vtd_dev_as) {
3802 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key));
3803
3804 new_key->bus = bus;
3805 new_key->devfn = devfn;
3806 new_key->pasid = pasid;
3807
3808 if (pasid == PCI_NO_PASID) {
3809 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3810 PCI_FUNC(devfn));
3811 } else {
3812 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn),
3813 PCI_FUNC(devfn), pasid);
3814 }
3815
3816 vtd_dev_as = g_new0(VTDAddressSpace, 1);
3817
3818 vtd_dev_as->bus = bus;
3819 vtd_dev_as->devfn = (uint8_t)devfn;
3820 vtd_dev_as->pasid = pasid;
3821 vtd_dev_as->iommu_state = s;
3822 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3823 vtd_dev_as->iova_tree = iova_tree_new();
3824
3825 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3826 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3827
3828 /*
3829 * Build the DMAR-disabled container with aliases to the
3830 * shared MRs. Note that aliasing to a shared memory region
3831 * could help the memory API to detect same FlatViews so we
3832 * can have devices to share the same FlatView when DMAR is
3833 * disabled (either by not providing "intel_iommu=on" or with
3834 * "iommu=pt"). It will greatly reduce the total number of
3835 * FlatViews of the system hence VM runs faster.
3836 */
3837 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3838 "vtd-nodmar", &s->mr_nodmar, 0,
3839 memory_region_size(&s->mr_nodmar));
3840
3841 /*
3842 * Build the per-device DMAR-enabled container.
3843 *
3844 * TODO: currently we have per-device IOMMU memory region only
3845 * because we have per-device IOMMU notifiers for devices. If
3846 * one day we can abstract the IOMMU notifiers out of the
3847 * memory regions then we can also share the same memory
3848 * region here just like what we've done above with the nodmar
3849 * region.
3850 */
3851 strcat(name, "-dmar");
3852 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3853 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3854 name, UINT64_MAX);
3855 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3856 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3857 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3858 VTD_INTERRUPT_ADDR_FIRST,
3859 &vtd_dev_as->iommu_ir, 1);
3860
3861 /*
3862 * This region is used for catching fault to access interrupt
3863 * range via passthrough + PASID. See also
3864 * vtd_switch_address_space(). We can't use alias since we
3865 * need to know the sid which is valid for MSI who uses
3866 * bus_master_as (see msi_send_message()).
3867 */
3868 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s),
3869 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir",
3870 VTD_INTERRUPT_ADDR_SIZE);
3871 /*
3872 * Hook to root since when PT is enabled vtd_dev_as->iommu
3873 * will be disabled.
3874 */
3875 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root),
3876 VTD_INTERRUPT_ADDR_FIRST,
3877 &vtd_dev_as->iommu_ir_fault, 2);
3878
3879 /*
3880 * Hook both the containers under the root container, we
3881 * switch between DMAR & noDMAR by enable/disable
3882 * corresponding sub-containers
3883 */
3884 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3885 MEMORY_REGION(&vtd_dev_as->iommu),
3886 0);
3887 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3888 &vtd_dev_as->nodmar, 0);
3889
3890 vtd_switch_address_space(vtd_dev_as);
3891
3892 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as);
3893 }
3894 return vtd_dev_as;
3895 }
3896
vtd_check_hiod(IntelIOMMUState * s,HostIOMMUDevice * hiod,Error ** errp)3897 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod,
3898 Error **errp)
3899 {
3900 HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod);
3901 int ret;
3902
3903 if (!hiodc->get_cap) {
3904 error_setg(errp, ".get_cap() not implemented");
3905 return false;
3906 }
3907
3908 /* Common checks */
3909 ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp);
3910 if (ret < 0) {
3911 return false;
3912 }
3913 if (s->aw_bits > ret) {
3914 error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret);
3915 return false;
3916 }
3917
3918 return true;
3919 }
3920
vtd_dev_set_iommu_device(PCIBus * bus,void * opaque,int devfn,HostIOMMUDevice * hiod,Error ** errp)3921 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn,
3922 HostIOMMUDevice *hiod, Error **errp)
3923 {
3924 IntelIOMMUState *s = opaque;
3925 struct vtd_as_key key = {
3926 .bus = bus,
3927 .devfn = devfn,
3928 };
3929 struct vtd_as_key *new_key;
3930
3931 assert(hiod);
3932
3933 vtd_iommu_lock(s);
3934
3935 if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
3936 error_setg(errp, "Host IOMMU device already exist");
3937 vtd_iommu_unlock(s);
3938 return false;
3939 }
3940
3941 if (!vtd_check_hiod(s, hiod, errp)) {
3942 vtd_iommu_unlock(s);
3943 return false;
3944 }
3945
3946 new_key = g_malloc(sizeof(*new_key));
3947 new_key->bus = bus;
3948 new_key->devfn = devfn;
3949
3950 object_ref(hiod);
3951 g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod);
3952
3953 vtd_iommu_unlock(s);
3954
3955 return true;
3956 }
3957
vtd_dev_unset_iommu_device(PCIBus * bus,void * opaque,int devfn)3958 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn)
3959 {
3960 IntelIOMMUState *s = opaque;
3961 struct vtd_as_key key = {
3962 .bus = bus,
3963 .devfn = devfn,
3964 };
3965
3966 vtd_iommu_lock(s);
3967
3968 if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) {
3969 vtd_iommu_unlock(s);
3970 return;
3971 }
3972
3973 g_hash_table_remove(s->vtd_host_iommu_dev, &key);
3974
3975 vtd_iommu_unlock(s);
3976 }
3977
3978 /* Unmap the whole range in the notifier's scope. */
vtd_address_space_unmap(VTDAddressSpace * as,IOMMUNotifier * n)3979 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3980 {
3981 hwaddr total, remain;
3982 hwaddr start = n->start;
3983 hwaddr end = n->end;
3984 IntelIOMMUState *s = as->iommu_state;
3985 DMAMap map;
3986
3987 /*
3988 * Note: all the codes in this function has a assumption that IOVA
3989 * bits are no more than VTD_MGAW bits (which is restricted by
3990 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3991 */
3992
3993 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3994 /*
3995 * Don't need to unmap regions that is bigger than the whole
3996 * VT-d supported address space size
3997 */
3998 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3999 }
4000
4001 assert(start <= end);
4002 total = remain = end - start + 1;
4003
4004 while (remain >= VTD_PAGE_SIZE) {
4005 IOMMUTLBEvent event;
4006 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
4007 uint64_t size = mask + 1;
4008
4009 assert(size);
4010
4011 event.type = IOMMU_NOTIFIER_UNMAP;
4012 event.entry.iova = start;
4013 event.entry.addr_mask = mask;
4014 event.entry.target_as = &address_space_memory;
4015 event.entry.perm = IOMMU_NONE;
4016 /* This field is meaningless for unmap */
4017 event.entry.translated_addr = 0;
4018
4019 memory_region_notify_iommu_one(n, &event);
4020
4021 start += size;
4022 remain -= size;
4023 }
4024
4025 assert(!remain);
4026
4027 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
4028 VTD_PCI_SLOT(as->devfn),
4029 VTD_PCI_FUNC(as->devfn),
4030 n->start, total);
4031
4032 map.iova = n->start;
4033 map.size = total - 1; /* Inclusive */
4034 iova_tree_remove(as->iova_tree, map);
4035 }
4036
vtd_address_space_unmap_all(IntelIOMMUState * s)4037 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
4038 {
4039 VTDAddressSpace *vtd_as;
4040 IOMMUNotifier *n;
4041
4042 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
4043 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
4044 vtd_address_space_unmap(vtd_as, n);
4045 }
4046 }
4047 }
4048
vtd_address_space_refresh_all(IntelIOMMUState * s)4049 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
4050 {
4051 vtd_address_space_unmap_all(s);
4052 vtd_switch_address_space_all(s);
4053 }
4054
vtd_replay_hook(const IOMMUTLBEvent * event,void * private)4055 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private)
4056 {
4057 memory_region_notify_iommu_one(private, event);
4058 return 0;
4059 }
4060
vtd_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)4061 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
4062 {
4063 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
4064 IntelIOMMUState *s = vtd_as->iommu_state;
4065 uint8_t bus_n = pci_bus_num(vtd_as->bus);
4066 VTDContextEntry ce;
4067 DMAMap map = { .iova = 0, .size = HWADDR_MAX };
4068
4069 /* replay is protected by BQL, page walk will re-setup it safely */
4070 iova_tree_remove(vtd_as->iova_tree, map);
4071
4072 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
4073 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
4074 "legacy mode",
4075 bus_n, PCI_SLOT(vtd_as->devfn),
4076 PCI_FUNC(vtd_as->devfn),
4077 vtd_get_domain_id(s, &ce, vtd_as->pasid),
4078 ce.hi, ce.lo);
4079 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) {
4080 /* This is required only for MAP typed notifiers */
4081 vtd_page_walk_info info = {
4082 .hook_fn = vtd_replay_hook,
4083 .private = (void *)n,
4084 .notify_unmap = false,
4085 .aw = s->aw_bits,
4086 .as = vtd_as,
4087 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid),
4088 };
4089
4090 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid);
4091 }
4092 } else {
4093 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
4094 PCI_FUNC(vtd_as->devfn));
4095 }
4096
4097 return;
4098 }
4099
vtd_cap_init(IntelIOMMUState * s)4100 static void vtd_cap_init(IntelIOMMUState *s)
4101 {
4102 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4103
4104 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
4105 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
4106 VTD_CAP_MGAW(s->aw_bits);
4107 if (s->dma_drain) {
4108 s->cap |= VTD_CAP_DRAIN;
4109 }
4110 if (s->dma_translation) {
4111 if (s->aw_bits >= VTD_HOST_AW_39BIT) {
4112 s->cap |= VTD_CAP_SAGAW_39bit;
4113 }
4114 if (s->aw_bits >= VTD_HOST_AW_48BIT) {
4115 s->cap |= VTD_CAP_SAGAW_48bit;
4116 }
4117 }
4118 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
4119
4120 if (x86_iommu_ir_supported(x86_iommu)) {
4121 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
4122 if (s->intr_eim == ON_OFF_AUTO_ON) {
4123 s->ecap |= VTD_ECAP_EIM;
4124 }
4125 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
4126 }
4127
4128 if (x86_iommu->dt_supported) {
4129 s->ecap |= VTD_ECAP_DT;
4130 }
4131
4132 if (x86_iommu->pt_supported) {
4133 s->ecap |= VTD_ECAP_PT;
4134 }
4135
4136 if (s->caching_mode) {
4137 s->cap |= VTD_CAP_CM;
4138 }
4139
4140 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
4141 if (s->scalable_mode) {
4142 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
4143 }
4144
4145 if (s->snoop_control) {
4146 s->ecap |= VTD_ECAP_SC;
4147 }
4148
4149 if (s->pasid) {
4150 s->ecap |= VTD_ECAP_PASID;
4151 }
4152 }
4153
4154 /*
4155 * Do the initialization. It will also be called when reset, so pay
4156 * attention when adding new initialization stuff.
4157 */
vtd_init(IntelIOMMUState * s)4158 static void vtd_init(IntelIOMMUState *s)
4159 {
4160 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4161
4162 memset(s->csr, 0, DMAR_REG_SIZE);
4163 memset(s->wmask, 0, DMAR_REG_SIZE);
4164 memset(s->w1cmask, 0, DMAR_REG_SIZE);
4165 memset(s->womask, 0, DMAR_REG_SIZE);
4166
4167 s->root = 0;
4168 s->root_scalable = false;
4169 s->dmar_enabled = false;
4170 s->intr_enabled = false;
4171 s->iq_head = 0;
4172 s->iq_tail = 0;
4173 s->iq = 0;
4174 s->iq_size = 0;
4175 s->qi_enabled = false;
4176 s->iq_last_desc_type = VTD_INV_DESC_NONE;
4177 s->iq_dw = false;
4178 s->next_frcd_reg = 0;
4179
4180 vtd_cap_init(s);
4181
4182 /*
4183 * Rsvd field masks for spte
4184 */
4185 vtd_spte_rsvd[0] = ~0ULL;
4186 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
4187 x86_iommu->dt_supported && s->stale_tm);
4188 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
4189 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
4190 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
4191
4192 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
4193 x86_iommu->dt_supported && s->stale_tm);
4194 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
4195 x86_iommu->dt_supported && s->stale_tm);
4196
4197 if (s->scalable_mode || s->snoop_control) {
4198 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
4199 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
4200 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
4201 }
4202
4203 vtd_reset_caches(s);
4204
4205 /* Define registers with default values and bit semantics */
4206 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
4207 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
4208 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
4209 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
4210 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
4211 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
4212 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
4213 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
4214 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
4215
4216 /* Advanced Fault Logging not supported */
4217 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
4218 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4219 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
4220 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
4221
4222 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
4223 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
4224 */
4225 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
4226
4227 /* Treated as RO for implementations that PLMR and PHMR fields reported
4228 * as Clear in the CAP_REG.
4229 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
4230 */
4231 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
4232
4233 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
4234 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
4235 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
4236 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
4237 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
4238 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
4239 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
4240 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
4241 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
4242
4243 /* IOTLB registers */
4244 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
4245 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
4246 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
4247
4248 /* Fault Recording Registers, 128-bit */
4249 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
4250 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
4251
4252 /*
4253 * Interrupt remapping registers.
4254 */
4255 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
4256 }
4257
4258 /* Should not reset address_spaces when reset because devices will still use
4259 * the address space they got at first (won't ask the bus again).
4260 */
vtd_reset(DeviceState * dev)4261 static void vtd_reset(DeviceState *dev)
4262 {
4263 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4264
4265 vtd_init(s);
4266 vtd_address_space_refresh_all(s);
4267 }
4268
vtd_host_dma_iommu(PCIBus * bus,void * opaque,int devfn)4269 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
4270 {
4271 IntelIOMMUState *s = opaque;
4272 VTDAddressSpace *vtd_as;
4273
4274 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
4275
4276 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID);
4277 return &vtd_as->as;
4278 }
4279
4280 static PCIIOMMUOps vtd_iommu_ops = {
4281 .get_address_space = vtd_host_dma_iommu,
4282 .set_iommu_device = vtd_dev_set_iommu_device,
4283 .unset_iommu_device = vtd_dev_unset_iommu_device,
4284 };
4285
vtd_decide_config(IntelIOMMUState * s,Error ** errp)4286 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
4287 {
4288 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4289
4290 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
4291 error_setg(errp, "eim=on cannot be selected without intremap=on");
4292 return false;
4293 }
4294
4295 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
4296 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
4297 && x86_iommu_ir_supported(x86_iommu) ?
4298 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
4299 }
4300 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
4301 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) {
4302 error_setg(errp, "eim=on requires support on the KVM side"
4303 "(X2APIC_API, first shipped in v4.7)");
4304 return false;
4305 }
4306 }
4307
4308 /* Currently only address widths supported are 39 and 48 bits */
4309 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
4310 (s->aw_bits != VTD_HOST_AW_48BIT)) {
4311 error_setg(errp, "Supported values for aw-bits are: %d, %d",
4312 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
4313 return false;
4314 }
4315
4316 if (s->scalable_mode && !s->dma_drain) {
4317 error_setg(errp, "Need to set dma_drain for scalable mode");
4318 return false;
4319 }
4320
4321 if (s->pasid && !s->scalable_mode) {
4322 error_setg(errp, "Need to set scalable mode for PASID");
4323 return false;
4324 }
4325
4326 return true;
4327 }
4328
vtd_machine_done_notify_one(Object * child,void * unused)4329 static int vtd_machine_done_notify_one(Object *child, void *unused)
4330 {
4331 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
4332
4333 /*
4334 * We hard-coded here because vfio-pci is the only special case
4335 * here. Let's be more elegant in the future when we can, but so
4336 * far there seems to be no better way.
4337 */
4338 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
4339 vtd_panic_require_caching_mode();
4340 }
4341
4342 return 0;
4343 }
4344
vtd_machine_done_hook(Notifier * notifier,void * unused)4345 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
4346 {
4347 object_child_foreach_recursive(object_get_root(),
4348 vtd_machine_done_notify_one, NULL);
4349 }
4350
4351 static Notifier vtd_machine_done_notify = {
4352 .notify = vtd_machine_done_hook,
4353 };
4354
vtd_realize(DeviceState * dev,Error ** errp)4355 static void vtd_realize(DeviceState *dev, Error **errp)
4356 {
4357 MachineState *ms = MACHINE(qdev_get_machine());
4358 PCMachineState *pcms = PC_MACHINE(ms);
4359 X86MachineState *x86ms = X86_MACHINE(ms);
4360 PCIBus *bus = pcms->pcibus;
4361 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
4362 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
4363
4364 if (s->pasid && x86_iommu->dt_supported) {
4365 /*
4366 * PASID-based-Device-TLB Invalidate Descriptor is not
4367 * implemented and it requires support from vhost layer which
4368 * needs to be implemented in the future.
4369 */
4370 error_setg(errp, "PASID based device IOTLB is not supported");
4371 return;
4372 }
4373
4374 if (!vtd_decide_config(s, errp)) {
4375 return;
4376 }
4377
4378 QLIST_INIT(&s->vtd_as_with_notifiers);
4379 qemu_mutex_init(&s->iommu_lock);
4380 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
4381 "intel_iommu", DMAR_REG_SIZE);
4382 memory_region_add_subregion(get_system_memory(),
4383 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem);
4384
4385 /* Create the shared memory regions by all devices */
4386 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
4387 UINT64_MAX);
4388 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
4389 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
4390 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
4391 "vtd-sys-alias", get_system_memory(), 0,
4392 memory_region_size(get_system_memory()));
4393 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
4394 &s->mr_sys_alias, 0);
4395 memory_region_add_subregion_overlap(&s->mr_nodmar,
4396 VTD_INTERRUPT_ADDR_FIRST,
4397 &s->mr_ir, 1);
4398 /* No corresponding destroy */
4399 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal,
4400 g_free, g_free);
4401 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal,
4402 g_free, g_free);
4403 s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal,
4404 g_free, vtd_hiod_destroy);
4405 vtd_init(s);
4406 pci_setup_iommu(bus, &vtd_iommu_ops, dev);
4407 /* Pseudo address space under root PCI bus. */
4408 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
4409 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
4410 }
4411
vtd_class_init(ObjectClass * klass,void * data)4412 static void vtd_class_init(ObjectClass *klass, void *data)
4413 {
4414 DeviceClass *dc = DEVICE_CLASS(klass);
4415 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
4416
4417 device_class_set_legacy_reset(dc, vtd_reset);
4418 dc->vmsd = &vtd_vmstate;
4419 device_class_set_props(dc, vtd_properties);
4420 dc->hotpluggable = false;
4421 x86_class->realize = vtd_realize;
4422 x86_class->int_remap = vtd_int_remap;
4423 /* Supported by the pc-q35-* machine types */
4424 dc->user_creatable = true;
4425 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
4426 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
4427 }
4428
4429 static const TypeInfo vtd_info = {
4430 .name = TYPE_INTEL_IOMMU_DEVICE,
4431 .parent = TYPE_X86_IOMMU_DEVICE,
4432 .instance_size = sizeof(IntelIOMMUState),
4433 .class_init = vtd_class_init,
4434 };
4435
vtd_iommu_memory_region_class_init(ObjectClass * klass,void * data)4436 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
4437 void *data)
4438 {
4439 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
4440
4441 imrc->translate = vtd_iommu_translate;
4442 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
4443 imrc->replay = vtd_iommu_replay;
4444 }
4445
4446 static const TypeInfo vtd_iommu_memory_region_info = {
4447 .parent = TYPE_IOMMU_MEMORY_REGION,
4448 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
4449 .class_init = vtd_iommu_memory_region_class_init,
4450 };
4451
vtd_register_types(void)4452 static void vtd_register_types(void)
4453 {
4454 type_register_static(&vtd_info);
4455 type_register_static(&vtd_iommu_memory_region_info);
4456 }
4457
4458 type_init(vtd_register_types)
4459